

Machine Learning for

Algorithmic Trading
Second Edition

Predictive models to extract signals from market

and alternative data for systematic trading

strategies with Python

Stefan Jansen

BIRMINGHAM - MUMBAI

Machine Learning for Algorithmic Trading
Second Edition

Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Producer: Tushar Gupta

Acquisition Editor – Peer Reviews: Suresh Jain

Content Development Editor: Chris Nelson

Technical Editor: Aniket Shetty

Project Editor: Carol Lewis

Copy Editor: Safis Editing
Proofreader: Safis Editing
Indexer: Priyanka Dhadke

Presentation Designer: Pranit Padwal

First published: December 2018

Second edition: July 2020

Production reference: 1300720

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-83921-771-5

www.packt.com

http://www.packt.com

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Learn better with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.Packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.Packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://packt.com
http://www.Packt.com
mailto:customercare@packtpub.com
http://www.Packt.com

Contributors

About the author
Stefan Jansen is the founder and CEO of Applied AI. He advises Fortune 500 companies,
investment firms, and start-ups across industries on data and AI strategy, building data
science teams, and developing end-to-end machine learning solutions for a broad range of
business problems.

Before his current venture, he was a partner and managing director at an international
investment firm, where he built the predictive analytics and investment research practice.
He was also a senior executive at a global fintech company with operations in 15 markets,
advised central banks in emerging markets, and consulted for the World Bank.

He holds master's degrees in computer science from Georgia Tech and in economics from
Harvard and Free University Berlin, and a CFA charter. He has worked in six languages
across Europe, Asia, and the Americas and taught data science at DataCamp and General

Assembly.

This thorough revision of the first edition was only possible with the collaboration
and support of my family, friends, and colleagues. I want to thank the team at
Packt for responding to reader feedback and taking the project from start to finish.
Chris Nelson was a thorough editor and provided constructive advice. I want to
thank my clients for the opportunity to do such exciting work that often offered
valuable inspiration for this book.

Most important, however, has been the unrelenting patience and support of
Mariana. To her and Bastian, who make it all worthwhile, I dedicate this book.

About the reviewers
Prem Jebaseelan has about 20 years of experience in handling different financial data
and enjoys the challenge of organizing, storing, retrieving, and analyzing large volumes
of data. Prem has designed and implemented several enterprise-level solutions for front
office trading strategies, middle office, and back office applications for funds, and has good
experience in applying machine learning and AI-based solutions. Prem has an engineering
degree.

Prem is currently the co-founder and CEO of Zentropy Technologies, a fintech company
that specializes in creating machine learning based solutions in the financial domain. Prior
to this, Prem worked in one of the leading hedge funds as a technology solutions provider.

I would like to thank all my previous employers who have helped me in
developing real-world solutions that bring technology and finance together.
I would specifically like to thank Dr Yves Hilpisch for our work together in
the application of machine learning to real-world trading strategies.

Ramanathan Ramakrishnamoorthy is one of the co founders and directors at
Zentropy Technologies. Ramanathan started his professional career with a leading hedge
fund and in his latest position, he worked as a project manager responsible for building
tools and technologies required by the middle and back office. At Zentropy, Ramanathan is
primarily responsible for better understanding project requirements and converting them
to technical specs. alongside executing them. Having a keen eye for subtle data patterns,
Ramanathan also has a good understanding of the machine learning and data science
domain, particularly with expertise in the time series analysis domain. Ramanathan's
experience has primarily been around building trading systems, quant warehouses, and
backtesting engines for capital markets.

Ramanathan is also an active core group member in the Hyderabad Python group. He
leads some of the most important activities of the community, like organizing conferences,
monthly meetups, and conducting Python sessions at colleges.

[i]

Table of Contents

Preface xiii

Chapter 1: Machine Learning for Trading – From Idea to Execution 1
The rise of ML in the investment industry 2

From electronic to high-frequency trading 3

Factor investing and smart beta funds 5

Algorithmic pioneers outperform humans 7

ML and alternative data 10

Crowdsourcing trading algorithms 11

Designing and executing an ML-driven strategy 12
Sourcing and managing data 13

From alpha factor research to portfolio management 13

Strategy backtesting 15

ML for trading – strategies and use cases 15
The evolution of algorithmic strategies 15

Use cases of ML for trading 16

Summary 19

Chapter 2: Market and Fundamental Data – Sources and Techniques 21
Market data reflects its environment 22

Market microstructure – the nuts and bolts 23

How to trade – different types of orders 23
Where to trade – from exchanges to dark pools 24

Working with high-frequency data 26
How to work with Nasdaq order book data 26

Communicating trades with the FIX protocol 27

The Nasdaq TotalView-ITCH data feed 27

From ticks to bars – how to regularize market data 35

AlgoSeek minute bars – equity quote and trade data 40

API access to market data 44
Remote data access using pandas 44

yfinance – scraping data from Yahoo! Finance 46

Table of Contents

[ii]

Quantopian 48

Zipline 48

Quandl 50

Other market data providers 50

How to work with fundamental data 51
Financial statement data 51

Other fundamental data sources 56

Efficient data storage with pandas 57
Summary 58

Chapter 3: Alternative Data for Finance – Categories and Use Cases 59
The alternative data revolution 60
Sources of alternative data 62

Individuals 62

Business processes 63

Sensors 63

Criteria for evaluating alternative data 65
Quality of the signal content 65

Quality of the data 67

Technical aspects 68

The market for alternative data 69
Data providers and use cases 70

Working with alternative data 72
Scraping OpenTable data 72

Scraping and parsing earnings call transcripts 77

Summary 80

Chapter 4: Financial Feature Engineering – How to Research
Alpha Factors 81

Alpha factors in practice – from data to signals 82
Building on decades of factor research 84

Momentum and sentiment – the trend is your friend 84

Value factors – hunting fundamental bargains 88

Volatility and size anomalies 90

Quality factors for quantitative investing 92

Engineering alpha factors that predict returns 94
How to engineer factors using pandas and NumPy 94

How to use TA-Lib to create technical alpha factors 99

Denoising alpha factors with the Kalman filter 100
How to preprocess your noisy signals using wavelets 104

From signals to trades – Zipline for backtests 106
How to backtest a single-factor strategy 106

Combining factors from diverse data sources 109

Separating signal from noise with Alphalens 111
Creating forward returns and factor quantiles 112

Predictive performance by factor quantiles 113

Table of Contents

[iii]

The information coefficient 115
Factor turnover 117

Alpha factor resources 118
Alternative algorithmic trading libraries 118

Summary 119

Chapter 5: Portfolio Optimization and Performance Evaluation 121
How to measure portfolio performance 122

Capturing risk-return trade-offs in a single number 122
The fundamental law of active management 124

How to manage portfolio risk and return 125
The evolution of modern portfolio management 125

Mean-variance optimization 127

Alternatives to mean-variance optimization 131

Risk parity 134

Risk factor investment 135

Hierarchical risk parity 135

Trading and managing portfolios with Zipline 136
Scheduling signal generation and trade execution 137

Implementing mean-variance portfolio optimization 138

Measuring backtest performance with pyfolio 140
Creating the returns and benchmark inputs 141

Walk-forward testing – out-of-sample returns 142

Summary 146

Chapter 6: The Machine Learning Process 147
How machine learning from data works 148

The challenge – matching the algorithm to the task 149

Supervised learning – teaching by example 149

Unsupervised learning – uncovering useful patterns 150

Reinforcement learning – learning by trial and error 152

The machine learning workflow 153
Basic walkthrough – k-nearest neighbors 154

Framing the problem – from goals to metrics 154

Collecting and preparing the data 160

Exploring, extracting, and engineering features 160

Selecting an ML algorithm 162

Design and tune the model 162

How to select a model using cross-validation 165

How to implement cross-validation in Python 166

Challenges with cross-validation in finance 168
Parameter tuning with scikit-learn and Yellowbrick 170

Summary 172
Chapter 7: Linear Models – From Risk Factors to Return Forecasts 173

From inference to prediction 174

Table of Contents

[iv]

The baseline model – multiple linear regression 175
How to formulate the model 175

How to train the model 176

The Gauss–Markov theorem 179

How to conduct statistical inference 180

How to diagnose and remedy problems 181

How to run linear regression in practice 184
OLS with statsmodels 184

Stochastic gradient descent with sklearn 186

How to build a linear factor model 187
From the CAPM to the Fama–French factor models 188

Obtaining the risk factors 189

Fama–Macbeth regression 191

Regularizing linear regression using shrinkage 194
How to hedge against overfitting 194
How ridge regression works 195

How lasso regression works 196

How to predict returns with linear regression 197
Preparing model features and forward returns 197

Linear OLS regression using statsmodels 203

Linear regression using scikit-learn 205

Ridge regression using scikit-learn 208

Lasso regression using sklearn 210

Comparing the quality of the predictive signals 212

Linear classification 212
The logistic regression model 213

How to conduct inference with statsmodels 215

Predicting price movements with logistic regression 217

Summary 219

Chapter 8: The ML4T Workflow –
From Model to Strategy Backtesting 221

How to backtest an ML-driven strategy 222
Backtesting pitfalls and how to avoid them 223

Getting the data right 224

Getting the simulation right 225

Getting the statistics right 226

How a backtesting engine works 227
Vectorized versus event-driven backtesting 228

Key implementation aspects 230

backtrader – a flexible tool for local backtests 232
Key concepts of backtrader's Cerebro architecture 232

How to use backtrader in practice 235

backtrader summary and next steps 239

Zipline – scalable backtesting by Quantopian 239

Table of Contents

[v]

Calendars and the Pipeline for robust simulations 240

Ingesting your own bundles with minute data 242

The Pipeline API – backtesting an ML signal 245

How to train a model during the backtest 250

Instead of How to use 254

Summary 254

Chapter 9: Time-Series Models for Volatility Forecasts and
Statistical Arbitrage 255

Tools for diagnostics and feature extraction 256
How to decompose time-series patterns 257

Rolling window statistics and moving averages 258

How to measure autocorrelation 259

How to diagnose and achieve stationarity 260
Transforming a time series to achieve stationarity 261

Handling instead of How to handle 261

Time-series transformations in practice 263

Univariate time-series models 265
How to build autoregressive models 266

How to build moving-average models 267

How to build ARIMA models and extensions 268

How to forecast macro fundamentals 270

How to use time-series models to forecast volatility 272

Multivariate time-series models 276
Systems of equations 277

The vector autoregressive (VAR) model 277

Using the VAR model for macro forecasts 278

Cointegration – time series with a shared trend 281
The Engle-Granger two-step method 282

The Johansen likelihood-ratio test 282

Statistical arbitrage with cointegration 283
How to select and trade comoving asset pairs 283

Pairs trading in practice 285

Preparing the strategy backtest 288

Backtesting the strategy using backtrader 292

Extensions – how to do better 294

Summary 294

Chapter 10: Bayesian ML – Dynamic Sharpe Ratios
and Pairs Trading 295

How Bayesian machine learning works 296
How to update assumptions from empirical evidence 297

Exact inference – maximum a posteriori estimation 298

Deterministic and stochastic approximate inference 301

Probabilistic programming with PyMC3 305
Bayesian machine learning with Theano 305

Table of Contents

[vi]

The PyMC3 workflow: predicting a recession 305
Bayesian ML for trading 317

Bayesian Sharpe ratio for performance comparison 317

Bayesian rolling regression for pairs trading 320

Stochastic volatility models 323

Summary 326

Chapter 11: Random Forests – A Long-Short Strategy
for Japanese Stocks 327

Decision trees – learning rules from data 328
How trees learn and apply decision rules 328

Decision trees in practice 330

Overfitting and regularization 336
Hyperparameter tuning 338

Random forests – making trees more reliable 345
Why ensemble models perform better 345

Bootstrap aggregation 346

How to build a random forest 349

How to train and tune a random forest 350

Feature importance for random forests 352

Out-of-bag testing 352

Pros and cons of random forests 353

Long-short signals for Japanese stocks 353
The data – Japanese equities 354

The ML4T workflow with LightGBM 355
The strategy – backtest with Zipline 362

Summary 364

Chapter 12: Boosting Your Trading Strategy 365
Getting started – adaptive boosting 366

The AdaBoost algorithm 367

Using AdaBoost to predict monthly price moves 368

Gradient boosting – ensembles for most tasks 370
How to train and tune GBM models 372

How to use gradient boosting with sklearn 374

Using XGBoost, LightGBM, and CatBoost 378
How algorithmic innovations boost performance 379

A long-short trading strategy with boosting 383
Generating signals with LightGBM and CatBoost 383

Inside the black box - interpreting GBM results 391

Backtesting a strategy based on a boosting ensemble 399

Lessons learned and next steps 401

Boosting for an intraday strategy 402
Engineering features for high-frequency data 402

Minute-frequency signals with LightGBM 404

Evaluating the trading signal quality 405

Table of Contents

[vii]

Summary 406

Chapter 13: Data-Driven Risk Factors and Asset Allocation with
Unsupervised Learning 407

Dimensionality reduction 408
The curse of dimensionality 409

Linear dimensionality reduction 411

Manifold learning – nonlinear dimensionality reduction 418

PCA for trading 421
Data-driven risk factors 421

Eigenportfolios 424

Clustering 426
k-means clustering 427

Hierarchical clustering 429

Density-based clustering 431

Gaussian mixture models 432

Hierarchical clustering for optimal portfolios 433
How hierarchical risk parity works 433

Backtesting HRP using an ML trading strategy 435

Summary 438

Chapter 14: Text Data for Trading – Sentiment Analysis 439
ML with text data – from language to features 440

Key challenges of working with text data 440

The NLP workflow 441
Applications 443

From text to tokens – the NLP pipeline 443
NLP pipeline with spaCy and textacy 444

NLP with TextBlob 448

Counting tokens – the document-term matrix 449
The bag-of-words model 450

Document-term matrix with scikit-learn 451

Key lessons instead of lessons learned 455

NLP for trading 455
The naive Bayes classifier 456
Classifying news articles 457

Sentiment analysis with Twitter and Yelp data 458
Summary 462

Chapter 15: Topic Modeling – Summarizing Financial News 463
Learning latent topics – Goals and approaches 464

Latent semantic indexing 465

How to implement LSI using sklearn 466

Strengths and limitations 468

Probabilistic latent semantic analysis 469
How to implement pLSA using sklearn 470

Table of Contents

[viii]

Strengths and limitations 471

Latent Dirichlet allocation 471
How LDA works 471

How to evaluate LDA topics 473

How to implement LDA using sklearn 475

How to visualize LDA results using pyLDAvis 475

How to implement LDA using Gensim 476

Modeling topics discussed in earnings calls 478
Data preprocessing 478

Model training and evaluation 479

Running experiments 480

Topic modeling for with financial news 481
Summary 482

Chapter 16: Word Embeddings for Earnings Calls and SEC Filings 483
How word embeddings encode semantics 484

How neural language models learn usage in context 485

word2vec – scalable word and phrase embeddings 485

Evaluating embeddings using semantic arithmetic 487

How to use pretrained word vectors 489
GloVe – Global vectors for word representation 489

Custom embeddings for financial news 491
Preprocessing – sentence detection and n-grams 492

The skip-gram architecture in TensorFlow 2 493

Visualizing embeddings using TensorBoard 496

How to train embeddings faster with Gensim 497

word2vec for trading with SEC filings 499
Preprocessing – sentence detection and n-grams 500

Model training 501

Sentiment analysis using doc2vec embeddings 503
Creating doc2vec input from Yelp sentiment data 503
Training a doc2vec model 504

Training a classifier with document vectors 505
Lessons learned and next steps 507

New frontiers – pretrained transformer models 507
Attention is all you need 508

BERT – towards a more universal language model 509

Trading on text data – lessons learned and next steps 511

Summary 511

Chapter 17: Deep Learning for Trading 513
Deep learning – what's new and why it matters 514

Hierarchical features tame high-dimensional data 515

DL as representation learning 516

How DL relates to ML and AI 517

Designing an NN 518

Table of Contents

[ix]

A simple feedforward neural network architecture 519

Key design choices 520

How to regularize deep NNs 522

Training faster – optimizations for deep learning 523

Summary – how to tune key hyperparameters 525

A neural network from scratch in Python 526
The input layer 526

The hidden layer 527

The output layer 528

Forward propagation 529

The cross-entropy cost function 529

How to implement backprop using Python 529

Popular deep learning libraries 534
Leveraging GPU acceleration 534

How to use TensorFlow 2 535

How to use TensorBoard 537

How to use PyTorch 1.4 538

Alternative options 541

Optimizing an NN for a long-short strategy 542
Engineering features to predict daily stock returns 542

Defining an NN architecture framework 542
Cross-validating design options to tune the NN 543

Evaluating the predictive performance 545

Backtesting a strategy based on ensembled signals 547

How to further improve the results 549

Summary 549

Chapter 18: CNNs for Financial Time Series and Satellite Images 551
How CNNs learn to model grid-like data 552

From hand-coding to learning filters from data 553
How the elements of a convolutional layer operate 554

The evolution of CNN architectures: key innovations 558
CNNs for satellite images and object detection 559

LeNet5 – The first CNN with industrial applications 560
AlexNet – reigniting deep learning research 563

Transfer learning – faster training with less data 565

Object detection and segmentation 573

Object detection in practice 573

CNNs for time-series data – predicting returns 577
An autoregressive CNN with 1D convolutions 577

CNN-TA – clustering time series in 2D format 581

Summary 589

Chapter 19: RNNs for Multivariate Time Series and
Sentiment Analysis 591

How recurrent neural nets work 592

Table of Contents

[x]

Unfolding a computational graph with cycles 594

Backpropagation through time 594

Alternative RNN architectures 595

How to design deep RNNs 596

The challenge of learning long-range dependencies 597

Gated recurrent units 599

RNNs for time series with TensorFlow 2 599
Univariate regression – predicting the S&P 500 600

How to get time series data into shape for an RNN 600

Stacked LSTM – predicting price moves and returns 605

Multivariate time-series regression for macro data 611

RNNs for text data 614
LSTM with embeddings for sentiment classification 614
Sentiment analysis with pretrained word vectors 617

Predicting returns from SEC filing embeddings 619
Summary 624

Chapter 20: Autoencoders for Conditional Risk Factors
and Asset Pricing 625

Autoencoders for nonlinear feature extraction 626
Generalizing linear dimensionality reduction 626

Convolutional autoencoders for image compression 627

Managing overfitting with regularized autoencoders 628
Fixing corrupted data with denoising autoencoders 628

Seq2seq autoencoders for time series features 629

Generative modeling with variational autoencoders 629

Implementing autoencoders with TensorFlow 2 630
How to prepare the data 630

One-layer feedforward autoencoder 631

Feedforward autoencoder with sparsity constraints 634

Deep feedforward autoencoder 634

Convolutional autoencoders 636

Denoising autoencoders 637

A conditional autoencoder for trading 638
Sourcing stock prices and metadata information 639

Computing predictive asset characteristics 641

Creating the conditional autoencoder architecture 643

Lessons learned and next steps 648

Summary 648

Chapter 21: Generative Adversarial Networks for Synthetic
Time-Series Data 649

Creating synthetic data with GANs 650
Comparing generative and discriminative models 651

Adversarial training – a zero-sum game of trickery 651

The rapid evolution of the GAN architecture zoo 652

Table of Contents

[xi]

GAN applications to images and time-series data 653

How to build a GAN using TensorFlow 2 655
Building the generator network 655

Creating the discriminator network 656

Setting up the adversarial training process 657

Evaluating the results 660

TimeGAN for synthetic financial data 660
Learning to generate data across features and time 661

Implementing TimeGAN using TensorFlow 2 663

Evaluating the quality of synthetic time-series data 672

Lessons learned and next steps 678

Summary 678
Chapter 22: Deep Reinforcement Learning –
Building a Trading Agent 679

Elements of a reinforcement learning system 680
The policy – translating states into actions 681

Rewards – learning from actions 681

The value function – optimal choice for the long run 682

With or without a model – look before you leap? 682

How to solve reinforcement learning problems 682
Key challenges in solving RL problems 683

Fundamental approaches to solving RL problems 683

Solving dynamic programming problems 684
Finite Markov decision problems 684

Policy iteration 687

Value iteration 688

Generalized policy iteration 688

Dynamic programming in Python 689

Q-learning – finding an optimal policy on the go 694
Exploration versus exploitation – 𝛆𝛆 -greedy policy 695

The Q-learning algorithm 695

How to train a Q-learning agent using Python 695

Deep RL for trading with the OpenAI Gym 696
Value function approximation with neural networks 697

The Deep Q-learning algorithm and extensions 697

Introducing the OpenAI Gym 699

How to implement DDQN using TensorFlow 2 700

Creating a simple trading agent 704

How to design a custom OpenAI trading environment 705

Deep Q-learning on the stock market 709

Lessons learned 711

Summary 711
Chapter 23: Conclusions and Next Steps 713

Key takeaways and lessons learned 714

Table of Contents

[xii]

Data is the single most important ingredient 715

Domain expertise – telling the signal from the noise 716

ML is a toolkit for solving problems with data 717

Beware of backtest overfitting 719
How to gain insights from black-box models 719

ML for trading in practice 720
Data management technologies 720

ML tools 722

Online trading platforms 722

Conclusion 723
Appendix: Alpha Factor Library 725

Common alpha factors implemented in TA-Lib 726
A key building block – moving averages 726

Overlap studies – price and volatility trends 729

Momentum indicators 733

Volume and liquidity indicators 741

Volatility indicators 743

Fundamental risk factors 744

WorldQuant's quest for formulaic alphas 745
Cross-sectional and time-series functions 745

Formulaic alpha expressions 747

Bivariate and multivariate factor evaluation 749
Information coefficient and mutual information 749
Feature importance and SHAP values 750

Comparison – the top 25 features for each metric 750

Financial performance – Alphalens 752

References 753
Index 769

Preface
If you are reading this, you are probably aware that machine learning (ML) has become a
strategic capability in many industries, including the investment industry. The explosion
of digital data closely related to the rise of ML is having a particularly powerful impact
on investing, which already has a long history of using sophisticated models to process
information. These trends are enabling novel approaches to quantitative investment
and are boosting the demand for the application of data science to both discretionary and
algorithmic trading strategies.

The scope of trading across asset classes is vast because it ranges from equities and
government bonds to commodities and real estate. This implies that a very large range
of new alternative data sources may be relevant above and beyond the market and
fundamental data that used to be at the center of most analytical efforts in the past.

You also may have come across the insight that the successful application of ML or data
science requires the integration of statistical knowledge, computational skills, and
domain expertise at the individual or team level. In other words, it is essential to ask the
right questions, identify and understand the data that may provide the answers, deploy a
broad range of tools to obtain results, and interpret them in a way that leads to the right
decisions.

Therefore, this book provides an integrated perspective on the application of ML to the
domain of investment and trading. In this preface, we outline what you should expect, how
we have organized the content to facilitate achieving our objectives, and what you need
both to meet your goals and have fun in the process.

What to expect
This book aims to equip you with a strategic perspective, conceptual understanding, and
practical tools to add value when applying ML to the trading and investment process. To
this end, we cover ML as a key element in a process rather than a standalone exercise. Most
importantly, we introduce an end-to-end ML for trading (ML4T) workflow that we apply
to numerous use cases with relevant data and code examples.

The ML4T workflow starts with generating ideas and sourcing data and continues to
extracting features, tuning ML models, and designing trading strategies that act on the
models' predictive signals. It also includes simulating strategies on historical data using a
backtesting engine and evaluating their performance.

Preface

[xiv]

First and foremost, the book demonstrates how you can extract signals from a diverse set of
data sources and design trading strategies for different asset classes using a broad range of
supervised, unsupervised, and reinforcement learning algorithms. In addition, it provides
relevant mathematical and statistical background to facilitate tuning an algorithm and
interpreting the results. Finally, it includes financial background to enable you to work with
market and fundamental data, extract informative features, and manage the performance of
a trading strategy.

The book emphasizes that investors can gain at least as much value from third-party data
as other industries. As a consequence, it covers not only how to work with market and
fundamental data but also how to source, evaluate, process, and model alternative data
sources such as unstructured text and image data.

It should not be a surprise that this book does not provide investment advice or ready-
made trading algorithms. On the contrary, it intends to communicate that ML faces many
additional challenges in the trading domain, ranging from lower signal content to shorter
time series that often make it harder to achieve robust results. In fact, we have included
several examples that do not yield great results to avoid exaggerating the benefits of ML
or understating the effort it takes to have a good idea, obtain the right data, engineer
ingenious features, and design an effective strategy (with potentially attractive rewards).

Instead, you should find the book most useful as a guide to leveraging key ML algorithms
to inform a trading strategy using a systematic workflow. To this end, we present a
framework that guides you through the ML4T process of the following:

1. Sourcing, evaluating, and combining data for any investment objective

2. Designing and tuning ML models that extract predictive signals from the data

3. Developing and evaluating trading strategies based on the results

After reading this book, you will be able to begin designing and evaluating your own ML-
based strategies and might want to consider participating in competitions or connecting to
the API of an online broker and begin trading in the real world.

What's new in the second edition
This second edition emphasizes the end-to-end ML4T workflow, reflected in a new chapter
on strategy backtesting (Chapter 8, The ML4T Workflow – From Model to Strategy Backtesting),
a new appendix describing over 100 different alpha factors, and many new practical
applications. We have also rewritten most of the existing content for clarity and readability.

The applications now use a broader range of data sources beyond daily US equity prices,
including international stocks and ETFs, as well as minute-frequency equity data to
demonstrate an intraday strategy. Also, there is now broader coverage of alternative data
sources, including SEC filings for sentiment analysis and return forecasts, as well as satellite
images to classify land use.

Preface

[xv]

Furthermore, the book replicates several applications recently published in academic
papers. Chapter 18, CNNs for Financial Time Series and Satellite Images, demonstrates how to
apply convolutional neural networks to time series converted to image format for return
predictions. Chapter 20, Autoencoders for Conditional Risk Factors and Asset Pricing, shows
how to extract risk factors conditioned on stock characteristics for asset pricing using
autoencoders. Chapter 21, Generative Adversarial Networks for Synthetic Time-Series Data,
examines how to create synthetic training data using generative adversarial networks.

All applications now use the latest available (at the time of writing) software versions, such
as pandas 1.0 and TensorFlow 2.2. There is also a customized version of Zipline that makes
it easy to include machine learning model predictions when designing a trading strategy.

Who should read this book
You should find the book informative if you are an analyst, data scientist, or ML engineer
with an understanding of financial markets and an interest in trading strategies. You
should also find value as an investment professional who aims to leverage ML to make
better decisions.

If your background is in software and ML, you may be able to just skim or skip some
introductory material in this area. Similarly, if your expertise is in investment, you will
likely be familiar with some, or all, of the financial context that we provide for those with
different backgrounds.

The book assumes that you want to continue to learn about this very dynamic area. To this
end, it includes numerous end-of-chapter academic references and additional resources
linked in the README files for each chapter in the companion GitHub repository.

You should be comfortable using Python 3 and scientific computing libraries like NumPy,
pandas, or SciPy and look forward to picking up numerous others along the way. Some
experience with ML and scikit-learn would be helpful, but we briefly cover the basic
workflow and reference various resources to fill gaps or dive deeper. Similarly, basic
knowledge of finance and investment will make some terminology easier to follow.

What this book covers
This book provides a comprehensive introduction to how ML can add value to the design
and execution of trading strategies. It is organized into four parts that cover different
aspects of the data sourcing and strategy development process, as well as different
solutions to various ML challenges.

Preface

[xvi]

Part 1 – Data, alpha factors, and portfolios
The first part covers fundamental aspects relevant across trading strategies that leverage
machine learning. It focuses on the data that drives the ML algorithms and strategies
discussed in this book, outlines how you can engineer features that capture the data's signal
content, and explains how to optimize and evaluate the performance of a portfolio.

Chapter 1, Machine Learning for Trading – From Idea to Execution, summarizes how and why
ML became important for trading, describes the investment process, and outlines how ML
can add value.

Chapter 2, Market and Fundamental Data – Sources and Techniques, covers how to source and
work with market data, including exchange-provided tick data, and reported financials.
It also demonstrates access to numerous open source data providers that we will rely on
throughout this book.

Chapter 3, Alternative Data for Finance – Categories and Use Cases, explains categories and
criteria to assess the exploding number of sources and providers. It also demonstrates how
to create alternative datasets by scraping websites, for example, to collect earnings call
transcripts for use with natural language processing (NLP) and sentiment analysis, which
we cover in the second part of the book.

Chapter 4, Financial Feature Engineering – How to Research Alpha Factors, presents the process
of creating and evaluating data transformations that capture the predictive signal and
shows how to measure factor performance. It also summarizes insights from research into
risk factors that aim to explain alpha in financial markets otherwise deemed to be efficient.
Furthermore, it demonstrates how to engineer alpha factors using Python libraries offline
and introduces the Zipline and Alphalens libraries to backtest factors and evaluate their
predictive power.

Chapter 5, Portfolio Optimization and Performance Evaluation, introduces how to manage,
optimize, and evaluate a portfolio resulting from the execution of a strategy. It presents
risk metrics and shows how to apply them using the Zipline and pyfolio libraries. It also
introduces methods to optimize a strategy from a portfolio risk perspective.

Part 2 – ML for trading – Fundamentals
The second part illustrates how fundamental supervised and unsupervised learning
algorithms can inform trading strategies in the context of an end-to-end workflow.

Chapter 6, The Machine Learning Process, sets the stage by outlining how to formulate, train,
tune, and evaluate the predictive performance of ML models in a systematic way. It also
addresses domain-specific concerns, such as using cross-validation with financial time
series to select among alternative ML models.

Preface

[xvii]

Chapter 7, Linear Models – From Risk Factors to Return Forecasts, shows how to use linear and
logistic regression for inference and prediction and how to use regularization to manage
the risk of overfitting. It demonstrates how to predict US equity returns or the direction of
their future movements and how to evaluate the signal content of these predictions using
Alphalens.

Chapter 8, The ML4T Workflow – From Model to Strategy Backtesting, integrates the various
building blocks of the ML4T workflow thus far discussed separately. It presents an end-to-
end perspective on the process of designing, simulating, and evaluating a trading strategy
driven by an ML algorithm. To this end, it demonstrates how to backtest an ML-driven
strategy in a historical market context using the Python libraries backtrader and Zipline.

Chapter 9, Time-Series Models for Volatility Forecasts and Statistical Arbitrage, covers univariate
and multivariate time series diagnostics and models, including vector autoregressive
models as well as ARCH/GARCH models for volatility forecasts. It also introduces
cointegration and shows how to use it for a pairs trading strategy using a diverse set of
exchange-traded funds (ETFs).

Chapter 10, Bayesian ML – Dynamic Sharpe Ratios and Pairs Trading, presents probabilistic
models and how Markov chain Monte Carlo (MCMC) sampling and variational Bayes
facilitate approximate inference. It also illustrates how to use PyMC3 for probabilistic
programming to gain deeper insights into parameter and model uncertainty, for example,
when evaluating portfolio performance.

Chapter 11, Random Forests – A Long-Short Strategy for Japanese Stocks, shows how to build,
train, and tune nonlinear tree-based models for insight and prediction. It introduces tree-
based ensembles and shows how random forests use bootstrap aggregation to overcome
some of the weaknesses of decision trees. We then proceed to develop and backtest a long-
short strategy for Japanese equities.

Chapter 12, Boosting Your Trading Strategy, introduces gradient boosting and demonstrates
how to use the libraries XGBoost, LightBGM, and CatBoost for high-performance training
and prediction. It reviews how to tune the numerous hyperparameters and interpret the
model using SHapley Additive exPlanation (SHAP) values before building and evaluating
a strategy that trades US equities based on LightGBM return forecasts.

Chapter 13, Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning, shows
how to use dimensionality reduction and clustering for algorithmic trading. It uses
principal and independent component analysis to extract data-driven risk factors and
generate eigenportfolios. It presents several clustering techniques and demonstrates the
use of hierarchical clustering for asset allocation.

Preface

[xviii]

Part 3 – Natural language processing
Part 3 focuses on text data and introduces state-of-the-art unsupervised learning techniques
to extract high-quality signals from this key source of alternative data.

Chapter 14, Text Data for Trading – Sentiment Analysis, demonstrates how to convert text data
into a numerical format and applies the classification algorithms from Part 2 for sentiment
analysis to large datasets.

Chapter 15, Topic Modeling – Summarizing Financial News, uses unsupervised learning to
extract topics that summarize a large number of documents and offer more effective ways
to explore text data or use topics as features for a classification model. It demonstrates
how to apply this technique to earnings call transcripts sourced in Chapter 3 and to annual
reports filed with the Securities and Exchange Commission (SEC).

Chapter 16, Word Embeddings for Earnings Calls and SEC Filings, uses neural networks to
learn state-of-the-art language features in the form of word vectors that capture semantic
context much better than traditional text features and represent a very promising avenue
for extracting trading signals from text data.

Part 4 – Deep and reinforcement learning
Part 4 introduces deep learning and reinforcement learning.

Chapter 17, Deep Learning for Trading, introduces TensorFlow 2 and PyTorch, the most
popular deep learning frameworks, which we will use throughout Part 4. It presents
techniques for training and tuning, including regularization. It also builds and evaluates
a trading strategy for US equities.

Chapter 18, CNNs for Financial Time Series and Satellite Images, covers convolutional neural
networks (CNNs) that are very powerful for classification tasks with unstructured data
at scale. We will introduce successful architectural designs, train a CNN on satellite data
(for example, to predict economic activity), and use transfer learning to speed up training.
We'll also replicate a recent idea to convert financial time series into a two-dimensional
image format to leverage the built-in assumptions of CNNs.

Chapter 19, RNNs for Multivariate Time Series and Sentiment Analysis, shows how recurrent
neural networks (RNNs) are useful for sequence-to-sequence modeling, including for
univariate and multivariate time series to predict. It demonstrates how RNNs capture
nonlinear patterns over longer periods using word embeddings introduced in Chapter 16
to predict returns based on the sentiment expressed in SEC filings.

Chapter 20, Autoencoders for Conditional Risk Factors and Asset Pricing, covers autoencoders
for the nonlinear compression of high-dimensional data. It implements a recent paper that
uses a deep autoencoder to learn both risk factor returns and factor loadings from the data
while conditioning the latter on asset characteristics. We'll create a large US equity dataset
with metadata and generate predictive signals.

Preface

[xix]

Chapter 21, Generative Adversarial Networks for Synthetic Time-Series Data, presents one of the
most exciting advances in deep learning. Generative adversarial networks (GANs) are
capable of learning to reproduce synthetic replicas of a target data type, such as images of
celebrities. In addition to images, GANs have also been applied to time-series data. This
chapter replicates a novel approach to generate synthetic stock price data that could be
used to train an ML model or backtest a strategy, and also evaluate its quality.

Chapter 22, Deep Reinforcement Learning – Building a Trading Agent, presents how
reinforcement learning (RL) permits the design and training of agents that learn to
optimize decisions over time in response to their environment. You will see how to create
a custom trading environment and build an agent that responds to market signals using
OpenAI Gym.

Chapter 23, Conclusions and Next Steps, summarizes the lessons learned and outlines several
steps you can take to continue learning and building your own trading strategies.

Appendix, Alpha Factor Library, lists almost 200 popular financial features, explains
their rationale, and shows how to compute them. It also evaluates and compares their
performance in predicting daily stock returns.

To get the most out of this book
In addition to the content summarized in the previous section, the hands-on nature of the
book consists of over 160 Jupyter notebooks hosted on GitHub that demonstrate the use of
ML for trading in practice on a broad range of data sources. This section describes how to
use the GitHub repository, obtain the data used in the numerous examples, and set up the
environment to run the code.

The GitHub repository
The book revolves around the application of ML algorithms to trading. The hands-on
aspects are covered in Jupyter notebooks, hosted on GitHub, that illustrate many of the
concepts and models in more detail. While the chapters aim to be self-contained, the code
examples and results often take up too much space to include in their complete forms.
Therefore, it is very important to view the notebooks that contain significant additional
content while reading the chapter, even if you do not intend to run the code yourself.

The repository is organized so that each chapter has its own directory containing the
relevant notebooks and a README file containing separate instructions where needed, as
well as references and resources specific to the chapter's content. The relevant notebooks
are identified throughout each chapter, as necessary. The repository also contains
instructions on how to install the requisite libraries and obtain the data.

You can find the code files placed at: https://github.com/PacktPublishing/Machine-
Learning-for-Algorithmic-Trading-Second-Edition.

Preface

[xx]

Data sources
We will use freely available historical data from market, fundamental, and alternative
sources. Chapter 2 and Chapter 3 cover characteristics and access to these data sources and
introduce key providers that we will use throughout the book. The companion GitHub
repository just described contains instructions on how to obtain or create some of the
datasets that we will use throughout and includes some smaller datasets.

A few sample data sources that we will source and work with include, but are not limited to:

• Nasdaq ITCH order book data

• Electronic Data Gathering, Analysis, and Retrieval (EDGAR) SEC filings
• Earnings call transcripts from Seeking Alpha

• Quandl daily prices and other data points for over 3,000 US stocks

• International equity data from Stooq and using the yfinance library
• Various macro fundamental and benchmark data from the Federal Reserve

• Large Yelp business reviews and Twitter datasets
• EUROSAT satellite image data

Some of the data is large (several gigabytes), such as Nasdaq and SEC filings. The
notebooks indicate when that is the case.

See the data directory in the root folder of the GitHub repository for instructions.

Anaconda and Docker images
The book requires Python 3.7 or higher and uses the Anaconda distribution. The book uses
various conda environments for the four parts to cover a broad range of libraries while
limiting dependencies and conflicts.

The installation directory in the GitHub repository contains detailed instructions. You
can either use the provided Docker image to create a container with the necessary
environments or use the .yml files to create them locally.

Download the example code files
You can download the example code files for this book from your account at http://
www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at http://www.packtpub.com.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com

Preface

[xxi]

2. Select the SUPPORT tab.

3. Click on Code Downloads & Errata.

4. Enter the name of the book in the Search box and follow the on-screen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of your preferred compression tool:

• WinRAR or 7-Zip for Windows

• Zipeg, iZip, or UnRarX for Mac

• 7-Zip or PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Machine-Learning-for-Algorithmic-Trading-Second-Edition.
We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781839217715_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. For example,
"The compute_factors() method creates a MeanReversion factor instance and creates
long, short, and ranking pipeline columns."

A block of code is set as follows:

from pykalman import KalmanFilter

kf = KalmanFilter(transition_matrices = [1],

 observation_matrices = [1],

 initial_state_mean = 0,

 initial_state_covariance = 1,

 observation_covariance=1,

 transition_covariance=.01)

Bold: Indicates a new term, an important word, or words that you see on the screen, for
example, in menus or dialog boxes, also appear in the text like this. For example, "The
Python Algorithmic Trading Library (PyAlgoTrade) focuses on backtesting and offers
support for paper trading and live trading."

https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781839217715_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781839217715_ColorImages.pdf

Preface

[xxii]

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book's title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book we would be grateful if you would
report this to us. Please visit, http://www.packtpub.com/submit-errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit http://
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

Informational notes appear like this.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com
http://authors.packtpub.com

[1]

1
Machine Learning for Trading –

From Idea to Execution

Algorithmic trading relies on computer programs that execute algorithms to automate
some or all elements of a trading strategy. Algorithms are a sequence of steps or rules
designed to achieve a goal. They can take many forms and facilitate optimization
throughout the investment process, from idea generation to asset allocation, trade
execution, and risk management.

Machine learning (ML) involves algorithms that learn rules or patterns from data to
achieve a goal such as minimizing a prediction error. The examples in this book will
illustrate how ML algorithms can extract information from data to support or automate
key investment activities. These activities include observing the market and analyzing data
to form expectations about the future and decide on placing buy or sell orders, as well as
managing the resulting portfolio to produce attractive returns relative to the risk.

Ultimately, the goal of active investment management is to generate alpha, defined as
portfolio returns in excess of the benchmark used for evaluation. The fundamental law of
active management postulates that the key to generating alpha is having accurate return
forecasts combined with the ability to act on these forecasts (Grinold 1989; Grinold and
Kahn 2000).

This law defines the information ratio (IR) to express the value of active management as
the ratio of the return difference between the portfolio and a benchmark to the volatility of
those returns. It further approximates the IR as the product of the following:

• The information coefficient (IC), which measures the quality of forecasts as their
rank correlation with outcomes

• The square root of the breadth of a strategy expressed as the number
of independent bets on these forecasts

Machine Learning for Trading – From Idea to Execution

[2]

The competition of sophisticated investors in financial markets implies that making precise
predictions to generate alpha requires superior information, either through access to better
data, a superior ability to process it, or both.

This is where ML comes in: applications of ML for trading (ML4T) typically aim to make
more efficient use of a rapidly diversifying range of data to produce both better and more
actionable forecasts, thus improving the quality of investment decisions and results.

Historically, algorithmic trading used to be more narrowly defined as the automation
of trade execution to minimize the costs offered by the sell-side. This book takes a more
comprehensive perspective since the use of algorithms in general and ML in particular has
come to impact a broader range of activities, from generating ideas and extracting signals
from data to asset allocation, position-sizing, and testing and evaluating strategies.

This chapter looks at industry trends that have led to the emergence of ML as a source of
competitive advantage in the investment industry. We will also look at where ML fits into
the investment process to enable algorithmic trading strategies. More specifically, we will
be covering the following topics:

• Key trends behind the rise of ML in the investment industry

• The design and execution of a trading strategy that leverages ML

• Popular use cases for ML in trading

The rise of ML in the investment industry
The investment industry has evolved dramatically over the last several decades and
continues to do so amid increased competition, technological advances, and a challenging
economic environment. This section reviews key trends that have shaped the overall
investment environment and the context for algorithmic trading and the use of
ML more specifically.

The trends that have propelled algorithmic trading and ML to their current
prominence include:

• Changes in the market microstructure, such as the spread of electronic trading and
the integration of markets across asset classes and geographies

• The development of investment strategies framed in terms of risk-factor exposure,
as opposed to asset classes

• The revolutions in computing power, data generation and management, and
statistical methods, including breakthroughs in deep learning

You can find links to additional resources and references in the
README file for this chapter in the GitHub repository (https://
github.com/PacktPublishing/Machine-Learning-for-
Algorithmic-Trading-Second-Edition).

Chapter 1

[3]

• The outperformance of the pioneers in algorithmic trading relative to human,
discretionary investors

In addition, the financial crises of 2001 and 2008 have affected how investors approach
diversification and risk management. One outcome is the rise in low-cost passive
investment vehicles in the form of exchange-traded funds (ETFs).

Amid low yields and low volatility following the 2008 crisis, which triggered large-scale
asset purchases by leading central banks, cost-conscious investors shifted over $3.5 trillion
from actively managed mutual funds into passively managed ETFs.

Competitive pressure is also reflected in lower hedge fund fees, which dropped from the
traditional 2 percent annual management fee and 20 percent take of profits to an average
of 1.48 percent and 17.4 percent, respectively, in 2017.

From electronic to high-frequency trading
Electronic trading has advanced dramatically in terms of capabilities, volume, coverage of
asset classes, and geographies since networks started routing prices to computer terminals
in the 1960s. Equity markets have been at the forefront of this trend worldwide. See
Harris (2003) and Strumeyer (2017) for comprehensive coverage of relevant changes in
financial markets; we will return to this topic when we cover how to work with market and
fundamental data in the next chapter.

The 1997 order-handling rules by the SEC introduced competition to exchanges through
electronic communication networks (ECNs). ECNs are automated alternative trading
systems (ATS) that match buy-and-sell orders at specified prices, primarily for equities
and currencies, and are registered as broker-dealers. It allows significant brokerages and
individual traders in different geographic locations to trade directly without intermediaries,
both on exchanges and after hours.

Dark pools are another type of private ATS that allows institutional investors to trade large
orders without publicly revealing their information, contrary to how exchanges managed
their order books prior to competition from ECNs. Dark pools do not publish pre-trade
bids and offers, and trade prices only become public some time after execution. They have
grown substantially since the mid-2000s to account for 40 percent of equities traded in the
US due to concerns about adverse price movements of large orders and order front-running
by high-frequency traders. They are often housed within large banks and are subject to
SEC regulation.

With the rise of electronic trading, algorithms for cost-effective execution developed
rapidly and adoption spread quickly from the sell-side to the buy-side and across asset
classes. Automated trading emerged around 2000 as a sell-side tool aimed at cost-effective
execution that broke down orders into smaller, sequenced chunks to limit their market
impact. These tools spread to the buy side and became increasingly sophisticated by taking
into account, for example, transaction costs and liquidity, as well as short-term price and
volume forecasts.

Machine Learning for Trading – From Idea to Execution

[4]

Direct market access (DMA) gives a trader greater control over execution by allowing them
to send orders directly to the exchange using the infrastructure and market participant
identification of a broker who is a member of an exchange. Sponsored access removes pre-
trade risk controls by the brokers and forms the basis for high-frequency trading (HFT).

HFT refers to automated trades in financial instruments that are executed with extremely
low latency in the microsecond range and where participants hold positions for very short
periods. The goal is to detect and exploit inefficiencies in the market microstructure, the
institutional infrastructure of trading venues.

HFT has grown substantially over the past 10 years and is estimated to make up roughly
55 percent of trading volume in US equity markets and about 40 percent in European
equity markets. HFT has also grown in futures markets to roughly 80 percent of foreign-
exchange futures volumes and two-thirds of both interest rate and Treasury 10-year futures
volumes (Miller 2016).

HFT strategies aim to earn small profits per trade using passive or aggressive strategies.
Passive strategies include arbitrage trading to profit from very small price differentials for
the same asset, or its derivatives, traded on different venues. Aggressive strategies include
order anticipation or momentum ignition. Order anticipation, also known as liquidity
detection, involves algorithms that submit small exploratory orders to detect hidden
liquidity from large institutional investors and trade ahead of a large order to benefit from
subsequent price movements. Momentum ignition implies an algorithm executing and
canceling a series of orders to spoof other HFT algorithms into buying (or selling) more
aggressively and benefit from the resulting price changes.

Regulators have expressed concern over the potential link between certain aggressive HFT
strategies and increased market fragility and volatility, such as that experienced during
the May 2010 Flash Crash, the October 2014 Treasury market volatility, and the sudden
crash by over 1,000 points of the Dow Jones Industrial Average on August 24, 2015. At the
same time, market liquidity has increased with trading volumes due to the presence of
HFT, which has lowered overall transaction costs.

The combination of reduced trading volumes amid lower volatility and rising costs of
technology and access to both data and trading venues has led to financial pressure.
Aggregate HFT revenues from US stocks were estimated to have dropped beneath $1
billion in 2017 for the first time since 2008, down from $7.9 billion in 2009. This trend has
led to industry consolidation, with various acquisitions by, for example, the largest listed
proprietary trading firm, Virtu Financial, and shared infrastructure investments, such as the
new Go West ultra-low latency route between Chicago and Tokyo. Simultaneously, start-
ups such as Alpha Trading Labs are making HFT trading infrastructure and data available
to democratize HFT by crowdsourcing algorithms in return for a share of the profits.

Chapter 1

[5]

Factor investing and smart beta funds
The return provided by an asset is a function of the uncertainty or risk associated with
the investment. An equity investment implies, for example, assuming a company's
business risk, and a bond investment entails default risk. To the extent that specific risk
characteristics predict returns, identifying and forecasting the behavior of these risk
factors becomes a primary focus when designing an investment strategy. It yields valuable
trading signals and is the key to superior active-management results. The industry's
understanding of risk factors has evolved very substantially over time and has impacted
how ML is used for trading. Chapter 4, Financial Feature Engineering – How to Research
Alpha Factors, and Chapter 5, Portfolio Optimization and Performance Evaluation, will dive
deeper into the practical applications of the concepts outlined here; see Ang (2014) for
comprehensive coverage.

Modern portfolio theory (MPT) introduced the distinction between idiosyncratic and
systematic sources of risk for a given asset. Idiosyncratic risk can be eliminated through
diversification, but systematic risk cannot. In the early 1960s, the capital asset pricing
model (CAPM) identified a single factor driving all asset returns: the return on the market
portfolio in excess of T-bills. The market portfolio consisted of all tradable securities,
weighted by their market value. The systematic exposure of an asset to the market is
measured by beta, which is the correlation between the returns of the asset and the
market portfolio.

The recognition that the risk of an asset does not depend on the asset in isolation, but rather
how it moves relative to other assets and the market as a whole, was a major conceptual
breakthrough. In other words, assets earn a risk premium based on their exposure to
underlying, common risks experienced by all assets, not due to their specific, idiosyncratic
characteristics.

Subsequently, academic research and industry experience have raised numerous critical
questions regarding the CAPM prediction that an asset's risk premium depends only on
its exposure to a single factor measured by the asset's beta. Instead, numerous additional
risk factors have since been discovered. A factor is a quantifiable signal, attribute, or any
variable that has historically correlated with future stock returns and is expected to remain
correlated in the future.

These risk factors were labeled anomalies since they contradicted the efficient market
hypothesis (EMH). The EMH maintains that market equilibrium would always price
securities according to the CAPM so that no other factors should have predictive power
(Malkiel 2003). The economic theory behind factors can be either rational, where factor risk
premiums compensate for low returns during bad times, or behavioral, where agents fail to
arbitrage away excess returns.

Machine Learning for Trading – From Idea to Execution

[6]

Well-known anomalies include the value, size, and momentum effects that help predict
returns while controlling for the CAPM market factor. The size effect rests on small firms
systematically outperforming large firms (Banz 1981; Reinganum 1981). The value effect
(Basu et. al. 1981) states that firms with low valuation metrics outperform their counterparts
with the opposite characteristics. It suggests that firms with low price multiples, such as
the price-to-earnings or the price-to-book ratios, perform better than their more expensive
peers (as suggested by the inventors of value investing, Benjamin Graham and David
Dodd, and popularized by Warren Buffet).

The momentum effect, discovered in the late 1980s by, among others, Clifford Asness,
the founding partner of AQR, states that stocks with good momentum, in terms of recent
6-12 month returns, have higher returns going forward than poor momentum stocks
with similar market risk. Researchers also found that value and momentum factors
explain returns for stocks outside the US, as well as for other asset classes, such as bonds,
currencies, and commodities, and additional risk factors (Jegadeesh and Titman 1993;
Asness, Moskowitz, and Pedersen 2013).

In fixed income, the value strategy is called riding the yield curve and is a form of the
duration premium. In commodities, it is called the roll return, with a positive return for an
upward-sloping futures curve and a negative return otherwise. In foreign exchange, the
value strategy is called carry.

There is also an illiquidity premium. Securities that are more illiquid trade at low prices
and have high average excess returns, relative to their more liquid counterparts. Bonds
with a higher default risk tend to have higher returns on average, reflecting a credit risk
premium. Since investors are willing to pay for insurance against high volatility when
returns tend to crash, sellers of volatility protection in options markets tend to earn
high returns.

Multifactor models define risks in broader and more diverse terms than just the market
portfolio. In 1976, Stephen Ross proposed the arbitrage pricing theory, which asserted that
investors are compensated for multiple systematic sources of risk that cannot be diversified
away (Roll and Ross 1984). The three most important macro factors are growth, inflation,
and volatility, in addition to productivity, demographic, and political risk. In 1993, Eugene
Fama and Kenneth French combined the equity risk factors' size and value with a market
factor into a single three-factor model that better explained cross-sectional stock returns.
They later added a model that also included bond risk factors to simultaneously explain
returns for both asset classes (Fama and French 1993; 2015).

A particularly attractive aspect of risk factors is their low or negative correlation. Value
and momentum risk factors, for instance, are negatively correlated, reducing the risk and
increasing risk-adjusted returns above and beyond the benefit implied by the risk factors.
Furthermore, using leverage and long-short strategies, factor strategies can be combined
into market-neutral approaches. The combination of long positions in securities exposed
to positive risks with underweight or short positions in the securities exposed to negative
risks allows for the collection of dynamic risk premiums.

Chapter 1

[7]

As a result, the factors that explained returns above and beyond the CAPM were
incorporated into investment styles that tilt portfolios in favor of one or more factors, and
assets began to migrate into factor-based portfolios. The 2008 financial crisis underlined
how asset-class labels could be highly misleading and create a false sense of diversification
when investors do not look at the underlying factor risks, as asset classes came crashing
down together.

Over the past several decades, quantitative factor investing has evolved from a simple
approach based on two or three styles to multifactor smart or exotic beta products. Smart
beta funds have crossed $1 trillion AUM in 2017, testifying to the popularity of the hybrid
investment strategy that combines active and passive management. Smart beta funds take
a passive strategy but modify it according to one or more factors, such as cheaper stocks or
screening them according to dividend payouts, to generate better returns. This growth has
coincided with increasing criticism of the high fees charged by traditional active managers
as well as heightened scrutiny of their performance.

The ongoing discovery and successful forecasting of risk factors that, either individually
or in combination with other risk factors, significantly impact future asset returns across
asset classes is a key driver of the surge in ML in the investment industry and will be a key
theme throughout this book.

Algorithmic pioneers outperform humans
The track record and growth of assets under management (AUM) of firms that
spearheaded algorithmic trading has played a key role in generating investor interest and
subsequent industry efforts to replicate their success. Systematic funds differ from HFT in
that trades may be held significantly longer while seeking to exploit arbitrage opportunities
as opposed to advantages from sheer speed.

Systematic strategies that mostly or exclusively rely on algorithmic decision-making were
most famously introduced by mathematician James Simons, who founded Renaissance
Technologies in 1982 and built it into the premier quant firm. Its secretive Medallion Fund,
which is closed to outsiders, has earned an estimated annualized return of 35 percent
since 1982.

D. E. Shaw, Citadel, and Two Sigma, three of the most prominent quantitative hedge
funds that use systematic strategies based on algorithms, rose to the all-time top-20
performers for the first time in 2017, in terms of total dollars earned for investors, after fees,
and since inception.

D. E. Shaw, founded in 1988 and with $50 billion in AUM in 2019, joined the list at number
3. Citadel, started in 1990 by Kenneth Griffin, manages $32 billion, and ranked 5. Two
Sigma, started only in 2001 by D. E. Shaw alumni John Overdeck and David Siegel, has
grown from $8 billion in AUM in 2011 to $60 billion in 2019. Bridgewater, started by Ray
Dalio in 1975, had over $160 billion in AUM in 2019 and continues to lead due to its Pure
Alpha fund, which also incorporates systematic strategies.

Machine Learning for Trading – From Idea to Execution

[8]

Similarly, on the Institutional Investors 2018 Hedge Fund 100 list, the four largest
firms, and five of the top six firms, rely largely or completely on computers and trading
algorithms to make investment decisions—and all of them have been growing their assets
in an otherwise challenging environment. Several quantitatively focused firms climbed the
ranks and, in some cases, grew their assets by double-digit percentages. Number 2-ranked
Applied Quantitative Research (AQR) grew its hedge fund assets by 48 percent in 2017
and by 29 percent in 2018 to nearly $90 billion.

ML-driven funds attract $1 trillion in AUM

The familiar three revolutions in computing power, data availability, and statistical
methods have made the adoption of systematic, data-driven strategies not only more
compelling and cost-effective but a key source of competitive advantage.

As a result, algorithmic approaches are not only finding wider application in the hedge-
fund industry that pioneered these strategies but across a broader range of asset managers
and even passively managed vehicles such as ETFs. In particular, predictive analytics
using ML and algorithmic automation play an increasingly prominent role in all steps of
the investment process across asset classes, from idea generation and research to strategy
formulation and portfolio construction, trade execution, and risk management.

Estimates of industry size vary because there is no objective definition of a quantitative
or algorithmic fund. Many traditional hedge funds or even mutual funds and ETFs
are introducing computer-driven strategies or integrating them into a discretionary
environment in a human-plus-machine approach.

According to the Economist, in 2016, systematic funds became the largest driver of
institutional trading in the US stock market (ignoring HFT, which mainly acts as a
middleman). In 2019, they accounted for over 35 percent of institutional volume, up from
just 18 percent in 2010; just 10% of trading is still due to traditional equity funds. Measured
by the Russell 3000 index, the value of US stocks is around $31 trillion. The three types of
computer-managed funds—index funds, ETFs, and quant funds—run around 35 percent,
whereas human managers at traditional hedge funds and other mutual funds manage just
24 percent.

The market research firm Preqin estimates that almost 1,500 hedge funds make a majority
of their trades with help from computer models. Quantitative hedge funds are now
responsible for 27 percent of all US stock trades by investors, up from 14 percent in 2013.
But many use data scientists—or quants—who, in turn, use machines to build large
statistical models.

In recent years, however, funds have moved toward true ML, where artificially intelligent
systems can analyze large amounts of data at speed and improve themselves through such
analyses. Recent examples include Rebellion Research, Sentient, and Aidyia, which rely on
evolutionary algorithms and deep learning to devise fully automatic artificial intelligence
(AI)-driven investment platforms.

Chapter 1

[9]

From the core hedge fund industry, the adoption of algorithmic strategies has spread to
mutual funds and even passively managed EFTs in the form of smart beta funds, and to
discretionary funds in the form of quantamental approaches.

The emergence of quantamental funds

Two distinct approaches have evolved in active investment management: systematic
(or quant) and discretionary investing. Systematic approaches rely on algorithms for a
repeatable and data-driven approach to identify investment opportunities across many
securities. In contrast, a discretionary approach involves an in-depth analysis of the
fundamentals of a smaller number of securities. These two approaches are becoming more
similar as fundamental managers take more data science-driven approaches.

Even fundamental traders now arm themselves with quantitative techniques, accounting
for $55 billion of systematic assets, according to Barclays. Agnostic to specific companies,
quantitative funds trade based on patterns and dynamics across a wide swath of securities.
Such quants accounted for about 17 percent of total hedge fund assets, as data compiled by
Barclays in 2018 showed.

Point72, with $14 billion in assets, has been shifting about half of its portfolio managers to
a human-plus-machine approach. Point72 is also investing tens of millions of dollars into a
group that analyzes large amounts of alternative data and passes the results on to traders.

Investments in strategic capabilities

Three trends have boosted the use of data in algorithmic trading strategies and may further
shift the investment industry from discretionary to quantitative styles:

• The exponential increase in the availability of digital data

• The increase in computing power and data storage capacity at a lower cost

• The advances in statistical methods for analyzing complex datasets

Rising investments in related capabilities—technology, data, and, most importantly,
skilled humans—highlight how significant algorithmic trading using ML has become
for competitive advantage, especially in light of the rising popularity of passive, indexed
investment vehicles, such as ETFs, since the 2008 financial crisis.

Morgan Stanley noted that only 23 percent of its quant clients say they are not considering
using or not already using ML, down from 44 percent in 2016. Guggenheim Partners built
what it calls a supercomputing cluster for $1 million at the Lawrence Berkeley National
Laboratory in California to help crunch numbers for Guggenheim's quant investment
funds. Electricity for computers costs another $1 million per year.

Machine Learning for Trading – From Idea to Execution

[10]

AQR is a quantitative investment group that relies on academic research to identify and
systematically trade factors that have, over time, proven to beat the broader market.
The firm used to eschew the purely computer-powered strategies of quant peers such as
Renaissance Technologies or DE Shaw. More recently, however, AQR has begun to seek
profitable patterns in markets using ML to parse through novel datasets, such as satellite
pictures of shadows cast by oil wells and tankers.

The leading firm BlackRock, with over $5 trillion in AUM, also bets on algorithms to beat
discretionary fund managers by heavily investing in SAE, a systematic trading firm it
acquired during the financial crisis. Franklin Templeton bought Random Forest Capital,
a debt-focused, data-led investment company, for an undisclosed amount, hoping that its
technology can support the wider asset manager.

ML and alternative data
Hedge funds have long looked for alpha through informational advantage and the ability
to uncover new uncorrelated signals. Historically, this included things such as proprietary
surveys of shoppers, or of voters ahead of elections or referendums.

Occasionally, the use of company insiders, doctors, and expert networks to expand
knowledge of industry trends or companies crosses legal lines: a series of prosecutions
of traders, portfolio managers, and analysts for using insider information after 2010 has
shaken the industry.

In contrast, the informational advantage from exploiting conventional and alternative data
sources using ML is not related to expert and industry networks or access to corporate
management, but rather the ability to collect large quantities of very diverse data sources
and analyze them in real time.

Conventional data includes economic statistics, trading data, or corporate reports.
Alternative data is much broader and includes sources such as satellite images, credit card
sales, sentiment analysis, mobile geolocation data, and website scraping, as well as the
conversion of data generated in the ordinary course of business into valuable intelligence. It
includes, in principle, any data source containing (potential) trading signals.

For instance, data from an insurance company on the sales of new car insurance policies
captures not only the volumes of new car sales but can be broken down into brands
or geographies. Many vendors scrape websites for valuable data, ranging from app
downloads and user reviews to airline and hotel bookings. Social media sites can also be
scraped for hints on consumer views and trends.

Typically, the datasets are large and require storage, access, and analysis using scalable
data solutions for parallel processing, such as Hadoop and Spark. There are more than 1
billion websites with more than 10 trillion individual web pages, with 500 exabytes (or 500
billion gigabytes) of data, according to Deutsche Bank. And more than 100 million websites
are added to the internet every year.

Chapter 1

[11]

Real-time insights into a company's prospects, long before their results are released, can be
gleaned from a decline in job listings on its website, the internal rating of its chief executive
by employees on the recruitment site Glassdoor, or a dip in the average price of clothes
on its website. Such information can be combined with satellite images of car parks and
geolocation data from mobile phones that indicate how many people are visiting stores.
On the other hand, strategic moves can be learned from a jump in job postings for specific
functional areas or in certain geographies.

Among the most valuable sources is data that directly reveals consumer expenditures, with
credit card information as a primary source. This data offers only a partial view of sales
trends, but it can offer vital insights when combined with other data. Point72, for instance,
at some point analyzed 80 million credit card transactions every day. We will explore the
various sources, their use cases, and how to evaluate them in detail in Chapter 3, Alternative
Data for Finance – Categories and Use Cases.

Investment groups have more than doubled their spending on alternative sets and data
scientists in the past two years, as the asset management industry has tried to reinvigorate
its fading fortunes. In December 2018, there were 375 alternative data providers listed on
alternativedata.org (sponsored by provider Yipit).

Asset managers spent a total of $373 million on datasets and hiring new employees to parse
them in 2017, up 60 percent from 2016, and will probably spend a total of $616 million this
year, according to a survey of investors by alternativedata.org. It forecast that overall
expenditures will climb to over $1 billion by 2020. Some estimates are even higher: Optimus,
a consultancy, estimates that investors are spending about $5 billion per year on alternative
data, and expects the industry to grow 30 percent per year over the coming years.

As competition for valuable data sources intensifies, exclusivity arrangements are a key
feature of data-source contracts, to maintain an informational advantage. At the same time,
privacy concerns are mounting, and regulators have begun to start looking at the currently
largely unregulated data-provider industry.

Crowdsourcing trading algorithms
More recently, several algorithmic trading firms have begun to offer investment platforms
that provide access to data and a programming environment to crowdsource risk factors
that become part of an investment strategy or entire trading algorithms. Key examples
include WorldQuant, Quantopian, and, most recently, Alpha Trading Labs (launched
in 2018).

http://alternativedata.org
http://alternativedata.org.

Machine Learning for Trading – From Idea to Execution

[12]

WorldQuant was spun out of Millennium Management (AUM: $41 billion) in 2007, for
whom it manages around $5 billion. It employs hundreds of scientists and many more
part-time workers around the world in its alpha factory, which organizes the investment
process as a quantitative assembly line. This factory claims to have produced 4 million
successfully tested alpha factors for inclusion in more complex trading strategies and is
aiming for 100 million. Each alpha factor is an algorithm that seeks to predict a future asset
price change. Other teams then combine alpha factors into strategies and strategies into
portfolios, allocate funds between portfolios, and manage risk while avoiding strategies
that cannibalize each other. See the Appendix, Alpha Factor Library, for dozens of examples of
quantitative factors used at WorldQuant.

Designing and executing an ML-driven strategy
In this book, we demonstrate how ML fits into the overall process of designing, executing,
and evaluating a trading strategy. To this end, we'll assume that an ML-based strategy is
driven by data sources that contain predictive signals for the target universe and strategy,
which, after suitable preprocessing and feature engineering, permit an ML model to predict
asset returns or other strategy inputs. The model predictions, in turn, translate into buy or
sell orders based on human discretion or automated rules, which in turn may be manually
encoded or learned by another ML algorithm in an end-to-end approach.

Figure 1.1 depicts the key steps in this workflow, which also shapes the organization of
this book:

Figure 1.1: The ML4T workflow

Chapter 1

[13]

Part 1 introduces important skills and techniques that apply across different strategies and
ML use cases. These include the following:

• How to source and manage important data sources

• How to engineer informative features or alpha factors that extract signal content

• How to manage a portfolio and track strategy performance

Moreover, Chapter 8, The ML4T Workflow – From Model to Strategy Backtesting, in Part 2,
covers strategy backtesting. We will briefly outline each of these areas before turning to
relevant ML use cases, which make up the bulk of the book in Parts 2, 3, and 4.

Sourcing and managing data
The dramatic evolution of data availability in terms of volume, variety, and velocity is a
key complement to the application of ML to trading, which in turn has boosted industry
spending on the acquisition of new data sources. However, the proliferating supply of data
requires careful selection and management to uncover the potential value, including the
following steps:

1. Identify and evaluate market, fundamental, and alternative data sources containing
alpha signals that do not decay too quickly.

2. Deploy or access a cloud-based scalable data infrastructure and analytical tools like
Hadoop or Spark to facilitate fast, flexible data access.

3. Carefully manage and curate data to avoid look-ahead bias by adjusting it to the
desired frequency on a point-in-time basis. This means that data should reflect
only information available and known at the given time. ML algorithms trained on
distorted historical data will almost certainly fail during live trading.

We will cover these aspects in practical detail in Chapter 2, Market and Fundamental Data –
Sources and Techniques, and Chapter 3, Alternative Data for Finance – Categories and Use Cases.

From alpha factor research to portfolio management
Alpha factors are designed to extract signals from data to predict returns for a given
investment universe over the trading horizon. A typical factor takes on a single value for
each asset when evaluated at a given point in time, but it may combine one or several input
variables or time periods. If you are already familiar with the ML workflow (see Chapter

6, The Machine Learning Process), you may view alpha factors as domain-specific features
designed for a specific strategy. Working with alpha factors entails a research phase and an
execution phase as outlined in Figure 1.2:

Machine Learning for Trading – From Idea to Execution

[14]

Figure 1.2: The alpha factor research process

The research phase

The research phase includes the design and evaluation of alpha factors. A predictive factor
captures some aspect of a systematic relationship between a data source and an important
strategy input like asset returns. Optimizing the predictive power requires creative feature
engineering in the form of effective data transformations.

False discoveries due to data mining are a key risk that requires careful management. One
way of reducing the risk is to focus the search process by following the guidance of decades
of academic research that has produced several Nobel prizes. Many investors still prefer
factors that align with theories about financial markets and investor behavior. Laying out
these theories is beyond the scope of this book, but the references highlight avenues to dive
deeper into this important framing aspect.

Validating the signal content of an alpha factor requires a robust estimate of its predictive
power in a representative context. There are numerous methodological and practical
pitfalls that undermine a reliable estimate. In addition to data mining and the failure to
correct for multiple testing bias, these pitfalls include the use of data contaminated by
survivorship or look-ahead bias, not reflecting realistic Principal, Interest and Taxes
(PIT) information. Chapter 4, Financial Feature Engineering – How to Research Alpha Factors,
discusses how to successfully manage this process.

The execution phase

During the execution phase, alpha factors emit signals that lead to buy or sell orders. The
resulting portfolio holdings, in turn, have specific risk profiles that interact and contribute
to the aggregate portfolio risk. Portfolio management involves optimizing position sizes
to achieve a balance of return and risk of the portfolio that aligns with the investment
objectives.

Chapter 5, Portfolio Optimization and Performance Evaluation, introduces key techniques and
tools applicable to this phase of the trading strategy workflow, from portfolio optimization
to performance measurement.

Chapter 1

[15]

Strategy backtesting
Incorporating an investment idea into a real-life algorithmic strategy implies a significant
risk that requires a scientific approach. Such an approach involves extensive empirical tests
with the goal of rejecting the idea based on its performance in alternative out-of-sample
market scenarios. Testing may involve simulated data to capture scenarios deemed possible
but not reflected in historic data.

To obtain unbiased performance estimates for a candidate strategy, we need a backtesting
engine that simulates its execution in a realistic manner. In addition to the potential
biases introduced by the data or a flawed use of statistics, the backtesting engine needs to
accurately represent the practical aspects of trade-signal evaluation, order placement, and
execution in line with market conditions.

Chapter 8, The ML4T Workflow – From Model to Strategy Backtesting, shows how to use
backtrader and Zipline and navigate the multiple methodological challenges and completes
the introduction to the end-to-end ML4T workflow.

ML for trading – strategies and use cases
In practice, we apply ML to trading in the context of a specific strategy to meet a certain
business goal. In this section, we briefly describe how trading strategies have evolved and
diversified, and outline real-world examples of ML applications, highlighting how they
relate to the content covered in this book.

The evolution of algorithmic strategies
Quantitative strategies have evolved and become more sophisticated in three waves:

1. In the 1980s and 1990s, signals often emerged from academic research and used a
single or very few inputs derived from market and fundamental data. AQR, one of
the largest quantitative hedge funds today, was founded in 1998 to implement such
strategies at scale. These signals are now largely commoditized and available as
ETF, such as basic mean-reversion strategies.

2. In the 2000s, factor-based investing proliferated based on the pioneering work
by Eugene Fama and Kenneth French and others. Funds used algorithms to
identify assets exposed to risk factors like value or momentum to seek arbitrage
opportunities. Redemptions during the early days of the financial crisis triggered
the quant quake of August 2007, which cascaded through the factor-based fund
industry. These strategies are now also available as long-only smart beta funds that
tilt portfolios according to a given set of risk factors.

Machine Learning for Trading – From Idea to Execution

[16]

3. The third era is driven by investments in ML capabilities and alternative data to
generate profitable signals for repeatable trading strategies. Factor decay is a major
challenge: the excess returns from new anomalies have been shown to drop by a
quarter from discovery to publication, and by over 50 percent after publication due
to competition and crowding.

Today, traders pursue a range of different objectives when using algorithms to execute rules:

• Trade execution algorithms that aim to achieve favorable pricing

• Short-term trades that aim to profit from small price movements, for example, due
to arbitrage

• Behavioral strategies that aim to anticipate the behavior of other market
participants

• Trading strategies based on absolute and relative price and return predictions

Trade-execution programs aim to limit the market impact of trades and range from the
simple slicing of trades to match time-weighted or volume-weighted average pricing.
Simple algorithms leverage historical patterns, whereas more sophisticated versions take
into account transaction costs, implementation shortfall, or predicted price movements.

HFT funds most prominently rely on very short holding periods to benefit from minor
price movements based on bid-ask or statistical arbitrage. Behavioral algorithms usually
operate in lower-liquidity environments and aim to anticipate moves by a larger player
with significant price impact, based, for example, on sniffing algorithms that generate
insights into other market participants' strategies.

In this book, we will focus on strategies that trade based on expectations of relative price
changes over various time horizons beyond the very short term, dominated by latency
advantages, because they are both widely used and very suitable for the application of ML.

Use cases of ML for trading
ML is capable of extracting tradable signals from a wide range of market, fundamental, and
alternative data and is thus applicable to strategies targeting a range of asset classes and
investment horizons. More generally, however, it is a flexible tool to support or automate
decisions with quantifiable goals and digital data relevant to achieving these goals.
Therefore, it can be applied at several steps of the trading process. There are numerous use
cases in different categories, including:

• Data mining to identify patterns, extract features, and generate insights

• Supervised learning to generate risk factors or alphas and create trade ideas

• The aggregation of individual signals into a strategy

• The allocation of assets according to risk profiles learned by an algorithm
• The testing and evaluation of strategies, including through the use of synthetic data

• The interactive, automated refinement of a strategy using reinforcement learning

Chapter 1

[17]

We briefly highlight some of these applications and identify where we will demonstrate
their use in later chapters.

Data mining for feature extraction and insights

The cost-effective evaluation of large, complex datasets requires the detection of signals at
scale. There are several examples throughout the book:

• Information theory helps estimate a signal content of candidate features and is
thus useful for extracting the most valuable inputs for an ML model. In Chapter

4, Financial Feature Engineering – How to Research Alpha Factors, we use mutual
information to compare the potential values of individual features for a supervised
learning algorithm to predict asset returns. Chapter 18 in De Prado (2018) estimates
the information content of a price series as a basis for deciding between alternative
trading strategies.

• Unsupervised learning provides a broad range of methods to identify structure in
data to gain insights or help solve a downstream task. We provide several examples:

• In Chapter 13, Data-Driven Risk Factors and Asset Allocation with Unsupervised
Learning, we introduce clustering and dimensionality reduction to generate
features from high-dimensional datasets.

• In Chapter 15, Topic Modeling – Summarizing Financial News, we apply
Bayesian probability models to summarize financial text data.

• In Chapter 20, Autoencoders for Conditional Risk Factors and Asset Pricing,
we use deep learning to extract nonlinear risk factors conditioned on asset
characteristics and predict stock returns based on Kelly et al. (2020).

• Model transparency emphasizes model-specific ways to gain insights into the
predictive power of individual variables and introduce a novel game-theoretic
approach called SHapley Additive exPlanations (SHAP). We apply it to gradient
boosting machines with a large number of input variables in Chapter 12, Boosting
Your Trading Strategy, and the Appendix, Alpha Factor Library.

Supervised learning for alpha factor creation

The most familiar rationale for applying ML to trading is to obtain predictions of asset
fundamentals, price movements, or market conditions. A strategy can leverage multiple
ML algorithms that build on each other:

• Downstream models can generate signals at the portfolio level by integrating
predictions about the prospects of individual assets, capital market expectations,
and the correlation among securities.

• Alternatively, ML predictions can inform discretionary trades as in the
quantamental approach outlined previously.

Machine Learning for Trading – From Idea to Execution

[18]

ML predictions can also target specific risk factors, such as value or volatility, or
implement technical approaches, such as trend-following or mean reversion:

• In Chapter 3, Alternative Data for Finance – Categories and Use Cases, we illustrate how
to work with fundamental data to create inputs to ML-driven valuation models.

• In Chapter 14, Text Data for Trading – Sentiment Analysis, Chapter 15, Topic Modeling
– Summarizing Financial News, and Chapter 16, Word Embeddings for Earnings Calls
and SEC Filings, we use alternative data on business reviews that can be used to
project revenues for a company as an input for a valuation exercise.

• In Chapter 9, Time-Series Models for Volatility Forecasts and Statistical Arbitrage, we
demonstrate how to forecast macro variables as inputs to market expectations and
how to forecast risk factors such as volatility.

• In Chapter 19, RNNs for Multivariate Time Series and Sentiment Analysis, we introduce
recurrent neural networks that achieve superior performance with nonlinear time
series data.

Asset allocation

ML has been used to allocate portfolios based on decision-tree models that compute a
hierarchical form of risk parity. As a result, risk characteristics are driven by patterns in
asset prices rather than by asset classes and achieve superior risk-return characteristics.

In Chapter 5, Portfolio Optimization and Performance Evaluation, and Chapter 13, Data-Driven
Risk Factors and Asset Allocation with Unsupervised Learning, we illustrate how hierarchical
clustering extracts data-driven risk classes that better reflect correlation patterns than
conventional asset class definition (see Chapter 16 in De Prado 2018).

Testing trade ideas

Backtesting is a critical step to select successful algorithmic trading strategies. Cross-
validation using synthetic data is a key ML technique to generate reliable out-of-sample
results when combined with appropriate methods to correct for multiple testing. The time-
series nature of financial data requires modifications to the standard approach to avoid
look-ahead bias or otherwise contaminating the data used for training, validation, and
testing. In addition, the limited availability of historical data has given rise to alternative
approaches that use synthetic data.

We will demonstrate various methods to test ML models using market, fundamental, and
alternative data sources that obtain sound estimates of out-of-sample errors.

In Chapter 21, Generative Adversarial Networks for Synthetic Time-Series Data, we present
generative adversarial networks (GANs), which are capable of producing high-quality
synthetic data.

Chapter 1

[19]

Reinforcement learning

Trading takes place in a competitive, interactive marketplace. Reinforcement learning aims
to train agents to learn a policy function based on rewards; it is often considered as one of
the most promising areas in financial ML. See, for example, Hendricks and Wilcox (2014)
and Nevmyvaka, Feng, and Kearns (2006) for applications to trade execution.

In Chapter 22, Deep Reinforcement Learning – Building a Trading Agent, we present key
reinforcement algorithms like Q-learning to demonstrate the training of reinforcement
learning algorithms for trading using OpenAI's Gym environment.

Summary
In this chapter, we reviewed key industry trends around algorithmic trading strategies,
the emergence of alternative data, and the use of ML to exploit these new sources of
informational advantage. Furthermore, we introduced key elements of the ML4T workflow
and outlined important use cases of ML for trading in the context of different strategies.

In the next two chapters, we will take a closer look at the oil that fuels any algorithmic
trading strategy—the market, fundamental, and alternative data sources—using ML.

[21]

2
Market and Fundamental Data –

Sources and Techniques

Data has always been an essential driver of trading, and traders have long made efforts to
gain an advantage from access to superior information. These efforts date back at least to
the rumors that the House of Rothschild benefited handsomely from bond purchases upon
advance news about the British victory at Waterloo, which was carried by pigeons across
the channel.

Today, investments in faster data access take the shape of the Go West consortium
of leading high-frequency trading (HFT) firms that connects the Chicago Mercantile
Exchange (CME) with Tokyo. The round-trip latency between the CME and the BATS
(Better Alternative Trading System) exchanges in New York has dropped to close to the
theoretical limit of eight milliseconds as traders compete to exploit arbitrage opportunities.
At the same time, regulators and exchanges have started to introduce speed bumps
that slow down trading to limit the adverse effects on competition of uneven access to
information.

Traditionally, investors mostly relied on publicly available market and fundamental data.
Efforts to create or acquire private datasets, for example, through proprietary surveys, were
limited. Conventional strategies focus on equity fundamentals and build financial models
on reported financials, possibly combined with industry or macro data to project earnings
per share and stock prices. Alternatively, they leverage technical analysis to extract signals
from market data using indicators computed from price and volume information.

Machine learning (ML) algorithms promise to exploit market and fundamental data
more efficiently than human-defined rules and heuristics, particularly when combined with
alternative data, which is the topic of the next chapter. We will illustrate how to apply ML
algorithms ranging from linear models to recurrent neural networks (RNNs) to market
and fundamental data and generate tradeable signals.

Market and Fundamental Data – Sources and Techniques

[22]

This chapter introduces market and fundamental data sources and explains how they
reflect the environment in which they are created. The details of the trading environment
matter not only for the proper interpretation of market data but also for the design and
execution of your strategy and the implementation of realistic backtesting simulations.

We also illustrate how to access and work with trading and financial statement data from
various sources using Python.

In particular, this chapter will cover the following topics:

• How market data reflects the structure of the trading environment
• Working with trade and quote data at minute frequency

• Reconstructing an order book from tick data using Nasdaq ITCH

• Summarizing tick data using various types of bars

• Working with eXtensible Business Reporting Language (XBRL)-encoded
electronic filings

• Parsing and combining market and fundamental data to create a price-to-earnings
(P/E) series

• How to access various market and fundamental data sources using Python

Market data reflects its environment
Market data is the product of how traders place orders for a financial instrument directly
or through intermediaries on one of the numerous marketplaces, how they are processed,
and how prices are set by matching demand and supply. As a result, the data reflects
the institutional environment of trading venues, including the rules and regulations that
govern orders, trade execution, and price formation. See Harris (2003) for a global overview
and Jones (2018) for details on the U.S. market.

Algorithmic traders use algorithms, including ML, to analyze the flow of buy and sell
orders and the resulting volume and price statistics to extract trade signals that capture
insights into, for example, demand-supply dynamics or the behavior of certain market
participants.

We will first review institutional features that impact the simulation of a trading strategy
during a backtest before we start working with actual tick data created by one such
environment, namely Nasdaq.

You can find the code samples for this chapter and links to
additional resources in the corresponding directory of the GitHub
repository. The notebooks include color versions of the images.

Chapter 2

[23]

Market microstructure – the nuts and bolts
Market microstructure studies how the institutional environment affects the trading
process and shapes outcomes like price discovery, bid-ask spreads and quotes, intraday
trading behavior, and transaction costs (Madhavan 2000; 2002). It is one of the fastest-
growing fields of financial research, propelled by the rapid development of algorithmic and
electronic trading.

Today, hedge funds sponsor in-house analysts to track the rapidly evolving, complex
details and ensure execution at the best possible market prices and design strategies that
exploit market frictions. We will provide only a brief overview of these key concepts before
we dive into the data generated by trading. The references contain several sources that treat
this subject in great detail.

How to trade – different types of orders
Traders can place various types of buy or sell orders. Some orders guarantee immediate
execution, while others may state a price threshold or other conditions that trigger
execution. Orders are typically valid for the same trading day unless specified otherwise.

A market order is intended for immediate execution of the order upon arrival at the trading
venue, at the price that prevails at that moment. In contrast, a limit order only executes if the
market price is higher than the limit for a sell limit order, or lower than the limit for a buy
limit order. A stop order, in turn, only becomes active when the market price rises above a
specified price for a buy stop order, or falls below a specified price for a sell order. A buy
stop order can be used to limit the losses of short sales. Stop orders may also have limits.

Numerous other conditions can be attached to orders. For example, all or none orders
prevent partial execution; they are filled only if a specified number of shares is available
and can be valid for a day or longer. They require special handling and are not visible
to market participants. Fill or kill orders also prevent partial execution but cancel if not
executed immediately. Immediate or cancel orders immediately buy or sell the number of
shares that are available and cancel the remainder. Not-held orders allow the broker to
decide on the time and price of execution. Finally, the market on open/close orders executes
on or near the opening or closing of the market. Partial executions are allowed.

Market and Fundamental Data – Sources and Techniques

[24]

Where to trade – from exchanges to dark pools
Securities trade in highly organized and regulated exchanges or with varying degrees
of formality in over-the-counter (OTC) markets. An exchange is a central marketplace
where buyers and sellers compete for the lowest ask and highest bid, respectively. Exchange
regulations typically impose listing and reporting requirements to create transparency and
attract more traders and liquidity. OTC markets, such as the Best Market (OTCQX) or the
Venture Market (OTCQB), often have lower regulatory barriers. As a result, they are suitable
for a far broader range of securities, including bonds or American Depositary Receipts
(ADRs; equity listed on a foreign exchange, for example, for Nestlé, S.A.).

Exchanges may rely on bilateral trading or centralized order-driven systems that match
all buy and sell orders according to certain rules. Many exchanges use intermediaries that
provide liquidity by making markets in certain securities. These intermediaries include
dealers that act as principals on their own behalf and brokers that trade as agents on behalf
of others. Price formation may occur through auctions, such as in the New York Stock
Exchange (NYSE), where the highest bid and lowest offer are matched, or through dealers
who buy from sellers and sell to buyers.

Back in the day, companies either registered and traded mostly on the NYSE, or they traded
on OTC markets like Nasdaq. On the NYSE, a sole specialist intermediated trades of a
given security. The specialist received buy and sell orders via a broker and tracked limit
orders in a central order book. Limit orders were executed with a priority based on price
and time. Buy market orders routed to the specialist transacted with the lowest ask (and
sell market orders routed to the specialist transacted with the highest bid) in the limit order
book, prioritizing earlier limit orders in the case of ties. Access to all orders in the central
order book allowed the specialist to publish the best bid, ask prices, and set market prices
based on the overall buy-sell imbalance.

On Nasdaq, multiple market makers facilitated stock trades. Each dealer provided their
best bid and ask price to a central quotation system and stood ready to transact the
specified number of shares at the specified prices. Traders would route their orders to
the market maker with the best quote via their broker. The competition for orders made
execution at fair prices very likely. Market makers ensured a fair and orderly market,
provided liquidity, and disseminated prices like specialists but only had access to the
orders routed to them as opposed to market-wide supply and demand. This fragmentation
could create difficulties in identifying fair value market prices.

Today, trading has fragmented; instead of two principal venues in the US, there are more
than thirteen displayed trading venues, including exchanges and (unregulated) alternative
trading systems (ATSs) such as electronic communication networks (ECNs). Each reports
trades to the consolidated tape, but at different latencies. To make matters more difficult, the
rules of engagement for each venue differ with several different pricing and queuing models.

The following table lists some of the larger global exchanges and the trading volumes for
the 12 months ending 03/2018 in various asset classes, including derivatives. Typically, a
minority of financial instruments account for most trading:

Chapter 2

[25]

Exchange

Stocks

Market cap
(USD mn)

Listed
companies

Volume / day
(USD mn)

Shares /
day ('000)

Options
/ day ('000)

NYSE 23,138,626 2,294 78,410 6,122 1,546

Nasdaq — US 10,375,718 2,968 65,026 7,131 2,609

Japan Exchange
Group Inc.

6,287,739 3,618 28,397 3,361 1

Shanghai Stock
Exchange

5,022,691 1,421 34,736 9,801

Euronext 4,649,073 1,240 9,410 836 304

Hong Kong Exchanges
and Clearing

4,443,082 2,186 12,031 1,174 516

LSE Group 3,986,413 2,622 10,398 1,011

Shenzhen Stock
Exchange

3,547,312 2,110 40,244 14,443

Deutsche Boerse AG 2,339,092 506 7,825 475

BSE India Limited 2,298,179 5,439 602 1,105

National Stock
Exchange of India
Limited

2,273,286 1,952 5,092 10,355

BATS Global Markets
- US

1,243

Chicago Board Options
Exchange

1,811

International Securities
Exchange

1,204

The ATSs mentioned previously include dozens of dark pools that allow traders to execute
anonymously. They are estimated to account for 40 percent of all U.S. stock trades in 2017,
compared with an estimated 16 percent in 2010. Dark pools emerged in the 1980s when the
SEC allowed brokers to match buyers and sellers of big blocks of shares. The rise of high-
frequency electronic trading and the 2007 SEC Order Protection rule that intended to spur
competition and cut transaction costs through transparency as part of Regulation National
Market System (Reg NMS) drove the growth of dark pools, as traders aimed to avoid the
visibility of large trades (Mamudi 2017). Reg NMS also established the National Best Bid
and Offer (NBBO) mandate for brokers to route orders to venues that offer the best price.

Some ATSs are called dark pools because they do not broadcast pre-trade data, including
the presence, price, and amount of buy and sell orders as traditional exchanges are required
to do. However, dark pools report information about trades to the Financial Industry

Market and Fundamental Data – Sources and Techniques

[26]

Regulatory Authority (FINRA) after they occur. As a result, dark pools do not contribute
to the process of price discovery until after trade execution but provide protection against
various HFT strategies outlined in the first chapter.

In the next section, we will see how market data captures trading activity and reflect the
institutional infrastructure in U.S. markets.

Working with high-frequency data
Two categories of market data cover the thousands of companies listed on U.S. exchanges
that are traded under Reg NMS: the consolidated feed combines trade and quote data from
each trading venue, whereas each individual exchange offers proprietary products with
additional activity information for that particular venue.

In this section, we will first present proprietary order flow data provided by Nasdaq
that represents the actual stream of orders, trades, and resulting prices as they occur on
a tick-by-tick basis. Then, we will demonstrate how to regularize this continuous stream
of data that arrives at irregular intervals into bars of a fixed duration. Finally, we will
introduce AlgoSeek's equity minute bar data, which contains consolidated trade and quote
information. In each case, we will illustrate how to work with the data using Python so that
you can leverage these sources for your trading strategy.

How to work with Nasdaq order book data
The primary source of market data is the order book, which updates in real time
throughout the day to reflect all trading activity. Exchanges typically offer this data as a
real-time service for a fee; however, they may provide some historical data for free.

In the United States, stock markets provide quotes in three tiers, namely Level L1, L2, and
L3, that offer increasingly granular information and capabilities:

• Level 1 (L1): Real-time bid- and ask-price information, as available from numerous
online sources.

• Level 2 (L2): Adds information about bid and ask prices by specific market makers
as well as the size and time of recent transactions for better insights into the
liquidity of a given equity.

• Level 3 (L3): Adds the ability to enter or change quotes, execute orders, and confirm
trades and is available only to market makers and exchange member firms. Access
to Level 3 quotes permits registered brokers to meet best execution requirements.

The trading activity is reflected in numerous messages about orders sent by market
participants. These messages typically conform to the electronic Financial Information
eXchange (FIX) communications protocol for the real-time exchange of securities
transactions and market data or a native exchange protocol.

Chapter 2

[27]

Communicating trades with the FIX protocol
Just like SWIFT is the message protocol for back-office (for example, in trade-settlement)
messaging, the FIX protocol is the de facto messaging standard for communication before
and during trade executions between exchanges, banks, brokers, clearing firms, and other
market participants. Fidelity Investments and Salomon Brothers introduced FIX in 1992
to facilitate the electronic communication between broker-dealers and institutional clients
who, until then, exchanged information over the phone.

It became popular in global equity markets before expanding into foreign exchange, fixed
income and derivatives markets, and further into post-trade to support straight-through
processing. Exchanges provide access to FIX messages as a real-time data feed that is
parsed by algorithmic traders to track market activity and, for example, identify the
footprint of market participants and anticipate their next move.

The sequence of messages allows for the reconstruction of the order book. The scale
of transactions across numerous exchanges creates a large amount (~10 TB) of unstructured
data that is challenging to process and, hence, can be a source of competitive advantage.

The FIX protocol, currently at version 5.0, is a free and open standard with a large
community of affiliated industry professionals. It is self-describing, like the more recent
XML, and a FIX session is supported by the underlying Transmission Control Protocol
(TCP) layer. The community continually adds new functionality.

The protocol supports pipe-separated key-value pairs, as well as a tag-based FIXML
syntax. A sample message that requests a server login would look as follows:

8=FIX.5.0|9=127|35=A|59=theBroker.123456|56=CSERVER|34=1|32=20180117-
08:03:04|57=TRADE|50=any_string|98=2|108=34|141=Y|553=12345|554=passw0
rd!|10=131|

There are a few open source FIX implementations in Python that can be used to formulate
and parse FIX messages. The service provider Interactive Brokers offers a FIX-based
computer-to-computer interface (CTCI) for automated trading (refer to the resources
section for this chapter in the GitHub repository).

The Nasdaq TotalView-ITCH data feed
While FIX has a dominant market share, exchanges also offer native protocols. Nasdaq
offers a TotalView-ITCH direct data-feed protocol, which allows subscribers to track
individual orders for equity instruments from placement to execution or cancellation.

Historical records of this data flow permit the reconstruction of the order book that keeps
track of the active limit orders for a specific security. The order book reveals the market
depth throughout the day by listing the number of shares being bid or offered at each
price point. It may also identify the market participant responsible for specific buy and sell
orders unless they are placed anonymously. Market depth is a key indicator of liquidity
and the potential price impact of sizable market orders.

Market and Fundamental Data – Sources and Techniques

[28]

In addition to matching market and limit orders, Nasdaq also operates auctions or crosses
that execute a large number of trades at market opening and closing. Crosses are becoming
more important as passive investing continues to grow and traders look for opportunities
to execute larger blocks of stock. TotalView also disseminates the Net Order Imbalance
Indicator (NOII) for Nasdaq opening and closing crosses and Nasdaq IPO/Halt Cross.

How to parse binary order messages

The ITCH v5.0 specification declares over 20 message types related to system events, stock
characteristics, the placement and modification of limit orders, and trade execution. It also
contains information about the net order imbalance before the open and closing cross.

Nasdaq offers samples of daily binary files for several months. The GitHub repository for
this chapter contains a notebook, parse_itch_order_flow_messages.ipynb, that illustrates
how to download and parse a sample file of ITCH messages. The notebook rebuild_
nasdaq_order_book.ipynb then goes on to reconstruct both the executed trades and the
order book for any given ticker.

The following table shows the frequency of the most common message types for the
sample file date October 30, 2019:

Message type Order book impact Number of messages

A New unattributed limit order 127,214,649

D Order canceled 123,296,742

U Order canceled and replaced 25,513,651

E
Full or partial execution; possibly multiple
messages for the same original order

7,316,703

X Modified after partial cancellation 3,568,735

F Add attributed order 1,423,908

P Trade message (non-cross) 1,525,363

C
Executed in whole or in part at a price different
from the initial display price

129,729

Q Cross trade message 17,775

For each message, the specification lays out the components and their respective length
and data types:

Name Offset Length Value Notes

Message type 0 1 S System event message.

Stock locate 1 2 Integer Always 0.

Tracking
number

3 2 Integer Nasdaq internal tracking number.

Timestamp 5 6 Integer The number of nanoseconds since midnight.

Chapter 2

[29]

Order
reference
number

11 8 Integer
The unique reference number assigned to the
new order at the time of receipt.

Buy/sell
indicator

19 1 Alpha
The type of order being added: B = Buy Order,
and S = Sell Order.

Shares 20 4 Integer
The total number of shares associated with the
order being added to the book.

Stock 24 8 Alpha Stock symbol, right - padded with spaces.

Price 32 4
Price
(4)

The display price of the new order. Refer
to Data Types in the specification for field
processing notes.

Attribution 36 4 Alpha
The Nasdaq market participant identifier
associated with the entered order.

Python provides the struct module to parse binary data using format strings that identify
the message elements by indicating the length and type of the various components of the
byte string as laid out in the specification.

Let's walk through the critical steps required to parse the trading messages and reconstruct
the order book:

1. The ITCH parser relies on the message specifications provided in the file message_
types.xlsx (refer to the notebook parse_itch_order_flow_messages.ipynb for
details). It assembles format strings according to the formats dictionary:

formats = {

 ('integer', 2): 'H', # int of length 2 => format string 'H'

 ('integer', 4): 'I',

 ('integer', 6): '6s', # int of length 6 => parse as string,

 convert later

 ('integer', 8): 'Q',

 ('alpha', 1) : 's',

 ('alpha', 2) : '2s',

 ('alpha', 4) : '4s',

 ('alpha', 8) : '8s',

 ('price_4', 4): 'I',

 ('price_8', 8): 'Q',

}

Market and Fundamental Data – Sources and Techniques

[30]

2. The parser translates the message specs into format strings and named tuples that
capture the message content:

Get ITCH specs and create formatting (type, length) tuples

specs = pd.read_csv('message_types.csv')

specs['formats'] = specs[['value', 'length']].apply(tuple,

 axis=1).map(formats)

Formatting for alpha fields
alpha_fields = specs[specs.value == 'alpha'].set_index('name')
alpha_msgs = alpha_fields.groupby('message_type')
alpha_formats = {k: v.to_dict() for k, v in alpha_msgs.formats}

alpha_length = {k: v.add(5).to_dict() for k, v in alpha_msgs.length}

Generate message classes as named tuples and format strings

message_fields, fstring = {}, {}
for t, message in specs.groupby('message_type'):

 message_fields[t] = namedtuple(typename=t,
 field_names=message.name.tolist())
 fstring[t] = '>' + ''.join(message.formats.tolist())

3. Fields of the alpha type require postprocessing, as defined in the format_alpha
function:

def format_alpha(mtype, data):

 """Process byte strings of type alpha"""

 for col in alpha_formats.get(mtype).keys():

 if mtype != 'R' and col == 'stock':

 data = data.drop(col, axis=1)

 continue

 data.loc[:, col] = (data.loc[:, col]

 .str.decode("utf-8")

 .str.strip())

 if encoding.get(col):

 data.loc[:, col] = data.loc[:, col].map(encoding.get(col))

 return data

The binary file for a single day contains over 300,000,000 messages that are worth over
9 GB. The script appends the parsed result iteratively to a file in the fast HDF5 format to
avoid memory constraints. (Refer to the Efficient data storage with pandas section later in this
chapter for more information on the HDF5 format.)

Chapter 2

[31]

The following (simplified) code processes the binary file and produces the parsed orders
stored by message type:

with (data_path / file_name).open('rb') as data:
 while True:

 message_size = int.from_bytes(data.read(2), byteorder='big',

 signed=False)

 message_type = data.read(1).decode('ascii')

 message_type_counter.update([message_type])

 record = data.read(message_size - 1)

 message = message_fields[message_type]._make(
 unpack(fstring[message_type], record))

 messages[message_type].append(message)

 # deal with system events like market open/close

 if message_type == 'S':

 timestamp = int.from_bytes(message.timestamp,

 byteorder='big')

 if message.event_code.decode('ascii') == 'C': # close

 store_messages(messages)

 break

Summarizing the trading activity for all 8,500 stocks

As expected, a small number of the 8,500-plus securities traded on this day account for
most trades:

with pd.HDFStore(itch_store) as store:

 stocks = store['R'].loc[:, ['stock_locate', 'stock']]

 trades = (store['P'].append(

 store['Q'].rename(columns={'cross_price': 'price'}),

 sort=False).merge(stocks))

trades['value'] = trades.shares.mul(trades.price)

trades['value_share'] = trades.value.div(trades.value.sum())

trade_summary = (trades.groupby('stock').value_share

 .sum().sort_values(ascending=False))

trade_summary.iloc[:50].plot.bar(figsize=(14, 6),
 color='darkblue',

 title='Share of Traded Value')

f = lambda y, _: '{:.0%}'.format(y)

plt.gca().yaxis.set_major_formatter(FuncFormatter(f))

Market and Fundamental Data – Sources and Techniques

[32]

Figure 2.1 shows the resulting plot:

Figure 2.1: The share of traded value of the 50 most traded securities

How to reconstruct all trades and the order book

The parsed messages allow us to rebuild the order flow for the given day. The 'R' message
type contains a listing of all stocks traded during a given day, including information about
initial public offerings (IPOs) and trading restrictions.

Throughout the day, new orders are added, and orders that are executed and canceled are
removed from the order book. The proper accounting for messages that reference orders
placed on a prior date would require tracking the order book over multiple days.

The get_messages() function illustrates how to collect the orders for a single stock that affects
trading. (Refer to the ITCH specification for details about each message.) The code is slightly
simplified; refer to the notebook rebuild_nasdaq_order_book.ipynb for further details:

def get_messages(date, stock=stock):

 """Collect trading messages for given stock"""

 with pd.HDFStore(itch_store) as store:

 stock_locate = store.select('R', where='stock =

 stock').stock_locate.iloc[0]

 target = 'stock_locate = stock_locate'

 data = {}

 # relevant message types

 messages = ['A', 'F', 'E', 'C', 'X', 'D', 'U', 'P', 'Q']

 for m in messages:

 data[m] = store.select(m,

 where=target).drop('stock_locate', axis=1).assign(type=m)

 order_cols = ['order_reference_number', 'buy_sell_indicator',

 'shares', 'price']

 orders = pd.concat([data['A'], data['F']], sort=False,

Chapter 2

[33]

 ignore_index=True).loc[:, order_cols]

 for m in messages[2: -3]:

 data[m] = data[m].merge(orders, how='left')

 data['U'] = data['U'].merge(orders, how='left',

 right_on='order_reference_number',

 left_on='original_order_reference_number',

 suffixes=['', '_replaced'])
 data['Q'].rename(columns={'cross_price': 'price'}, inplace=True)

 data['X']['shares'] = data['X']['cancelled_shares']

 data['X'] = data['X'].dropna(subset=['price'])

 data = pd.concat([data[m] for m in messages], ignore_index=True,

 sort=False)

Reconstructing successful trades—that is, orders that were executed as opposed to those that
were canceled from trade-related message types C, E, P, and Q—is relatively straightforward:

def get_trades(m):

 """Combine C, E, P and Q messages into trading records"""

 trade_dict = {'executed_shares': 'shares', 'execution_price': 'price'}

 cols = ['timestamp', 'executed_shares']

 trades = pd.concat([m.loc[m.type == 'E',

 cols + ['price']].rename(columns=trade_dict),

 m.loc[m.type == 'C',

 cols + ['execution_price']]

 .rename(columns=trade_dict),

 m.loc[m.type == 'P', ['timestamp', 'price',

 'shares']],

 m.loc[m.type == 'Q',

 ['timestamp', 'price', 'shares']]

 .assign(cross=1),],

 sort=False).dropna(subset=['price']).fillna(0)
 return trades.set_index('timestamp').sort_index().astype(int)

The order book keeps track of limit orders, and the various price levels for buy and sell
orders constitute the depth of the order book. Reconstructing the order book for a given
level of depth requires the following steps:

The add_orders() function accumulates sell orders in ascending order and buy orders in
descending order for a given timestamp up to the desired level of depth:

def add_orders(orders, buysell, nlevels):

 new_order = []

 items = sorted(orders.copy().items())

 if buysell == 1:

 items = reversed(items)

 for i, (p, s) in enumerate(items, 1):

 new_order.append((p, s))

 if i == nlevels:

Market and Fundamental Data – Sources and Techniques

[34]

 break

 return orders, new_order

We iterate over all ITCH messages and process orders and their replacements as required
by the specification:

for message in messages.itertuples():

 i = message[0]

 if np.isnan(message.buy_sell_indicator):

 continue

 message_counter.update(message.type)

 buysell = message.buy_sell_indicator

 price, shares = None, None

 if message.type in ['A', 'F', 'U']:

 price, shares = int(message.price), int(message.shares)

 current_orders[buysell].update({price: shares})

 current_orders[buysell], new_order =

 add_orders(current_orders[buysell], buysell, nlevels)

 order_book[buysell][message.timestamp] = new_order

 if message.type in ['E', 'C', 'X', 'D', 'U']:

 if message.type == 'U':

 if not np.isnan(message.shares_replaced):

 price = int(message.price_replaced)

 shares = -int(message.shares_replaced)

 else:

 if not np.isnan(message.price):

 price = int(message.price)

 shares = -int(message.shares)

 if price is not None:

 current_orders[buysell].update({price: shares})

 if current_orders[buysell][price] <= 0:

 current_orders[buysell].pop(price)

 current_orders[buysell], new_order =

 add_orders(current_orders[buysell], buysell, nlevels)

 order_book[buysell][message.timestamp] = new_order

Figure 2.2 highlights the depth of liquidity at any given point in time using different
intensities that visualize the number of orders at different price levels. The left panel shows
how the distribution of limit order prices was weighted toward buy orders at higher prices.

The right panel plots the evolution of limit orders and prices throughout the trading day:
the dark line tracks the prices for executed trades during market hours, whereas the red
and blue dots indicate individual limit orders on a per-minute basis (refer to the notebook
for details):

Chapter 2

[35]

Figure 2.2: AAPL market liquidity according to the order book

From ticks to bars – how to regularize market data
The trade data is indexed by nanoseconds, arrives at irregular intervals, and is very noisy.
The bid-ask bounce, for instance, causes the price to oscillate between the bid and ask
prices when trade initiation alternates between buy and sell market orders. To improve the
noise-signal ratio and the statistical properties of the price series, we need to resample and
regularize the tick data by aggregating the trading activity.

We typically collect the open (first), high, low, and closing (last) price and volume (jointly
abbreviated as OHLCV) for the aggregated period, alongside the volume-weighted
average price (VWAP) and the timestamp associated with the data.

Refer to the normalize_tick_data.ipynb notebook in the folder for this chapter on GitHub
for additional details.

The raw material – tick bars

The following code generates a plot of the raw tick price and volume data for AAPL:

stock, date = 'AAPL', '20191030'

title = '{} | {}'.format(stock, pd.to_datetime(date).date()

with pd.HDFStore(itch_store) as store:

 sys_events = store['S'].set_index('event_code') # system events

 sys_events.timestamp = sys_events.timestamp.add(pd.to_datetime(date)).
dt.time

 market_open = sys_events.loc['Q', 'timestamp']

 market_close = sys_events.loc['M', 'timestamp']

with pd.HDFStore(stock_store) as store:

 trades = store['{}/trades'.format(stock)].reset_index()

trades = trades[trades.cross == 0] # excluding data from open/close crossings

trades.price = trades.price.mul(1e-4) # format price

Market and Fundamental Data – Sources and Techniques

[36]

trades = trades[trades.cross == 0] # exclude crossing trades

trades = trades.between_time(market_open, market_close) # market hours only

tick_bars = trades.set_index('timestamp')

tick_bars.index = tick_bars.index.time

tick_bars.price.plot(figsize=(10, 5), title=title), lw=1)

Figure 2.3 displays the resulting plot:

Figure 2.3: Tick bars

The tick returns are far from normally distributed, as evidenced by the low p-value of
scipy.stats.normaltest:

from scipy.stats import normaltest

normaltest(tick_bars.price.pct_change().dropna())

NormaltestResult(statistic=62408.76562431228, pvalue=0.0)

Plain-vanilla denoising – time bars

Time bars involve trade aggregation by period. The following code gets the data for the
time bars:

def get_bar_stats(agg_trades):

 vwap = agg_trades.apply(lambda x: np.average(x.price,

 weights=x.shares)).to_frame('vwap')

 ohlc = agg_trades.price.ohlc()

 vol = agg_trades.shares.sum().to_frame('vol')

 txn = agg_trades.shares.size().to_frame('txn')

 return pd.concat([ohlc, vwap, vol, txn], axis=1)

resampled = trades.groupby(pd.Grouper(freq='1Min'))

time_bars = get_bar_stats(resampled)

Chapter 2

[37]

We can display the result as a price-volume chart:

def price_volume(df, price='vwap', vol='vol', suptitle=title, fname=None):

 fig, axes = plt.subplots(nrows=2, sharex=True, figsize=(15, 8))
 axes[0].plot(df.index, df[price])

 axes[1].bar(df.index, df[vol], width=1 / (len(df.index)),

 color='r')

 xfmt = mpl.dates.DateFormatter('%H:%M')

 axes[1].xaxis.set_major_locator(mpl.dates.HourLocator(interval=3))

 axes[1].xaxis.set_major_formatter(xfmt)

 axes[1].get_xaxis().set_tick_params(which='major', pad=25)

 axes[0].set_title('Price', fontsize=14)

 axes[1].set_title('Volume', fontsize=14)

 fig.autofmt_xdate()
 fig.suptitle(suptitle)
 fig.tight_layout()
 plt.subplots_adjust(top=0.9)

price_volume(time_bars)

The preceding code produces Figure 2.4:

Figure 2.4: Time bars

Market and Fundamental Data – Sources and Techniques

[38]

Alternatively, we can represent the data as a candlestick chart using the Bokeh
plotting library:

resampled = trades.groupby(pd.Grouper(freq='5Min')) # 5 Min bars for better
print

df = get_bar_stats(resampled)

increase = df.close > df.open

decrease = df.open > df.close

w = 2.5 * 60 * 1000 # 2.5 min in ms

WIDGETS = "pan, wheel_zoom, box_zoom, reset, save"

p = figure(x_axis_type='datetime', tools=WIDGETS, plot_width=1500,
 title = "AAPL Candlestick")

p.xaxis.major_label_orientation = pi/4

p.grid.grid_line_alpha=0.4

p.segment(df.index, df.high, df.index, df.low, color="black")

p.vbar(df.index[increase], w, df.open[increase], df.close[increase],

 fill_color="#D5E1DD", line_color="black")
p.vbar(df.index[decrease], w, df.open[decrease], df.close[decrease],

 fill_color="#F2583E", line_color="black")
show(p)

This produces the plot in Figure 2.5:

Figure 2.5: Bokeh candlestick plot

Accounting for order fragmentation – volume bars

Time bars smooth some of the noise contained in the raw tick data but may fail to account
for the fragmentation of orders. Execution-focused algorithmic trading may aim to match
the volume-weighted average price (VWAP) over a given period. This will divide a single
order into multiple trades and place orders according to historical patterns. Time bars would
treat the same order differently, even though no new information has arrived in the market.

Chapter 2

[39]

Volume bars offer an alternative by aggregating trade data according to volume. We can
accomplish this as follows:

min_per_trading_day = 60 * 7.5

trades_per_min = trades.shares.sum() / min_per_trading_day

trades['cumul_vol'] = trades.shares.cumsum()

df = trades.reset_index()

by_vol = (df.groupby(df.cumul_vol.

 div(trades_per_min)

 .round().astype(int)))

vol_bars = pd.concat([by_vol.timestamp.last().to_frame('timestamp'),

 get_bar_stats(by_vol)], axis=1)

price_volume(vol_bars.set_index('timestamp'))

We get the plot in Figure 2.6 for the preceding code:

Figure 2.6: Volume bars

Accounting for price changes – dollar bars

When asset prices change significantly, or after stock splits, the value of a given amount of
shares changes. Volume bars do not correctly reflect this and can hamper the comparison of
trading behavior for different periods that reflect such changes. In these cases, the volume
bar method should be adjusted to utilize the product of shares and prices to produce
dollar bars.

Market and Fundamental Data – Sources and Techniques

[40]

The following code shows the computation for dollar bars:

value_per_min = trades.shares.mul(trades.price).sum()/(60*7.5) # min per
trading day

trades['cumul_val'] = trades.shares.mul(trades.price).cumsum()

df = trades.reset_index()

by_value = df.groupby(df.cumul_val.div(value_per_min).round().astype(int))

dollar_bars = pd.concat([by_value.timestamp.last().to_frame('timestamp'),
get_bar_stats(by_value)], axis=1)

price_volume(dollar_bars.set_index('timestamp'),

 suptitle=f'Dollar Bars | {stock} | {pd.to_datetime(date).
date()}')

The plot looks quite similar to the volume bar since the price has been fairly stable
throughout the day:

Figure 2.7: Dollar bars

AlgoSeek minute bars – equity quote and trade data
AlgoSeek provides historical intraday data of the quality previously available only to
institutional investors. The AlgoSeek Equity bars provide very detailed intraday quote
and trade data in a user-friendly format, which is aimed at making it easy to design and
backtest intraday ML-driven strategies. As we will see, the data includes not only OHLCV
information but also information on the bid-ask spread and the number of ticks with up
and down price moves, among others.

AlgoSeek has been so kind as to provide samples of minute bar data for the Nasdaq 100
stocks from 2013-2017 for demonstration purposes and will make a subset of this data
available to readers of this book.

Chapter 2

[41]

In this section, we will present the available trade and quote information and show how
to process the raw data. In later chapters, we will demonstrate how you can use this data
for ML-driven intraday strategies.

From the consolidated feed to minute bars

AlgoSeek minute bars are based on data provided by the Securities Information Processor
(SIP), which manages the consolidated feed mentioned at the beginning of this section. You
can view the documentation at https://www.algoseek.com/samples/.

The SIP aggregates the best bid and offers quotes from each exchange, as well as the
resulting trades and prices. Exchanges are prohibited by law from sending their quotes and
trades to direct feeds before sending them to the SIP. Given the fragmented nature of U.S.
equity trading, the consolidated feed provides a convenient snapshot of the current state of
the market.

More importantly, the SIP acts as the benchmark used by regulators to determine the
National Best Bid and Offer (NBBO) according to Reg NMS. The OHLC bar quote prices
are based on the NBBO, and each bid or ask quote price refers to an NBBO price.

Every exchange publishes its top-of-book price and the number of shares available at that
price. The NBBO changes when a published quote improves the NBBO. Bid/ask quotes
persist until there is a change due to trade, price improvement, or the cancelation of the
latest bid or ask. While historical OHLC bars are often based on trades during the bar
period, NBBO bid/ask quotes may be carried forward from the previous bar until there is a
new NBBO event.

AlgoSeek bars cover the whole trading day, from the opening of the first exchange until
the closing of the last exchange. Bars outside regular market hours normally exhibit limited
activity. Trading hours, in Eastern Time, are:

• Premarket: Approximately 04:00:00 (this varies by exchange) to 09:29:59

• Market: 09:30:00 to 16:00:00

• Extended hours: 16:00:01 to 20:00:00

Quote and trade data fields
The minute bar data contains up to 54 fields. There are eight fields for the open, high, low,
and close elements of the bar, namely:

• The timestamp for the bar and the corresponding trade

• The price and the size for the prevailing bid-ask quote and the relevant trade

https://www.algoseek.com/samples/

Market and Fundamental Data – Sources and Techniques

[42]

There are also 14 data points with volume information for the bar period:

• The number of shares and corresponding trades

• The trade volumes at or below the bid, between the bid quote and the midpoint, at
the midpoint, between the midpoint and the ask quote, and at or above the ask, as
well as for crosses

• The number of shares traded with upticks or downticks, that is, when the price
rose or fell, as well as when the price did not change, differentiated by the previous
direction of price movement

The AlgoSeek data also contains the number of shares reported to FINRA and processed
internally at broker-dealers, by dark pools, or OTC. These trades represent volume that is
hidden or not publicly available until after the fact.

Finally, the data includes the volume-weighted average price (VWAP) and minimum and
maximum bid-ask spread for the bar period.

How to process AlgoSeek intraday data

In this section, we'll process the AlgoSeek sample data. The data directory on GitHub
contains instructions on how to download that data from AlgoSeek.

The minute bar data comes in four versions: with and without quote information, and with
or without FINRA's reported volume. There is one zipped folder per day, containing one
CSV file per ticker.

The following code example extracts the trade-only minute bar data into daily .parquet files:

directories = [Path(d) for d in ['1min_trades']]

target = directory / 'parquet'

for zipped_file in directory.glob('*/**/*.zip'):
 fname = zipped_file.stem
 print('\t', fname)

 zf = ZipFile(zipped_file)
 files = zf.namelist()
 data = (pd.concat([pd.read_csv(zf.open(f),

 parse_dates=[['Date',

 'TimeBarStart']])

 for f in files],
 ignore_index=True)

 .rename(columns=lambda x: x.lower())

 .rename(columns={'date_timebarstart': 'date_time'})

 .set_index(['ticker', 'date_time']))

 data.to_parquet(target / (fname + '.parquet'))

Chapter 2

[43]

We can combine the parquet files into a single piece of HDF5 storage as follows, yielding
53.8 million records that consume 3.2 GB of memory and covering 5 years and 100 stocks:

path = Path('1min_trades/parquet')

df = pd.concat([pd.read_parquet(f) for f in path.glob('*.parquet')]).
dropna(how='all', axis=1)

df.columns = ['open', 'high', 'low', 'close', 'trades', 'volume', 'vwap']

df.to_hdf('data.h5', '1min_trades')

print(df.info(null_counts=True))

MultiIndex: 53864194 entries, (AAL, 2014-12-22 07:05:00) to (YHOO, 2017-06-16
19:59:00)

Data columns (total 7 columns):

open 53864194 non-null float64
high 53864194 non-null float64
Low 53864194 non-null float64
close 53864194 non-null float64
trades 53864194 non-null int64

volume 53864194 non-null int64

vwap 53852029 non-null float64

We can use plotly to quickly create an interactive candlestick plot for one day of AAPL
data to view in a browser:

idx = pd.IndexSlice

with pd.HDFStore('data.h5') as store:

 print(store.info())

 df = (store['1min_trades']

 .loc[idx['AAPL', '2017-12-29'], :]

 .reset_index())

fig = go.Figure(data=go.Ohlc(x=df.date_time,
 open=df.open,

 high=df.high,

 low=df.low,

 close=df.close))

Market and Fundamental Data – Sources and Techniques

[44]

Figure 2.8 shows the resulting static image:

Figure 2.8: Plotly candlestick plot

AlgoSeek also provides adjustment factors to correct pricing and volumes for stock splits,
dividends, and other corporate actions.

API access to market data
There are several options you can use to access market data via an API using Python.
We will first present a few sources built into the pandas library and the yfinance tool that
facilitates the downloading of end-of-day market data and recent fundamental data from
Yahoo! Finance.

Then we will briefly introduce the trading platform Quantopian, the data provider Quandl,
and the Zipline backtesting library that we will use later in the book, as well as listing
several additional options to access various types of market data. The directory data_
providers on GitHub contains several notebooks that illustrate the usage of these options.

Remote data access using pandas
The pandas library enables access to data displayed on websites using the read_html
function and access to the API endpoints of various data providers through the related
pandas-datareader library.

Chapter 2

[45]

Reading HTML tables

Downloading the content of one or more HTML tables, such as for the constituents of the
S&P 500 index from Wikipedia, works as follows:

sp_url = 'https://en.wikipedia.org/wiki/List_of_S%26P_500_companies'

sp = pd.read_html(sp_url, header=0)[0] # returns a list for each table

sp.info()

RangeIndex: 505 entries, 0 to 504

Data columns (total 9 columns):

Symbol 505 non-null object

Security 505 non-null object

SEC filings 505 non-null object
GICS Sector 505 non-null object

GICS Sub Industry 505 non-null object

Headquarters Location 505 non-null object

Date first added 408 non-null object
CIK 505 non-null int64

Founded 234 non-null object

pandas-datareader for market data

pandas used to facilitate access to data provider APIs directly, but this functionality has
moved to the pandas-datareader library (refer to the README for links to the documentation).

The stability of the APIs varies with provider policies and continues to change. Please
consult the documentation for up-to-date information. As of December 2019, at version
0.8.1, the following sources are available:

Source Scope Comment

Tiingo
Historical end-of-day prices on equities,
mutual funds, and ETF.

Free registration for the
API key. Free accounts can
access only 500 symbols.

Investor
Exchange (IEX)

Historical stock prices are available if traded
on IEX.

Requires an API key from
IEX Cloud Console.

Alpha Vantage

Historical equity data for daily, weekly, and
monthly frequencies, 20+ years, and the past
3-5 days of intraday data. It also has FOREX
and sector performance data.

Quandl Free data sources as listed on their website.

Fama/French Risk factor portfolio returns.
Used in Chapter 7, Linear
Models – From Risk Factors to
Return Forecasts.

TSP Fund Data Mutual fund prices.

Market and Fundamental Data – Sources and Techniques

[46]

Nasdaq Latest metadata on traded tickers.

Stooq Index
Data

Some equity indices are not available from
elsewhere due to licensing issues.

MOEX Moscow Exchange historical data.

The access and retrieval of data follow a similar API for all sources, as illustrated for
Yahoo! Finance:

import pandas_datareader.data as web

from datetime import datetime

start = '2014' # accepts strings

end = datetime(2017, 5, 24) # or datetime objects

yahoo= web.DataReader('FB', 'yahoo', start=start, end=end)

yahoo.info()

DatetimeIndex: 856 entries, 2014-01-02 to 2017-05-25

Data columns (total 6 columns):

High 856 non-null float64
Low 856 non-null float64
Open 856 non-null float64
Close 856 non-null float64
Volume 856 non-null int64

Adj Close 856 non-null float64
dtypes: float64(5), int64(1)

yfinance – scraping data from Yahoo! Finance
yfinance aims to provide a reliable and fast way to download historical market data
from Yahoo! Finance. The library was originally named fix-yahoo-finance. The usage of
this library is very straightforward; the notebook yfinance_demo illustrates the library's
capabilities.

How to download end-of-day and intraday prices

The Ticker object permits the downloading of various data points scraped from Yahoo's
website:

import yfinance as yf
symbol = 'MSFT'

ticker = yf.Ticker(symbol)

The .history method obtains historical prices for various periods, from one day to the
maximum available, and at different frequencies, whereas intraday is only available for
the last several days. To download adjusted OHLCV data at a one-minute frequency and
corporate actions, use:

Chapter 2

[47]

data = ticker.history(period='5d',

 interval='1m',

 actions=True,

 auto_adjust=True)

data.info()

DatetimeIndex: 1747 entries, 2019-11-22 09:30:00-05:00 to 2019-11-29
13:00:00-05:00

Data columns (total 7 columns):

Open 1747 non-null float64
High 1747 non-null float64
Low 1747 non-null float64
Close 1747 non-null float64
Volume 1747 non-null int64

Dividends 1747 non-null int64

Stock Splits 1747 non-null int64

The notebook also illustrates how to access quarterly and annual financial statements,
sustainability scores, analyst recommendations, and upcoming earnings dates.

How to download the option chain and prices

yfinance also provides access to the option expiration dates and prices and other
information for various contracts. Using the ticker instance from the previous example,
we get the expiration dates using:

ticker.options

('2019-12-05', '2019-12-12', '2019-12-19',..)

For any of these dates, we can access the option chain and view details for the various
put/call contracts as follows:

options = ticker.option_chain('2019-12-05')

options.calls.info()

Data columns (total 14 columns):

contractSymbol 35 non-null object

lastTradeDate 35 non-null datetime64[ns]

strike 35 non-null float64
lastPrice 35 non-null float64
bid 35 non-null float64
ask 35 non-null float64
change 35 non-null float64
percentChange 35 non-null float64
volume 34 non-null float64
openInterest 35 non-null int64

impliedVolatility 35 non-null float64
inTheMoney 35 non-null bool

contractSize 35 non-null object

currency 35 non-null object

Market and Fundamental Data – Sources and Techniques

[48]

The library also permits the use of proxy servers to prevent rate limiting and facilitates
the bulk downloading of multiple tickers. The notebook demonstrates the usage of these
features as well.

Quantopian
Quantopian is an investment firm that offers a research platform to crowd-source trading
algorithms. Registration is free, and members can research trading ideas using a broad
variety of data sources. It also offers an environment to backtest the algorithm against
historical data, as well as to forward-test it out of sample with live data. It awards
investment allocations for top-performing algorithms whose authors are entitled to a 10
percent (at the time of writing) profit share.

The Quantopian research platform consists of a Jupyter Notebook environment for
research and development for alpha-factor research and performance analysis. There is
also an interactive development environment (IDE) for coding algorithmic strategies
and backtesting the result using historical data since 2002 with minute-bar frequency.

Users can also simulate algorithms with live data, which is known as paper trading.
Quantopian provides various market datasets, including U.S. equity and futures price and
volume data at a one-minute frequency, and U.S. equity corporate fundamentals, and it
also integrates numerous alternative datasets.

We will dive into the Quantopian platform in much more detail in Chapter 4, Financial
Feature Engineering – How to Research Alpha Factors, and rely on its functionality throughout
the book, so feel free to open an account right away. (Refer to the GitHub repository for
more details.)

Zipline
Zipline is the algorithmic trading library that powers the Quantopian backtesting and live-
trading platform. It is also available offline to develop a strategy using a limited number
of free data bundles that can be ingested and used to test the performance of trading ideas
before porting the result to the online Quantopian platform for paper and live trading.

Zipline requires a custom environment—view the instructions at the beginning of the
notebook zipline_data_demo.ipynb The following code illustrates how Zipline permits
us to access daily stock data for a range of companies. You can run Zipline scripts in the
Jupyter Notebook using the magic function of the same name.

First, you need to initialize the context with the desired security symbols. We'll also use
a counter variable. Then, Zipline calls handle_data, where we use the data.history()
method to look back a single period and append the data for the last day to a .csv file:

Chapter 2

[49]

%load_ext zipline

%%zipline --start 2010-1-1 --end 2018-1-1 --data-frequency daily

from zipline.api import order_target, record, symbol

def initialize(context):

 context.i = 0

 context.assets = [symbol('FB'), symbol('GOOG'), symbol('AMZN')]

def handle_data(context, data):

 df = data.history(context.assets, fields=['price', 'volume'],
 bar_count=1, frequency="1d")

 df = df.to_frame().reset_index()

 if context.i == 0:

 df.columns = ['date', 'asset', 'price', 'volume']

 df.to_csv('stock_data.csv', index=False)

 else:

 df.to_csv('stock_data.csv', index=False, mode='a', header=None)

 context.i += 1

df = pd.read_csv('stock_data.csv')

df.date = pd.to_datetime(df.date)

df.set_index('date').groupby('asset').price.plot(lw=2, legend=True,

 figsize=(14, 6));

We get the following plot for the preceding code:

Figure 2.9: Zipline data access

We will explore the capabilities of Zipline, and especially the online Quantopian platform,
in more detail in the coming chapters.

Market and Fundamental Data – Sources and Techniques

[50]

Quandl
Quandl provides a broad range of data sources, both free and as a subscription, using a
Python API. Register and obtain a free API key to make more than 50 calls per day. Quandl
data covers multiple asset classes beyond equities and includes FX, fixed income, indexes,
futures and options, and commodities.

API usage is straightforward, well-documented, and flexible, with numerous
methods beyond single-series downloads, for example, including bulk downloads or
metadata searches.

The following call obtains oil prices from 1986 onward, as quoted by the U.S. Department
of Energy:

import quandl

oil = quandl.get('EIA/PET_RWTC_D').squeeze()

oil.plot(lw=2, title='WTI Crude Oil Price')

We get this plot for the preceding code:

Figure 2.10: Quandl oil price example

Other market data providers
A broad variety of providers offer market data for various asset classes. Examples in
relevant categories include:

• Exchanges derive a growing share of their revenues from an ever-broader range of
data services, typically using a subscription.

• Bloomberg and Thomson Reuters have long been the leading data aggregators
with a combined share of over 55 percent in the $28.5 billion financial data market.
Smaller rivals, such as FactSet, are growing or emerging, such as money.net,
Quandl, Trading Economics, and Barchart.

• Specialist data providers abound. One example is LOBSTER, which aggregates
Nasdaq order-book data in real time.

Chapter 2

[51]

• Free data providers include Alpha Vantage, which offers Python APIs for real-time
equity, FX, and cryptocurrency market data, as well as technical indicators.

• Crowd-sourced investment firms that provide research platforms with data access
include, in addition to Quantopian, Alpha Trading Labs, launched in March 2018,
which provides HFT infrastructure and data.

How to work with fundamental data
Fundamental data pertains to the economic drivers that determine the value of securities.
The nature of the data depends on the asset class:

• For equities and corporate credit, it includes corporate financials, as well as
industry and economy-wide data.

• For government bonds, it includes international macro data and foreign exchange.

• For commodities, it includes asset-specific supply-and-demand determinants, such
as weather data for crops.

We will focus on equity fundamentals for the U.S., where data is easier to access. There are
some 13,000+ public companies worldwide that generate 2 million pages of annual reports
and more than 30,000 hours of earnings calls. In algorithmic trading, fundamental data
and features engineered from this data may be used to derive trading signals directly, for
example, as value indicators, and are an essential input for predictive models, including
ML models.

Financial statement data
The Securities and Exchange Commission (SEC) requires U.S. issuers—that is, listed
companies and securities, including mutual funds—to file three quarterly financial
statements (Form 10-Q) and one annual report (Form 10-K), in addition to various other
regulatory filing requirements.

Since the early 1990s, the SEC made these filings available through its Electronic Data
Gathering, Analysis, and Retrieval (EDGAR) system. They constitute the primary data
source for the fundamental analysis of equity and other securities, such as corporate credit,
where the value depends on the business prospects and financial health of the issuer.

Automated processing – XBRL

Automated analysis of regulatory filings has become much easier since the SEC introduced
XBRL, which is a free, open, and global standard for the electronic representation and
exchange of business reports. XBRL is based on XML; it relies on taxonomies that define
the meaning of the elements of a report and map to tags that highlight the corresponding
information in the electronic version of the report. One such taxonomy represents the U.S.
Generally Accepted Accounting Principles (GAAP).

The SEC introduced voluntary XBRL filings in 2005 in response to accounting scandals

Market and Fundamental Data – Sources and Techniques

[52]

before requiring this format for all filers as of 2009, and it continues to expand the
mandatory coverage to other regulatory filings. The SEC maintains a website that lists the
current taxonomies that shape the content of different filings and can be used to extract
specific items.

The following datasets provide information extracted from EX-101 attachments submitted
to the commission in a flattened data format to assist users in consuming data for analysis.
The data reflects selected information from the XBRL-tagged financial statements. It
currently includes numeric data from the quarterly and annual financial statements, as well
as certain additional fields, for example, Standard Industrial Classification (SIC).

There are several avenues to track and access fundamental data reported to the SEC:

• As part of the EDGAR Public Dissemination Service (PDS), electronic feeds of
accepted filings are available for a fee.

• The SEC updates the RSS feeds, which list the structured disclosure submissions,
every 10 minutes.

• There are public index files for the retrieval of all filings through FTP for automated
processing.

• The financial statement (and notes) datasets contain parsed XBRL data from all
financial statements and the accompanying notes.

The SEC also publishes log files containing the internet search traffic for EDGAR filings
through SEC.gov, albeit with a six month delay.

Building a fundamental data time series

The scope of the data in the financial statement and notes datasets consists of numeric data
extracted from the primary financial statements (balance sheet, income statement, cash
flows, changes in equity, and comprehensive income) and footnotes on those statements.
The available data is from as early as 2009.

Extracting the financial statements and notes dataset
The following code downloads and extracts all historical filings contained in the financial
statement and notes (FSN) datasets for the given range of quarters (refer to edgar_xbrl.
ipynb for additional details):

Chapter 2

[53]

SEC_URL = 'https://www.sec.gov/files/dera/data/financial-statement-and-notes-
data-sets/'

first_year, this_year, this_quarter = 2014, 2018, 3
past_years = range(2014, this_year)

filing_periods = [(y, q) for y in past_years for q in range(1, 5)]
filing_periods.extend([(this_year, q) for q in range(1, this_quarter +
 1)])

for i, (yr, qtr) in enumerate(filing_periods, 1):
 filing = f'{yr}q{qtr}_notes.zip'
 path = data_path / f'{yr}_{qtr}' / 'source'

 response = requests.get(SEC_URL + filing).content
 with ZipFile(BytesIO(response)) as zip_file:
 for file in zip_file.namelist():
 local_file = path / file
 with local_file.open('wb') as output:
 for line in zip_file.open(file).readlines():
 output.write(line)

The data is fairly large, and to enable faster access than the original text files permit, it is
better to convert the text files into a binary, Parquet columnar format (refer to the Efficient
data storage with pandas section later in this chapter for a performance comparison of various
data-storage options that are compatible with pandas DataFrames):

for f in data_path.glob('**/*.tsv'):

 file_name = f.stem + '.parquet'
 path = Path(f.parents[1]) / 'parquet'

 df = pd.read_csv(f, sep='\t', encoding='latin1', low_memory=False)

 df.to_parquet(path / file_name)

For each quarter, the FSN data is organized into eight file sets that contain information
about submissions, numbers, taxonomy tags, presentation, and more. Each dataset consists
of rows and fields and is provided as a tab-delimited text file:

File Dataset Description

SUB Submission Identifies each XBRL submission by company, form, date, and so on
TAG Tag Defines and explains each taxonomy tag
DIM Dimension Adds detail to numeric and plain text data

NUM Numeric One row for each distinct data point in filing
TXT Plain text Contains all non-numeric XBRL fields
REN Rendering Information for rendering on the SEC website

PRE Presentation Details of tag and number presentation in primary statements

CAL Calculation Shows the arithmetic relationships among tags

Market and Fundamental Data – Sources and Techniques

[54]

Retrieving all quarterly Apple filings
The submission dataset contains the unique identifiers required to retrieve the filings: the
Central Index Key (CIK) and the Accession Number (adsh). The following shows some
of the information about Apple's 2018Q1 10-Q filing:

apple = sub[sub.name == 'APPLE INC'].T.dropna().squeeze()

key_cols = ['name', 'adsh', 'cik', 'name', 'sic', 'countryba',

 'stprba', 'cityba', 'zipba', 'bas1', 'form', 'period',

 'fy', 'fp', 'filed']
apple.loc[key_cols]

name APPLE INC

adsh 0000320193-18-000070

cik 320193

name APPLE INC

sic 3571

countryba US

stprba CA

cityba CUPERTINO

zipba 95014

bas1 ONE APPLE PARK WAY

form 10-Q

period 20180331

fy 2018

fp Q2

filed 20180502

Using the CIK, we can identify all of the historical quarterly filings available for Apple and
combine this information to obtain 26 10-Q forms and 9 annual 10-K forms:

aapl_subs = pd.DataFrame()

for sub in data_path.glob('**/sub.parquet'):

 sub = pd.read_parquet(sub)

 aapl_sub = sub[(sub.cik.astype(int) == apple.cik) &

 (sub.form.isin(['10-Q', '10-K']))]

 aapl_subs = pd.concat([aapl_subs, aapl_sub])

aapl_subs.form.value_counts()

10-Q 15

10-K 4

With the accession number for each filing, we can now rely on the taxonomies to select
the appropriate XBRL tags (listed in the TAG file) from the NUM and TXT files to obtain the
numerical or textual/footnote data points of interest.

Chapter 2

[55]

First, let's extract all of the numerical data that is available from the 19 Apple filings:

aapl_nums = pd.DataFrame()

for num in data_path.glob('**/num.parquet'):

 num = pd.read_parquet(num).drop('dimh', axis=1)

 aapl_num = num[num.adsh.isin(aapl_subs.adsh)]

 aapl_nums = pd.concat([aapl_nums, aapl_num])

aapl_nums.ddate = pd.to_datetime(aapl_nums.ddate, format='%Y%m%d')

aapl_nums.shape

(28281, 16)

Building a price/earnings time series

In total, the 9 years of filing history provide us with over 28,000 numerical values. We can
select a useful field, such as earnings per diluted share (EPS), that we can combine with
market data to calculate the popular price-to-earnings (P/E) valuation ratio.

We do need to take into account, however, that Apple split its stock by 7:1 on June 4, 2014,
and adjust the earnings per share values before the split to make the earnings comparable
to the price data, which, in its adjusted form, accounts for these changes. The following code
block shows you how to adjust the earnings data:

field = 'EarningsPerShareDiluted'
stock_split = 7

split_date = pd.to_datetime('20140604')

Filter by tag; keep only values measuring 1 quarter

eps = aapl_nums[(aapl_nums.tag == 'EarningsPerShareDiluted')

 & (aapl_nums.qtrs == 1)].drop('tag', axis=1)

Keep only most recent data point from each filing
eps = eps.groupby('adsh').apply(lambda x: x.nlargest(n=1, columns=['ddate']))

Adjust earnings prior to stock split downward

eps.loc[eps.ddate < split_date,'value'] = eps.loc[eps.ddate <

 split_date, 'value'].div(7)

eps = eps[['ddate', 'value']].set_index('ddate').squeeze()

create trailing 12-months eps from quarterly data

eps = eps.rolling(4, min_periods=4).sum().dropna()

We can use Quandl to obtain Apple stock price data since 2009:

import pandas_datareader.data as web

symbol = 'AAPL.US'

aapl_stock = web.DataReader(symbol, 'quandl', start=eps.index.min())

aapl_stock = aapl_stock.resample('D').last() # ensure dates align with

 eps data

Market and Fundamental Data – Sources and Techniques

[56]

Now we have the data to compute the trailing 12-month P/E ratio for the entire period:

pe = aapl_stock.AdjClose.to_frame('price').join(eps.to_frame('eps'))

pe = pe.fillna(method='ffill').dropna()
pe['P/E Ratio'] = pe.price.div(pe.eps)

axes = pe.plot(subplots=True, figsize=(16,8), legend=False, lw=2);

We get the following plot from the preceding code:

Figure 2.11: Trailing P/E ratio from EDGAR filings

Other fundamental data sources
There are numerous other sources for fundamental data. Many are accessible using the
pandas_datareader module that was introduced earlier. Additional data is available from
certain organizations directly, such as the IMF, the World Bank, or major national statistical
agencies around the world (refer to the references section on GitHub).

pandas-datareader – macro and industry data

The pandas-datareader library facilitates access according to the conventions introduced
at the end of the preceding section on market data. It covers APIs for numerous global
fundamental macro- and industry-data sources, including the following:

• Kenneth French's data library: Market data on portfolios capturing returns on key
risk factors like size, value, and momentum factors, disaggregated by industry
(refer to Chapter 4, Financial Feature Engineering – How to Research Alpha Factors)

• St. Louis FED (FRED): Federal Reserve data on the U.S. economy and financial markets
• World Bank: Global database on long-term, lower-frequency economic and social

development and demographics

Chapter 2

[57]

• OECD: Similar to the World Bank data for OECD countries

• Enigma: Various datasets, including alternative sources

• Eurostat: EU-focused economic, social, and demographic data

Efficient data storage with pandas
We'll be using many different datasets in this book, and it's worth comparing the main
formats for efficiency and performance. In particular, we'll compare the following:

• CSV: Comma-separated, standard flat text file format.
• HDF5: Hierarchical data format, developed initially at the National Center for

Supercomputing Applications. It is a fast and scalable storage format for numerical
data, available in pandas using the PyTables library.

• Parquet: Part of the Apache Hadoop ecosystem, a binary, columnar storage format
that provides efficient data compression and encoding and has been developed by
Cloudera and Twitter. It is available for pandas through the pyarrow library, led by
Wes McKinney, the original author of pandas.

The storage_benchmark.ipynb notebook compares the performance of the preceding
libraries using a test DataFrame that can be configured to contain numerical or text data,
or both. For the HDF5 library, we test both the fixed and table formats. The table format
allows for queries and can be appended to.

The following charts illustrate the read and write performance for 100,000 rows with either
1,000 columns of random floats and 1,000 columns of a random 10-character string, or just
2,000 float columns (on a log scale):

Figure 2.12: Storage benchmarks

The left panel shows that, for purely numerical data, the HDF5 format performs best by
far, and the table format also shares with CSV the smallest memory footprint at 1.6 GB. The
fixed format uses twice as much space, while the parquet format uses 2 GB.

Market and Fundamental Data – Sources and Techniques

[58]

For a mix of numerical and text data, Parquet is the best choice for read and write
operations. HDF5 has an advantage with read in relation to CSV, but it is slower with write
because it pickles text data.

The notebook illustrates how to configure, test, and collect the timing using the %%timeit
cell magic and, at the same time, demonstrates the usage of the related pandas commands
that are required to use these storage formats.

Summary
This chapter introduced the market and fundamental data sources that form the backbone
of most trading strategies. You learned about the various ways to access this data and how
to preprocess the raw information so that you can begin extracting trading signals using the
ML techniques that we will be introducing shortly.

In the next chapter, before moving on to the design and evaluation of trading strategies and
the use of ML models, we need to cover alternative datasets that have emerged in recent
years and have been a significant driver of the popularity of ML for algorithmic trading.

[59]

3
Alternative Data for Finance –

Categories and Use Cases

The previous chapter covered working with market and fundamental data, which have
been the traditional drivers of trading strategies. In this chapter, we'll fast-forward to
the recent emergence of a broad range of much more diverse data sources as fuel for
discretionary and algorithmic strategies. Their heterogeneity and novelty have inspired the
label of alternative data and created a rapidly growing provider and service industry.

Behind this trend is a familiar story: propelled by the explosive growth of the internet
and mobile networks, digital data continues to grow exponentially amid advances in the
technology to process, store, and analyze new data sources. The exponential growth in the
availability of and ability to manage more diverse digital data, in turn, has been a critical
force behind the dramatic performance improvements of machine learning (ML) that are
driving innovation across industries, including the investment industry.

The scale of the data revolution is extraordinary: the past 2 years alone have witnessed the
creation of 90 percent of all data that exists in the world today, and by 2020, each of the 7.7
billion people worldwide is expected to produce 1.7 MB of new information every second
of every day. On the other hand, back in 2012, only 0.5 percent of all data was ever analyzed
and used, whereas 33 percent is deemed to have value by 2020. The gap between data
availability and usage is likely to narrow quickly as global investments in analytics are set to
rise beyond $210 billion by 2020, while the value creation potential is a multiple higher.

This chapter explains how individuals, business processes, and sensors produce alternative
data. It also provides a framework to navigate and evaluate the proliferating supply of
alternative data for investment purposes. It demonstrates the workflow, from acquisition to
preprocessing and storage, using Python for data obtained through web scraping to set the
stage for the application of ML. It concludes by providing examples of sources, providers,
and applications.

Alternative Data for Finance – Categories and Use Cases

[60]

This chapter will cover the following topics:

• Which new sources of information have been unleashed by the alternative data
revolution

• How individuals, business processes, and sensors generate alternative data

• Evaluating the burgeoning supply of alternative data used for algorithmic trading

• Working with alternative data in Python, such as by scraping the internet

• Important categories and providers of alternative data

The alternative data revolution
The data deluge driven by digitization, networking, and plummeting storage costs has
led to profound qualitative changes in the nature of information available for predictive
analytics, often summarized by the five Vs:

• Volume: The amount of data generated, collected, and stored is orders of
magnitude larger as the byproduct of online and offline activity, transactions,
records, and other sources. Volumes continue to grow with the capacity for analysis
and storage.

• Velocity: Data is generated, transferred, and processed to become available near,
or at, real-time speed.

• Variety: Data is organized in formats no longer limited to structured, tabular forms,
such as CSV files or relational database tables. Instead, new sources produce semi-
structured formats, such as JSON or HTML, and unstructured content, including
raw text, "images"? and audio or video data, adding new challenges to render data
suitable for ML algorithms.

• Veracity: The diversity of sources and formats makes it much more difficult to
validate the reliability of the data's information content.

• Value: Determining the value of new datasets can be much more time- and
resource-consuming, as well as more uncertain than before.

For algorithmic trading, new data sources offer an informational advantage if they provide
access to information unavailable from traditional sources or provide access sooner.
Following global trends, the investment industry is rapidly expanding beyond market
and fundamental data to alternative sources to reap alpha through an informational edge.
Annual spending on data, technological capabilities, and related talent is expected to
increase from the current $3 billion by 12.8 percent annually through 2020.

You can find the code samples for this chapter and links to additional
resources in the corresponding directory of the GitHub repository. The
notebooks include color versions of the images.

Chapter 3

[61]

Today, investors can access macro or company-specific data in real time that, historically,
has been available only at a much lower frequency. Use cases for new data sources include
the following:

• Online price data on a representative set of goods and services can be used to
measure inflation.

• The number of store visits or purchases permits real-time estimates of company -
or industry-specific sales or economic activity.

• Satellite images can reveal agricultural yields, or activity at mines or on oil rigs
before this information is available elsewhere.

As the standardization and adoption of big datasets advances, the information contained in
conventional data will likely lose most of its predictive value.

Furthermore, the capability to process and integrate diverse datasets and apply ML allows
for complex insights. In the past, quantitative approaches relied on simple heuristics to
rank companies using historical data for metrics such as the price-to-book ratio, whereas
ML algorithms synthesize new metrics and learn and adapt such rules while taking into
account evolving market data. These insights create new opportunities to capture classic
investment themes such as value, momentum, quality, and sentiment:

• Momentum: ML can identify asset exposures to market price movements, industry
sentiment, or economic factors.

• Value: Algorithms can analyze large amounts of economic and industry-specific
structured and unstructured data, beyond financial statements, to predict the
intrinsic value of a company.

• Quality: The sophisticated analysis of integrated data allows for the evaluation
of customer or employee reviews, e-commerce, or app traffic to identify gains in
market share or other underlying earnings quality drivers.

• Sentiment: The real-time processing and interpretation of news and social media
content permits ML algorithms to both rapidly detect emerging sentiment and
synthesize information from diverse sources into a more coherent big picture.

In practice, however, data containing valuable signals is often not freely available and is
typically produced for purposes other than trading. As a result, alternative datasets require
thorough evaluation, costly acquisition, careful management, and sophisticated analysis to
extract tradable signals.

Alternative Data for Finance – Categories and Use Cases

[62]

Sources of alternative data
Alternative datasets are generated by many sources but can be classified at a high level as
predominantly produced by:

• Individuals who post on social media, review products, or use search engines

• Businesses that record commercial transactions (in particular, credit card
payments) or capture supply-chain activity as intermediaries

• Sensors that, among many other things, capture economic activity through images
from satellites or security cameras, or through movement patterns such as cell
phone towers

The nature of alternative data continues to evolve rapidly as new data sources become
available and sources previously labeled "alternative" become part of the mainstream.
The Baltic Dry Index (BDI), for instance, assembles data from several hundred shipping
companies to approximate the supply/demand of dry bulk carriers and is now available
on the Bloomberg Terminal.

Alternative data includes raw data as well as data that is aggregated or has been processed
in some form to add value. For instance, some providers aim to extract tradeable signals,
such as sentiment scores. We will address the various types of providers in Chapter 4,
Financial Feature Engineering – How to Research Alpha Factors.

Alternative data sources differ in crucial respects that determine their value or signal
content for algorithmic trading strategies. We will address these aspects in the next section
after looking at the main sources in this one.

Individuals
Individuals automatically create electronic data through online activities, as well as through
their offline activity as the latter is captured electronically and often linked to online
identities. Data generated by individuals is frequently unstructured in text, image, or video
formats, disseminated through multiple platforms, and includes:

• Social media posts, such as opinions or reactions on general-purpose sites such as
Twitter, Facebook, or LinkedIn, or business-review sites such as Glassdoor or Yelp

• E-commerce activity that reflects an interest in or the perception of products on sites
like Amazon or Wayfair

• Search engine activity using platforms such as Google or Bing

• Mobile app usage, downloads, and reviews

• Personal data such as messaging traffic

Chapter 3

[63]

The analysis of social media sentiment has become very popular because it can be applied
to individual stocks, industry baskets, or market indices. The most common source is
Twitter, followed by various news vendors and blog sites. Supply is competitive, and prices
are lower because it is often obtained through increasingly commoditized web scraping.
Reliable social media datasets that include blogs, tweets, or videos have typically less than
5 years of history, given how recently consumers have adopted these tools at scale. Search
history, in contrast, is available from 2004.

Business processes
Businesses and public entities produce and collect many valuable sources of alternative
data. Data that results from business processes often has more structure than that generated
by individuals. It is very effective as a leading indicator for activity that is otherwise
available at a much lower frequency.

Data generated by business processes includes:

• Payment card transaction data possibly available for purchase from processors and
financial institutions

• Company exhaust data produced by ordinary digitized activity or record-keeping,
such as banking records, cashier scanner data, or supply chain orders

• Trade flow and market microstructure data (such as L2 and L3 order book data,
illustrated by the NASDAQ ITCH tick data example in Chapter 2, Market and
Fundamental Data – Sources and Techniques)

• Company payments monitored by credit rating agencies or financial institutions
to assess liquidity and creditworthiness

Credit card transactions and company exhaust data, such as point-of-sale data, are among
the most reliable and predictive datasets. Credit card data is available with around 10
years of history and, at different lags, almost up to real time, while corporate earnings are
reported quarterly with a 2.5-week lag. The time horizon and reporting lag for company
exhaust data varies widely, depending on the source. Market microstructure datasets have
over 15 years of history compared to sell-side flow data, which typically has fewer than 5
years of consistent history.

Sensors
Networked sensors embedded in a broad range of devices are among the most rapidly
growing data sources, driven by the proliferation of smartphones and the reduction in the
cost of satellite technologies.

Alternative Data for Finance – Categories and Use Cases

[64]

This category of alternative data is typically very unstructured and often significantly larger
in volume than data generated by individuals or business processes, and it poses much
tougher processing challenges. Key alternative data sources in this category include:

• Satellite imaging to monitor economic activity, such as construction, shipping, or
commodity supply

• Geolocation data to track traffic in retail stores, such as using volunteered
smartphone data, or on transport routes, such as on ships or trucks

• Cameras positioned at a location of interest

• Weather and pollution sensors

The Internet of Things (IoT) will further accelerate the large-scale collection of this type of
alternative data by embedding networked microprocessors into personal and commercial
electronic devices, such as home appliances, public spaces, and industrial production
processes.

Sensor-based alternative data that contains satellite images, mobile app usage, or cellular-
location tracking is typically available with a 3- to 4-year history.

Satellites

The resources and timelines required to launch a geospatial imaging satellite have dropped
dramatically; instead of tens of millions of dollars and years of preparation, the cost has
fallen to around $100,000 to place a small satellite as a secondary payload into a low Earth
orbit. Hence, companies can obtain much higher-frequency coverage (currently about daily)
of specific locations using entire fleets of satellites.

Use cases include monitoring economic activity that can be captured using aerial coverage,
such as agricultural and mineral production and shipments, or the construction of
commercial or residential buildings or ships; industrial incidents, such as fires; or car and
foot traffic at locations of interest. Related sensor data is contributed by drones that are
used in agriculture to monitor crops using infrared light.

Several challenges often need to be addressed before satellite image data can be reliably
used in ML models. In addition to substantial preprocessing, these include accounting for
weather conditions such as cloud cover and seasonal effects around holidays. Satellites may
also offer only irregular coverage of specific locations that could affect the quality of the
predictive signals.

Geolocation data

Geolocation data is another rapidly growing category of alternative data generated by
sensors. A familiar source is smartphones, with which individuals voluntarily share their
geographic location through an application, or from wireless signals such as GPS, CDMA,
or Wi-Fi that measure foot traffic around places of interest, such as stores, restaurants, or
event venues.

Chapter 3

[65]

Furthermore, an increasing number of airports, shopping malls, and retail stores have
installed sensors that track the number and movements of customers. While the original
motivation to deploy these sensors was often to measure the impact of marketing activity,
the resulting data can also be used to estimate foot traffic or sales. Sensors to capture
geolocation data include 3D stereo video and thermal imaging, which lowers privacy
concerns but works well with moving objects. There are also sensors attached to ceilings,
as well as pressure-sensitive mats. Some providers use multiple sensors in combination,
including vision, audio, and cellphone location, for a comprehensive account of the shopper
journey, which includes not only the count and duration of visits, but extends to the
conversion and measurement of repeat visits.

Criteria for evaluating alternative data
The ultimate objective of alternative data is to provide an informational advantage in the
competitive search for trading signals that produce alpha, namely positive, uncorrelated
investment returns. In practice, the signals extracted from alternative datasets can be
used on a standalone basis or combined with other signals as part of a quantitative
strategy. Independent usage is viable if the Sharpe ratio generated by a strategy based on
a single dataset is sufficiently high, but that is rare in practice. (See Chapter 4, Financial
Feature Engineering – How to Research Alpha Factors, for details on signal measurement and
evaluation.)

Quant firms are building libraries of alpha factors that may be weak signals individually
but can produce attractive returns in combination. As highlighted in Chapter 1, Machine
Learning for Trading – From Idea to Execution, investment factors should be based on
a fundamental and economic rationale; otherwise, they are more likely the result of
overfitting to historical data than persisting and generating alpha on new data.

Signal decay due to competition is a serious concern, and as the alternative data ecosystem
evolves, it is unlikely that many datasets will retain meaningful Sharpe ratio signals.
Effective strategies to extend the half-life of the signal content of an alternative dataset
include exclusivity agreements, or a focus on datasets that pose processing challenges to
raise the barriers to entry.

An alternative dataset can be evaluated based on the quality of its signal content,
qualitative aspects of the data, and various technical aspects.

Quality of the signal content
The signal content can be evaluated with respect to the target asset class, the investment
style, the relation to conventional risk premiums, and most importantly, its alpha content.

Alternative Data for Finance – Categories and Use Cases

[66]

Asset classes

Most alternative datasets contain information directly relevant to equities and commodities.
Interesting datasets targeting investments in real estate have also multiplied after Zillow
successfully pioneered price estimates in 2006.

Alternative data on corporate credit is growing as alternative sources for monitoring
corporate payments, including for smaller businesses, are being developed. Data on fixed
income and around interest-rate projections is a more recent phenomenon but continues to
increase as more product sales and price information are being harvested at scale.

Investment style

The majority of datasets focus on specific sectors and stocks, and as such, naturally
appeal to long-short equity investors. As the scale and scope of alternative data collection
continues to rise, alternative data will likely also become relevant to investors in macro
themes, such as consumer credit, activity in emerging markets, and commodity trends.

Some alternative datasets that reflect broader economic activity or consumer sentiment can
be used as proxies for traditional measures of market risk. In contrast, signals that capture
news may be more relevant to high-frequency traders that use quantitative strategies over a
brief time horizon.

Risk premiums

Some alternative datasets, such as credit card payments or social media sentiment, have
been shown to produce signals that have a low correlation (lower than 5 percent) with
traditional risk premiums in equity markets, such as value, momentum, and quality
of volatility. As a result, combining signals derived from such alternative data with an
algorithmic trading strategy based on traditional risk factors can be an important building
block toward a more diversified risk premiums portfolio.

Alpha content and quality

The signal strength required to justify the investment in an alternative dataset naturally
depends on its costs, and alternative data prices vary widely. Data that scores social
sentiment can be acquired for a few thousand dollars or less, while the cost of a dataset on
comprehensive and timely credit card payments can cost several million per year.

We will explore in detail how to evaluate trading strategies driven by alternative data using
historical data, so-called backtests, to estimate the amount of alpha contained in a dataset. In
isolated cases, a dataset may contain sufficient alpha signal to drive a strategy on a standalone
basis, but more typical is the combined use of various alternative and other sources of data.
In these cases, a dataset permits the extraction of weak signals that produce a small positive
Sharpe ratio that would not receive a capital allocation on its own but can deliver a portfolio-
level strategy when integrated with similar other signals. This is not guaranteed, however,
as there are also many alternative datasets that do not contain any alpha content.

Chapter 3

[67]

Besides evaluating a dataset's alpha content, it is also important to assess to which extent
a signal is incremental or orthogonal—that is, unique to a dataset or already captured by
other data—and in the latter case, compare the costs for this type of signal.

Finally, it is essential to evaluate the potential capacity of a strategy that relies on a given,
that is, the amount of capital that can be allocated without undermining its success. This is
because a capacity limit will make it more difficult to recover the cost of the data.

Quality of the data
The quality of a dataset is another important criterion because it impacts the effort required
to analyze and monetize it, and the reliability of the predictive signal it contains. Quality
aspects include the data frequency and the length of its available history, the reliability
or accuracy of the information it contains, the extent to which it complies with current or
potential future regulations, and how exclusive its use is.

Legal and reputational risks

The use of alternative datasets may carry legal or reputational risks, especially when they
include the following items:

• Material non-public information (MNPI), because it implies an infringement of
insider trading regulations

• Personally identifiable information (PII), primarily since the European Union has
enacted the General Data Protection Regulation (GDPR)

Accordingly, legal and compliance requirements need a thorough review. There could also
be conflicts of interest when the provider of the data is also a market participant that is
actively trading based on the dataset.

Exclusivity

The likelihood that an alternative dataset contains a signal that is sufficiently predictive to
drive a strategy on a standalone basis, with a high Sharpe ratio for a meaningful period,
is inversely related to its availability and ease of processing. In other words, the more
exclusive and harder to process the data, the better the chances that a dataset with alpha
content can drive a strategy without suffering rapid signal decay.

Public fundamental data that provides standard financial ratios contains little alpha and
is not attractive for a standalone strategy, but it may help diversify a portfolio of risk
factors. Large, complex datasets will take more time to be absorbed by the market, and new
datasets continue to emerge on a frequent basis. Hence, it is essential to assess how familiar
other investors already are with a dataset, and whether the provider is the best source for
this type of information.

Alternative Data for Finance – Categories and Use Cases

[68]

Additional benefits to exclusivity or being an early adopter of a new dataset may arise
when a business just begins to sell exhaust data that it generated for other purposes. This is
because it may be possible to influence how the data is collected or curated, or to negotiate
conditions that limit access for competitors at least for a certain time period.

Time horizon

A more extensive history is highly desirable to test the predictive power of a dataset in
different scenarios. The availability varies greatly between several months and several
decades, and has important implications for the scope of the trading strategy that can
be built and tested based on the data. We mentioned some ranges for time horizons for
different datasets when introducing the main types of sources.

Frequency

The frequency of the data determines how often new information becomes available and
how differentiated a predictive signal can be over a given period. It also impacts the time
horizon of the investment strategy and ranges from intra-day to daily, weekly, or an even
lower frequency.

Reliability

Naturally, the degree to which the data accurately reflects what it intends to measure or
how well this can be verified is of significant concern and should be validated by means
of a thorough audit. This applies to both raw and processed data, where the methodology
used to extract or aggregate information needs to be analyzed, taking into account the cost-
benefit ratio for the proposed acquisition.

Technical aspects
Technical aspects concern the latency, or delay of reporting, and the format in which the
data is made available.

Latency

Data providers often provide resources in batches, and a delay can result from how the
data is collected, subsequent processing and transmission, as well as regulatory or legal
constraints.

Chapter 3

[69]

Format

The data is made available in a broad range of formats, depending on the source. Processed
data will be in user-friendly formats and easily integrated into existing systems or queries
via a robust API. On the other end of the spectrum are voluminous data sources, such as
video, audio, or image data, or a proprietary format, that require more skills to prepare for
analysis, but also provide higher barriers to entry for potential competitors.

The market for alternative data
The investment industry spent an estimated $2-3 billion on data services in 2018, and this
number is expected to grow at a double-digit rate per year in line with other industries.
This expenditure includes the acquisition of alternative data, investments in related
technology, and the hiring of qualified talent.

A survey by Ernst & Young shows significant adoption of alternative data in 2017; 43
percent of funds were using scraped web data, for instance, and almost 30 percent were
experimenting with satellite data (see Figure 3.1). Based on the experience so far, fund
managers considered scraped web data and credit card data to be most insightful, in
contrast to geolocation and satellite data, which around 25 percent considered to be less
informative:

Figure 3.1: Usefulness and usage of alternative data (Source: Ernst & Young, 2017)

Alternative Data for Finance – Categories and Use Cases

[70]

Reflecting the rapid growth of this new industry, the market for alternative data
providers is quite fragmented. J.P. Morgan lists over 500 specialized data firms,
while AlternativeData.org lists over 300. Providers play numerous roles, including
intermediaries such as consultants, aggregators, and tech solutions; sell-side supports
deliver data in various formats, ranging from raw to semi-processed data or some form of a
signal extracted from one or more sources.

We will highlight the size of the main categories and profile a few prominent examples to
illustrate their diversity.

Data providers and use cases
AlternativeData.org (supported by the provider YipitData) lists several categories that
can serve as a rough proxy for activity in various data-provider segments. Social sentiment
analysis is by far the largest category, while satellite and geolocation data have been
growing rapidly in recent years:

Product category # Providers

Social sentiment 48

Satellite 26

Geolocation 22

Web data and traffic 22

Infrastructure and interfaces 20

Consultants 18

Credit and debit card usage 14

Data brokers 10

Public data 10

App usage 7

Email and consumer receipts 6

Sell side 6

Weather 4

Other 87

The following brief examples aim to illustrate the broad range of service providers and
potential use cases.

Social sentiment data

Social sentiment analysis is most closely associated with Twitter data. Gnip was an early
social-media aggregator that provided data from numerous sites using an API and was
acquired by Twitter in 2014 for $134 million. Search engines are another source that became
prominent when researchers published, in Nature, that investment strategies based on
Google Trends for terms such as debt could be used for a profitable trading strategy over an
extended period (Preis, Moat, and Stanley 2013).

http://AlternativeData.org
http://AlternativeData.org

Chapter 3

[71]

Dataminr

Dataminr was founded in 2009 and provides social-sentiment and news analysis based
on an exclusive agreement with Twitter. The company is one of the larger alternative
providers and raised an additional $391 million in funding in June 2018, led by Fidelity, at a
$1.6 billion valuation, bringing total funding to $569 billion. It emphasizes real-time signals
extracted from social media feeds using machine learning and serves a wide range of
clients, including not only buy - and sell-side investment firms, but also news organizations
and the public sector.

StockTwits

StockTwits is a social network and micro-blogging platform where several hundred
thousand investment professionals share information and trading ideas in the form of
StockTwits. These are viewed by a large audience across the financial web and social
media platforms. This data can be exploited because it may reflect investor sentiment or
itself drive trades that, in turn, impact prices. Nasseri, Tucker, and de Cesare (2015) built a
trading strategy on selected features.

RavenPack

RavenPack analyzes a large amount of diverse, unstructured, text-based data to produce
structured indicators, including sentiment scores, that aim to deliver information relevant
to investors. The underlying data sources range from premium newswires and regulatory
information to press releases and over 19,000 web publications. J.P. Morgan tested a long-short
sovereign bond and equity strategies based on sentiment scores and achieved positive results,
with a low correlation to conventional risk premiums (Kolanovic and Krishnamachari, 2017).

Satellite data

RS Metrics, founded in 2010, triangulates geospatial data from satellites, drones, and
airplanes with a focus on metals and commodities, as well as real estate and industrial
applications. The company offers signals, predictive analytics, alerts, and end-user
applications based on its own high-resolution satellites. Use cases include the estimation
of retail traffic at certain chains or commercial real estate, as well as the production and
storage of certain common metals or employment at related production locations.

Geolocation data

Advan, founded in 2015, serves hedge fund clients with signals derived from mobile phone
traffic data, targeting 1,600 tickers across various sectors in the US and EU. The company
collects data using apps that install geolocation codes on smartphones with explicit user
consent and track location using several channels (such as Wi-Fi, Bluetooth, and cellular
signal) for enhanced accuracy. The use cases include estimates of customer traffic at
physical store locations, which, in turn, can be used as input to models that predict the
top-line revenues of traded companies.

Alternative Data for Finance – Categories and Use Cases

[72]

Email receipt data

Eagle Alpha provides, among other services, data on a large set of online transactions
using email receipts, covering over 5,000 retailers, including SKU-level transaction data
categorized into 53 product groups. J.P. Morgan analyzed a time series dataset, covering
2013-16, that covered a constant group of users active throughout the entire sample period.
The dataset contained the total aggregate spend, number of orders, and number of unique
buyers per period (Kolanovic and Krishnamachari, 2017).

Working with alternative data
We will illustrate the acquisition of alternative data using web scraping, targeting first
OpenTable restaurant data, and then move on to earnings call transcripts hosted by
Seeking Alpha.

Scraping OpenTable data
Typical sources of alternative data are review websites such as Glassdoor or Yelp, which
convey insider insights using employee comments or guest reviews. Clearly, user-
contributed content does not capture a representative view, but rather is subject to severe
selection biases. We'll look at Yelp reviews in Chapter 14, Text Data for Trading – Sentiment
Analysis, for example, and find many more very positive and negative ratings on the
five-star scale than you might expect. Nonetheless, this data can be valuable input for ML
models that aim to predict a business's prospects or market value relative to competitors or
over time to obtain trading signals.

The data needs to be extracted from the HTML source, barring any legal obstacles. To
illustrate the web scraping tools that Python offers, we'll retrieve information on restaurant
bookings from OpenTable. Data of this nature can be used to forecast economic activity by
geography, real estate prices, or restaurant chain revenues.

Parsing data from HTML with Requests and BeautifulSoup

In this section, we will request and parse HTML source code. We will be using the Requests
library to make Hypertext Transfer Protocol (HTTP) requests and retrieve the HTML
source code. Then, we'll rely on the Beautiful Soup library, which makes it easy to parse the
HTML markup code and extract the text content we are interested in.

We will, however, encounter a common obstacle: websites may request certain information
from the server only after initial page-load using JavaScript. As a result, a direct HTTP
request will not be successful. To sidestep this type of protection, we will use a headless
browser that retrieves the website content as a browser would:

Chapter 3

[73]

from bs4 import BeautifulSoup

import requests

set and request url; extract source code

url = https://www.opentable.com/new-york-restaurant-listings

html = requests.get(url)

html.text[:500]

' <!DOCTYPE html><html lang="en"><head><meta charset="utf-8"/><meta
http-equiv="X-UA-Compatible" content="IE=9; IE=8; IE=7; IE=EDGE"/>
<title>Restaurant Reservation Availability</title> <meta name="robots"
content="noindex" > </meta> <link rel="shortcut icon" href="//components.
otstatic.com/components/favicon/1.0.4/favicon/favicon.ico" type="image/
x-icon"/><link rel="icon" href="//components.otstatic.com/components/
favicon/1.0.4/favicon/favicon-16.png" sizes="16x16"/><link rel='

Now, we can use Beautiful Soup to parse the HTML content, and then look for all span tags
with the class associated with the restaurant names that we obtain by inspecting the source
code, rest-row-name-text (see the GitHub repository for linked instructions to examine
website source code):

parse raw html => soup object

soup = BeautifulSoup(html.text, 'html.parser')

for each span tag, print out text => restaurant name

for entry in soup.find_all(name='span', attrs={'class':'rest-row-name-text'}):
 print(entry.text)

Wade Coves

Alley

Dolorem Maggio

Islands

...

Once you have identified the page elements of interest, Beautiful Soup makes it easy to
retrieve the contained text. If you want to get the price category for each restaurant, for
example, you can use:

get the number of dollars signs for each restaurant

for entry in soup.find_all('div', {'class':'rest-row-pricing'}):
 price = entry.find('i').text

When you try to get the number of bookings, however, you just get an empty list because
the site uses JavaScript code to request this information after the initial loading is complete:

soup.find_all('div', {'class':'booking'})
[]

This is precisely the challenge we mentioned earlier—rather than sending all content
to the browser as a static page that can be easily parsed, JavaScript loads critical pieces
dynamically. To obtain this content, we need to execute the JavaScript just like a browser—
that's what Selenium is for.

Alternative Data for Finance – Categories and Use Cases

[74]

Introducing Selenium – using browser automation

We will use the browser automation tool Selenium to operate a headless Firefox browser
that will parse the HTML content for us.

The following code opens the Firefox browser:

from selenium import webdriver

create a driver called Firefox

driver = webdriver.Firefox()

Let's close the browser:

close it

driver.close()

Now, we retrieve the HTML source code, including the parts loaded dynamically, with
Selenium and Firefox. To this end, we provide the URL to our driver and then use its page_
source attribute to get the full-page content, as displayed in the browser.

From here on, we can fall back on Beautiful Soup to parse the HTML, as follows:

import time, re

visit the opentable listing page

driver = webdriver.Firefox()

driver.get(url)

time.sleep(1) # wait 1 second

retrieve the html source

html = driver.page_source

html = BeautifulSoup(html, "lxml")

for booking in html.find_all('div', {'class': 'booking'}):
 match = re.search(r'\d+', booking.text)

 if match:

 print(match.group())

Building a dataset of restaurant bookings and ratings

Now, you only need to combine all the interesting elements from the website to create a
feature that you could use in a model to predict economic activity in geographic regions, or
foot traffic in specific neighborhoods.

With Selenium, you can follow the links to the next pages and quickly build a dataset of over
10,000 restaurants in NYC, which you could then update periodically to track a time series.

First, we set up a function that parses the content of the pages that we plan on crawling,
using the familiar Beautiful Soup parse syntax:

Chapter 3

[75]

def parse_html(html):

 data, item = pd.DataFrame(), {}

 soup = BeautifulSoup(html, 'lxml')

 for i, resto in enumerate(soup.find_all('div',
 class_='rest-row-info')):

 item['name'] = resto.find('span',
 class_='rest-row-name-text').text

 booking = resto.find('div', class_='booking')
 item['bookings'] = re.search('\d+', booking.text).group() \

 if booking else 'NA'

 rating = resto.find('div', class_='star-rating-score')
 item['rating'] = float(rating['aria-label'].split()[0]) \
 if rating else 'NA'

 reviews = resto.find('span', class_='underline-hover')
 item['reviews'] = int(re.search('\d+', reviews.text).group()) \

 if reviews else 'NA'

 item['price'] = int(resto.find('div', class_='rest-row-pricing')
 .find('i').text.count('$'))
 cuisine_class = 'rest-row-meta--cuisine rest-row-meta-text
sfx1388addContent'

 item['cuisine'] = resto.find('span', class_=cuisine_class).text
 location_class = 'rest-row-meta--location rest-row-meta-text
sfx1388addContent'

 item['location'] = resto.find('span', class_=location_class).text
 data[i] = pd.Series(item)

 return data.T

Then, we start a headless browser that continues to click on the Next button for us and
captures the results displayed on each page:

restaurants = pd.DataFrame()

driver = webdriver.Firefox()

url = https://www.opentable.com/new-york-restaurant-listings

driver.get(url)

while True:

 sleep(1)

 new_data = parse_html(driver.page_source)

 if new_data.empty:

 break

 restaurants = pd.concat([restaurants, new_data], ignore_index=True)

 print(len(restaurants))

 driver.find_element_by_link_text('Next').click()
driver.close()

Alternative Data for Finance – Categories and Use Cases

[76]

A sample run in early 2020 yields location, cuisine, and price category information on
10,000 restaurants. Furthermore, there are same-day booking figures for around 1,750
restaurants (on a Monday), as well as ratings and reviews for around 3,500 establishments.

Figure 3.2 shows a quick summary: the left panel displays the breakdown by price category
for the top 10 locations with the most restaurants. The central panel suggests that ratings
are better, on average, for more expensive restaurants, and the right panel highlights that
better - rated restaurants receive more bookings. Tracking this information over time could
be informative, for example, with respect to consumer sentiment, location preferences, or
specific restaurant chains:

 Figure 3.2: OpenTable data summary

Websites continue to change, so this code may stop working at some point. To update our
bot, we need to identify the changes to the site navigation, such as new class or ID names,
and correct the parser accordingly.

Taking automation one step further with Scrapy and Splash

Scrapy is a powerful library used to build bots that follow links, retrieve the content,
and store the parsed result in a structured way. In combination with the Splash headless
browser, it can also interpret JavaScript and becomes an efficient alternative to Selenium.

You can run the spider using the scrapy crawl opentable command in the 01_opentable
directory, where the results are logged to spider.log:

from opentable.items import OpentableItem

from scrapy import Spider

from scrapy_splash import SplashRequest

class OpenTableSpider(Spider):

 name = 'opentable'

 start_urls = ['https://www.opentable.com/new-york-restaurant-

 listings']

 def start_requests(self):

 for url in self.start_urls:

 yield SplashRequest(url=url,

 callback=self.parse,

 endpoint='render.html',

Chapter 3

[77]

 args={'wait': 1},

)

 def parse(self, response):

 item = OpentableItem()

 for resto in response.css('div.rest-row-info'):

 item['name'] = resto.css('span.rest-row-name-

 text::text').extract()

 item['bookings'] =

 resto.css('div.booking::text').re(r'\d+')

 item['rating'] = resto.css('div.all-

 stars::attr(style)').re_first('\d+')
 item['reviews'] = resto.css('span.star-rating-text--review-

 text::text').re_first(r'\d+')
 item['price'] = len(resto.css('div.rest-row-pricing >

 i::text').re('\$'))
 item['cuisine'] = resto.css('span.rest-row-meta—

 cuisine::text').extract()

 item['location'] = resto.css('span.rest-row-meta—

 location::text').extract()

 yield item

There are numerous ways to extract information from this data beyond the reviews and
bookings of individual restaurants or chains.

We could further collect and geo-encode the restaurants' addresses, for instance, to link
the restaurants' physical location to other areas of interest, such as popular retail spots or
neighborhoods to gain insights into particular aspects of economic activity. As mentioned
previously, such data will be most valuable in combination with other information.

Scraping and parsing earnings call transcripts
Textual data is an essential alternative data source. One example of textual information is
the transcripts of earnings calls, where executives do not only present the latest financial
results, but also respond to questions by financial analysts. Investors utilize transcripts to
evaluate changes in sentiment, emphasis on particular topics, or style of communication.

We will illustrate the scraping and parsing of earnings call transcripts from the popular
trading website www.seekingalpha.com. As in the OpenTable example, we'll use Selenium
to access the HTML code and Beautiful Soup to parse the content. To this end, we begin by
instantiating a Selenium webdriver instance for the Firefox browser:

http://www.seekingalpha.com

Alternative Data for Finance – Categories and Use Cases

[78]

from urllib.parse import urljoin

from bs4 import BeautifulSoup

from furl import furl

from selenium import webdriver

transcript_path = Path('transcripts')

SA_URL = 'https://seekingalpha.com/'

TRANSCRIPT = re.compile('Earnings Call Transcript')

next_page = True

page = 1

driver = webdriver.Firefox()

Then, we iterate over the transcript pages, creating the URLs based on the navigation
logic we obtained from inspecting the website. As long as we find relevant hyperlinks to
additional transcripts, we access the webdriver's page_source attribute and call the parse_
html function to extract the content:

while next_page:

 url = f'{SA_URL}/earnings/earnings-call-transcripts/{page}'

 driver.get(urljoin(SA_URL, url))

 response = driver.page_source

 page += 1

 soup = BeautifulSoup(response, 'lxml')

 links = soup.find_all(name='a', string=TRANSCRIPT)
 if len(links) == 0:

 next_page = False

 else:

 for link in links:

 transcript_url = link.attrs.get('href')

 article_url = furl(urljoin(SA_URL,

 transcript_url)).add({'part': 'single'})

 driver.get(article_url.url)

 html = driver.page_source

 meta, participants, content = parse_html(html)

 meta['link'] = link

driver.close()

To collect structured data from the unstructured transcripts, we can use regular expressions
in addition to Beautiful Soup.

Chapter 3

[79]

They allow us to collect detailed information not only about the earnings call company
and timing, but also about who was present and attribute the statements to analysts and
company representatives:

def parse_html(html):

 date_pattern = re.compile(r'(\d{2})-(\d{2})-(\d{2})')

 quarter_pattern = re.compile(r'(\bQ\d\b)')

 soup = BeautifulSoup(html, 'lxml')

 meta, participants, content = {}, [], []

 h1 = soup.find('h1', itemprop='headline').text
 meta['company'] = h1[:h1.find('(')].strip()
 meta['symbol'] = h1[h1.find('(') + 1:h1.find(')')]
 title = soup.find('div', class_='title').text
 match = date_pattern.search(title)

 if match:

 m, d, y = match.groups()

 meta['month'] = int(m)

 meta['day'] = int(d)

 meta['year'] = int(y)

 match = quarter_pattern.search(title)

 if match:

 meta['quarter'] = match.group(0)

 qa = 0

 speaker_types = ['Executives', 'Analysts']

 for header in [p.parent for p in soup.find_all('strong')]:
 text = header.text.strip()

 if text.lower().startswith('copyright'):

 continue

 elif text.lower().startswith('question-and'):

 qa = 1

 continue

 elif any([type in text for type in speaker_types]):

 for participant in header.find_next_siblings('p'):
 if participant.find('strong'):
 break

 else:

 participants.append([text, participant.text])

 else:

 p = []

 for participant in header.find_next_siblings('p'):
 if participant.find('strong'):
 break

 else:

 p.append(participant.text)

 content.append([header.text, qa, '\n'.join(p)])

 return meta, participants, content

Alternative Data for Finance – Categories and Use Cases

[80]

We'll store the result in several .csv files for easy access when we use ML to process natural
language in Chapters 14-16:

def store_result(meta, participants, content):

 path = transcript_path / 'parsed' / meta['symbol']

 pd.DataFrame(content, columns=['speaker', 'q&a',

 'content']).to_csv(path / 'content.csv', index=False)

 pd.DataFrame(participants, columns=['type', 'name']).to_csv(path /

 'participants.csv', index=False)

 pd.Series(meta).to_csv(path / 'earnings.csv')

See the README in the GitHub repository for additional details and references for further
resources to learn how to develop web scraping applications.

Summary
In this chapter, we introduced new sources of alternative data made available as a result
of the big data revolution, including individuals, business processes, and sensors, such
as satellites or GPS location devices. We presented a framework to evaluate alternative
datasets from an investment perspective and laid out key categories and providers to
help you navigate this vast and quickly expanding area that provides critical inputs for
algorithmic trading strategies that use ML.

We also explored powerful Python tools you can use to collect your own datasets at scale.
We did this so that you can potentially work on getting your private informational edge as
an algorithmic trader using web scraping.

We will now proceed, in the following chapter, to the design and evaluation of alpha
factors that produce trading signals and look at how to combine them in a portfolio context.

[81]

4
Financial Feature Engineering –

How to Research Alpha Factors

Algorithmic trading strategies are driven by signals that indicate when to buy or sell assets
to generate superior returns relative to a benchmark, such as an index. The portion of an
asset's return that is not explained by exposure to this benchmark is called alpha, and hence
the signals that aim to produce such uncorrelated returns are also called alpha factors.

If you are already familiar with ML, you may know that feature engineering is
a key ingredient for successful predictions. This is no different in trading. Investment,
however, is particularly rich in decades of research into how markets work, and which
features may work better than others to explain or predict price movements as a result. This
chapter provides an overview as a starting point for your own search for alpha factors.

This chapter also presents key tools that facilitate computing and testing alpha factors. We
will highlight how the NumPy, pandas, and TA-Lib libraries facilitate the manipulation of
data and present popular smoothing techniques like the wavelets and the Kalman filter,
which help reduce noise in data.

We will also preview how you can use the trading simulator Zipline to evaluate the
predictive performance of (traditional) alpha factors. We will discuss key alpha factor
metrics like the information coefficient and factor turnover. An in-depth introduction to
backtesting trading strategies that use machine learning follows in Chapter 6, The Machine
Learning Process, which covers the ML4T workflow that we will use throughout this book to
evaluate trading strategies.

Financial Feature Engineering – How to Research Alpha Factors

[82]

In particular, this chapter will address the following topics:

• Which categories of factors exist, why they work, and how to measure them

• Creating alpha factors using NumPy, pandas, and TA-Lib

• How to denoise data using wavelets and the Kalman filter
• Using Zipline offline and on Quantopian to test individual and multiple

alpha factors

• How to use Alphalens to evaluate predictive performance and turnover using,
among other metrics, the information coefficient (IC)

Alpha factors in practice – from data to signals
Alpha factors are transformations of raw data that aim to predict asset price movements.
They are designed to capture risks that drive asset returns. A factor may combine one or
several inputs, but outputs a single value for each asset, every time the strategy evaluates
the factor to obtain a signal. Trade decisions may rely on relative factor values across assets
or patterns for a single asset.

The design, evaluation, and combination of alpha factors are critical steps during the
research phase of the algorithmic trading strategy workflow, which is displayed in
Figure 4.1:

Figure 4.1: Alpha factor research and execution workflow

This chapter focuses on the research phase; the next chapter covers the execution phase.
The remainder of this book will then focus on how to leverage ML to learn new factors
from data and effectively aggregate the signals from multiple alpha factors.

You can find the code samples for this chapter and links to
additional resources in the corresponding directory of the GitHub
repository. The notebooks include color versions of the images.
The Appendix, Alpha Factor Library, contains additional information
on financial feature engineering, including more than 100 worked
examples that you can leverage for your own strategy..

Chapter 4

[83]

Alpha factors are transformations of market, fundamental, and alternative data that contain
predictive signals. Some factors describe fundamental, economy-wide variables such as
growth, inflation, volatility, productivity, and demographic risk. Other factors represent
investment styles, such as value or growth, and momentum investing that can be traded
and are thus priced by the market. There are also factors that explain price movements
based on the economics or institutional setting of financial markets, or investor behavior,
including known biases of this behavior.

The economic theory behind factors can be rational so that factors have high returns
over the long run to compensate for their low returns during bad times. It can also be
behavioral, where factor risk premiums result from the possibly biased, or not entirely
rational, behavior of agents that is not arbitraged away.

There is a constant search for and discovery of new factors that may better capture known
or reflect new drivers of returns. Jason Hsu, the co-founder of Research Affiliates, which
manages close to $200 billion, identified some 250 factors that had been published with
empirical evidence in reputable journals by 2015. He estimated that this number was likely
to increase by 40 factors per year.

To avoid false discoveries and ensure a factor delivers consistent results, it should have
a meaningful economic intuition based on the various established factor categories like
momentum, value, volatility, or quality and their rationales, which we'll outline in the next
section. This makes it more plausible that the factor reflects risks for which the market
would compensate.

Alpha factors result from transforming raw market, fundamental, or alternative data
using simple arithmetic, such as absolute or relative changes of a variable over time, ratios
between data series, or aggregations over a time window like a simple or exponential
moving average. They also include metrics that have emerged from the technical analysis
of price and volume patterns, such as the relative strength index of demand versus supply
and numerous metrics familiar from the fundamental analysis of securities. Kakushadze
(2016) lists the formulas for 101 alpha factors, 80 percent of which were used in production
at the WorldQuant hedge fund at the time of writing.

Historically, trading strategies applied simple ranking heuristics, value thresholds, or
quantile cutoffs to one or several alpha factors computed across multiple securities in the
investment universe. Examples include the value investing approach popularized in one of
Warren Buffet's favorite books, Security Analysis, by Graham and Dodd (1934), which relies
on metrics like the book-to-market ratio.

Modern research into alpha factors that predict above-market returns has been led by
Eugene Fama (who won the 2013 Nobel Prize in Economics) and Kenneth French, who
provided evidence on the size and value factors (1993). This work led to the three- and five-
factor models, which we will discuss in Chapter 7, Linear Models – From Risk Factors to Return
Forecasts, using daily data on factor returns provided by the authors on their website. An
excellent, more recent, overview of modern factor investing has been written by Andrew
Ang (2014), who heads this discipline at BlackRock, which manages close to $7 trillion.

Financial Feature Engineering – How to Research Alpha Factors

[84]

As we will see throughout this book, ML has proven quite effective in learning to extract
signals directly from a more diverse and much larger set of input data without using
prescribed formulas. As we will also see, however, alpha factors remain useful inputs for an
ML model that combines their information content in a more optimal way than manually
set rules.

As a result, algorithmic trading strategies today leverage a large number of signals, many
of which may be weak individually but can yield reliable predictions when combined with
other model-driven or traditional factors by an ML algorithm.

Building on decades of factor research
In an idealized world, risk factors should be independent of each other, yield positive
risk premia, and form a complete set that spans all dimensions of risk and explains the
systematic risks for assets in a given class. In practice, these requirements hold only
approximately, and there are important correlations between different factors. For instance,
momentum is often stronger among smaller firms (Hou, Xue, and Zhang, 2015). We will
show how to derive synthetic, data-driven risk factors using unsupervised learning—in
particular, principal and independent component analysis —in Chapter 13, Data-Driven Risk
Factors and Asset Allocation with Unsupervised Learning.

In this section, we will review a few key factor categories prominent in financial research
and trading applications, explain their economic rationale, and present metrics typically
used to capture these drivers of returns.

In the next section, we will demonstrate how to implement some of these factors using
NumPy and pandas, use the TA-Lib library for technical analysis, and demonstrate how to
evaluate factors using the Zipline backtesting library. We will also highlight some factors
built into Zipline that are available on the Quantopian platform.

Momentum and sentiment – the trend is your friend
Momentum investing is among the most well-established factor strategies, underpinned
by quantitative evidence since Jegadeesh and Titman (1993) for the US equity market. It
follows the adage: the trend is your friend or let your winners run. Momentum factors are
designed to go long on assets that have performed well, while going short on assets with
poor performance over a certain period. Clifford Asness, the founder of the $200 billion
hedge fund AQR, presented evidence for momentum effects across eight different asset
classes and markets much more recently (Asness, Moskowitz, and Pedersen, 2013).

The premise of strategies using this factor is that asset prices exhibit a trend, reflected in
positive serial correlation. Such price momentum defies the hypothesis of efficient markets,
which states that past price returns alone cannot predict future performance. Despite
theoretical arguments to the contrary, price momentum strategies have produced positive
returns across asset classes and are an important part of many trading strategies.

Chapter 4

[85]

The chart in Figure 4.2 shows the historical performance of portfolios formed based on their
exposure to various alpha factors (using data from the Fama-French website). The factor
winner minus loser (WML) represents the difference in performance between portfolios
containing US stocks in the top and bottom three deciles, respectively, of the prior 2-12
months of returns:

Figure 4.2: Returns on various risk factors

The momentum factor dramatically outperformed other prominent risk factors up
to the 2008 crisis. The other factors include the high-minus-low (HML) value factor, the
robust-minus-weak (RMW) profitability factor, and the conservative-minus-aggressive
(CMA) investment factor. The equity premium is the difference between the market return
(for example, the S&P 500) and the risk-free rate.

Why might momentum and sentiment drive excess returns?

Reasons for the momentum effect point to investor behavior, persistent supply and demand
imbalances, a positive feedback loop between risk assets and the economy, or the market
microstructure.

The behavioral rationale reflects the biases of underreaction (Hong, Lim, and Stein, 2000)
and over-reaction (Barberis, Shleifer, and Vishny, 1998) to market news as investors process
new information at different speeds. After an initial under-reaction to news, investors
often extrapolate past behavior and create price momentum. The technology stocks rally
during the late 90s market bubble was an extreme example. A fear and greed psychology
also motivates investors to increase exposure to winning assets and continue selling losing
assets (Jegadeesh and Titman, 2011).

Financial Feature Engineering – How to Research Alpha Factors

[86]

Momentum can also have fundamental drivers such as a positive feedback loop between
risk assets and the economy. Economic growth boosts equities, and the resulting wealth
effect feeds back into the economy through higher spending, again fueling growth.
Positive feedback between prices and the economy often extends momentum in equities
and credit to longer horizons than for bonds, FOEX, and commodities, where negative
feedback creates reversals, requiring a much shorter investment horizon. Another cause
of momentum can be persistent demand-supply imbalances due to market frictions. One
example is the delay of commodity production in adjusting to changing demand. Oil
production may lag higher demand from a booming economy for years, and persistent
supply shortages can trigger and support upward price momentum (Novy-Marx, 2015).

Over shorter, intraday horizons, market microstructure effects can also create price
momentum as investors implement strategies that mimic their biases. For example, the
trading wisdom to cut losses and let profits run has investors use trading strategies such
as stop-loss, constant proportion portfolio insurance (CPPI), dynamical delta hedging, or
option-based strategies such as protective puts. These strategies create momentum because
they imply an advance commitment to sell when an asset underperforms and buy when it
outperforms.

Similarly, risk parity strategies (see the next chapter) tend to buy low-volatility assets
that often exhibit positive performance and sell high-volatility assets that often have had
negative performance (see the Volatility and size anomalies section later in this chapter).
The automatic rebalancing of portfolios using these strategies tends to reinforce price
momentum.

How to measure momentum and sentiment

Momentum factors are typically derived from changes in price time series by identifying
trends and patterns. They can be constructed based on absolute or relative return by
comparing a cross-section of assets or analyzing an asset's time series, within or across
traditional asset classes, and at different time horizons.

A few popular illustrative indicators are listed in the following table (see the Appendix for
formulas):

Factor Description

Relative strength
index (RSI)

RSI compares the magnitude of recent price changes across stocks to identify
stocks as overbought or oversold. A high RSI (usually above 70) indicates
overbought and a low RSI (typically below 30) indicates oversold. It first
computes the average price change for a given number (often 14) of prior

trading days with rising prices ∆𝑝𝑝𝑢𝑢𝑝𝑝 and falling prices ∆𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 , respectively, to

compute

RSI = 100 − 1001 + ∆𝑝𝑝𝑢𝑢𝑝𝑝∆𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

.

Chapter 4

[87]

Price momentum

This factor computes the total return for a given number of prior trading
days. In academic literature, it is common to use the last 12 months except
for the most recent month due to a short-term reversal effect that's frequently
observed. However, shorter periods have also been widely used.

12-month price
momentum
volume
adjustment

The indicator normalizes the total return over the previous 12 months by
dividing it by the standard deviation of these returns.

Price acceleration

Price acceleration calculates the gradient of the price trend (adjusted for
volatility) using linear regression on daily prices for a longer and a shorter
period, for example, 1 year and 3 months of trading days, and compares the
change in the slope as a measure of price acceleration.

Percent off
52-week high

This factor uses the percent difference between the most recent and the
highest price for the last 52 weeks.

Additional sentiment indicators include the following metrics; inputs like analyst estimates
can be obtained from data providers like Quandl or Bloomberg, among others:

Factor Description

Earnings
estimates count

This metric ranks stocks by the number of consensus estimates as a proxy for
analyst coverage and information uncertainty. A higher value is more desirable.

N-month
change in
recommendation

This factor ranks stocks by the change in consensus recommendation over the
prior N month, where improvements are desirable (regardless of whether they
have moved from strong sell to sell or buy to strong buy and so on).

12-month
change in shares
outstanding

This factor measures the change in a company's split-adjusted share count
over the last 12 months, where a negative change implies share buybacks
and is desirable because it signals that management views the stock as cheap
relative to its intrinsic and, hence, future value.

6-month change
in target price

The metric tracks the 6-month change in mean analyst target price. A higher
positive change is naturally more desirable.

Net earnings
revisions

This factor expresses the difference between upward and downward revisions
to earnings estimates as a percentage of the total number of revisions.

Short interest
to shares
outstanding

This measure is the percentage of shares outstanding currently being sold
short, that is, sold by an investor who has borrowed the share and needs to
repurchase it at a later day while speculating that its price will fall. Hence,
a high level of short interest indicates negative sentiment and is expected to
signal poor performance going forward.

There are also numerous data providers that aim to offer sentiment indicators constructed
from social media, such as Twitter. We will create our own sentiment indicators using
natural language processing in Part 3 of this book.

Financial Feature Engineering – How to Research Alpha Factors

[88]

Value factors – hunting fundamental bargains
Stocks with low prices relative to their fundamental value tend to deliver returns in
excess of a capitalization-weighted benchmark. Value factors reflect this correlation and
are designed to send buy signals for undervalued assets that are relatively cheap and
sell signals for overvalued assets. Hence, at the core of any value strategy is a model that
estimates the asset's fair or fundamental value. Fair value can be defined as an absolute
price level, a spread relative to other assets, or a range in which an asset should trade.

Relative value strategies

Value strategies rely on the mean-reversion of prices to the asset's fair value. They assume
that prices only temporarily move away from fair value due to behavioral effects like
overreaction or herding, or liquidity effects such as temporary market impact or long-
term supply/demand friction. Value factors often exhibit properties opposite to those of
momentum factors because they rely on mean-reversion. For equities, the opposite of value
stocks is growth stocks that have a high valuation due to growth expectations.

Value factors enable a broad array of systematic strategies, including fundamental and
market valuation and cross-asset relative value. They are often collectively labeled
statistical arbitrage (StatArb) strategies, implemented as market-neutral long/short
portfolios without exposure to other traditional or alternative risk factors.

Fundamental value strategies

Fundamental value strategies derive fair asset values from economic and fundamental
indicators that depend on the target asset class. In fixed income, currencies, and
commodities, indicators include levels and changes in the capital account balance,
economic activity, inflation, or fund flows. For equities and corporate credit, value factors
go back to Graham and Dodd's previously mentioned Security Analysis. Equity value
approaches compare a stock price to fundamental metrics such as book value, top-line
sales, bottom-line earnings, or various cash-flow metrics.

Market value strategies

Market value strategies use statistical or machine learning models to identify mispricing
due to inefficiencies in liquidity provision. Statistical and index arbitrage are prominent
examples that capture the reversion of temporary market impacts over short time horizons.
(We will cover pairs trading in Chapter 9, Time-Series Models for Volatility Forecasts and
Statistical Arbitrage). Over longer time horizons, market value trades also leverage seasonal
effects in equities and commodities.

Cross-asset relative value strategies

Cross-asset relative value strategies focus on mispricing across asset classes. For example,
convertible bond arbitrage involves trades on the relative value between the bond that
can be turned into equity and the underlying stock of a single company. Relative value
strategies also include trades between credit and equity volatility, using credit signals to
trade equities or trades between commodities and related equities.

Chapter 4

[89]

Why do value factors help predict returns?

There are both rational and behavioral explanations for the existence of the value effect,
defined as the excess return on a portfolio of value stocks relative to a portfolio of growth
stocks, where the former have a low market value and the latter have a high market value
relative to fundamentals. We will cite a few prominent examples from a wealth of research
(see, for example, Fama and French, 1998, and Asness, Moskowitz, and Pedersen, 2013).

In the rational, efficient markets view, the value premium compensates for higher real or
perceived risks. Researchers have presented evidence that value firms have less flexibility
to adapt to the unfavorable economic environments than leaner and more flexible growth
companies, or that value stock risks relate to high financial leverage and more uncertain
future earnings. Value and small-cap portfolios have also been shown to be more sensitive to
macro shocks than growth and large-cap portfolios (Lakonishok, Shleifer, and Vishny, 1994).

From a behavioral perspective, the value premium can be explained by loss aversion and
mental accounting biases. Investors may be less concerned about losses on assets with a
strong recent performance due to the cushions offered by prior gains. This loss aversion
bias induces investors to perceive the stock as less risky than before and discount its future
cash flows at a lower rate. Conversely, poor recent performance may lead investors to raise
the asset's discount rate.

These differential return expectations can produce a value premium: growth stocks with a
high price multiple relative to fundamentals have done well in the past, but investors will
require a lower average return going forward due to their biased perception of lower risks,
while the inverse is true for value stocks.

How to capture value effects
A large number of valuation proxies are computed from fundamental data. These factors
can be combined as inputs into a machine learning valuation model to predict asset prices.
The following examples apply to equities, and we will see how some of these factors are
used in the following chapters:

Factor Description

Cash flow
yield

The ratio divides the operational cash flow per share by the share price. A higher
ratio implies better cash returns for shareholders (if paid out using dividends or
share buybacks or profitably reinvested in the business).

Free cash
flow yield

The ratio divides the free cash flow per share, which reflects the amount of cash
available for distribution after necessary expenses and investments, by the share
price. Higher and growing free cash flow yield is commonly viewed as a signal
of outperformance.

Cash flow
return on
invested
capital
(CFROIC)

CFROIC measures a company's cash flow profitability. It divides operating
cash flow by invested capital, defined as total debt plus net assets. A higher
return means the business has more cash for a given amount of invested capital,
generating more value for shareholders.

Financial Feature Engineering – How to Research Alpha Factors

[90]

Cash flow to
total assets

This ratio divides operational cash flow by total assets and indicates how much
cash a company can generate relative to its assets, where a higher ratio is better,
as with CFROIC.

Free cash
flow to
enterprise
value

This ratio measures the free cash flow that a company generates relative to its
enterprise value, measured as the combined value of equity and debt. The debt
and equity values can be taken from the balance sheet, but market values often
provide a more accurate picture assuming the corresponding assets are actively
traded.

EBITDA to
enterprise
value

This ratio measures a company's earnings before interest, taxes, depreciation,
and amortization (EBITDA), which is a proxy for cash flow relative to its
enterprise value.

Earnings
yield

This ratio divides the sum of earnings for the past 12 months by the last market
(close) price.

Earnings
yield 1-year
forward

Instead of using historical earnings, this ratio divides the average of earnings
forecasted by stock analyst for the next 12 months by the last price.

PEG ratio

The price/earnings to growth (PEG) ratio divides a stock's price-to-earnings
(P/E) ratio by the earnings growth rate for a given period. The ratio adjusts the
price paid for a dollar of earnings (measured by the P/E ratio) by the company's
earnings growth.

P/E 1-year
forward
relative to the
sector

Forecasts the P/E ratio relative to the corresponding sector P/E. It aims to
alleviate the sector bias of the generic P/E ratio by accounting for sector
differences in valuation.

Sales yield
The ratio measures the valuation of a stock relative to its ability to generate
revenues. All else being equal, stocks with higher historical sales to price ratios
are expected to outperform.

Sales yield
forward

The forward sales-to-price ratio uses analyst sales forecast, combined to a
(weighted) average.

Book value
yield

The ratio divides the historical book value by the share price.

Dividend
yield

The current annualized dividend divided by the last close price. Discounted cash
flow valuation assumes a company's market value equates to the present value of
its future cash flows.

Chapter 2, Market and Fundamental Data – Sources and Techniques, discussed how you can
source the fundamental data used to compute these metrics from company filings.

Volatility and size anomalies
The size effect is among the older risk factors and relates to the excess performance of
stocks with a low market capitalization (see Figure 4.2 at the beginning of this section).
More recently, the low-volatility factor has been shown to capture excess returns on
stocks with below-average volatility, beta, or idiosyncratic risk. Stocks with a larger
market capitalization tend to have lower volatility so that the traditional size factor is often
combined with the more recent volatility factor.

Chapter 4

[91]

The low volatility anomaly is an empirical puzzle that is at odds with the basic principles of
finance. The capital asset pricing model (CAPM) and other asset pricing models assert that
higher risk should earn higher returns (as we will discuss in detail in the next chapter), but
in numerous markets and over extended periods, the opposite has been true, with less risky
assets outperforming their riskier peers.

Figure 4.3 plots a rolling mean of the S&P 500 returns of 1990-2019 against the VIX index,
which measures the implied volatility of at-the-money options on the S&P 100. It illustrates
how stock returns and this measure of volatility have moved inversely with a negative
correlation of -.54 over this period. In addition to this aggregate effect, there is also evidence
that stocks with a greater sensitivity to changes in the VIX perform worse (Ang et al. 2006):

Figure 4.3: Correlation between the VIX and the S&P 500

Why do volatility and size predict returns?

The low volatility anomaly contradicts the hypothesis of efficient markets and the CAPM
assumptions. Several behavioral explanations have been advanced to explain its existence.

The lottery effect builds on empirical evidence that individuals take on bets that resemble
lottery tickets with a small expected loss but a large potential win, even though this large
win may have a fairly low probability. If investors perceive that the risk-return profile of a
low price, volatile stock is like a lottery ticket, then it could be an attractive bet. As a result,
investors may overpay for high-volatility stocks and underpay for low-volatility stocks due
to their biased preferences.

The representativeness bias suggests that investors extrapolate the success of a few,
well-publicized volatile stocks to all volatile stocks while ignoring the speculative nature
of such stocks.

Financial Feature Engineering – How to Research Alpha Factors

[92]

Investors may also be overconfident in their ability to forecast the future, and their
differences in opinions are higher for volatile stocks with more uncertain outcomes. Since it
is easier to express a positive view by going long—that is, owning an asset—than a negative
view by going short, optimists may outnumber pessimists and keep driving up the price of
volatile stocks, resulting in lower returns.

Furthermore, investors behave differently during bull markets and crises. During bull
markets, the dispersion of betas is much lower so that low-volatility stocks do not
underperform much, if at all, whereas during crises, investors seek or keep low-volatility
stocks and the beta dispersion increases. As a result, lower volatility assets and portfolios
do better over the long term.

How to measure volatility and size

Metrics used to identify low-volatility stocks cover a broad spectrum, with
realized volatility (standard deviation) on one end and forecast (implied) volatility and
correlations on the other end. Some operationalize low volatility as low beta. The evidence
in favor of the volatility anomaly appears robust for different metrics (Ang, 2014).

Quality factors for quantitative investing
Quality factors aim to capture the excess returns reaped by companies that are highly
profitable, operationally efficient, safe, stable, and well-governed—in short, high quality.
The markets also appear to reward relative earnings certainty and penalize stocks with high
earnings volatility.

A portfolio tilt toward businesses with high quality has been long advocated by stock
pickers that rely on fundamental analysis, but it is a relatively new phenomenon
in quantitative investments. The main challenge is how to define the quality factor
consistently and objectively using quantitative indicators, given the subjective nature of
quality.

Strategies based on standalone quality factors tend to perform in a counter-cyclical way
as investors pay a premium to minimize downside risks and drive up valuations. For this
reason, quality factors are often combined with other risk factors in a multi-factor strategy,
most frequently with value to produce the quality at a reasonable price strategy.

Long-short quality factors tend to have negative market beta because they are long quality
stocks that are also low volatility, and short more volatile, low-quality stocks. Hence, quality
factors are often positively correlated with low volatility and momentum factors, and
negatively correlated with value and broad market exposure.

Chapter 4

[93]

Why quality matters

Quality factors may signal outperformance because superior fundamentals such as
sustained profitability, steady growth in cash flow, prudent leveraging, a low need for
capital market financing, or low financial risk underpin the demand for equity shares and
support the price of such companies in the long run. From a corporate finance perspective,
a quality company often manages its capital carefully and reduces the risk of over-
leveraging or over-capitalization.

A behavioral explanation suggests that investors under-react to information about quality,
similar to the rationale for momentum, where investors chase winners and sell losers.

Another argument for quality premia is a herding argument, similar to growth stocks. Fund
managers may find it easier to justify buying a company with strong fundamentals, even
when it is getting expensive, rather than a more volatile (risky) value stock.

How to measure asset quality

Quality factors rely on metrics computed from the balance sheet and income statement,
which indicate profitability reflected in high profit or cash flow margins, operating
efficiency, financial strength, and competitiveness more broadly because it implies the
ability to sustain a profitability position over time.

Hence, quality has been measured using gross profitability (which has been recently
added to the Fama–French factor model; see Chapter 7, Linear Models – From Risk Factors
to Return Forecasts), return on invested capital, low earnings volatility, or a combination of
various profitability, earnings quality, and leverage metrics, with some options listed in the
following table.

Earnings management is mainly exercised by manipulating accruals. Hence, the size of
accruals is often used as a proxy for earnings quality: higher total accruals relative to assets
make low earnings quality more likely. However, this is not unambiguous as accruals can
reflect earnings manipulation just as well as accounting estimates of future business growth:

Factor Description

Asset turnover
This factor measures how efficiently a company uses its assets, which require
capital, to produce revenue and is calculated by dividing sales by total assets.
A higher turnover is better.

Asset turnover
12-month
change

This factor measures a change in management's efficiency in using assets to
produce revenue over the last year. Stocks with the highest level of efficiency
improvements are typically expected to outperform.

Current ratio
The current ratio is a liquidity metric that measures a company's ability to pay
short-term obligations. It compares a company's current assets to its current
liabilities, and a higher current ratio is better from a quality perspective.

Interest coverage
This factor measures how easily a company will be able to pay interest on its
debt. It is calculated by dividing a company's earnings before interest and
taxes (EBIT) by its interest expense. A higher ratio is desirable.

Financial Feature Engineering – How to Research Alpha Factors

[94]

Leverage
A firm with significantly more debt than equity is considered to be highly
leveraged. The debt-to-equity ratio is typically inversely related to prospects,
with lower leverage being better.

Payout ratio
The share of earnings paid out in dividends to shareholders. Stocks with
higher payout ratios are ranked higher.

Return on equity
(ROE)

ROE is computed as the ratio of net income to shareholders' equity. Equities
with higher historical returns on equity are ranked higher.

Equipped with a high-level categorization of alpha factors that have been shown to be
associated with abnormal returns to varying degrees, we'll now start developing our own
financial features from market, fundamental, and alternative data.

Engineering alpha factors that predict returns
Based on a conceptual understanding of key factor categories, their rationale, and popular
metrics, a key task is to identify new factors that may better capture the risks embodied
by the return drivers laid out previously, or to find new ones. In either case, it will be
important to compare the performance of innovative factors to that of known factors to
identify incremental signal gains.

Key tools that facilitate the transformation of data into factors include the Python libraries
for numerical computing, NumPy and pandas, as well as the Python wrapper around the
specialized library for technical analysis, TA-Lib. Alternatives include the expression alphas
developed in Zura Kakushadze's 2016 paper, 101 Formulaic Alphas, and implemented by the
alphatools library. In addition, the Quantopian platform provides a large number of built-in
factors to speed up the research process.

To apply one or more factors to an investment universe, we can use the Zipline backtesting
library (which also includes some built-in factors) and evaluate their performance using the
Alphalens library using metrics discussed in the following section.

How to engineer factors using pandas and NumPy
NumPy and pandas are the key tools for custom factor computations. This section
demonstrates how they can be used to quickly compute the transformations that yield
various alpha factors. If you are not familiar with these libraries, in particular pandas,
which we will use throughout this book, please see the README for this chapter in the
GitHub repo for links to documentation and tutorials.

Chapter 4

[95]

The notebook feature_engineering.ipynb in the alpha_factors_in_practice directory
contains examples of how to create various factors. The notebook uses data generated by
the create_data.ipynb notebook in the data folder in the root directory of the GitHub repo,
which is stored in HDF5 format for faster access. See the notebook storage_benchmarks.
ipynb in the directory for Chapter 2, in the GitHub repo for a comparison of parquet, HDF5,
and CSV storage formats for pandas DataFrames.

The NumPy library for scientific computing was created by Travis Oliphant in 2005 by
integrating the older Numeric and Numarray libraries that had been developed since the
mid-1990s. It is organized in a high-performance n-dimensional array data structure called
ndarray, which enables functionality comparable to MATLAB.

The pandas library emerged in 2008 when Wes McKinney was working at AQR Capital
Management. It provides the DataFrame data structure, which is based on NumPy's ndarray,
but allows for more user-friendly data manipulation with label-based indexing. It includes
a wide array of computational tools particularly well-suited to financial data, including rich
time-series operations with automatic date alignment, which we will explore here.

The following sections illustrate some steps in transforming raw stock price data into
selected factors. See the notebook feature_engineering.ipynb for additional detail and
visualizations that we have omitted here to save some space. See the resources listed in the
README for this chapter on GitHub for links to the documentation and tutorials on how to
use pandas and NumPy.

Loading, slicing, and reshaping the data

After loading the Quandl Wiki stock price data on US equities, we select the 2000-18 time
slice by applying pd.IndexSlice to pd.MultiIndex, which contains timestamp and ticker
information. We then select and unpivot the adjusted close price column using the .stack()
method to convert the DataFrame into wide format, with tickers in the columns and
timestamps in the rows:

idx = pd.IndexSlice

with pd.HDFStore('../../data/assets.h5') as store:

 prices = (store['quandl/wiki/prices']

 .loc[idx['2000':'2018', :], 'adj_close']

 .unstack('ticker'))

prices.info()

DatetimeIndex: 4706 entries, 2000-01-03 to 2018-03-27

Columns: 3199 entries, A to ZUMZ

Financial Feature Engineering – How to Research Alpha Factors

[96]

Resampling – from daily to monthly frequency

To reduce training time and experiment with strategies for longer time horizons, we
convert the business-daily data into month-end frequency using the available adjusted
close price:

monthly_prices = prices.resample('M').last()

How to compute returns for multiple historical periods
To capture time-series dynamics like momentum patterns, we compute historical multi-
period returns using the pct_change(n_periods) method, where n_periods identifies the
number of lags. We then convert the wide result back into long format using .stack(), use
.pipe() to apply the .clip() method to the resulting DataFrame, and winsorize returns at
the [1%, 99%] levels; that is, we cap outliers at these percentiles.

Finally, we normalize returns using the geometric average. After using .swaplevel() to
change the order of the MultiIndex levels, we obtain the compounded monthly returns over
six different periods, ranging from 1 to 12 months:

outlier_cutoff = 0.01
data = pd.DataFrame()

lags = [1, 2, 3, 6, 9, 12]

for lag in lags:

 data[f'return_{lag}m'] = (monthly_prices

 .pct_change(lag)

 .stack()

 .pipe(lambda x:

 x.clip(lower=x.quantile(outlier_cutoff),
 upper=x.quantile(1-outlier_cutoff)))
 .add(1)

 .pow(1/lag)

 .sub(1)

)

data = data.swaplevel().dropna()

data.info()

MultiIndex: 521806 entries, (A, 2001-01-31 00:00:00) to (ZUMZ, 2018-03-

 31 00:00:00)

Data columns (total 6 columns):

return_1m 521806 non-null float64
return_2m 521806 non-null float64
return_3m 521806 non-null float64
return_6m 521806 non-null float64
return_9m 521806 non-null float64
return_12m 521806 non-null float6

Chapter 4

[97]

We can use these results to compute momentum factors based on the difference between
returns over longer periods and the most recent monthly return, as well as for the
difference between 3- and 12-month returns, as follows:

for lag in [2,3,6,9,12]:

 data[f'momentum_{lag}'] = data[f'return_{lag}m'].sub(data.return_1m)

data[f'momentum_3_12'] = data[f'return_12m'].sub(data.return_3m)

Using lagged returns and different holding periods
To use lagged values as input variables or features associated with the current observations,
we use the .shift() method to move historical returns up to the current period:

for t in range(1, 7):

 data[f'return_1m_t-{t}'] = data.groupby(level='ticker').return_1m.
shift(t)

Similarly, to compute returns for various holding periods, we use the normalized period
returns computed previously and shift them back to align them with the current financial
features:

for t in [1,2,3,6,12]:

 data[f'target_{t}m'] = (data.groupby(level='ticker')

 [f'return_{t}m'].shift(-t))

The notebook also demonstrates how to compute various descriptive statistics for the
different return series and visualize their correlation using the seaborn library.

Computing factor betas

We will introduce the Fama–French data to estimate the exposure of assets to common
risk factors using linear regression in Chapter 7, Linear Models – From Risk Factors to
Return Forecasts. The five Fama–French factors, namely market risk, size, value, operating
profitability, and investment, have been shown empirically to explain asset returns. They
are commonly used to assess the exposure of a portfolio to well-known drivers of risk and
returns, where the unexplained portion is then attributed to the manager's idiosyncratic
skill. Hence, it is natural to include past factor exposures as financial features in models that
aim to predict future returns.

We can access the historical factor returns using the pandas-datareader and estimate
historical exposures using the PandasRollingOLS rolling linear regression functionality in
the pyfinance library, as follows:

Financial Feature Engineering – How to Research Alpha Factors

[98]

factors = ['Mkt-RF', 'SMB', 'HML', 'RMW', 'CMA']

factor_data = web.DataReader('F-F_Research_Data_5_Factors_2x3',

 'famafrench', start='2000')[0].drop('RF', axis=1)
factor_data.index = factor_data.index.to_timestamp()
factor_data = factor_data.resample('M').last().div(100)
factor_data.index.name = 'date'
factor_data = factor_data.join(data['return_1m']).sort_index()
T = 24
betas = (factor_data
 .groupby(level='ticker', group_keys=False)
 .apply(lambda x: PandasRollingOLS(window=min(T, x.shape[0]-1), y=x.
return_1m, x=x.drop('return_1m', axis=1)).beta))

As mentioned previously, we will explore both the Fama–French factor model and linear
regression in Chapter 7, Linear Models – From Risk Factors to Return Forecasts, in more detail.
See the notebook feature_engineering.ipynb for additional examples, including the
computation of lagged and forward returns.

How to add momentum factors
We can use the 1-month and 3-month results to compute simple momentum factors. The
following code example shows how to compute the difference between returns over longer
periods and the most recent monthly return, as well as for the difference between 3- and
12-month returns:

for lag in [2,3,6,9,12]:

 data[f'momentum_{lag}'] = data[f'return_{lag}m'].sub(data.return_1m)

data[f'momentum_3_12'] = data[f'return_12m'].sub(data.return_3m)

Adding time indicators to capture seasonal effects
Basic factors also include seasonal anomalies like the January effect, which has been
observed to cause higher returns for stocks during this month, possibly for tax reasons.
This and other seasonal effects can be modeled through indicator variables that represent
specific time periods such as the year and/or the month. These can be generated as follows:

dates = data.index.get_level_values('date')

data['year'] = dates.year

data['month'] = dates.month

How to create lagged return features

If you want to use lagged returns, that is, returns from previous periods as input variables
or features to train a model that learns return patterns to predict future returns, you can
use the .shift() method to move historical returns up to the current period. The following
example moves the returns for the periods 1 to 6 months ago up by the corresponding lag
so that they are associated with the observation for the current month:

for t in range(1, 7):

 data[f'return_1m_t-{t}'] = data.groupby(level='ticker').return_1m.shift(t)

Chapter 4

[99]

How to create forward returns

Similarly, you can create forward returns for the current period, that is, returns that will
occur in the future, using .shift() with a negative period (assuming your data is sorted in
ascending order):

for t in [1,2,3,6,12]:

 data[f'target_{t}m'] = (data.groupby(level='ticker')

 [f'return_{t}m'].shift(-t))

We will use forward returns when we train ML models starting in Chapter 6, The Machine
Learning Process.

How to use TA-Lib to create technical alpha factors
TA-Lib is an open source library written in C++ with a Python interface that is widely
used by trading software developers. It contains standardized implementations of over
200 popular indicators for technical analysis; that is, these indicators only use market data,
namely price and volume information.

TA-Lib is compatible with pandas and NumPy, rendering its usage very straightforward.
The following examples demonstrate how to compute two popular indicators.

Bollinger Bands consist of a simple moving average (SMA) surrounded by bands
two rolling standard deviations below and above the SMA. It was introduced for the
visualization of potential overbought/oversold conditions when the price dipped outside
the two bands on the upper or lower side, respectively. The inventor, John Bollinger,
actually recommended a trading system of 22 rules that generate trade signals.

We can compute the Bollinger Bands and, for comparison, the relative strength index
described earlier in this section on popular alpha factors as follows.

We load the adjusted close for a single stock—in this case, AAPL:

with pd.HDFStore(DATA_STORE) as store:

 data = (store['quandl/wiki/prices']

 .loc[idx['2007':'2010', 'AAPL'],

 ['adj_open', 'adj_high', 'adj_low', 'adj_close',

 'adj_volume']]

 .unstack('ticker')

 .swaplevel(axis=1)

 .loc[:, 'AAPL']

 .rename(columns=lambda x: x.replace('adj_', '')))

Then, we pass the one-dimensional pd.Series through the relevant TA-Lib functions:

from talib import RSI, BBANDS

up, mid, low = BBANDS(data.close, timeperiod=21, nbdevup=2, nbdevdn=2,

 matype=0)

rsi = RSI(adj_close, timeperiod=14)

Financial Feature Engineering – How to Research Alpha Factors

[100]

Then, we collect the results in a DataFrame and plot the Bollinger Bands with the AAPL
stock price and the RSI with the 30/70 lines, which suggest long/short opportunities:

data = pd.DataFrame({'AAPL': data.close, 'BB Up': up, 'BB Mid': mid,

 'BB down': low, 'RSI': rsi})

fig, axes= plt.subplots(nrows=2, figsize=(15, 8))
data.drop('RSI', axis=1).plot(ax=axes[0], lw=1, title='Bollinger Bands')

data['RSI'].plot(ax=axes[1], lw=1, title='Relative Strength Index')

axes[1].axhline(70, lw=1, ls='--', c='k')

axes[1].axhline(30, lw=1, ls='--', c='k')

The result, shown in Figure 4.4, is rather mixed—both indicators suggested overbought
conditions during the early post-crisis recovery when the price continued to rise:

Figure 4.4: Bollinger Bands and relative strength index

Denoising alpha factors with the Kalman filter
The concept of noise in data relates to the domain of signal processing, which aims to
retrieve the correct information from a signal sent, for example, through the air in the form
of electromagnetic waves. As the waves move through space, environmental interference
can be added to the originally pure signal in the form of noise, making it necessary to
separate the two once received.

The Kalman filter was introduced in 1960 and has become very popular for many
applications that require processing noisy data because it permits more accurate estimates
of the underlying signal.

Chapter 4

[101]

This technique is widely used to track objects in computer vision, to support the
localization and navigation of aircraft and spaceships, and to control robotic motion based
on noisy sensor data, besides its use in time series analysis.

Noise is used similarly in data science, finance, and other domains, implying that the raw
data contains useful information, for instance, in terms of trading signals, that needs to be
extracted and separated from irrelevant, extraneous information. Clearly, the fact that we
do not know the true signal can make this separation rather challenging at times.

We will first review how the Kalman filter works and which assumptions it makes to
achieve its objectives. Then, we will demonstrate how to apply it to financial data using the
pykalman library.

How does the Kalman filter work?
The Kalman filter is a dynamic linear model of sequential data like a time series that adapts
to new information as it arrives. Rather than using a fixed-size window like a moving
average or a given set of weights like an exponential moving average, it incorporates new
data into its estimates of the current value of the time series based on a probabilistic model.

More specifically, the Kalman filter is a probabilistic model of a sequence of observations
z1, z2, …, z

T
 and a corresponding sequence of hidden states x1, x2

, …, x
T
 (with the notation

used by the pykalman library that we will demonstrate here). This can be represented by
the following graph:

Figure 4.5: Kalman filter as a graphical model

Technically speaking, the Kalman filter takes a Bayesian approach that propagates the
posterior distribution of the state variables x given their measurements z over time (see
Chapter 10, Bayesian ML – Dynamic Sharpe Ratios and Pairs Trading, for more details on
Bayesian inference). We can also view it as an unsupervised algorithm for tracking a single
object in a continuous state space, where we will take the object to be, for example, the
value of or returns on a security, or an alpha factor (see Chapter 13, Data-Driven Risk Factors
and Asset Allocation with Unsupervised Learning).

Financial Feature Engineering – How to Research Alpha Factors

[102]

To recover the hidden states from a sequence of observations that may become available in
real time, the algorithm iterates between two steps:

1. Prediction step: Estimate the current state of the process.

2. Measurement step: Use noisy observations to update its estimate by averaging the
information from both steps in a way that weighs more certain estimates higher.

The basic idea behind the algorithm is as follows: certain assumptions about a dynamic
system and a history of corresponding measurements will allow us to estimate the system's
state in a way that maximizes the probability of the previous measurements.

To achieve its objective of recovering the hidden state, the Kalman filter makes the
following assumptions:

• The system that we are modeling behaves in a linear fashion.

• The hidden state process is a Markov chain so that the current hidden state x
t

depends only on the most recent prior hidden state xt-1.

• Measurements are subject to Gaussian, uncorrelated noise with constant covariance.

As a result, the Kalman filter is similar to a hidden Markov model, except that the state
space of the latent variables is continuous, and both hidden and observed variables have
normal distributions, denoted as 𝒩𝒩(𝜇𝜇𝜇 𝜇𝜇) with mean 𝜇𝜇 and standard

In mathematical terms, the key components of the model (and corresponding parameters in
the pykalman implementation) are:

• The initial hidden state has a normal distribution: 𝑥𝑥0~𝒩𝒩(𝜇𝜇0, Σ0) with initial_
state_mean, 𝜇𝜇 and initial_state_covariance, Σ .

• The hidden state xt+1 is an affine transformation of x
t
 with transition_matrix A,

transition_offset b, and added Gaussian noise with transition_covariance Q: 𝑥𝑥𝑡𝑡𝑡𝑡 = 𝐴𝐴𝑡𝑡𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑡𝑡 + 𝜖𝜖𝑡𝑡𝑡𝑡𝑡 , 𝜖𝜖𝑡𝑡𝑡~𝒩𝒩(0, 𝑄𝑄) .
• The observation z

t
 is an affine transformation of the hidden state x

t
 with

observation_matrix C, observation_offset d, and added Gaussian noise with
observation_covariance R: 𝑧𝑧𝑡𝑡 = 𝐶𝐶𝑡𝑡𝑥𝑥𝑡𝑡 + 𝑑𝑑𝑡𝑡 + 𝜖𝜖𝑡𝑡2, 𝜖𝜖𝑡𝑡2~𝒩𝒩(0, 𝑅𝑅) .

Among the advantages of a Kalman filter is that it flexibly adapts to non-stationary data
with changing distributional characteristics (see Chapter 9, Time-Series Models for Volatility
Forecasts and Statistical Arbitrage, for more details on stationarity).

Key disadvantages are the assumptions of linearity and Gaussian noise that financial
data often violate. To address these shortcomings, the Kalman filter has been extended to
systems with nonlinear dynamics in the form of the extended and the unscented Kalman
filters. The particle filter is an alternative approach that uses sampling-based Monte Carlo
approaches to estimate non-normal distributions.

Chapter 4

[103]

How to apply a Kalman filter using pykalman
The Kalman filter is particularly useful for rolling estimates of data values or model
parameters that change over time. This is because it adapts its estimates at every time step
based on new observations and tends to weigh recent observations more heavily.

Except for conventional moving averages, the Kalman filter does not require us to specify
the length of a window used for the estimate. Rather, we start out with our estimate of the
mean and covariance of the hidden state and let the Kalman filter correct our estimates
based on periodic observations. The code examples for this section are in the notebook
kalman_filter_and_wavelets.ipynb.

The following code example shows how to apply the Kalman filter to smoothen the S&P
500 stock price series for the 2008-09 period:

with pd.HDFStore(DATA_STORE) as store:

 sp500 = store['sp500/stooq'].loc['2008': '2009', 'close']

We initialize the KalmanFilter with unit covariance matrices and zero means (see
the pykalman documentation for advice on dealing with the challenges of choosing
appropriate initial values):

from pykalman import KalmanFilter

kf = KalmanFilter(transition_matrices = [1],

 observation_matrices = [1],

 initial_state_mean = 0,

 initial_state_covariance = 1,

 observation_covariance=1,

 transition_covariance=.01)

Then, we run the filter method to trigger the forward algorithm, which iteratively
estimates the hidden state, that is, the mean of the time series:

state_means, _ = kf.filter(sp500)

Finally, we add moving averages for comparison and plot the result:

sp500_smoothed = sp500.to_frame('close')

sp500_smoothed['Kalman Filter'] = state_means

for months in [1, 2, 3]:

 sp500_smoothed[f'MA ({months}m)'] = (sp500.rolling(window=months * 21)

 .mean())

ax = sp500_smoothed.plot(title='Kalman Filter vs Moving Average',

 figsize=(14, 6), lw=1, rot=0)

Financial Feature Engineering – How to Research Alpha Factors

[104]

The resulting plot in Figure 4.6 shows that the Kalman filter performs similarly to a 1-month
moving average but is more sensitive to changes in the behavior of the time series:

Figure 4.6: Kalman filter versus moving average

How to preprocess your noisy signals using wavelets
Wavelets are related to Fourier analysis, which combines sine and cosine waves at different
frequencies to approximate noisy signals. While Fourier analysis is particularly useful to
translate signals from the time to the frequency domain, wavelets are useful for filtering
out specific patterns that may occur at different scales, which, in turn, may correspond to
a frequency range.

Wavelets are functions or wave-like patterns that decompose a discrete or continuous-
time signal into components of different scales. A wavelet transform, in turn, represents a
function using wavelets as scaled and translated copies of a finite-length waveform. This
transform has advantages over Fourier transforms for functions with discontinuities and
sharp peaks, and to approximate non-periodic or non-stationary signals.

To denoise a signal, you can use wavelet shrinkage and thresholding methods. First, you
choose a specific wavelet pattern to decompose a dataset. The wavelet transform yields
coefficients that correspond to details in the dataset.

The idea of thresholding is simply to omit all coefficients below a particular cutoff,
assuming that they represent minor details that are not necessary to represent the true
signal. These remaining coefficients are then used in an inverse wavelet transformation to
reconstruct the (denoised) dataset.

We'll now use the pywavelets library to apply wavelets to noisy stock data. The following
code example illustrates how to denoise the S&P 500 returns using a forward and inverse
wavelet transform with a Daubechies 6 wavelet and different threshold values.

Chapter 4

[105]

First, we generate daily S&P 500 returns for the 2008-09 period:

signal = (pd.read_hdf(DATA_STORE, 'sp500/stooq')

 .loc['2008': '2009']

 .close.pct_change()

 .dropna())

Then, we select one of the Daubechies wavelets from the numerous built-in wavelet
functions:

import pywt

pywt.families(short=False)

['Haar', 'Daubechies', 'Symlets', 'Coiflets', 'Biorthogonal', 'Reverse
biorthogonal', 'Discrete Meyer (FIR Approximation)', 'Gaussian', 'Mexican
hat wavelet', 'Morlet wavelet', 'Complex Gaussian wavelets', 'Shannon
wavelets', 'Frequency B-Spline wavelets', 'Complex Morlet wavelets']

The Daubechies 6 wavelet is defined by a scaling function ψ and the wavelet function φ itself (see the PyWavelet documentation for details and the accompanying notebook
kalman_filter_and_wavelets.ipynb for plots of all built-in wavelet functions):

Figure 4.7: Daubechies wavelets

Given a wavelet function, we first decompose the return signal using the .wavedec function,
which yields the coefficients for the wavelet transform. Next, we filter out all coefficients
above a given threshold and then reconstruct the signal using only those coefficients using
the inverse transform .waverec:

wavelet = "db6"

for i, scale in enumerate([.1, .5]):

 coefficients = pywt.wavedec(signal, wavelet, mode='per')
 coefficients[1:] = [pywt.threshold(i, value=scale*signal.max(),
mode='soft') for i in coefficients[1:]]
 reconstructed_signal = pywt.waverec(coefficients, wavelet, mode='per')
 signal.plot(color="b", alpha=0.5, label='original signal', lw=2,

 title=f'Threshold Scale: {scale:.1f}', ax=axes[i])

 pd.Series(reconstructed_signal, index=signal.index).plot(c='k',
label='DWT smoothing}', linewidth=1, ax=axes[i])

Financial Feature Engineering – How to Research Alpha Factors

[106]

The notebook shows how to apply this denoising technique with different thresholds, and
the resulting plot, shown in Figure 4.8, clearly shows how a higher threshold value yields a
significantly smoother series:

Figure 4.8: Wavelet denoising with different thresholds

From signals to trades – Zipline for backtests
The open source library Zipline is an event-driven backtesting system. It generates
market events to simulate the reactions of an algorithmic trading strategy and tracks
its performance. A particularly important feature is that it provides the algorithm with
historical point-in-time data that avoids look-ahead bias.

The library has been popularized by the crowd-sourced quantitative investment fund
Quantopian, which uses it in production to facilitate algorithm development and live-
trading.

In this section, we'll provide a brief demonstration of its basic functionality. Chapter 8, The
ML4T Workflow – From Model to Strategy Backtesting, contains a more detailed introduction
to prepare us for more complex use cases.

How to backtest a single-factor strategy
You can use Zipline offline in conjunction with data bundles to research and evaluate
alpha factors. When using it on the Quantopian platform, you will get access to a wider set
of fundamental and alternative data. We will also demonstrate the Quantopian research
environment in this chapter, and the backtesting IDE in the next chapter. The code for
this section is in the 01_factor_research_evaluation sub-directory of the GitHub repo
folder for this chapter, including installation instructions and an environment tailored to
Zipline's dependencies.

For installation, please see the instructions in this chapter's README on GitHub. After
installation and before executing the first algorithm, you need to ingest a data bundle that,
by default, consists of Quandl's community-maintained data on stock prices, dividends,
and splits for 3,000 US publicly traded companies.

Chapter 4

[107]

You need a Quandl API key to run the following code, which stores the data in your home
folder under ~/.zipline/data/<bundle>:

$ QUANDL_API_KEY=<yourkey> zipline ingest [-b <bundle>]

A single alpha factor from market data

We are first going to illustrate the Zipline alpha factor research workflow in an offline
environment. In particular, we will develop and test a simple mean-reversion factor that
measures how much recent performance has deviated from the historical average.

Short-term reversal is a common strategy that takes advantage of the weakly predictive
pattern that stock prices are likely to revert back to a rolling mean over horizons from less
than 1 minute to 1 month. See the notebook single_factor_zipline.ipynb for details.

To this end, the factor computes the z-score for the last monthly return relative to the rolling
monthly returns over the last year. At this point, we will not place any orders to simply
illustrate the implementation of a CustomFactor and record the results during the simulation.

Zipline includes numerous built-in factors for many common operations (see the
Quantopian documentation linked on GitHub for details). While this is often convenient
and sufficient, in other cases, we want to transform our available data differently. For this
purpose, Zipline provides the CustomFactor class, which offers a lot of flexibility for us to
specify a wide range of calculations. It does this using the various features available for the
cross-section of securities and custom lookback periods using NumPy.

To this end, after some basic settings, MeanReversion subclasses CustomFactor and defines a
compute() method. It creates default inputs of monthly returns over an also default year-
long window so that the monthly_return variable will have 252 rows and one column for
each security in the Quandl dataset on a given day.

The compute_factors() method creates a MeanReversion factor instance and creates long,
short, and ranking pipeline columns. The former two contain Boolean values that can be
used to place orders, and the latter reflects that overall ranking to evaluate the overall factor
performance. Furthermore, it uses the built-in AverageDollarVolume factor to limit the
computation to more liquid stocks:

from zipline.api import attach_pipeline, pipeline_output, record

from zipline.pipeline import Pipeline, CustomFactor

from zipline.pipeline.factors import Returns, AverageDollarVolume

from zipline import run_algorithm

MONTH, YEAR = 21, 252

N_LONGS = N_SHORTS = 25

VOL_SCREEN = 1000

class MeanReversion(CustomFactor):

 """Compute ratio of latest monthly return to 12m average,

 normalized by std dev of monthly returns"""

 inputs = [Returns(window_length=MONTH)]

Financial Feature Engineering – How to Research Alpha Factors

[108]

 window_length = YEAR

 def compute(self, today, assets, out, monthly_returns):

 df = pd.DataFrame(monthly_returns)

 out[:] = df.iloc[-1].sub(df.mean()).div(df.std())

def compute_factors():

 """Create factor pipeline incl. mean reversion,

 filtered by 30d Dollar Volume; capture factor ranks"""
 mean_reversion = MeanReversion()

 dollar_volume = AverageDollarVolume(window_length=30)

 return Pipeline(columns={'longs' : mean_reversion.bottom(N_LONGS),

 'shorts' : mean_reversion.top(N_SHORTS),

 'ranking':

 mean_reversion.rank(ascending=False)},

 screen=dollar_volume.top(VOL_SCREEN))

The result will allow us to place long and short orders. In the next chapter, we will learn
how to build a portfolio by choosing a rebalancing period and adjusting portfolio holdings
as new signals arrive.

The initialize() method registers the compute_factors() pipeline, and the before_
trading_start() method ensures the pipeline runs on a daily basis. The record() function
adds the pipeline's ranking column, as well as the current asset prices, to the performance
DataFrame returned by the run_algorithm() function:

def initialize(context):

 """Setup: register pipeline, schedule rebalancing,

 and set trading params"""

 attach_pipeline(compute_factors(), 'factor_pipeline')

def before_trading_start(context, data):

 """Run factor pipeline"""

 context.factor_data = pipeline_output('factor_pipeline')

 record(factor_data=context.factor_data.ranking)

 assets = context.factor_data.index

 record(prices=data.current(assets, 'price'))

Finally, define the start and end Timestamp objects in UTC terms, set a capital base, and
execute run_algorithm() with references to the key execution methods. The performance
DataFrame contains nested data, for example, the prices column consists of a pd.Series for
each cell. Hence, subsequent data access is easier when stored in pickle format:

Chapter 4

[109]

start, end = pd.Timestamp('2015-01-01', tz='UTC'), pd.Timestamp('2018-

 01-01', tz='UTC')

capital_base = 1e7

performance = run_algorithm(start=start,

 end=end,

 initialize=initialize,

 before_trading_start=before_trading_start,

 capital_base=capital_base)

performance.to_pickle('single_factor.pickle')

We will use the factor and pricing data stored in the performance DataFrame to evaluate
the factor performance for various holding periods in the next section, but first, we'll take
a look at how to create more complex signals by combining several alpha factors from a
diverse set of data sources on the Quantopian platform.

Built-in Quantopian factors

The accompanying notebook factor_library_quantopian.ipynb contains numerous
example factors that are either provided by the Quantopian platform or computed from
data sources available using the research API from a Jupyter Notebook.

There are built-in factors that can be used in combination with quantitative Python
libraries—in particular, NumPy and pandas—to derive more complex factors from a broad
range of relevant data sources such as US equity prices, Morningstar fundamentals, and
investor sentiment.

For instance, the price-to-sales ratio is available as part of the Morningstar fundamentals
dataset. It can be used as part of a pipeline that will be further described as we introduce
the Zipline library.

Combining factors from diverse data sources
The Quantopian research environment is tailored to the rapid testing of predictive alpha
factors. The process is very similar because it builds on Zipline but offers much richer
access to data sources. The following code sample illustrates how to compute alpha factors
not only from market data, as done previously, but also from fundamental and alternative
data. See the notebook multiple_factors_quantopian_research.ipynb for details.

Quantopian provides several hundred Morningstar fundamental variables for free and
also includes Stocktwits signals as an example of an alternative data source. There are
also custom universe definitions such as QTradableStocksUS, which applies several filters
to limit the backtest universe to stocks that were likely tradeable under realistic market
conditions:

Financial Feature Engineering – How to Research Alpha Factors

[110]

from quantopian.research import run_pipeline

from quantopian.pipeline import Pipeline

from quantopian.pipeline.data.builtin import USEquityPricing

from quantopian.pipeline.data.morningstar import income_statement,

 operation_ratios, balance_sheet

from quantopian.pipeline.data.psychsignal import stocktwits

from quantopian.pipeline.factors import CustomFactor,

 SimpleMovingAverage, Returns

from quantopian.pipeline.filters import QTradableStocksUS

We will use a custom AggregateFundamentals class to use the last reported fundamental
data point. This aims to address the fact that fundamentals are reported quarterly, and
Quantopian does not currently provide an easy way to aggregate historical data, say, to
obtain the sum of the last four quarters, on a rolling basis:

class AggregateFundamentals(CustomFactor):

 def compute(self, today, assets, out, inputs):

 out[:] = inputs[0]

We will again use the custom MeanReversion factor from the preceding code. We will also
compute several other factors for the given universe definition using the rank() method's
mask parameter:

def compute_factors():

 universe = QTradableStocksUS()

 profitability = (AggregateFundamentals(inputs=
 [income_statement.gross_profit],
 window_length=YEAR) /

 balance_sheet.total_assets.latest).rank(mask=universe)

 roic = operation_ratios.roic.latest.rank(mask=universe)

 ebitda_yield = (AggregateFundamentals(inputs=

 [income_statement.ebitda],

 window_length=YEAR) /

 USEquityPricing.close.latest).rank(mask=universe)

 mean_reversion = MeanReversion().rank(mask=universe)

 price_momentum = Returns(window_length=QTR).rank(mask=universe)

 sentiment = SimpleMovingAverage(inputs=[stocktwits.bull_minus_bear],

 window_length=5).rank(mask=universe)

 factor = profitability + roic + ebitda_yield + mean_reversion +
 price_momentum + sentiment

 return Pipeline(

 columns={'Profitability' : profitability,
 'ROIC' : roic,

 'EBITDA Yield' : ebitda_yield,

Chapter 4

[111]

 "Mean Reversion (1M)": mean_reversion,

 'Sentiment' : sentiment,

 "Price Momentum (3M)": price_momentum,

 'Alpha Factor' : factor})

This algorithm simply averages how the six individual factors rank each asset to combine
their information. This is a fairly naive method that does not account for the relative
importance and incremental information each factor may provide when predicting future
returns. The ML algorithms of the following chapters will allow us to do exactly this, using
the same backtesting framework.

Execution also relies on run_algorithm(), but the return DataFrame on the Quantopian
platform only contains the factor values created by the Pipeline. This is convenient
because this data format can be used as input for Alphalens, the library that's used for the
evaluation of the predictive performance of alpha factors.

Separating signal from noise with Alphalens
Quantopian has open sourced the Python Alphalens library for the performance analysis
of predictive stock factors. It integrates well with the Zipline backtesting library and the
portfolio performance and risk analysis library pyfolio, which we will explore in the next
chapter.

Alphalens facilitates the analysis of the predictive power of alpha factors concerning the:

• Correlation of the signals with subsequent returns

• Profitability of an equal or factor-weighted portfolio based on a (subset of) the
signals

• Turnover of factors to indicate the potential trading costs

• Factor performance during specific events
• Breakdowns of the preceding by sector

The analysis can be conducted using tearsheets or individual computations and plots. The
tearsheets are illustrated in the online repository to save some space.

Using TA-Lib with Zipline

The TA-Lib library includes numerous technical factors. A Python
implementation is available for local use, for example, with Zipline and
Alphalens, and it is also available on the Quantopian platform. The
notebook also illustrates several technical indicators available using TA-Lib.

Financial Feature Engineering – How to Research Alpha Factors

[112]

Creating forward returns and factor quantiles
To utilize Alphalens, we need to provide two inputs:

• Signals for a universe of assets, like those returned by the ranks of the
MeanReversion factor

• The forward returns that we would earn by investing in an asset for a given holding
period

See the notebook 06_performance_eval_alphalens.ipynb for details.

We will recover the prices from the single_factor.pickle file as follows (and proceed in
the same way for factor_data; see the notebook):

performance = pd.read_pickle('single_factor.pickle')

prices = pd.concat([df.to_frame(d) for d, df in performance.prices.
items()],axis=1).T

prices.columns = [re.findall(r"\[(.+)\]", str(col))[0] for col in
 prices.columns]

prices.index = prices.index.normalize()

prices.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 755 entries, 2015-01-02 to 2017-12-29

Columns: 1661 entries, A to ZTS

dtypes: float64(1661)

We can generate the Alphalens input data, namely the factor signal and forward returns
described previously, in the required format from the Zipline output using the get_clean_
factor_and_forward_returns utility function. This function returns the signal quintiles and
the forward returns for the given holding periods:

HOLDING_PERIODS = (5, 10, 21, 42)

QUANTILES = 5

alphalens_data = get_clean_factor_and_forward_returns(factor=factor_data,

 prices=prices,

 periods=HOLDING_PERIODS,

 quantiles=QUANTILES)

Dropped 14.5% entries from factor data: 14.5% in forward returns computation
and 0.0% in binning phase (set max_loss=0 to see potentially suppressed
Exceptions). max_loss is 35.0%, not exceeded: OK!

The alphalens_data DataFrame contains the returns on an investment in the given asset on
a given date for the indicated holding period, as well as the factor value—that is, the asset's
MeanReversion ranking on that date and the corresponding quantile value:

Chapter 4

[113]

date asset 5D 10D 21D 42D factor factor_quantile

1/2/2015

A -1.87% -1.11% -4.61% 5.28% 2618 4

AAL -0.06% -8.03% -9.63% -10.39% 1088 2

AAP -1.32% 0.23% -1.63% -2.39% 791 1

AAPL -2.82% -0.07% 8.51% 18.07% 2917 5

ABBV -1.88% -0.20% -7.88% -8.24% 2952 5

The forward returns and the signal quantiles are the basis for evaluating the predictive
power of the signal. Typically, a factor should deliver markedly different returns for
distinct quantiles, such as negative returns for the bottom quintile of the factor values and
positive returns for the top quantile.

Predictive performance by factor quantiles
As a first step, we would like to visualize the average period return by factor quantile. We
can use the built-in function mean_return_by_quantile from the performance module and
plot_quantile_returns_bar from the plotting module:

from alphalens.performance import mean_return_by_quantile

from alphalens.plotting import plot_quantile_returns_bar

mean_return_by_q, std_err = mean_return_by_quantile(alphalens_data)

plot_quantile_returns_bar(mean_return_by_q);

The result is a bar chart that breaks down the mean of the forward returns for the four
different holding periods based on the quintile of the factor signal.

As you can see in Figure 4.9, the bottom quintiles yielded markedly more negative results
than the top quintiles, except for the longest holding period:

Figure 4.9: Mean period return by factor quantile

The 10D holding period provides slightly better results for the first and fourth quartiles on
average across the trading period.

Financial Feature Engineering – How to Research Alpha Factors

[114]

We would also like to see the performance over time of investments driven by each of the
signal quintiles. To this end, we calculate daily as opposed to average returns for the 5D
holding period. Alphalens adjusts the period returns to account for the mismatch between
daily signals and a longer holding period (for details, see the Alphalens documentation):

from alphalens.plotting import plot_cumulative_returns_by_quantile

mean_return_by_q_daily, std_err =

 mean_return_by_quantile(alphalens_data, by_date=True)

plot_cumulative_returns_by_quantile(mean_return_by_q_daily['5D'],

 period='5D');

The resulting line plot in Figure 4.10 shows that, for most of this 3-year period, the top two
quintiles significantly outperformed the bottom two quintiles. However, as suggested by
the previous plot, the signals by the fourth quintile produced slightly better performance
than those by the top quintile due to their relative performance during 2017:

Figure 4.10: Cumulative return by quantile for a 5-day holding period

A factor that is useful for a trading strategy shows the preceding pattern, where cumulative
returns develop along clearly distinct paths, because this allows for a long-short strategy
with lower capital requirements and, correspondingly, lower exposure to the overall market.

However, we also need to take the dispersion of period returns into account, rather than
just the averages. To this end, we can rely on the built-in plot_quantile_returns_violin:

from alphalens.plotting import plot_quantile_returns_violin

plot_quantile_returns_violin(mean_return_by_q_daily);

This distributional plot, shown in Figure 4.11, highlights that the range of daily returns is
fairly wide. Despite different means, the separation of the distributions is very limited so
that, on any given day, the differences in performance between the different quintiles may
be rather limited:

Chapter 4

[115]

Figure 4.11: Distribution of the period-wise return by factor quintile

While we focus on the evaluation of a single alpha factor, we are simplifying things by
ignoring practical issues related to trade execution that we will relax when we address
proper backtesting in the next chapter. Some of these include:

• The transaction costs of trading

• Slippage, or the difference between the price at decision and trade execution, for
example, due to the market impact

The information coefficient
Most of this book is about the design of alpha factors using ML models. ML is about
optimizing some predictive objective, and in this section, we will introduce the key metrics
used to measure the performance of an alpha factor. We will define alpha as the average
return in excess of a benchmark.

This leads to the information ratio (IR), which measures the average excess return per
unit of risk taken by dividing alpha by the tracking risk. When the benchmark is the risk-
free rate, the IR corresponds to the well-known Sharpe ratio, and we will highlight crucial
statistical measurement issues that arise in the typical case when returns are not normally
distributed. We will also explain the fundamental law of active management, which breaks
the IR down into a combination of forecasting skill and a strategy's ability to effectively
leverage these forecasting skills.

The goal of alpha factors is the accurate directional prediction of future returns. Hence, a
natural performance measure is the correlation between an alpha factor's predictions and
the forward returns of the target assets.

It is better to use the non-parametric Spearman rank correlation coefficient, which measures
how well the relationship between two variables can be described using a monotonic
function, as opposed to the Pearson correlation, which measures the strength of a
linear relationship.

Financial Feature Engineering – How to Research Alpha Factors

[116]

We can obtain the information coefficient (IC) using Alphalens, which relies on scipy.
stats.spearmanr under the hood (see the repo for an example of how to use scipy directly
to obtain p-values). The factor_information_coefficient function computes the period-wise
correlation and plot_ic_ts creates a time-series plot with a 1-month moving average:

from alphalens.performance import factor_information_coefficient
from alphalens.plotting import plot_ic_ts

ic = factor_information_coefficient(alphalens_data)
plot_ic_ts(ic[['5D']])

The time series plot in Figure 4.12 shows extended periods with significantly positive
moving average IC. An IC of 0.05 or even 0.1 allows for significant outperformance if there
are sufficient opportunities to apply this forecasting skill, as the fundamental law of active
management will illustrate:

Figure 4.12: Moving average of the IC for 5-day horizon

A plot of the annual mean IC highlights how the factor's performance was historically
uneven:

ic = factor_information_coefficient(alphalens_data)
ic_by_year = ic.resample('A').mean()

ic_by_year.index = ic_by_year.index.year

ic_by_year.plot.bar(figsize=(14, 6))

This produces the chart shown in Figure 4.13:

Chapter 4

[117]

Figure 4.13: IC by year

An information coefficient below 0.05, as in this case, is low but significant and can produce
positive residual returns relative to a benchmark, as we will see in the next section. The
command create_summary_tear_sheet(alphalens_data) creates IC summary statistics.

The risk-adjusted IC results from dividing the mean IC by the standard deviation of the IC,
which is also subjected to a two-sided t-test with the null hypothesis IC = 0 using scipy.
stats.ttest_1samp:

5D 10D 21D 42D

IC mean 0.021 0.025 0.015 0.001

IC std. 0.144 0.13 0.12 0.12

Risk-adjusted IC 0.145 0.191 0.127 0.01

t-stat (IC) 3.861 5.107 3.396 0.266

p-value (IC) 0 0 0.001 0.79

IC skew 0.384 0.251 0.115 0.134

IC kurtosis 0.019 -0.584 -0.353 -0.494

Factor turnover
Factor turnover measures how frequently the assets associated with a given quantile
change, that is, how many trades are required to adjust a portfolio to the sequence of
signals. More specifically, it measures the share of assets currently in a factor quantile
that was not in that quantile in the last period. The following table is produced by this
command:

create_turnover_tear_sheet(alphalens_data)

Financial Feature Engineering – How to Research Alpha Factors

[118]

The share of assets that were to join a quintile-based portfolio is fairly high, suggesting that
the trading costs pose a challenge to reaping the benefits from the predictive performance:

Mean turnover 5D 10D 21D 42D

Quantile 1 0.587 0.826 0.828 0.41

Quantile 2 0.737 0.801 0.81 0.644

Quantile 3 0.764 0.803 0.808 0.679

Quantile 4 0.737 0.803 0.808 0.641

Quantile 5 0.565 0.802 0.809 0.393

An alternative view on factor turnover is the correlation of the asset rank due to the factor
over various holding periods, also part of the tear sheet:

5D 10D 21D 42D

Mean factor rank autocorrelation 0.713 0.454 -0.011 -0.016

Generally, more stability is preferable to keep trading costs manageable.

Alpha factor resources
The research process requires designing and selecting alpha factors with respect to the
predictive power of their signals. An algorithmic trading strategy will typically build on
multiple alpha factors that send signals for each asset. These factors may be aggregated
using an ML model to optimize how the various signals translate into decisions about the
timing and sizing of individual positions, as we will see in subsequent chapters.

Alternative algorithmic trading libraries
Additional open source Python libraries for algorithmic trading and data collection include
the following (see GitHub for links):

• QuantConnect is a competitor to Quantopian.

• WorldQuant offers online competition and recruits community contributors
to a crowd-sourced hedge fund.

• Alpha Trading Labs offers an s high-frequency focused testing infrastructure
with a business model similar to Quantopian.

• The Python Algorithmic Trading Library (PyAlgoTrade) focuses on backtesting
and offers support for paper trading and live trading. It allows you to evaluate
an idea for a trading strategy with historical data and aims to do so with
minimal effort.

Chapter 4

[119]

• pybacktest is a vectorized backtesting framework that uses pandas and aims to be
compact, simple, and fast. (The project is currently on hold.)

• ultrafinance is an older project that combines real-time financial data collection and
the analysis and backtesting of trading strategies.

• Trading with Python offers courses and a collection of functions and classes for
quantitative trading.

• Interactive Brokers offers a Python API for live trading on their platform.

Summary
In this chapter, we introduced a range of alpha factors that have been used by professional
investors to design and evaluate strategies for decades. We laid out how they work and
illustrated some of the economic mechanisms believed to drive their performance. We did
this because a solid understanding of how factors produce excess returns helps innovate
new factors.

We also presented several tools that you can use to generate your own factors from various
data sources and demonstrated how the Kalman filter and wavelets allow us to smoothen
noisy data in the hope of retrieving a clearer signal.

Finally, we provided a glimpse of the Zipline library for the event-driven simulation of a
trading algorithm, both offline and on the Quantopian online platform. You saw how to
implement a simple mean reversion factor and how to combine multiple factors in a simple
way to drive a basic strategy. We also looked at the Alphalens library, which permits the
evaluation of the predictive performance and trading turnover of signals.

The portfolio construction process, in turn, takes a broader perspective and is aims at
the optimal sizing of positions from a risk and return perspective. In the next chapter,
Portfolio Optimization and Strategy Evaluation, we will turn to various strategies to balance
risk and returns in a portfolio process. We will also look in more detail at the challenges of
backtesting trading strategies on a limited set of historical data, as well as how to address
these challenges.

[121]

5
Portfolio Optimization and

Performance Evaluation

Alpha factors generate signals that an algorithmic strategy translates into trades, which,
in turn, produce long and short positions. The returns and risk of the resulting portfolio
determine the success of the strategy.

To test a strategy prior to implementation under market conditions, we need to simulate
the trades that the algorithm would make and verify their performance. Strategy evaluation
includes backtesting against historical data to optimize the strategy's parameters and
forward-testing to validate the in-sample performance against new, out-of-sample data.
The goal is to avoid false discoveries from tailoring a strategy to specific past circumstances.

In a portfolio context, positive asset returns can offset negative price movements. Positive
price changes for one asset are more likely to offset losses on another, the lower the
correlation between the two positions is. Based on how portfolio risk depends on the
positions' covariance, Harry Markowitz developed the theory behind modern portfolio
management based on diversification in 1952. The result is mean-variance optimization,
which selects weights for a given set of assets to minimize risk, measured as the standard
deviation of returns for a given expected return.

The capital asset pricing model (CAPM) introduces a risk premium, measured as the
expected return in excess of a risk-free investment, as an equilibrium reward for holding an
asset. This reward compensates for the exposure to a single risk factor—the market—that is
systematic as opposed to idiosyncratic to the asset and thus cannot be diversified away.

Risk management has evolved to become more sophisticated as additional risk factors
and more granular choices for exposure have emerged. The Kelly criterion is a popular
approach to dynamic portfolio optimization, which is the choice of a sequence of positions
over time; it was famously adapted from its original application in gambling to the stock
market by Edward Thorp in 1968.

Portfolio Optimization and Performance Evaluation

[122]

As a result, there are several approaches to optimize portfolios, including the application of
machine learning (ML) to learn hierarchical relationships among assets, and to treat their
holdings as complements or substitutes with respect to the portfolio risk profile.

In this chapter, we will cover the following topics:

• How to measure portfolio risk and return

• Managing portfolio weights using mean-variance optimization and alternatives

• Using machine learning to optimize asset allocation in a portfolio context

• Simulating trades and create a portfolio based on alpha factors using Zipline

• How to evaluate portfolio performance using pyfolio

How to measure portfolio performance
To evaluate and compare different strategies or to improve an existing strategy, we need
metrics that reflect their performance with respect to our objectives. In investment and
trading, the most common objectives are the return and the risk of the investment portfolio.

Typically, these metrics are compared to a benchmark that represents alternative
investment opportunities, such as a summary of the investment universe like the S&P 500
for US equities or the risk-free interest rate for fixed income assets.

There are several metrics to evaluate these objectives. In this section, we will review the
most common measures for comparing portfolio results. These measures will be useful
when we look at different approaches to optimize portfolio performance, simulate the
interaction of a strategy with the market using Zipline, and compute relevant performance
metrics using the pyfolio library in later sections.

We'll use some simple notation: let R be the time series of one-period simple portfolio
returns, R=(r

1
, ..., r

T
), from dates 1 to T, and Rf =(rf

1
, ..., rf

T
) be the matching time series of

risk-free rates, so that R
e
=R-R

f
 =(r

1
-rf

1
,..., r

T
-rf

T
) is the excess return.

Capturing risk-return trade-offs in a single number
The return and risk objectives imply a trade-off: taking more risk may yield higher returns
in some circumstances, but also implies greater downside. To compare how different
strategies navigate this trade-off, ratios that compute a measure of return per unit of risk
are very popular. We'll discuss the Sharpe ratio and the information ratio in turn.

You can find the code samples for this chapter and links to
additional resources in the corresponding directory of the GitHub
repository. The notebooks include color versions of the images..

Chapter 5

[123]

The Sharpe ratio

The ex ante Sharpe ratio (SR) compares the portfolio's expected excess return to the
volatility of this excess return, measured by its standard deviation. It measures the
compensation as the average excess return per unit of risk taken: 𝜇𝜇 𝜇 𝜇𝜇(𝑅𝑅𝑡𝑡) 𝜎𝜎𝑅𝑅𝑒𝑒2 𝜇 Var(𝑅𝑅 𝑅 𝑅𝑅𝑓𝑓)SR 𝜇 𝜇𝜇 𝑅 𝑅𝑅𝑓𝑓𝜎𝜎𝑅𝑅𝑒𝑒

Expected returns and volatilities are not observable, but can be estimated as follows from
historical data:

𝜇𝜇𝜇𝑅𝑅𝑒𝑒 = 1𝑇𝑇 ∑ 𝑟𝑟𝑡𝑡𝑒𝑒𝑇𝑇
𝑡𝑡𝑡𝑡

𝜎𝜎𝜎𝑅𝑅𝑒𝑒2 = 1𝑇𝑇 ∑(𝑟𝑟𝑡𝑡𝑒𝑒 − 𝜇𝜇𝜇𝑅𝑅𝑒𝑒)2𝑇𝑇
𝑡𝑡𝑡𝑡SR ≡ 𝜇𝜇𝜇𝑅𝑅𝑒𝑒 − 𝑅𝑅𝑓𝑓𝜎𝜎𝜎𝑅𝑅𝑒𝑒2

Unless the risk-free rate is volatile (as in emerging markets), the standard deviation of
excess and raw returns will be similar.

For independently and identically distributed (IID) returns, the distribution of the SR
estimator for tests of statistical significance follows from the application of the central limit
theorem (CLT), according to large-sample statistical theory, to 𝜇𝜇𝜇 and 𝜎𝜎𝜎2 . The CLT implies
that sums of IID random variables like 𝜇𝜇𝜇 and 𝜎𝜎𝜎2 converge to the normal distribution.

When you need to compare SR for different frequencies, say for monthly and annual
data, you can multiply the higher frequency SR by the square root of the number of the
corresponding period contained in the lower frequency. To convert a monthly SR into an
annual SR, multiply by √12 , and from daily to monthly multiply by √12 .

However, financial returns often violate the IID assumption. Andrew Lo has derived
the necessary adjustments to the distribution and the time aggregation for returns that
are stationary but autocorrelated. This is important because the time-series properties
of investment strategies (for example, mean reversion, momentum, and other forms of
serial correlation) can have a non-trivial impact on the SR estimator itself, especially when
annualizing the SR from higher-frequency data (Lo, 2002).

The information ratio

The information ratio (IR) is similar to the Sharpe ratio but uses a benchmark rather than
the risk-free rate. The benchmark is usually chosen to represent the available investment
universe such as the S&P 500 for a portfolio on large-cap US equities.

Portfolio Optimization and Performance Evaluation

[124]

Hence, the IR measures the excess return of the portfolio, also called alpha, relative to the
tracking error, which is the deviation of the portfolio returns from the benchmark returns,
that is: IR = AlphaTracking Error

The IR has also been used to explain how excess returns depend on a manager's skill and
the nature of her strategy, as we will see next.

The fundamental law of active management

"Diversification is protection against ignorance. It makes little sense if you know what
you are doing."

 – Warren Buffet

It's a curious fact that Renaissance Technologies (RenTec), the top-performing quant fund
founded by Jim Simons, which we mentioned in Chapter 1, Machine Learning for Trading –
From Idea to Execution, has produced similar returns as Warren Buffet, despite extremely
different approaches. Warren Buffet's investment firm Berkshire Hathaway holds some
100-150 stocks for fairly long periods, whereas RenTec may execute 100,000 trades per day.
How can we compare these distinct strategies?

A high IR reflects an attractive out-performance of the benchmark relative to the additional
risk taken. The Fundamental Law of Active Management explains how such a result can
be achieved: it approximates the IR as the product of the information coefficient (IC) and
the breadth of the strategy.

As discussed in the previous chapter, the IC measures the rank correlation between return
forecasts, like those implied by an alpha factor, and the actual forward returns. Hence, it is
a measure of the forecasting skill of the manager. The breadth of the strategy is measured
by the independent number of bets (that is, trades) an investor makes in a given time
period, and thus represents the ability to apply the forecasting skills.

The Fundamental Law states that the IR, also known as the appraisal risk (Treynor and
Black), is the product of both values. In other words, it summarizes the importance to play
both often (high breadth) and to play well (high IC):IR ∼ IC ∗ √breadth

This framework has been extended to include the transfer coefficient (TC) to reflect
portfolio constraints as an additional factor (for example, on short-selling) that may limit
the information ratio below a level otherwise achievable given IC or strategy breadth. The
TC proxies the efficiency with which the manager translates insights into portfolio bets: if
there are no constraints, the TC would simply equal one; but if the manager does not short
stocks even though forecasts suggests they should, the TC will be less than one and reduce
the IC (Clarke et al., 2002).

Chapter 5

[125]

The Fundamental Law is important because it highlights the key drivers of outperformance:
both accurate predictions and the ability to make independent forecasts and act on these
forecasts matter.

In practice, managers with a broad set of investment decisions can achieve significant risk-
adjusted excess returns with information coefficients between 0.05 and 0.15, as illustrated
by the following simulation:

Figure 5.1: Information ratios for different values of breadth and information coefficient

In practice, estimating the breadth of a strategy is difficult, given the cross-sectional and
time-series correlation among forecasts. You should view the Fundamental Law and its
extensions as a useful analytical framework for thinking about how to improve your risk-
adjusted portfolio performance. We'll look at techniques for doing so in practice next.

How to manage portfolio risk and return
Portfolio management aims to pick and size positions in financial instruments that achieve
the desired risk-return trade-off regarding a benchmark. As a portfolio manager, in each
period, you select positions that optimize diversification to reduce risks while achieving
a target return. Across periods, these positions may require rebalancing to account for
changes in weights resulting from price movements to achieve or maintain a target risk
profile.

The evolution of modern portfolio management
Diversification permits us to reduce risks for a given expected return by exploiting how
imperfect correlation allows for one asset's gains to make up for another asset's losses.
Harry Markowitz invented modern portfolio theory (MPT) in 1952 and provided the
mathematical tools to optimize diversification by choosing appropriate portfolio weights.

Markowitz showed how portfolio risk, measured as the standard deviation of portfolio
returns, depends on the covariance among the returns of all assets and their relative
weights. This relationship implies the existence of an efficient frontier of portfolios that
maximizes portfolio returns given a maximal level of portfolio risk.

Portfolio Optimization and Performance Evaluation

[126]

However, mean-variance frontiers are highly sensitive to the estimates of the inputs
required for their calculation, namely expected returns, volatilities, and correlations. In
practice, mean-variance portfolios that constrain these inputs to reduce sampling errors
have performed much better. These constrained special cases include equal-weighted,
minimum-variance, and risk-parity portfolios.

The capital asset pricing model (CAPM) is an asset valuation model that builds on the
MPT risk-return relationship. It introduces the concept of a risk premium that an investor
can expect in market equilibrium for holding a risky asset; the premium compensates for
the time value of money and the exposure to overall market risk that cannot be eliminated
through diversification (as opposed to the idiosyncratic risk of specific assets).

The economic rationale for non-diversifiable risk includes, for example, macro drivers of
the business risks affecting all equity returns or bond defaults. Hence, an asset's expected
return, E[r

i
], is the sum of the risk-free interest rate, r

f
, and a risk premium proportional to

the asset's exposure to the expected excess return of the market portfolio, rm, over the risk-
free rate: 𝐸𝐸[𝑟𝑟𝑖𝑖] = 𝛼𝛼𝑖𝑖 + 𝑟𝑟𝑓𝑓 + 𝛽𝛽𝑖𝑖(𝐸𝐸[𝑟𝑟𝑚𝑚] − 𝑟𝑟𝑓𝑓)
In theory, the market portfolio contains all investable assets and, in equilibrium, will be
held by all rational investors. In practice, a broad value-weighted index approximates the
market, for example, the S&P 500 for US equity investments.β𝑖𝑖 measures the exposure of asset, i, to the excess returns of the market portfolio. If
the CAPM is valid, the intercept component, α𝑖𝑖 , should be zero. In reality, the CAPM
assumptions are often not met, and alpha captures the returns left unexplained by exposure
to the broad market.

As discussed in the previous chapter, over time, research uncovered non-traditional
sources of risk premiums, such as the momentum or the equity value effects that explained
some of the original alpha. Economic rationales, such as behavioral biases of under- or
overreaction by investors to new information, justify risk premiums for exposure to these
alternative risk factors.

These factors evolved into investment styles designed to capture these alternative betas
that became tradable in the form of specialized index funds. Similarly, risk management
now aims to control the exposure of numerous sources of risk beyond the market portfolio.

After isolating contributions from these alternative risk premiums, true alpha becomes
limited to idiosyncratic asset returns and the manager's ability to time risk exposures.

The efficient market hypothesis (EMH) has been refined over the past several decades to
rectify many of the original shortcomings of the CAPM, including imperfect information
and the costs associated with transactions, financing, and agency. Many behavioral biases
have the same effect, and some frictions are modeled as behavioral biases.

Chapter 5

[127]

Modern portfolio theory and practice have evolved significantly over the last several
decades. We will introduce several approaches:

• Mean-variance optimization, and its shortcomings

• Alternatives such as minimum-risk and 1/n allocation

• Risk parity approaches

• Risk factor approaches

Mean-variance optimization
Modern portfolio theory solves for the optimal portfolio weights to minimize volatility for
a given expected return or maximize returns for a given level of volatility. The key requisite
inputs are expected asset returns, standard deviations, and the covariance matrix.

How it works

Diversification works because the variance of portfolio returns depends on the covariance
of the assets. It can be reduced below the weighted average of the asset variances by
including assets with less than perfect correlation.

In particular, given a vector, 𝜔𝜔 , of portfolio weights and the covariance matrix, Σ , the
portfolio variance, 𝜎𝜎PF , is defined as: 𝜎𝜎PF = 𝜔𝜔𝑇𝑇Σ𝜔𝜔

Markowitz showed that the problem of maximizing the expected portfolio return subject to
a target risk has an equivalent dual representation of minimizing portfolio risk, subject to
a target expected return level, 𝜇𝜇PF . Hence, the optimization problem becomes:min𝜔𝜔 𝜎𝜎PF2 = 𝜔𝜔𝑇𝑇Σ𝜔𝜔s. t. 𝜔𝜔𝑇𝑇𝜇𝜇 = 𝜎𝜎PF ‖𝜔𝜔‖ = 1

Finding the efficient frontier in Python
We can calculate an efficient frontier using scipy.optimize.minimize and the historical
estimates for asset returns, standard deviations, and the covariance matrix. SciPy 's
minimize function implements a range of constrained and unconstrained optimization
algorithms for scalar functions that output a single number from one or more input
variables (see the SciPy documentation for more details). The code can be found in the
strategy_evaluation subfolder of the repository for this chapter and implements the
following sequence of steps:

Portfolio Optimization and Performance Evaluation

[128]

First, the simulation generates random weights using the Dirichlet distribution and
computes the mean, standard deviation, and SR for each sample portfolio using the
historical return data:

def simulate_portfolios(mean_ret, cov, rf_rate=rf_rate, short=True):

 alpha = np.full(shape=n_assets, fill_value=.05)
 weights = dirichlet(alpha=alpha, size=NUM_PF)

 if short:

 weights *= choice([-1, 1], size=weights.shape)

 returns = weights @ mean_ret.values + 1

 returns = returns ** periods_per_year - 1

 std = (weights @ monthly_returns.T).std(1)

 std *= np.sqrt(periods_per_year)

 sharpe = (returns - rf_rate) / std

 return pd.DataFrame({'Annualized Standard Deviation': std,

 'Annualized Returns': returns,

 'Sharpe Ratio': sharpe}), weights

Next, we set up the quadratic optimization problem to solve for the minimum standard
deviation for a given return or the maximum SR. To this end, we define the functions that
measure the key performance metrics:

def portfolio_std(wt, rt=None, cov=None):

 """Annualized PF standard deviation"""

 return np.sqrt(wt @ cov @ wt * periods_per_year)

def portfolio_returns(wt, rt=None, cov=None):

 """Annualized PF returns"""

 return (wt @ rt + 1) ** periods_per_year - 1

def portfolio_performance(wt, rt, cov):

 """Annualized PF returns & standard deviation"""

 r = portfolio_returns(wt, rt=rt)

 sd = portfolio_std(wt, cov=cov)

 return r, sd

Next, we define a target function that represents the negative SR for scipy's minimize
function to optimize, given the constraints that the weights are bounded by, [0, 1], and sum
to one in absolute terms:

Chapter 5

[129]

def neg_sharpe_ratio(weights, mean_ret, cov):

 r, sd = portfolio_performance(weights, mean_ret, cov)

 return -(r - rf_rate) / sd

weight_constraint = {'type': 'eq',

 'fun': lambda x: np.sum(np.abs(x)) - 1}

def max_sharpe_ratio(mean_ret, cov, short=False):

 return minimize(fun=neg_sharpe_ratio,

 x0=x0,

 args=(mean_ret, cov),

 method='SLSQP',

 bounds=((-1 if short else 0, 1),) * n_assets,

 constraints=weight_constraint,

 options={'tol':1e-10, 'maxiter':1e4})

Then, we compute the efficient frontier by iterating over a range of target returns and
solving for the corresponding minimum variance portfolios. To this end, we formulate the
optimization problem using the constraints on portfolio risk and return as a function of the
weights, as follows:

def min_vol_target(mean_ret, cov, target, short=False):

 def ret_(wt):

 return portfolio_returns(wt, mean_ret)

 constraints = [{'type': 'eq', 'fun': lambda x: ret_(x) - target},

 weight_constraint]

 bounds = ((-1 if short else 0, 1),) * n_assets

 return minimize(portfolio_std, x0=x0, args=(mean_ret, cov),

 method='SLSQP', bounds=bounds,

 constraints=constraints,

 options={'tol': 1e-10, 'maxiter': 1e4})

The solution requires iterating over ranges of acceptable values to identify optimal risk-
return combinations:

def efficient_frontier(mean_ret, cov, ret_range):
 return [min_vol_target(mean_ret, cov, ret) for ret in ret_range]

The simulation yields a subset of the feasible portfolios, and the efficient frontier identifies
the optimal in-sample return-risk combinations that were achievable given historic data.

Figure 5.2 shows the result, including the minimum variance portfolio, the portfolio that
maximizes the SR, and several portfolios produced by alternative optimization strategies
that we'll discuss in the following sections:

Portfolio Optimization and Performance Evaluation

[130]

Figure 5.2: The efficient frontier and different optimized portfolios

The portfolio optimization can be run at every evaluation step of the trading strategy to
optimize the positions.

Challenges and shortcomings

The preceding mean-variance frontier estimation illustrates in-sample, that is, backward-
looking optimization. In practice, portfolio optimization requires forward-looking inputs
and outputs. However, expected returns are notoriously difficult to estimate accurately. It is
best viewed as a starting point and benchmark for numerous improvements.

The covariance matrix can be estimated somewhat more reliably, which has given rise
to several alternative approaches. However, covariance matrices with correlated assets
pose computational challenges since the optimization problem requires inverting the
matrix. The high condition number induces numerical instability, which in turn gives rise
to the Markovitz curse: the more diversification is required (by correlated investment
opportunities), the more unreliable the weights produced by the algorithm.

Many investors prefer to use portfolio-optimization techniques with less onerous input
requirements. We will now introduce several alternatives that aim to address these
shortcomings, including a more recent approach based on machine learning.

Chapter 5

[131]

Alternatives to mean-variance optimization
The challenges with accurate inputs for the mean-variance optimization problem have led
to the adoption of several practical alternatives that constrain the mean, the variance, or
both, or omit return estimates that are more challenging, such as the risk parity approach,
which we'll discuss later in this section.

The 1/N portfolio

Simple portfolios provide useful benchmarks to gauge the added value of complex
models that generate the risk of overfitting. The simplest strategy—an equally-weighted
portfolio—has been shown to be one of the best performers.

Famously, de Miguel, Garlappi, and Uppal (2009) compared the out-of-sample performance
of portfolios produced by various mean-variance optimizers, including robust Bayesian
estimators, portfolio constraints, and optimal combinations of portfolios, to the simple
1/N rule. They found that the 1/N portfolio produced a higher Sharpe ratio than the
alternatives on various datasets, explained by the high cost of estimation errors that often
outweighs the benefits of sophisticated optimization out of sample.

More specifically, they found that the estimation window required for the sample-based
mean-variance strategy and its extensions to outperform the 1/N benchmark is around 3,000
months for a portfolio with 25 assets and about 6,000 months for a portfolio with 50 assets.

The 1/N portfolio is also included in Figure 5.2 in the previous section.

The minimum-variance portfolio

Another alternative is the global minimum-variance (GMV) portfolio, which prioritizes
the minimization of risk. It is shown in Figure 5.2 and can be calculated, as follows, by
minimizing the portfolio standard deviation using the mean-variance framework:

def min_vol(mean_ret, cov, short=False):

 return minimize(fun=portfolio_std,

 x0=x0,

 args=(mean_ret, cov),

 method='SLSQP',

 bounds=bounds = ((-1 if short else 0, 1),) *

 n_assets,

 constraints=weight_constraint,

 options={'tol': 1e-10, 'maxiter': 1e4})

The corresponding minimum volatility portfolio lies on the efficient frontier, as shown
previously in Figure 5.2.

Portfolio Optimization and Performance Evaluation

[132]

Global Portfolio Optimization – the Black-Litterman approach

The Global Portfolio Optimization approach of Black and Litterman (1992) combines
economic models with statistical learning. It is popular because it generates estimates of
expected returns that are plausible in many situations.

The technique assumes that the market is a mean-variance portfolio, as implied by the
CAPM equilibrium model. It builds on the fact that the observed market capitalization can
be considered as optimal weights assigned to each security by the market. Market weights
reflect market prices that, in turn, embody the market's expectations of future returns.

The approach can thus reverse-engineer the unobservable future expected returns from
the assumption that the market is close enough to equilibrium, as defined by the CAPM.
Investors can adjust these estimates to their own beliefs using a shrinkage estimator.
The model can be interpreted as a Bayesian approach to portfolio optimization. We will
introduce Bayesian methods in Chapter 10, Bayesian ML – Dynamic Sharpe Ratios and Pairs
Trading Strategies.

How to size your bets – the Kelly criterion

The Kelly criterion has a long history in gambling because it provides guidance on how
much to stake on each bet in an (infinite) sequence of bets with varying (but favorable) odds
to maximize terminal wealth. It was published in a 1956 paper, A New Interpretation of the
Information Rate, by John Kelly, who was a colleague of Claude Shannon's at Bell Labs. He
was intrigued by bets placed on candidates at the new quiz show "The $64,000 Question,"
where a viewer on the west coast used the three-hour delay to obtain insider information
about the winners.

Kelly drew a connection to Shannon's information theory to solve for the bet that is optimal
for long-term capital growth when the odds are favorable, but uncertainty remains. His
rule maximizes logarithmic wealth as a function of the odds of success of each game and
includes implicit bankruptcy protection since log(0) is negative infinity so that a Kelly
gambler would naturally avoid losing everything.

The optimal size of a bet

Kelly began by analyzing games with a binary win-lose outcome. The key variables are:

• b: The odds defining the amount won for a $1 bet. Odds = 5/1 implies a $5 gain if
the bet wins, plus recovery of the $1 capital.

• p: The probability defining the likelihood of a favorable outcome.
• f: The share of the current capital to bet.

• V: The value of the capital as a result of betting.

Chapter 5

[133]

The Kelly criterion aims to maximize the value's growth rate, G, of infinitely repeated bets:𝐺𝐺 𝐺 𝐺𝐺𝐺𝑁𝑁𝑁𝑁 1𝑁𝑁 𝐺og𝑉𝑉𝑁𝑁𝑉𝑉0

When W and L are the numbers of wins and losses, then:𝑉𝑉𝑁𝑁 = (1 + 𝑏𝑏 𝑏 𝑏𝑏)𝑤𝑤(1 − 𝑏𝑏)𝐿𝐿𝑉𝑉0 ⇒ 𝐺𝐺 = 𝐺𝐺𝐺𝑁𝑁𝑁𝑁 [𝑊𝑊𝑁𝑁 𝐺og(1 + odds 𝑏 share) + 𝐿𝐿𝑁𝑁 𝐺og(1 − 𝑏𝑏)] ⟺= 𝑝𝑝 𝐺og(1 + 𝑏𝑏 𝑏 𝑏𝑏) + (1 − 𝑝𝑝) 𝐺og(1 − 𝑏𝑏)

We can maximize the rate of growth G by maximizing G with respect to f, as illustrated
using SymPy, as follows (you can find this in the kelly_rule notebook):

from sympy import symbols, solve, log, diff
share, odds, probability = symbols('share odds probability')

Value = probability * log(1 + odds * share) + (1 - probability) * log(1

 - share)

solve(diff(Value, share), share)
[(odds*probability + probability - 1)/odds]

We arrive at the optimal share of capital to bet:Kelly Criterion: 𝑓𝑓∗ = 𝑏𝑏 ∗ 𝑏𝑏 𝑏 𝑏𝑏 𝑏 𝑏𝑏𝑏

Optimal investment – single asset

In a financial market context, both outcomes and alternatives are more complex, but the
Kelly criterion logic does still apply. It was made popular by Ed Thorp, who first applied it
profitably to gambling (described in the book Beat the Dealer) and later started the successful
hedge fund Princeton/Newport Partners.

With continuous outcomes, the growth rate of capital is defined by an integrate over the
probability distribution of the different returns that can be optimized numerically:𝐸𝐸[𝐺𝐺] = ∫ log(1 ∗ 𝑓𝑓𝑓𝑓)𝑃𝑃(𝑓𝑓)𝑑𝑑𝑓𝑓 ⇔𝑑𝑑𝑑𝑑𝑓𝑓 𝐸𝐸[𝐺𝐺] = ∫ 𝑓𝑓1 ∗ 𝑓𝑓𝑓𝑓 𝑃𝑃(𝑓𝑓)𝑑𝑑𝑓𝑓 = 0 +∞

−∞

We can solve this expression for the optimal f* using the scipy.optimize module. The
quad function computes the value of a definite integral between two values a and b using
FORTRAN's QUADPACK library (hence its name). It returns the value of the integral and
an error estimate:

Portfolio Optimization and Performance Evaluation

[134]

def norm_integral(f, m, st):
 val, er = quad(lambda s: np.log(1+f*s)*norm.pdf(s, m, st), m-3*st,
 m+3*st)
 return -val

def norm_dev_integral(f, m, st):
 val, er = quad(lambda s: (s/(1+f*s))*norm.pdf(s, m, st), m-3*st,
 m+3*st)
 return val
m = .058
s = .216

Option 1: minimize the expectation integral

sol = minimize_scalar(norm_integral, args=(
 m, s), bounds=[0., 2.], method='bounded')
print('Optimal Kelly fraction: {:.4f}'.format(sol.x))
Optimal Kelly fraction: 1.1974

Optimal investment – multiple assets

We will use an example with various equities. E. Chan (2008) illustrates how to arrive
at a multi-asset application of the Kelly criterion, and that the result is equivalent to the
(potentially levered) maximum Sharpe ratio portfolio from the mean-variance optimization.

The computation involves the dot product of the precision matrix, which is the inverse of
the covariance matrix, and the return matrix:

mean_returns = monthly_returns.mean()

cov_matrix = monthly_returns.cov()

precision_matrix = pd.DataFrame(inv(cov_matrix), index=stocks,
columns=stocks)

kelly_wt = precision_matrix.dot(mean_returns).values

The Kelly portfolio is also shown in the previous efficient frontier diagram (after
normalization so that the sum of the absolute weights equals one). Many investors prefer
to reduce the Kelly weights to reduce the strategy's volatility, and Half-Kelly has become
particularly popular.

Risk parity
The fact that the previous 15 years have been characterized by two major crises in the
global equity markets, a consistently upwardly sloping yield curve, and a general decline in
interest rates, made risk parity look like a particularly compelling option. Many institutions
carved out strategic allocations to risk parity to further diversify their portfolios.

A simple implementation of risk parity allocates assets according to the inverse of their
variances, ignoring correlations and, in particular, return forecasts:

Chapter 5

[135]

var = monthly_returns.var()

risk_parity_weights = var / var.sum()

The risk parity portfolio is also shown in the efficient frontier diagram at the beginning of
this section.

Risk factor investment
An alternative framework for estimating input is to work down to the underlying
determinants, or factors, that drive the risk and returns of assets. If we understand how the
factors influence returns, and we understand the factors, we will be able to construct more
robust portfolios.

The concept of factor investing looks beyond asset class labels. It looks to the underlying
factor risks that we discussed in the previous chapter on alpha factors to maximize the
benefits of diversification. Rather than distinguishing investment vehicles by labels such as
hedge funds or private equity, factor investing aims to identify distinct risk-return profiles
based on differences in exposure to fundamental risk factors (Ang 2014).

The naive approach to mean-variance investing plugs (artificial) groupings as distinct asset
classes into a mean-variance optimizer. Factor investing recognizes that such groupings
share many of the same factor risks as traditional asset classes. Diversification benefits can
be overstated, as investors discovered during the 2008 crisis when correlations among risky
asset classes increased due to exposure to the same underlying factor risks.

In Chapter 7, Linear Models – From Risk Factors to Return Forecasts, we will show how to
measure the exposure of a portfolio to various risk factors so that you can either adjust the
positions to tune your factor exposure, or hedge accordingly.

Hierarchical risk parity
Mean-variance optimization is very sensitive to the estimates of expected returns and the
covariance of these returns. The covariance matrix inversion also becomes more challenging
and less accurate when returns are highly correlated, as is often the case in practice.
The result has been called the Markowitz curse: when diversification is more important
because investments are correlated, conventional portfolio optimizers will likely produce
an unstable solution. The benefits of diversification can be more than offset by mistaken
estimates. As discussed, even naive, equally weighted portfolios can beat mean-variance
and risk-based optimization out of sample.

More robust approaches have incorporated additional constraints (Clarke et al., 2002)
or Bayesian priors (Black and Litterman, 1992), or used shrinkage estimators to make
the precision matrix more numerically stable (Ledoit and Wolf, 2003), available in
scikit-learn (http://scikit-learn.org/stable/modules/generated/sklearn.covariance.
LedoitWolf.html).

http://scikit-learn.org/stable/modules/generated/sklearn.covariance.LedoitWolf.html
http://scikit-learn.org/stable/modules/generated/sklearn.covariance.LedoitWolf.html

Portfolio Optimization and Performance Evaluation

[136]

Hierarchical risk parity (HRP), in contrast, leverages unsupervised machine learning
to achieve superior out-of-sample portfolio allocations. A recent innovation in portfolio
optimization leverages graph theory and hierarchical clustering to construct a portfolio in
three steps (Lopez de Prado, 2015):

1. Define a distance metric so that correlated assets are close to each other, and apply
single-linkage clustering to identify hierarchical relationships.

2. Use the hierarchical correlation structure to quasi-diagonalize the covariance
matrix.

3. Apply top-down inverse-variance weighting using a recursive bisectional search
to treat clustered assets as complements, rather than substitutes, in portfolio
construction and to reduce the number of degrees of freedom.

A related method to construct hierarchical clustering portfolios (HCP) was presented
by Raffinot (2016). Conceptually, complex systems such as financial markets tend to have
a structure and are often organized in a hierarchical way, while the interaction among
elements in the hierarchy shapes the dynamics of the system. Correlation matrices also lack
the notion of hierarchy, which allows weights to vary freely and in potentially unintended
ways.

Both HRP and HCP have been tested by JP Morgan (2012) on various equity universes.
The HRP, in particular, produced equal or superior risk-adjusted returns and Sharpe ratios
compared to naive diversification, the maximum-diversified portfolios, or GMV portfolios.

We will present the Python implementation in Chapter 13, Data-Driven Risk Factors and
Asset Allocation with Unsupervised Learning.

Trading and managing portfolios with Zipline
In the previous chapter, we introduced Zipline to simulate the computation of alpha factors
from trailing market, fundamental, and alternative data for a cross-section of stocks. In
this section, we will start acting on the signals emitted by alpha factors. We'll do this by
submitting buy and sell orders so we can enter long and short positions or rebalance the
portfolio to adjust our holdings to the most recent trade signals.

We will postpone optimizing the portfolio weights until later in this chapter and, for now,
just assign positions of equal value to each holding. As mentioned in the previous chapter,
an in-depth introduction to the testing and evaluation of strategies that include ML models
will follow in Chapter 6, The Machine Learning Process.

Chapter 5

[137]

Scheduling signal generation and trade execution
We will use the custom MeanReversion factor developed in the previous chapter (see the
implementation in 01_backtest_with_trades.ipynb).

The Pipeline created by the compute_factors() method returns a table with columns
containing the 50 longs and shorts. It selects the equities according to the largest negative
and positive deviations, respectively, of their last monthly return from the annual average,
normalized by the standard deviation:

def compute_factors():

 """Create factor pipeline incl. mean reversion,

 filtered by 30d Dollar Volume; capture factor ranks"""
 mean_reversion = MeanReversion()

 dollar_volume = AverageDollarVolume(window_length=30)

 return Pipeline(columns={'longs' : mean_reversion.bottom(N_LONGS),

 'shorts' : mean_reversion.top(N_SHORTS),

 'ranking': mean_reversion.rank(ascending=False)},

 screen=dollar_volume.top(VOL_SCREEN))

It also limited the universe to the 1,000 stocks with the highest average trading volume
over the last 30 trading days. before_trading_start() ensures the daily execution of the
Pipeline and the recording of the results, including the current prices:

def before_trading_start(context, data):

 """Run factor pipeline"""

 context.factor_data = pipeline_output('factor_pipeline')

 record(factor_data=context.factor_data.ranking)

 assets = context.factor_data.index

 record(prices=data.current(assets, 'price'))

The new rebalance() method submits trade orders to the exec_trades() method for the
assets flagged for long and short positions by the Pipeline with equal positive and negative
weights. It also divests any current holdings that are no longer included in the factor
signals:

def exec_trades(data, assets, target_percent):

 """Place orders for assets using target portfolio percentage"""

 for asset in assets:

 if data.can_trade(asset) and not get_open_orders(asset):

 order_target_percent(asset, target_percent)

Portfolio Optimization and Performance Evaluation

[138]

def rebalance(context, data):

 """Compute long, short and obsolete holdings; place trade orders"""

 factor_data = context.factor_data

 assets = factor_data.index

 longs = assets[factor_data.longs]

 shorts = assets[factor_data.shorts]

 divest = context.portfolio.positions.keys() - longs.union(shorts)

 exec_trades(data, assets=divest, target_percent=0)

 exec_trades(data, assets=longs, target_percent=1 / N_LONGS if N_LONGS

 else 0)

 exec_trades(data, assets=shorts, target_percent=-1 / N_SHORTS if N_SHORTS

 else 0)

The rebalance() method runs according to date_rules and time_rules set by the schedule_
function() utility at the beginning of the week, right after market_open, as stipulated by the
built-in US_EQUITIES calendar (see the Zipline documentation for details on rules).

You can also specify a trade commission both in relative terms and as a minimum amount.
There is also an option to define slippage, which is the cost of an adverse change in price
between trade decision and execution:

def initialize(context):

 """Setup: register pipeline, schedule rebalancing,

 and set trading params"""

 attach_pipeline(compute_factors(), 'factor_pipeline')

 schedule_function(rebalance,

 date_rules.week_start(),

 time_rules.market_open(),

 calendar=calendars.US_EQUITIES)

 set_commission(us_equities=commission.PerShare(cost=0.00075,

 min_trade_cost=.01))

 set_slippage(us_equities=slippage.VolumeShareSlippage(volume_
limit=0.0025, price_impact=0.01))

The algorithm continues to execute after calling the run_algorithm() function and returns
the same backtest performance DataFrame that we saw in the previous chapter.

Implementing mean-variance portfolio optimization
We demonstrated in the previous section how to find the efficient frontier using scipy.
optimize. In this section, we will leverage the PyPortfolioOpt library, which offers portfolio
optimization (using SciPy under the hood), including efficient frontier techniques and more
recent shrinkage approaches that regularize the covariance matrix (see Chapter 7, Linear
Models – From Risk Factors to Return Forecasts, on shrinkage for linear regression). The code
example lives in 02_backtest_with_pf_optimization.ipynb.

Chapter 5

[139]

We'll use the same setup with 50 long and short positions derived from the MeanReversion
factor ranking. The rebalance() function receives the suggested long and short positions
and passes each subset on to a new optimize_weights() function to obtain dictionaries with
asset: target_percent pairs:

def rebalance(context, data):

 """Compute long, short and obsolete holdings; place orders"""

 factor_data = context.factor_data

 assets = factor_data.index

 longs = assets[factor_data.longs]

 shorts = assets[factor_data.shorts]

 divest = context.portfolio.positions.keys() - longs.union(shorts)

 exec_trades(data, positions={asset: 0 for asset in divest})

 # get price history

 prices = data.history(assets, fields='price',
 bar_count=252+1, # 1 yr of returns

 frequency='1d')

 if len(longs) > 0:

 long_weights = optimize_weights(prices.loc[:, longs])

 exec_trades(data, positions=long_weights)

 if len(shorts) > 0:

 short_weights = optimize_weights(prices.loc[:, shorts], short=True)

 exec_trades(data, positions=short_weights)

The optimize_weights() function uses the EfficientFrontier object, provided by
PyPortfolioOpt, to find the weights that maximize the Sharpe ratio based on the last year
of returns and the covariance matrix, both of which the library also computes:

def optimize_weights(prices, short=False):

 returns = expected_returns.mean_historical_return(prices=prices,

 frequency=252)

 cov = risk_models.sample_cov(prices=prices, frequency=252)

 # get weights that maximize the Sharpe ratio

 ef = EfficientFrontier(expected_returns=returns,
 cov_matrix=cov,

 weight_bounds=(0, 1),

 gamma=0)

 weights = ef.max_sharpe()

 if short:

Portfolio Optimization and Performance Evaluation

[140]

 return {asset: -weight for asset, weight in ef.clean_weights().
items()}

 else:

 return ef.clean_weights()

It returns normalized weights that sum to 1, set to negative values for the short positions.

Figure 5.3 shows that, for this particular set of strategies and time frame, the mean-variance
optimized portfolio performs significantly better:

Figure 5.3: Mean-variance vs equal-weighted portfolio performance

PyPortfolioOpt also finds the minimum volatility portfolio. More generally speaking, this
example illustrates how you can add logic to tweak portfolio weights using the methods
presented in the previous section, or any other of your choosing.

We will now turn to common measures of portfolio return and risk, and how to compute
them using the pyfolio library.

Measuring backtest performance with pyfolio
Pyfolio facilitates the analysis of portfolio performance, both in and out of sample using a rich
set of metrics and visualizations. It produces tear sheets that cover the analysis of returns,
positions, and transactions, as well as event risk during periods of market stress using several
built-in scenarios. It also includes Bayesian out-of-sample performance analysis.

Pyfolio relies on portfolio returns and position data and can also take into account the
transaction costs and slippage losses of trading activity. It uses the empyrical library,
which can also be used on a standalone basis to compute performance metrics.

Chapter 5

[141]

Creating the returns and benchmark inputs
The library is part of the Quantopian ecosystem and is compatible with Zipline and
Alphalens. We will first demonstrate how to generate the requisite inputs from Alphalens
and then show how to extract them from a Zipline backtest performance DataFrame. The
code samples for this section are in the notebook 03_pyfolio_demo.ipynb.

Getting pyfolio input from Alphalens

Pyfolio also integrates with Alphalens directly and permits the creation of pyfolio input
data using create_pyfolio_input:

from alphalens.performance import create_pyfolio_input

qmin, qmax = factor_data.factor_quantile.min(),

 factor_data.factor_quantile.max()

input_data = create_pyfolio_input(alphalens_data,

 period='1D',

 capital=100000,

 long_short=False,

 equal_weight=False,

 quantiles=[1, 5],

 benchmark_period='1D')

returns, positions, benchmark = input_data

There are two options to specify how portfolio weights will be generated:

• long_short: If False, weights will correspond to factor values divided by their
absolute value so that negative factor values generate short positions. If True, factor
values are first demeaned so that long and short positions cancel each other out,
and the portfolio is market neutral.

• equal_weight: If True and long_short is True, assets will be split into two equal-
sized groups, with the top/bottom half making up long/short positions.

Long-short portfolios can also be created for groups if factor_data includes, for example,
sector information for each asset.

Getting pyfolio input from a Zipline backtest

The result of a Zipline backtest can also be converted into the required pyfolio input using
extract_rets_pos_txn_from_zipline:

returns, positions, transactions =

 extract_rets_pos_txn_from_zipline(backtest)

Portfolio Optimization and Performance Evaluation

[142]

Walk-forward testing – out-of-sample returns
Testing a trading strategy involves back- and forward testing. The former involves
historical data and often refers to the sample period used to fine-tune alpha factor
parameters. Forward-testing simulates the strategy on new market data to validate
that it performs well out of sample and is not too closely tailored to specific historical
circumstances.

Pyfolio allows for the designation of an out-of-sample period to simulate walk-forward
testing. There are numerous aspects to take into account when testing a strategy to obtain
statistically reliable results. We will address this in more detail in Chapter 8, The ML4T
Workflow – From Model to Strategy Backtesting.

The plot_rolling_returns function displays cumulative in- and out-of-sample returns
against a user-defined benchmark (we are using the S&P 500). Pyfolio computes cumulative
returns as the product of simple returns after adding 1 to each:

from pyfolio.plotting import plot_rolling_returns

plot_rolling_returns(returns=returns,

 factor_returns=benchmark_rets,

 live_start_date='2016-01-01',

 cone_std=(1.0, 1.5, 2.0))

The plot in Figure 5.4 includes a cone that shows expanding confidence intervals to indicate
when out-of-sample returns appear unlikely, given random-walk assumptions. Here, our
toy strategy did not perform particularly well against the S&P 500 benchmark during the
simulated 2016 out-of-sample period:

Figure 5.4: Pyfolio cumulative performance plot

Chapter 5

[143]

Summary performance statistics

Pyfolio offers several analytic functions and plots. The perf_stats summary displays the
annual and cumulative returns, volatility, skew, and kurtosis of returns and the SR.

The following additional metrics (which can also be calculated individually) are
most important:

• Max drawdown: Highest percentage loss from the previous peak

• Calmar ratio: Annual portfolio return relative to maximal drawdown

• Omega ratio: Probability-weighted ratio of gains versus losses for a return target,
zero per default

• Sortino ratio: Excess return relative to downside standard deviation

• Tail ratio: Size of the right tail (gains, the absolute value of the 95th percentile)
relative to the size of the left tail (losses, absolute value of the 5th percentile)

• Daily value at risk (VaR): Loss corresponding to a return two standard deviations
below the daily mean

• Alpha: Portfolio return unexplained by the benchmark return

• Beta: Exposure to the benchmark

The plot_perf_stats function bootstraps estimates of parameter variability and displays
the result as a box plot:

Figure 5.5: Pyfolio performance statistic plot

The show_perf_stats function computes numerous metrics for the entire period, as well as
separately, for in- and out-of-sample periods:

from pyfolio.timeseries import show_perf_stats

show_perf_stats(returns=returns,

 factor_returns=benchmark_rets,

 positions=positions,

 transactions=transactions,

 live_start_date=oos_date)

Portfolio Optimization and Performance Evaluation

[144]

For the simulated long-short portfolio derived from the MeanReversion factor, we obtain the
following performance statistics:

Metric All In-sample Out-of-sample

Annual return 2.80% 2.10% 4.70%

Cumulative returns 11.60% 6.60% 4.70%

Annual volatility 8.50% 8.80% 7.60%

Sharpe ratio 0.37 0.29 0.64

Calmar ratio 0.21 0.16 0.57

Stability 0.26 0.01 0.67

Max drawdown -13.10% -13.10% -8.30%

Omega ratio 1.07 1.06 1.11

Sortino ratio 0.54 0.42 0.96

Skew 0.33 0.35 0.25

Kurtosis 7.2 8.04 2

Tail ratio 1.04 1.06 1.01

Daily value at risk -1.10% -1.10% -0.90%

Gross leverage 0.69 0.68 0.72

Daily turnover 8.10% 8.00% 8.40%

Alpha 0 -0.01 0.03

Beta 0.25 0.27 0.17

See the appendix for details on the calculation and interpretation of portfolio risk and
return metrics.

Drawdown periods and factor exposure

The plot_drawdown_periods(returns) function plots the principal drawdown periods for
the portfolio, and several other plotting functions show the rolling SR and rolling factor
exposures to the market beta or the Fama-French size, growth, and momentum factors:

fig, ax = plt.subplots(nrows=2, ncols=2, figsize=(16, 10))
axes = ax.flatten()
plot_drawdown_periods(returns=returns, ax=axes[0])

plot_rolling_beta(returns=returns, factor_returns=benchmark_rets,

 ax=axes[1])

plot_drawdown_underwater(returns=returns, ax=axes[2])

plot_rolling_sharpe(returns=returns)

Chapter 5

[145]

The plots in Figure 5.6, which highlights a subset of the visualization contained in the
various tear sheets, illustrate how pyfolio allows us to drill down into the performance
characteristics and gives us exposure to fundamental drivers of risk and returns:

Figure 5.6: Various pyfolio plots of performance over time

Modeling event risk

Pyfolio also includes timelines for various events that you can use to compare the
performance of a portfolio to a benchmark during this period. Pyfolio uses the S&P 500 by
default, but you can also provide benchmark returns of your choice. The following example
compares the performance to the S&P 500 during the fall 2015 selloff, following the Brexit
vote:

interesting_times = extract_interesting_date_ranges(returns=returns)

interesting_times['Fall2015'].to_frame('pf') \

 .join(benchmark_rets) \

 .add(1).cumprod().sub(1) \

 .plot(lw=2, figsize=(14, 6), title='Post-Brexit Turmoil')

Portfolio Optimization and Performance Evaluation

[146]

Figure 5.7 shows the resulting plot:

Figure 5.7: Pyfolio event risk analysis

Summary
In this chapter, we covered the important topic of portfolio management, which involves
the combination of investment positions with the objective of managing risk-return trade-
offs. We introduced pyfolio to compute and visualize key risk and return metrics, as well as
to compare the performance of various algorithms.

We saw how important accurate predictions are for optimizing portfolio weights and
maximizing diversification benefits. We also explored how machine learning can facilitate
more effective portfolio construction by learning hierarchical relationships from the asset-
returns covariance matrix.

We will now move on to the second part of this book, which focuses on the use of machine
learning models. These models will produce more accurate predictions by making more
effective use of more diverse information. They do this to capture more complex patterns
than the simpler alpha factors that were most prominent so far.

We will begin by training, testing, and tuning linear models for regression and classification
using cross-validation to achieve robust out-of-sample performance. We will also embed
these models within the framework for defining and backtesting algorithmic trading
strategies, which we covered in the previous two chapters.

[147]

6
The Machine Learning Process

This chapter starts Part 2 of this book, where we'll illustrate how you can use a range of
supervised and unsupervised machine learning (ML) models for trading. We will explain
each model's assumptions and use cases before we demonstrate relevant applications using
various Python libraries. The categories of models that we will cover in Parts 2-4 include:

• Linear models for the regression and classification of cross-section, time series,
and panel data

• Generalized additive models, including nonlinear tree-based models, such as
decision trees

• Ensemble models, including random forest and gradient-boosting machines

• Unsupervised linear and nonlinear methods for dimensionality reduction
and clustering

• Neural network models, including recurrent and convolutional architectures

• Reinforcement learning models

We will apply these models to the market, fundamental, and alternative data sources
introduced in the first part of this book. We will build on the material covered so far by
demonstrating how to embed these models in a trading strategy that translates model
signals into trades, how to optimize portfolio, and how to evaluate strategy performance.

There are several aspects that many of these models and their applications have in
common. This chapter covers these common aspects so that we can focus on model-specific
usage in the following chapters. They include the overarching goal of learning a functional
relationship from data by optimizing an objective or loss function. They also include the
closely related methods of measuring model performance.

We'll distinguish between unsupervised and supervised learning and outline use cases for
algorithmic trading. We'll contrast supervised regression and classification problems and
the use of supervised learning for statistical inference of relationships between input and
output data, along with its use for the prediction of future outputs.

The Machine Learning Process

[148]

We'll also illustrate how prediction errors are due to the model's bias or variance, or
because of a high noise-to-signal ratio in the data. Most importantly, we'll present methods
to diagnose sources of errors like overfitting and improve your model's performance.

In this chapter, we will cover the following topics relevant to applying the ML workflow
in practice:

• How supervised and unsupervised learning from data works

• Training and evaluating supervised learning models for regression and
classification tasks

• How the bias-variance trade-off impacts predictive performance

• How to diagnose and address prediction errors due to overfitting
• Using cross-validation to optimize hyperparameters with a focus on time-series data

• Why financial data requires additional attention when testing out-of-sample

How machine learning from data works
Many definitions of ML revolve around the automated detection of meaningful patterns in
data. Two prominent examples include:

• AI pioneer Arthur Samuelson defined ML in 1959 as a subfield of computer science
that gives computers the ability to learn without being explicitly programmed.

• Tom Mitchell, one of the current leaders in the field, pinned down a well-posed
learning problem more specifically in 1998: a computer program learns from
experience with respect to a task and a performance measure of whether the
performance of the task improves with experience (Mitchell 1997).

Experience is presented to an algorithm in the form of training data. The principal
difference from previous attempts of building machines that solve problems is that the
rules that an algorithm uses to make decisions are learned from the data, as opposed to
being programmed by humans as was the case, for example, for expert systems prominent
in the 1980s.

Recommended textbooks that cover a wide range of algorithms and general applications
include James et al (2013), Hastie, Tibshirani, and Friedman (2009), Bishop (2006), and
Mitchell (1997).

If you are already quite familiar with ML, feel free to skip ahead
and dive right into learning how to use ML models to produce
and combine alpha factors for an algorithmic trading strategy.
This chapter's directory in the GitHub repository contains the code
examples and lists additional resources.

Chapter 6

[149]

The challenge – matching the algorithm to the task
The key challenge of automated learning is to identify patterns in the training data that are
meaningful when generalizing the model's learning to new data. There are a large number
of potential patterns that a model could identify, while the training data only constitutes a
sample of the larger set of phenomena that the algorithm may encounter when performing
the task in the future.

The infinite number of functions that could have generated the observed outputs from the
given input makes the search process for the true function impossible, without restricting
the eligible set of candidates. The types of patterns that an algorithm is capable of learning
are limited by the size of its hypothesis space that contains the functions it can possibly
represent. It is also limited by the amount of information provided by the sample data.

The size of the hypothesis space varies significantly between algorithms, as we will see in
the following chapters. On the one hand, this limitation enables a successful search, and on
the other hand, it implies an inductive bias that may lead to poor performance when the
algorithm generalizes from the training sample to new data.

Hence, the key challenge becomes how to choose a model with a hypothesis space large
enough to contain a solution to the learning problem, yet small enough to ensure reliable
learning and generalization given the size of the training data. With more informative data,
a model with a larger hypothesis space has a better chance of being successful.

The no-free-lunch theorem states that there is no universal learning algorithm. Instead,
a learner's hypothesis space has to be tailored to a specific task using prior knowledge
about the task domain in order for the search for meaningful patterns that generalize well
to succeed (Gómez and Rojas 2015).

We will pay close attention to the assumptions that a model makes about data relationships
for a specific task throughout this chapter and emphasize the importance of matching these
assumptions with empirical evidence gleaned from data exploration.

There are several categories of machine learning tasks that differ by purpose, available
information, and, consequently, the learning process itself. The main categories are
supervised, unsupervised, and reinforcement learning, and we will review their key
differences next.

Supervised learning – teaching by example
Supervised learning is the most commonly used type of ML. We will dedicate most of
the chapters in this book to applications in this category. The term supervised implies the
presence of an outcome variable that guides the learning process—that is, it teaches the
algorithm the correct solution to the task at hand. Supervised learning aims to capture a
functional input-output relationship from individual samples that reflect this relationship
and to apply its learning by making valid statements about new data.

The Machine Learning Process

[150]

Depending on the field, the output variable is also interchangeably called the label, target,
or outcome, as well as the endogenous or left-hand side variable. We will use y

i
 for outcome

observations i = 1, ..., N, or y for a (column) vector of outcomes. Some tasks come with
several outcomes and are called multilabel problems.

The input data for a supervised learning problem is also known as features, as well as
exogenous or right-hand side variables. We use x

i
 for a vector of features with observations

i = 1, ..., N, or X in matrix notation, where each column contains a feature and each row an
observation.

The solution to a supervised learning problem is a function 𝑓𝑓(X) that represents what the
model learned about the input-output relationship from the sample and approximates the

true relationship, represented by 𝒴𝒴 𝒴 𝒴𝒴(X) . This function can potentially be used to infer
statistical associations or even causal relationships among variables of interest beyond the
sample, or it can be used to predict outputs for new input data.

The task of learning an input-outcome relationship from data that permits accurate
predictions of outcomes for new inputs faces important trade-offs. More complex models
have more moving parts that are capable of representing more nuanced relationships.
However, they are also more likely to learn random noise particular to the training sample,
as opposed to a systematic signal that represents a general pattern. When this happens, we
say the model is overfitting to the training data. In addition, complex models may also be
more difficult to inspect, making it more difficult to understand the nature of the learned
relationship or the drivers of specific predictions.

Overly simple models, on the other hand, will miss complex signals and deliver biased
results. This trade-off is known as the bias-variance trade-off in supervised learning, but
conceptually, this also applies to the other forms of ML where too simple or too complex
models may perform poorly beyond the training data.

Unsupervised learning – uncovering useful patterns
When solving an unsupervised learning problem, we only observe the features and have
no measurements of the outcome. Instead of predicting future outcomes or inferring
relationships among variables, unsupervised algorithms aim to identify structure in the
input that permits a new representation of the information contained in the data.

Frequently, the measure of success is the contribution of the result to the solution of some
other problem. This includes identifying commonalities, or clusters, among observations, or
transforming features to obtain a compressed summary that captures relevant information.

The key challenge is that unsupervised algorithms have to accomplish their mission without
the guidance provided by outcome information. As a consequence, we are often unable
to evaluate the result against a ground truth as in the supervised case, and its quality may
be in the eye of the beholder. However, sometimes, we can evaluate its contribution to a
downstream task, for example when dimensionality reduction enables better predictions.

Chapter 6

[151]

There are numerous approaches, from well-established cluster algorithms to cutting-edge
deep learning models, and several relevant use cases for our purposes.

Use cases – from risk management to text processing

There are numerous trading use cases for unsupervised learning that we will cover in
later chapters:

• Grouping securities with similar risk and return characteristics (see hierarchical

risk parity in Chapter 13, Data-Driven Risk Factors and Asset Allocation with
Unsupervised Learning)

• Finding a small number of risk factors driving the performance of a much larger
number of securities using principal component analysis (Chapter 13, Data-
Driven Risk Factors and Asset Allocation with Unsupervised Learning) or autoencoders
(Chapter 19, RNN for Multivariate Time Series and Sentiment Analysis)

• Identifying latent topics in a body of documents (for example, earnings call
transcripts) that comprise the most important aspects of those documents (Chapter

14, Text Data for Trading – Sentiment Analysis)

At a high level, these applications rely on methods to identify clusters and methods to
reduce the dimensionality of the data.

Cluster algorithms – seeking similar observations

Cluster algorithms apply a concept of similarity to identify observations or data attributes
that contain comparable information. They summarize a dataset by assigning a large
number of data points to a smaller number of clusters. They do this so that the cluster
members are more closely related to each other than to members of other clusters.

Cluster algorithms differ in what they assume about how the various groupings were
generated and what makes them alike. As a result, they tend to produce alternative types
of clusters and should thus be selected based on the characteristics of the data. Some
prominent examples are:

• K-means clustering: Data points belong to one of the k clusters of equal size that
take an elliptical form.

• Gaussian mixture models: Data points have been generated by any of the various
multivariate normal distributions.

• Density-based clusters: Clusters are of arbitrary shape and defined only by the
existence of a minimum number of nearby data points.

• Hierarchical clusters: Data points belong to various supersets of groups that are
formed by successively merging smaller clusters.

The Machine Learning Process

[152]

Dimensionality reduction – compressing information

Dimensionality reduction produces new data that captures the most important
information contained in the source data. Rather than grouping data into clusters while
retaining the original data, these algorithms transform the data with the goal of using fewer
features to represent the original information.

Algorithms differ with respect to how they transform data and, thus, the nature of the
resulting compressed dataset, as shown in the following list:

• Principal component analysis (PCA): Finds the linear transformation that captures
most of the variance in the existing dataset

• Manifold learning: Identifies a nonlinear transformation that yields a lower-
dimensional representation of the data

• Autoencoders: Uses a neural network to compress data nonlinearly with minimal
loss of information

We will dive deeper into these unsupervised learning models in several of the following
chapters, including important applications to natural language processing (NLP) in the
form of topic modeling and Word2vec feature extraction.

Reinforcement learning – learning by trial and error
Reinforcement learning (RL) is the third type of ML. It centers on an agent that needs to
pick an action at each time step, based on information provided by the environment. The
agent could be a self-driving car, a program playing a board game or a video game, or a
trading strategy operating in a certain security market. You find an excellent introduction
in Sutton and Barto (2018).

The agent aims to choose the action that yields the highest reward over time, based on a set
of observations that describes the current state of the environment. It is both dynamic and
interactive: the stream of positive and negative rewards impacts the algorithm's learning,
and actions taken now may influence both the environment and future rewards.

The agent needs to take action right from start and learns in an "online" fashion, one
example at a time as it goes along. The learning process follows a trial-and-error approach.
This is because the agent needs to manage the trade-off between exploiting a course of
action that has yielded a certain reward in the past and exploring new actions that may
increase the reward in the future. RL algorithms optimize the agent's learning using
dynamical systems theory and, in particular, the optimal control of Markov decision
processes with incomplete information.

RL differs from supervised learning, where the training data lays out both the context
and the correct decision for the algorithm. It is tailored to interactive settings where the
outcomes only become available over time and learning must proceed in a continuous
fashion as the agent acquires new experience.

Chapter 6

[153]

However, some of the most notable progress in artificial intelligence (AI) involves
RL, which uses deep learning to approximate functional relationships between actions,
environments, and future rewards. It also differs from unsupervised learning because
feedback on the actions will be available, albeit with a delay.

RL is particularly suitable for algorithmic trading because the model of a return-
maximizing agent in an uncertain, dynamic environment has much in common with an
investor or a trading strategy that interacts with financial markets. We will introduce RL
approaches to building an algorithmic trading strategy in Chapter 21, Generative Adversarial
Networks for Synthetic Time-Series Data.

The machine learning workflow
Developing an ML solution for an algorithmic trading strategy requires a systematic
approach to maximize the chances of success while economizing on resources. It is also
very important to make the process transparent and replicable in order to facilitate
collaboration, maintenance, and later refinements.

The following chart outlines the key steps, from problem definition to the deployment of a
predictive solution:

Figure 6.1: Key steps of the machine learning workflow

The process is iterative throughout, and the effort required at different stages will vary
according to the project. Generally, however, this process should include the following
steps:

1. Frame the problem, identify a target metric, and define success.
2. Source, clean, and validate the data.

3. Understand your data and generate informative features.

4. Pick one or more machine learning algorithms suitable for your data.

5. Train, test, and tune your models.

6. Use your model to solve the original problem.

We will walk through these steps in the following sections using a simple example to
illustrate some of the key points.

The Machine Learning Process

[154]

Basic walkthrough – k-nearest neighbors
The machine_learning_workflow.ipynb notebook in this chapter's folder of this book's
GitHub repository contains several examples that illustrate the machine learning workflow
using a dataset of house prices.

We will use the fairly straightforward k-nearest neighbors (KNN) algorithm, which
allows us to tackle both regression and classification problems. In its default scikit-learn
implementation, it identifies the k nearest data points (based on the Euclidean distance) to
make a prediction. It predicts the most frequent class among the neighbors or the average
outcome in the classification or regression case, respectively.

The README for this chapter on GitHub links to additional resources; see Bhatia and
Vandana (2010) for a brief survey.

Framing the problem – from goals to metrics
The starting point for any machine learning project is the use case it ultimately aims to
address. Sometimes, this goal will be statistical inference in order to identify an association
or even a causal relationship between variables. Most frequently, however, the goal will be
the prediction of an outcome to yield a trading signal.

Both inference and prediction tasks rely on metrics to evaluate how well a model achieves
its objective. Due to their prominence in practice, we will focus on common objective
functions and the corresponding error metrics for predictive models.

We distinguish prediction tasks by the nature of the output: a continuous output variable
poses a regression problem, a categorical variable implies classification, and the special
case of ordered categorical variables represents a ranking problem.

You can often frame a given problem in different ways. The task at hand may be how
to efficiently combine several alpha factors. You could frame this task as a regression
problem that aims to predict returns, a binary classification problem that aims to predict the
direction of future price movements, or a multiclass problem that aims to assign stocks to
various performance classes such as return quintiles.

In the following section, we will introduce these objectives and look at how to measure and
interpret related error metrics.

Prediction versus inference

The functional relationship produced by a supervised learning algorithm can be used for
inference—that is, to gain insights into how the outcomes are generated. Alternatively, you
can use it to predict outputs for unknown inputs.

For algorithmic trading, we can use inference to estimate the statistical association of the
returns of an asset with a risk factor. This implies, for instance, assessing how likely this
observation is due to noise, as opposed to an actual influence of the risk factor. Prediction,
in turn, can be used to forecast the risk factor, which can help predict the asset return and
price and be translated into a trading signal.

Chapter 6

[155]

Statistical inference is about drawing conclusions from sample data about the parameters
of the underlying probability distribution or the population. Potential conclusions include
hypothesis tests about the characteristics of the distribution of an individual variable, or
the existence or strength of numerical relationships among variables. They also include the
point or interval estimates of metrics.

Inference depends on the assumptions about the process that originally generated the data.
We will review these assumptions and the tools that are used for inference with linear
models where they are well established. More complex models make fewer assumptions
about the structural relationship between input and output. Instead, they approach the
task of function approximation with fewer restrictions, while treating the data-generating
process as a black box.

These models, including decision trees, ensemble models, and neural networks, have
gained in popularity because they often outperform on prediction tasks. However, we will
see that there have been numerous recent efforts to increase the transparency of complex
models. Random forests, for example, have recently gained a framework for statistical
inference (Wager and Athey 2019).

Causal inference – correlation does not imply causation

Causal inference aims to identify relationships where certain input values imply certain
outputs—for example, a certain constellation of macro variables causing the price of a given
asset to move in a certain way, while assuming all other variables remain constant.

Statistical inference about relationships among two or more variables produces measures
of correlation. Correlation can only be interpreted as a causal relationship when several
other conditions are met—for example, when alternative explanations or reverse causality
has been ruled out.

Meeting these conditions requires an experimental setting where all relevant variables
of interest can be fully controlled to isolate causal relationships. Alternatively, quasi-
experimental settings expose units of observations to changes in inputs in a randomized
way. It does this to rule out that other observable or unobservable features are responsible
for the observed effects of the change in the environment.

These conditions are rarely met, so inferential conclusions need to be treated with care.
The same applies to the performance of predictive models that also rely on the statistical
association between features and outputs, which may change with other factors that are not
part of the model.

The non-parametric nature of the KNN model does not lend itself well to inference, so
we'll postpone this step in the workflow until we encounter linear models in Chapter 7,
Linear Models – From Risk Factors to Return Forecasts.

The Machine Learning Process

[156]

Regression – popular loss functions and error metrics

Regression problems aim to predict a continuous variable. The root-mean-square
error (RMSE) is the most popular loss function and error metric, not least because it is
differentiable. The loss is symmetric, but larger errors weigh more in the calculation.
Using the square root has the advantage that we can measure the error in the units of the
target variable.

The root-mean-square of the log of the error (RMSLE) is appropriate when the target is
subject to exponential growth. Its asymmetric penalty weighs negative errors less than
positive errors. You can also log-transform the target prior to training the model and then
use the RMSE, as we'll do in the example later in this section.

The mean of the absolute errors (MAE) and median of the absolute errors (MedAE) are
symmetric but do not give more weight to larger errors. The MedAE is robust to outliers.

The explained variance score computes the proportion of the target variance that the
model accounts for and varies between 0 and 1. The R2 score is also called the coefficient
of determination and yields the same outcome if the mean of the residuals is 0, but can
differ otherwise. In particular, it can be negative when calculated on out-of-sample data (or
for a linear regression without intercept).

The following table defines the formulas used for calculation and the corresponding scikit-
learn function that can be imported from the metrics module. The scoring parameter is
used in combination with automated train-test functions (such as cross_val_score and
GridSearchCV), which we'll will introduce later in this section, and which are illustrated in
the accompanying notebook:

Name Formula scikit-learn function Scoring parameter

Mean squared
error

1𝑁𝑁∑(𝒴𝒴𝑖𝑖 − �̂�𝒴𝑖𝑖)2𝑁𝑁
𝑖𝑖𝑖𝑖 mean_squared_error

neg_mean_squared_
error

Mean squared
log error

1𝑁𝑁∑(ln(1 + 𝒴𝒴𝑖𝑖) − ln(1 + �̂�𝒴𝑖𝑖))2𝑁𝑁
𝑖𝑖𝑖𝑖 mean_squared_log_

error
neg_mean_squared_
log_error

Mean
absolute error

1𝑁𝑁∑|𝒴𝒴𝑖𝑖 − �̂�𝒴𝑖𝑖|𝑁𝑁
𝑖𝑖=1 mean_absolute_

error
neg_mean_absolute_
error

Median
absolute error median(|𝒴𝒴1 − �̂�𝒴1|, … . , |𝒴𝒴𝑁𝑁 − �̂�𝒴𝑁𝑁|) median_absolute_error

neg_median_
absolute_error

Explained
variance

1 − (𝒴𝒴 − �̂�𝒴)(𝒴𝒴) explained_
variance_score

explained_variance

R2 score 1 − ∑ (𝒴𝒴𝑖𝑖 − �̂�𝒴𝑖𝑖)2𝑁𝑁𝑖𝑖𝑖𝑖∑ (𝒴𝒴𝑖𝑖 − �̅�𝒴𝑖𝑖)2𝑁𝑁𝑖𝑖𝑖𝑖 r2_score r2

Chapter 6

[157]

Figure 6.2 shows the various error metrics for the house price regression that we'll compute
in the notebook:

Figure 6.2: In-sample regression errors

The sklearn function also supports multilabel evaluation—that is, assigning multiple
outcome values to a single observation; see the documentation referenced on GitHub for
more details.

Classification – making sense of the confusion matrix
Classification problems have categorical outcome variables. Most predictors will output a
score to indicate whether an observation belongs to a certain class. In the second step, these
scores are then translated into actual predictions using a threshold value.

In the binary case, with a positive and a negative class label, the score typically varies
between zero and one or is normalized accordingly. Once the scores are converted into
predictions of one class or the other, there can be four outcomes, since each of the two
classes can be either correctly or incorrectly predicted. With more than two classes, there
can be more cases if you differentiate between the several potential mistakes.

All error metrics are computed from the breakdown of predictions across the four fields of
the 2×2 confusion matrix that associates actual and predicted classes.

The Machine Learning Process

[158]

The metrics listed in the following table, such as accuracy, evaluate a model for a
given threshold:

Figure 6.3: Confusion matrix and related error metrics

The classifier usually doesn't output calibrated probabilities. Instead, the threshold used
to distinguish positive from negative cases is itself a decision variable that should be
optimized, taking into account the costs and benefits of correct and incorrect predictions.

All things equal, a lower threshold tends to imply more positive predictions, with a
potentially rising false positive rate, whereas for a higher threshold, the opposite is likely
to be true.

Receiver operating characteristics the area under the curve

The receiver operating characteristics (ROC) curve allows us to visualize, compare, and
select classifiers based on their performance. It computes the pairs of true positive rates
(TPR) and false positive rates (FPR) that result from using all predicted scores as a threshold
to produce class predictions. It visualizes these pairs inside a square with unit side length.

Random predictions (weighted to take into account class imbalance), on average, yield
equal TPR and FPR that appear on the diagonal, which becomes the benchmark case.
Since an underperforming classifier would benefit from relabeling the predictions, this
benchmark also becomes the minimum.

The area under the curve (AUC) is defined as the area under the ROC plot that varies
between 0.5 and the maximum of 1. It is a summary measure of how well the classifier's
scores are able to rank data points with respect to their class membership. More specifically,
the AUC of a classifier has the important statistical property of representing the probability
that the classifier will rank a randomly chosen positive instance higher than a randomly
chosen negative instance, which is equivalent to the Wilcoxon ranking test (Fawcett 2006).
In addition, the AUC has the benefit of not being sensitive to class imbalances.

Chapter 6

[159]

Precision-recall curves – zooming in on one class

When predictions for one of the classes are of particular interest, precision and recall curves
visualize the trade-off between these error metrics for different thresholds. Both measures
evaluate the quality of predictions for a particular class. The following list shows how they
are applied to the positive class:

• Recall measures the share of actual positive class members that a classifier predicts as
positive for a given threshold. It originates from information retrieval and measures
the share of relevant documents successfully identified by a search algorithm.

• Precision, in contrast, measures the share of positive predictions that are correct.

Recall typically increases with a lower threshold, but precision may decrease. Precision-
recall curves visualize the attainable combinations and allow for the optimization of the
threshold, given the costs and benefits of missing a lot of relevant cases or producing lower-
quality predictions.

The F1 score is a harmonic mean of precision and recall for a given threshold, and can
be used to numerically optimize the threshold, all while taking into account the relative
weights that these two metrics should assume.

Figure 6.4 illustrates the ROC curve and corresponding AUC, alongside the precision-recall
curve and the F1 score, which, using equal weights for precision and recall, yields an optimal
threshold of 0.37. The chart has been taken from the accompanying notebook, where you can
find the code for the KNN classifier that operates on binarized housing prices:

Figure 6.4: Receiver-Operating Characteristics, Precision-Recall Curve, and F1 Scores charts

Collecting and preparing the data
We already addressed important aspects of how to source market, fundamental, and
alternative data in Chapter 2, Market and Fundamental Data – Sources and Techniques, and
Chapter 3, Alternative Data for Finance – Categories and Use Cases. We will continue to work
with various examples of these sources as we illustrate the application of the various models.

The Machine Learning Process

[160]

In addition to market and fundamental data, we will also acquire and transform text data as
we explore natural language processing and image data when we look at image processing
and recognition. Besides obtaining, cleaning, and validating the data, we may need to
assign labels such as sentiment for news articles or timestamps to align it with trading data
typically available in a time-series format.

It is also important to store it in a format that enables quick exploration and iteration. We
recommend the HDF and parquet formats (see Chapter 2, Market and Fundamental Data –
Sources and Techniques). For data that does not fit into memory and requires distributed
processing on several machines, Apache Spark is often the best solution for interactive
analysis and machine learning.

Exploring, extracting, and engineering features
Understanding the distribution of individual variables and the relationships among
outcomes and features is the basis for picking a suitable algorithm. This typically starts
with visualizations such as scatter plots, as illustrated in the accompanying notebook and
shown in Figure 6.5:

Figure 6.5: Pairwise scatter plots of outcome and features

It also includes numerical evaluations ranging from linear metrics like correlation to
nonlinear statistics, such as the Spearman rank correlation coefficient that we encountered
when we introduced the information coefficient in Chapter 4, Financial Feature Engineering
– How to Research Alpha Factors. There are also information-theoretic measures, such as
mutual information, which we'll illustrate in the next subsection.

A systematic exploratory analysis is also the basis of what is often the single most
important ingredient of a successful predictive model: the engineering of features that
extract information contained in the data, but which are not necessarily accessible to the
algorithm in their raw form. Feature engineering benefits from domain expertise, the
application of statistics and information theory, and creativity.

It relies on smart data transformations that effectively tease out the systematic relationship
between input and output data. There are many choices that include outlier detection and
treatment, functional transformations, and the combination of several variables, including
unsupervised learning. We will illustrate examples throughout, but will emphasize that
this central aspect of the ML workflow is best learned through experience. Kaggle is a great
place to learn from other data scientists who share their experiences with the community.

Chapter 6

[161]

Using information theory to evaluate features

The mutual information (MI) between a feature and the outcome is a measure of the
mutual dependence between the two variables. It extends the notion of correlation to
nonlinear relationships. More specifically, it quantifies the information obtained about one
random variable through the other random variable.

The concept of MI is closely related to the fundamental notion of entropy of a random
variable. Entropy quantifies the amount of information contained in a random variable.
Formally, the mutual information—I(X, Y)—of two random variables, X and Y, is defined
as the following: 𝐼𝐼(𝑋𝑋𝑋 𝑋𝑋) = ∫ 𝑌𝑌 ∫ 𝑝𝑝(𝑝𝑝𝑋 𝑝𝑝) log (𝑝𝑝(𝑝𝑝𝑋 𝑝𝑝)𝑝𝑝(𝑝𝑝)𝑝𝑝(𝑝𝑝))

𝑋𝑋

The sklearn function implements feature_selection.mutual_info_regression, which
computes the mutual information between all features and a continuous outcome to
select the features that are most likely to contain predictive information. There is also
a classification version (see the sklearn documentation for more details). The mutual_
information.ipynb notebook contains an application for the financial data we created in
Chapter 4, Financial Feature Engineering – How to Research Alpha Factors.

Selecting an ML algorithm
The remainder of this book will introduce several model families, ranging from linear
models, which make fairly strong assumptions about the nature of the functional
relationship between input and output variables, to deep neural networks, which make
very few assumptions. As mentioned in the introductory section, fewer assumptions will
require more data with significant information about the relationship so that the learning
process can be successful.

We will outline the key assumptions and how to test them where applicable as we
introduce these models.

Design and tune the model
The ML process includes steps to diagnose and manage model complexity based on
estimates of the model's generalization error. An important goal of the ML process is to
obtain an unbiased estimate of this error using a statistically sound and efficient procedure.
Key to managing the model design and tuning process is an understanding of how the bias-
variance tradeoff relates to under- and overfitting.

The Machine Learning Process

[162]

The bias-variance trade-off
The prediction errors of an ML model can be broken down into reducible and irreducible
parts. The irreducible part is due to random variation (noise) in the data due to, for example,
the absence of relevant variables, natural variation, or measurement errors. The reducible part
of the generalization error, in turn, can be broken down into errors due to bias and variance.

Both result from discrepancies between the true functional relationship and the
assumptions made by the machine learning algorithm, as detailed in the following list:

• Error due to bias: The hypothesis is too simple to capture the complexity of the
true functional relationship. As a result, whenever the model attempts to learn the
true function, it makes systematic mistakes and, on average, the predictions will be
similarly biased. This is also called underfitting.

• Error due to variance: The algorithm is overly complex in view of the true
relationship. Instead of capturing the true relationship, it overfits the data
and extracts patterns from the noise. As a result, it learns different functional
relationships from each sample, and out-of-sample predictions will vary widely.

Underfitting versus overfitting – a visual example
Figure 6.6 illustrates overfitting by measuring the in-sample error of approximations of a
sine function by increasingly complex polynomials. More specifically, we draw a random
sample with some added noise (n = 30) to learn a polynomial of varying complexity (see the
code in the notebook, bias_variance.ipynb). The model predicts new data points, and we
capture the mean-squared error for these predictions.

The left-hand panel of Figure 6.6 shows a polynomial of degree 1; a straight line clearly
underfits the true function. However, the estimated line will not differ dramatically from
one sample drawn from the true function to the next.

The middle panel shows that a degree 5 polynomial approximates the true relationship
reasonably well on the interval from about −𝜋𝜋 until 2𝜋𝜋 . On the other hand, a polynomial
of degree 15 fits the small sample almost perfectly, but provides a poor estimate of the true
relationship: it overfits to the random variation in the sample data points, and the learned
function will vary strongly as a function of the sample:

Figure 6.6: A visual example of overfitting with polynomials

Chapter 6

[163]

How to manage the bias-variance trade-off
To further illustrate the impact of overfitting versus underfitting, we'll try to learn a Taylor
series approximation of the sine function of the ninth degree with some added noise.
Figure 6.7 shows the in- and-out-of-sample errors and the out-of-sample predictions for
polynomials that underfit, overfit, and provide an approximately correct level of flexibility
with degrees 1, 15, and 9, respectively, to 100 random samples of the true function.

The left-hand panel shows the distribution of the errors that result from subtracting the
true function values from the predictions. The high bias but low variance of an underfit
polynomial of degree 1 compares to the low bias but exceedingly high variance of the errors
for an overfitting polynomial of degree 15. The underfit polynomial produces a straight line
with a poor in-sample fit that is significantly off-target out of sample. The overfit model
shows the best fit in-sample with the smallest dispersion of errors, but the price is a large
variance out-of-sample. The appropriate model that matches the functional form of the true
model performs, on average, by far the best on out-of-sample data.

The right-hand panel of Figure 6.7 shows the actual predictions rather than the errors to
visualize the different types of fit in practice:

Figure 6.7: Errors and out-of-sample predictions for polynomials of different degrees

Learning curves

A learning curve plots the evolution of train and test errors against the size of the dataset
used to learn the functional relationship. It helps to diagnose the bias-variance trade-off for
a given model, and also answer the question of whether increasing the sample size might
improve predictive performance. A model with a high bias will have a high but similar
training error, both in-sample and out-of-sample. An overfit model will have a very low
training but much higher test errors.

Figure 6.8 shows how the out-of-sample error for the overfitted model declines as the
sample size increases, suggesting that it may benefit from additional data or tools to limit
the model's complexity, such as regularization. Regularization adds data-driven constraints
to the model's complexity; we'll introduce this technique in Chapter 7, Linear Models – From
Risk Factors to Return Forecasts.

The Machine Learning Process

[164]

Underfit models, in contrast, require either more features or need to increase their capacity
to capture the true relationship:

Figure 6.8: Learning curves and bias-variance tradeoff

How to select a model using cross-validation
There are usually several candidate models for your use case, and the task of choosing one
of them is known as the model selection problem. The goal is to identify the model that
will produce the lowest prediction error when given new data.

A good choice requires an unbiased estimate of this generalization error, which, in turn,
requires testing the model on data that was not part of model training. Otherwise, the
model would have already been able to peek at the "solution" and learn something about
the prediction task ahead of time that will inflate its performance.

To avoid this, we only use part of the available data to train the model and set aside another
part of the data to validate its performance. The resulting estimate of the model's prediction
error on new data will only be unbiased if absolutely no information about the validation
set leaks into the training set, as shown in Figure 6.9:

Chapter 6

[165]

Figure 6.9: Training and test set

Cross-validation (CV) is a popular strategy for model selection. The main idea behind
CV is to split the data one or several times. This is done so that each split is used once as
a validation set and the remainder as a training set: part of the data (the training sample)
is used to train the algorithm, and the remaining part (the validation sample) is used to
estimate the algorithm's predictive performance. Then, CV selects the algorithm with the
smallest estimated error or risk.

Several methods can be used to split the available data. They differ in terms of the amount
of data used for training, the variance of the error estimates, the computational intensity,
and whether structural aspects of the data are taken into account when splitting the data,
such as maintaining the ratio between class labels.

While the data-splitting heuristic is very general, a key assumption of CV is that the data is
independently and identically distributed (IID). In the following section and throughout
this book, we will emphasize that time-series data requires a different approach because it
usually does not meet this assumption. Moreover, we need to ensure that splits respect the
temporal order to avoid lookahead bias. We'll do this by including some information from
the future that we aim to predict in the historical training set.

Model selection often involves hyperparameter tuning, which may result in many CV
iterations. The resulting validation score of the best-performing model will be subject to
multiple testing bias, which reflects the sampling noise inherent in the CV process. As a
result, it is no longer a good estimate of the generalization error. For an unbiased estimate
of the error rate, we have to estimate the score from a fresh dataset.

For this reason, we use a three-way split of the data, as shown in Figure 6.10: one part
is used in cross-validation and is repeatedly split into a training and validation set. The
remainder is set aside as a hold-out set that is only used once after, cross-validation is
complete to generate an unbiased test error estimate.

The Machine Learning Process

[166]

We will illustrate this method as we start building ML models in the next chapter:

Figure 6.10: Train, validation, and hold-out test set

How to implement cross-validation in Python
We will illustrate various options for splitting data into training and test sets. We'll do this
by showing how the indices of a mock dataset with 10 observations are assigned to the train
and test set (see cross_validation.py for details), as shown in following code:

data = list(range(1, 11))

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Scikit-learn's CV functionality, which we'll demonstrate in this section, can be imported
from sklearn.model_selection.

For a single split of your data into a training and a test set, use train_test_split, where
the shuffle parameter, by default, ensures the randomized selection of observations. You
can ensure replicability by seeding the random number generator by setting random_state.
There is also a stratify parameter, which ensures for a classification problem that the train
and test sets will contain approximately the same proportion of each class. The result looks
as follows:

train_test_split(data, train_size=.8)

[[8, 7, 4, 10, 1, 3, 5, 2], [6, 9]]

In this case, we train a model using all data except row numbers 6 and 9, which will be
used to generate predictions and measure the errors given on the known labels. This
method is useful for quick evaluation but is sensitive to the split, and the standard error of
the performance measure estimate will be higher.

Chapter 6

[167]

KFold iterator

The KFold iterator produces several disjunct splits and assigns each of these splits once to
the validation set, as shown in the following code:

kf = KFold(n_splits=5)

for train, validate in kf.split(data):

 print(train, validate)

[2 3 4 5 6 7 8 9] [0 1]

[0 1 4 5 6 7 8 9] [2 3]

[0 1 2 3 6 7 8 9] [4 5]

[0 1 2 3 4 5 8 9] [6 7]

[0 1 2 3 4 5 6 7] [8 9]

In addition to the number of splits, most CV objects take a shuffle argument that ensures
randomization. To render results reproducible, set the random_state as follows:

kf = KFold(n_splits=5, shuffle=True, random_state=42)
for train, validate in kf.split(data):

 print(train, validate)

[0 2 3 4 5 6 7 9] [1 8]

[1 2 3 4 6 7 8 9] [0 5]

[0 1 3 4 5 6 8 9] [2 7]

[0 1 2 3 5 6 7 8] [4 9]

[0 1 2 4 5 7 8 9] [3 6]

Leave-one-out CV

The original CV implementation used a leave-one-out method that used each observation
once as the validation set, as shown in the following code:

loo = LeaveOneOut()
for train, validate in loo.split(data):
 print(train, validate)
[1 2 3 4 5 6 7 8 9] [0]
[0 2 3 4 5 6 7 8 9] [1]
...
[0 1 2 3 4 5 6 7 9] [8]
[0 1 2 3 4 5 6 7 8] [9]

This maximizes the number of models that are trained, which increases computational
costs. While the validation sets do not overlap, the overlap of training sets is maximized,
driving up the correlation of models and their prediction errors. As a result, the variance of
the prediction error is higher for a model with a larger number of folds.

The Machine Learning Process

[168]

Leave-P-Out CV

A similar version to leave-one-out CV is leave-P-out CV, which generates all possible
combinations of p data rows, as shown in the following code:

lpo = LeavePOut(p=2)
for train, validate in lpo.split(data):
 print(train, validate)
[2 3 4 5 6 7 8 9] [0 1]
[1 3 4 5 6 7 8 9] [0 2]
...
[0 1 2 3 4 5 6 8] [7 9]
[0 1 2 3 4 5 6 7] [8 9]

ShuffleSplit
The ShuffleSplit class creates independent splits with potentially overlapping validation
sets, as shown in the following code:

ss = ShuffleSplit(n_splits=3, test_size=2, random_state=42)
for train, validate in ss.split(data):
 print(train, validate)
[4 9 1 6 7 3 0 5] [2 8]
[1 2 9 8 0 6 7 4] [3 5]
[8 4 5 1 0 6 9 7] [2 3]

Challenges with cross-validation in finance
A key assumption for the cross-validation methods discussed so far is the IID distribution
of the samples available for training.

For financial data, this is often not the case. On the contrary, financial data is neither
independently nor identically distributed because of serial correlation and time-varying
standard deviation, also known as heteroskedasticity (see Chapter 7, Linear Models – From
Risk Factors to Return Forecasts, and Chapter 9, Time Series Models for Volatility Forecasts and
Statistical Arbitrage, for more details). TimeSeriesSplit in the sklearn.model_selection
module aims to address the linear order of time-series data.

Time series cross-validation with scikit-learn

The time-series nature of the data implies that cross-validation produces a situation where
data from the future will be used to predict data from the past. This is unrealistic at best
and data snooping at worst, to the extent that future data reflects past events.

To address time dependency, the TimeSeriesSplit object implements a walk-forward
test with an expanding training set, where subsequent training sets are supersets of past
training sets, as shown in the following code:

tscv = TimeSeriesSplit(n_splits=5)

Chapter 6

[169]

for train, validate in tscv.split(data):

 print(train, validate)

[0 1 2 3 4] [5]

[0 1 2 3 4 5] [6]

[0 1 2 3 4 5 6] [7]

[0 1 2 3 4 5 6 7] [8]

[0 1 2 3 4 5 6 7 8] [9]

You can use the max_train_size parameter to implement walk-forward cross-validation,
where the size of the training set remains constant over time, similar to how Zipline tests
a trading algorithm. Scikit-learn facilitates the design of custom cross-validation methods
using subclassing, which we will implement in the following chapters.

Purging, embargoing, and combinatorial CV

For financial data, labels are often derived from overlapping data points because returns
are computed from prices across multiple periods. In the context of trading strategies, the
result of a model's prediction, which may imply taking a position in an asset, can only be
known later when this decision is evaluated—for example, when a position is closed out.

The risks include the leakage of information from the test into the training set, which would
very likely artificially inflate performance. We need to address this risk by ensuring that all
data is point-in-time—that is, truly available and known at the time it is used as the input
for a model. For example, financial disclosures may refer to a certain time period but only
become available later. If we include this information too early, our model might do much
better in hindsight than it would have under realistic circumstances.

Marcos Lopez de Prado, one of the leading practitioners and academics in the field, has
proposed several methods to address these challenges in his book, Advances in Financial
Machine Learning (2018). Techniques to adapt cross-validation to the context of financial
data and trading include:

• Purging: Eliminate training data points where the evaluation occurs after the
prediction of a point-in-time data point in the validation set to avoid look-ahead
bias.

• Embargoing: Further eliminate training samples that follow a test period.

• Combinatorial cross-validation: Walk-forward CV severely limits the historical
paths that can be tested. Instead, given T observations, compute all possible train/
test splits for N<T groups that each maintain their order, and purge and embargo
potentially overlapping groups. Then, train the model on all combinations of N-k
groups while testing the model on the remaining k groups. The result is a much
larger number of possible historical paths.

Prado's Advances in Financial Machine Learning contains sample code to implement these
approaches; the code is also available via the new Python library, timeseriescv.

The Machine Learning Process

[170]

Parameter tuning with scikit-learn and Yellowbrick
Model selection typically involves repeated cross-validation of the out-of-sample
performance of models using different algorithms (such as linear regression and random
forest) or different configurations. Different configurations may involve changes to
hyperparameters or the inclusion or exclusion of different variables.

The Yellowbrick library extends the scikit-learn API to generate diagnostic visualization
tools to facilitate the model-selection process. These tools can be used to investigate
relationships among features, analyze classification or regression errors, monitor cluster
algorithm performance, inspect the characteristics of text data, and help with model
selection. We will demonstrate validation and learning curves that provide valuable
information during the parameter-tuning phase—see the machine_learning_workflow.ipynb
notebook for implementation details.

Validation curves – plotting the impact of hyperparameters

Validation curves (see the left-hand panel in Figure 6.11) visualize the impact of a single
hyperparameter on a model's cross-validation performance. This is useful to determine
whether the model underfits or overfits the given dataset.

In our example of KNeighborsRegressor, which only has a single hyperparameter, the
number of neighbors is k. Note that model complexity increases as the number of neighbors
drop because the model can now make predictions for more distinct areas in the feature
space.

We can see that the model underfits for values of k above 20. The validation error drops as
we reduce the number of neighbors and make our model more complex. For values below
20, the model begins to overfit as training and validation errors diverge and average out-of-
sample performance quickly deteriorates:

Figure 6.11: Validation and learning curves

Chapter 6

[171]

Learning curves – diagnosing the bias-variance trade-off
The learning curve (see the right-hand panel of Figure 6.11 for our house price regression
example) helps determine whether a model's cross-validation performance would benefit
from additional data, and whether the prediction errors are more driven by bias or
by variance.

More data is unlikely to improve performance if training and cross-validation scores
converge. At this point, it is important to evaluate whether the model performance meets
expectations, determined by a human benchmark. If this is not the case, then you should
modify the model's hyperparameter settings to better capture the relationship between
the features and the outcome, or choose a different algorithm with a higher capacity to
capture complexity.

In addition, the variation of train and test errors shown by the shaded confidence intervals
provides clues about the bias and variance sources of the prediction error. Variability
around the cross-validation error is evidence of variance, whereas variability for the
training set suggests bias, depending on the size of the training error.

In our example, the cross-validation performance has continued to drop, but the
incremental improvements have shrunk, and the errors have plateaued, so there are
unlikely to be many benefits from a larger training set. On the other hand, the data is
showing substantial variance given the range of validation errors compared to that shown
for the training errors.

Parameter tuning using GridSearchCV and pipeline

Since hyperparameter tuning is a key ingredient of the machine learning workflow, there
are tools to automate this process. The scikit-learn library includes a GridSearchCV interface
that cross-validates all combinations of parameters in parallel, captures the result, and
automatically trains the model using the parameter setting that performed best during
cross-validation on the full dataset.

In practice, the training and validation set often requires some processing prior to cross-
validation. Scikit-learn offers the Pipeline to also automate any feature-processing steps
while using GridSearchCV.

You can look at the implementation examples in the included machine_learning_workflow.
ipynb notebook to see these tools in action.

The Machine Learning Process

[172]

Summary
In this chapter, we introduced the challenge of learning from data and looked at
supervised, unsupervised, and reinforcement models as the principal forms of learning that
we will study in this book to build algorithmic trading strategies. We discussed the need for
supervised learning algorithms to make assumptions about the functional relationships that
they attempt to learn. They do this to limit the search space while incurring an inductive
bias that may lead to excessive generalization errors.

We presented key aspects of the machine learning workflow, introduced the most common
error metrics for regression and classification models, explained the bias-variance trade-off,
and illustrated the various tools for managing the model selection process using cross-
validation.

In the following chapter, we will dive into linear models for regression and classification to
develop our first algorithmic trading strategies that use machine learning.

[173]

7
Linear Models – From Risk

Factors to Return Forecasts

The family of linear models represents one of the most useful hypothesis classes. Many
learning algorithms that are widely applied in algorithmic trading rely on linear predictors
because they can be efficiently trained, are relatively robust to noisy financial data, and
have strong links to the theory of finance. Linear predictors are also intuitive, easy to
interpret, and often fit the data reasonably well or at least provide a good baseline.

Linear regression has been known for over 200 years, since Legendre and Gauss applied
it to astronomy and began to analyze its statistical properties. Numerous extensions have
since adapted the linear regression model and the baseline ordinary least squares (OLS)
method to learn its parameters:

• Generalized linear models (GLM) expand the scope of applications by allowing
for response variables that imply an error distribution other than the normal
distribution. GLMs include the probit or logistic models for categorical response
variables that appear in classification problems.

• More robust estimation methods enable statistical inference where the data
violates baseline assumptions due to, for example, correlation over time or
across observations. This is often the case with panel data that contains repeated
observations on the same units, such as historical returns on a universe of assets.

• Shrinkage methods aim to improve the predictive performance of linear models.
They use a complexity penalty that biases the coefficients learned by the model,
with the goal of reducing the model's variance and improving out-of-sample
predictive performance.

In practice, linear models are applied to regression and classification problems with the
goals of inference and prediction. Numerous asset pricing models have been developed by
academic and industry researchers that leverage linear regression. Applications include the
identification of significant factors that drive asset returns for better risk and performance
management, as well as the prediction of returns over various time horizons. Classification
problems, on the other hand, include directional price forecasts.

Linear Models – From Risk Factors to Return Forecasts

[174]

In this chapter, we will cover the following topics:

• How linear regression works and which assumptions it makes

• Training and diagnosing linear regression models

• Using linear regression to predict stock returns

• Use regularization to improve predictive performance

• How logistic regression works

• Converting a regression into a classification problem

From inference to prediction
As the name suggests, linear regression models assume that the output is the result of
a linear combination of the inputs. The model also assumes a random error that allows for
each observation to deviate from the expected linear relationship. The reasons that the model
does not perfectly describe the relationship between inputs and output in a deterministic
way include, for example, missing variables, measurement, or data collection issues.

If we want to draw statistical conclusions about the true (but not observed) linear
relationship in the population based on the regression parameters estimated from the
sample, we need to add assumptions about the statistical nature of these errors. The
baseline regression model makes the strong assumption that the distribution of the errors is
identical across observations. It also assumes that errors are independent of each other—in
other words, knowing one error does not help to forecast the next error. The assumption of
independent and identically distributed (IID) errors implies that their covariance matrix
is the identity matrix multiplied by a constant representing the error variance.

These assumptions guarantee that the OLS method delivers estimates that are not only
unbiased but also efficient, which means that OLS estimates achieve the lowest sampling
error among all linear learning algorithms. However, these assumptions are rarely met
in practice.

In finance, we often encounter panel data with repeated observations on a given cross
section. The attempt to estimate the systematic exposure of a universe of assets to a set of
risk factors over time typically reveals correlation along the time axis, in the cross-sectional
dimension, or both. Hence, alternative learning algorithms have emerged that assume error
covariance matrices that are more complex than multiples of the identity matrix.

On the other hand, methods that learn biased parameters for a linear model may yield
estimates with lower variance and, hence, improve their predictive performance. Shrinkage
methods reduce the model's complexity by applying regularization, which adds a penalty
term to the linear objective function.

You can find the code samples for this chapter and links to
additional resources in the corresponding directory of the GitHub
repository. The notebooks include color versions of the images.

Chapter 7

[175]

This penalty is positively related to the absolute size of the coefficients so that they are
shrunk relative to the baseline case. Larger coefficients imply a more complex model that
reacts more strongly to variations in the inputs. When properly calibrated, the penalty can
limit the growth of the model's coefficients beyond what is optimal from a bias-variance
perspective.

First, we will introduce the baseline techniques for cross-section and panel data for linear
models, as well as important enhancements that produce accurate estimates when key
assumptions are violated. We will then illustrate these methods by estimating factor models
that are ubiquitous in the development of algorithmic trading strategies. Finally, we will
turn our attention to how shrinkage methods apply regularization and demonstrate how to
use them to predict asset returns and generate trading signals.

The baseline model – multiple linear regression
We will begin with the model's specification and objective function, the methods we can
use to learn its parameters, and the statistical assumptions that allow the inference and
diagnostics of these assumptions. Then, we will present extensions that we can use to adapt
the model to situations that violate these assumptions. Useful references for additional
background include Wooldridge (2002 and 2008).

How to formulate the model
The multiple regression model defines a linear functional relationship between one
continuous outcome variable and p input variables that can be of any type but may require
preprocessing. Multivariate regression, in contrast, refers to the regression of multiple
outputs on multiple input variables.

In the population, the linear regression model has the following form for a single instance
of the output y, an input vector 𝐗𝐗𝑇𝑇 = [𝑥𝑥1, , 𝑥𝑥𝑝𝑝] , and the error 𝜖𝜖 :

𝑦𝑦 𝑦 𝑦𝑦(x) + 𝜖𝜖 𝑦 𝜖𝜖0 + 𝜖𝜖1𝑥𝑥1…+ 𝜖𝜖𝑝𝑝𝑥𝑥𝑝𝑝 + 𝜖𝜖 𝑦 𝜖𝜖0 +∑𝜖𝜖𝑗𝑗𝑥𝑥𝑗𝑗 + 𝜖𝜖𝑝𝑝
𝑗𝑗𝑗1

The interpretation of the coefficients is straightforward: the value of a coefficient 𝛽𝛽𝑖𝑖 is the
partial, average effect of the variable x

i
 on the output, holding all other variables constant.

We can also write the model more compactly in matrix form. In this case, y is a vector of N
output observations, X is the design matrix with N rows of observations on the p variables
plus a column of 1s for the intercept, and 𝛽𝛽 is the vector containing the P = p+1 coefficients:𝒚𝒚(𝑁𝑁 𝑁 𝑁𝑁 = 𝑿𝑿(𝑁𝑁 𝑁 𝑁𝑁𝑁 𝜷𝜷(𝑁𝑁 𝑁 𝑁𝑁 + 𝝐𝝐(𝑁𝑁 𝑁 𝑁𝑁
The model is linear in its p +1 parameters but can represent nonlinear relationships if
we choose or transform variables accordingly, for example, by including a polynomial
basis expansion or logarithmic terms. You can also use categorical variables with dummy
encoding, and include interactions between variables by creating new inputs of the form x

i
xj.

Linear Models – From Risk Factors to Return Forecasts

[176]

To complete the formulation of the model from a statistical point of view so that we can
test hypotheses about its parameters, we need to make specific assumptions about the error
term. We'll do this after introducing the most important methods to learn the parameters.

How to train the model
There are several methods we can use to learn the model parameters from the data:
ordinary least squares (OLS), maximum likelihood estimation (MLE), and stochastic
gradient descent (SGD). We will present each method in turn.

Ordinary least squares – how to fit a hyperplane to the data
The method of least squares is the original method that learns the parameters of the
hyperplane that best approximates the output from the input data. As the name suggests,
it takes the best approximation to minimize the sum of the squared distances between the
output value and the hyperplane represented by the model.

The difference between the model's prediction and the actual outcome for a given data
point is the residual (whereas the deviation of the true model from the true output in the
population is called error). Hence, in formal terms, the least-squares estimation method
chooses the coefficient vector to minimize the residual sum of squares (RSS):

RSS(𝜷𝜷) = ∑ 𝜖𝜖𝑖𝑖2𝑁𝑁
𝑖𝑖𝑖𝑖

 = ∑(𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖))2𝑁𝑁
𝑖𝑖𝑖𝑖

 = ∑ (𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖𝑝𝑝
𝑖𝑖𝑖𝑖)2𝑁𝑁

𝑖𝑖𝑖𝑖
 = (𝒚𝒚 − 𝒚𝒚𝛽𝛽)𝑇𝑇(𝒚𝒚 − 𝒚𝒚𝛽𝛽)

Thus, the least-squares coefficients 𝛽𝛽LS are computed as:argmin 𝛽𝛽𝐿𝐿𝐿𝐿 RSS(𝜷𝜷) = (𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦)𝑇𝑇(𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦)

The optimal parameter vector that minimizes the RSS results from setting the derivatives
with respect to 𝛃𝛃 of the preceding expression to zero. Assuming X has full column rank,
which requires that the input variables are not linearly dependent, it is thus invertible, and
we obtain a unique solution, as follows:�̂�𝛽 = (𝑿𝑿𝑇𝑇𝑋𝑋)−1𝑿𝑿𝑇𝑇𝒚𝒚

Chapter 7

[177]

When y and X have means of zero, which can be achieved by subtracting their respective
means, 𝛃𝛃 represents the ratio of the covariance between the inputs and the outputs 𝑿𝑿𝑇𝑇𝒚𝒚 and
the output variance 𝑿𝑿𝑇𝑇𝑿𝑿

There is also a geometric interpretation: the coefficients that minimize RSS ensure that the
vector of residuals 𝒚𝒚 𝒚 �̂�𝒚 is orthogonal to the subspace of ℝ𝑃𝑃 spanned by the P columns of
X, and the estimates �̂�𝒚 are orthogonal projections into that subspace.

Maximum likelihood estimation

MLE is an important general method used to estimate the parameters of a statistical model.
It relies on the likelihood function, which computes how likely it is to observe the sample
of outputs when given the input data as a function of the model parameters. The likelihood
differs from probabilities in that it is not normalized to a range from 0 to 1.

We can set up the likelihood function for the multiple linear regression example by
assuming a distribution for the error term, such as the standard normal distribution:𝜖𝜖𝑖𝑖~𝑁𝑁(0,1) ∀ 𝑖𝑖 𝑖 1, 𝑖 , 𝑖𝑖

This allows us to compute the conditional probability of observing a given output y
i
 given

the corresponding input vector x
i
 and the parameters 𝛃𝛃 , 𝑝𝑝(𝑦𝑦𝑖𝑖|𝒙𝒙𝑖𝑖 , 𝜷𝜷) :𝑝𝑝(𝑦𝑦𝑖𝑖|𝒙𝒙𝑖𝑖, 𝜷𝜷) = 1𝜎𝜎√2𝜋𝜋 𝑒𝑒−𝜖𝜖𝑖𝑖22𝜎𝜎 = 1𝜎𝜎√2𝜋𝜋 𝑒𝑒−(𝑦𝑦𝑖𝑖−𝒙𝒙𝑖𝑖𝛽𝛽)22𝜎𝜎

Assuming the output values are conditionally independent, given the inputs, the likelihood
of the sample is proportional to the product of the conditional probabilities of the
individual output data points. Since it is easier to work with sums than with products, we
apply the logarithm to obtain the log-likelihood function:

log ℒ(𝒚𝒚𝒚 𝒚𝒚𝒚 𝒚𝒚) =∑ 1𝜎𝜎√2𝜋𝜋 𝑒𝑒−(𝑦𝑦𝑖𝑖−𝒚𝒚𝑖𝑖𝛽𝛽)22𝜎𝜎𝑛𝑛
𝑖𝑖𝑖𝑖

The goal of MLE is to choose the model parameters that maximize the probability of the
observed output sample, taking the inputs as given. Hence, the MLE parameter estimate
results from maximizing the log-likelihood function:𝛽𝛽MLE = argmin𝛽𝛽 ℒ

Due to the assumption of normally distributed errors, maximizing the log-likelihood
function produces the same parameter solution as least squares. This is because the only
expression that depends on the parameters is the squared residual in the exponent.

For other distributional assumptions and models, MLE will produce different results,
as we will see in the last section on binary classification, where the outcome follows a
Bernoulli distribution. Furthermore, MLE is a more general estimation method because,
in many cases, the least-squares method is not applicable, as we will see later for logistic
regression.

Linear Models – From Risk Factors to Return Forecasts

[178]

Gradient descent

Gradient descent is a general-purpose optimization algorithm that will find stationary
points of smooth functions. The solution will be a global optimum if the objective function
is convex. Variations of gradient descent are widely used in training complex neural
networks, but also to compute solutions for MLE problems.

The algorithm uses the gradient of the objective function. The gradient contains the partial
derivatives of the objective with respect to the parameters. These derivatives indicate how
much the objective changes for an infinitesimal (infinitely small) step in the direction of
the corresponding parameters. It turns out that the maximal change of the function value
results from a step in the direction of the gradient itself.

Figure 7.1 sketches the process for a single variable x and a convex function f(x), where we
are looking for the minimum, x

0
 . Where the function has a negative slope, gradient descent

increases the target value for x
0
, and decreases the values otherwise:

Figure 7.1: Gradient descent

When we minimize a function that describes, for example, the cost of a prediction error, the
algorithm computes the gradient for the current parameter values using the training data.
Then, it modifies each parameter in proportion to the negative value of its corresponding
gradient component. As a result, the objective function will assume a lower value and move
the parameters closer to the solution. The optimization stops when the gradient becomes
small, and the parameter values change very little.

The size of these steps is determined by the learning rate, which is a critical parameter
that may require tuning. Many implementations include the option for this learning rate
to gradually decrease with the number of iterations. Depending on the size of the data,
the algorithm may iterate many times over the entire dataset. Each such iteration is called
an epoch. The number of epochs and the tolerance used to stop further iterations are
additional hyperparameters you can tune.

Chapter 7

[179]

Stochastic gradient descent randomly selects a data point and computes the gradient for
this data point, as opposed to an average over a larger sample to achieve a speedup. There
are also batch versions that use a certain number of data points for each step.

The Gauss–Markov theorem
To assess the statistical properties of the model and run inference, we need to make
assumptions about the residuals that represent the part of the input data the model is
unable to correctly fit or "explain."

The Gauss–Markov theorem (GMT) defines the assumptions required for OLS to produce
unbiased estimates of the model parameters 𝛃𝛃 , and for these estimates to have the lowest
standard error among all linear models for cross-sectional data.

The baseline multiple regression model makes the following GMT assumptions
(Wooldridge 2008):

• In the population, linearity holds so that 𝑦𝑦 𝑦 𝑦𝑦0 + 𝑦𝑦1𝑥𝑥𝑥𝑥 + ⋯ + 𝑦𝑦𝑘𝑘𝑥𝑥𝑥𝑥 + 𝜖𝜖 , where 𝛃𝛃i
are unknown but constant and 𝝐𝝐 is a random error.

• The data for the input variables 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 is a random sample from the population.

• No perfect collinearity—there are no exact linear relationships among the input
variables.

• The error 𝝐𝝐 has a conditional mean of zero given any of the inputs: 𝐸𝐸[𝜖𝜖1, … , 𝑥𝑥𝑘𝑘] = 0 .
• Homoskedasticity—the error term 𝝐𝝐 has constant variance given the inputs: 𝐸𝐸[𝜖𝜖|𝑥𝑥1, … , 𝑥𝑥𝑘𝑘] = 𝜎𝜎2

The fourth assumption implies that no missing variable exists that is correlated with any of
the input variables.

Under the first four assumptions (GMT 1-4), the OLS method delivers unbiased estimates.
Including an irrelevant variable does not bias the intercept and slope estimates, but
omitting a relevant variable will result in biased parameter estimates.

Under GMT 1-4, OLS is then also consistent: as the sample size increases, the estimates
converge to the true value as the standard errors become arbitrary. The converse is,
unfortunately, also true: if the conditional expectation of the error is not zero because the
model misses a relevant variable or the functional form is wrong (for example, quadratic
or log terms are missing), then all parameter estimates are biased. If the error is correlated
with any of the input variables, then OLS is also not consistent and adding more data will
not remove the bias.

http://Wooldridge 2008

Linear Models – From Risk Factors to Return Forecasts

[180]

If we add the fifth assumption, then OLS also produces the best linear unbiased estimates
(BLUE). Best means that the estimates have the lowest standard error among all linear
estimators. Hence, if the five assumptions hold and the goal is statistical inference, then
the OLS estimates are the way to go. If the goal, however, is to predict, then we will see
that other estimators exist that trade some bias for a lower variance to achieve superior
predictive performance in many settings.

Now that we have introduced the basic OLS assumptions, we can take a look at inference in
small and large samples.

How to conduct statistical inference
Inference in the linear regression context aims to draw conclusions from the sample data
about the true relationship in the population. This includes testing hypotheses about the
significance of the overall relationship or the values of particular coefficients, as well as
estimates of confidence intervals.

The key ingredient for statistical inference is a test statistic with a known distribution,
typically computed from a quantity of interest like a regression coefficient. We can
formulate a null hypothesis about this statistic and compute the probability of observing
the actual value for this statistic, given the sample under the assumption that the
hypothesis is correct. This probability is commonly referred to as the p-value: if it drops
below a significance threshold (typically 5 percent), then we reject the hypothesis because
it makes the value that we observed for the test statistic in the sample very unlikely. On the
flip side, the p-value reflects the probability that we are wrong in rejecting what is, in fact, a
correct hypothesis.

In addition to the five GMT assumptions, the classical linear model assumes normality—
that the population error is normally distributed and independent of the input variables.
This strong assumption implies that the output variable is normally distributed, conditional
on the input variables. It allows for the derivation of the exact distribution of the
coefficients, which, in turn, implies exact distributions of the test statistics that are needed
for exact hypotheses tests in small samples. This assumption often fails in practice—asset
returns, for instance, are not normally distributed.

Chapter 7

[181]

Fortunately, however, the test statistics used under normality are also approximately valid
when normality does not hold. More specifically, the following distributional characteristics
of the test statistics hold approximately under GMT assumptions 1–5 and exactly when
normality holds:

• The parameter estimates follow a multivariate normal distribution: �̂�𝛽~𝑁𝑁𝑁𝛽𝛽𝑁 (𝑿𝑿𝑻𝑻𝑿𝑿)−1𝜎𝜎 .
• Under GMT 1–5, the parameter estimates are unbiased, and we can get an unbiased

estimate of 𝜎𝜎 , the constant error variance, using 𝜎𝜎𝜎 𝜎 1𝑁𝑁 𝑁 𝑁𝑁 𝑁 1∑(𝑦𝑦𝑖𝑖 𝑁 𝑦𝑦𝜎𝑖𝑖)2𝑁𝑁
𝑖𝑖𝑖𝑖 .

• The t-statistic for a hypothesis test about an individual coefficient 𝛽𝛽𝑗𝑗 is 𝑡𝑡𝑗𝑗 = �̂�𝛽𝑗𝑗𝜎𝜎𝜎√𝑣𝑣𝑗𝑗 ~𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁

and follows a t distribution with N-p-1 degrees of freedom, where 𝑣𝑣𝑗𝑗 is the j's
element of the diagonal of (𝑿𝑿𝑻𝑻𝑿𝑿)−1 .

• The t distribution converges to the normal distribution. Since the 97.5 quantile
of the normal distribution is about 1.96, a useful rule of thumb for a 95 percent
confidence interval around a parameter estimate is �̂�𝛽 ± 2 ∙ se(�̂�𝛽) , where se means standard error. An interval that includes zero implies
that we can't reject the null hypothesis that the true parameter is zero and, hence,
irrelevant for the model.

• The F-statistic allows for tests of restrictions on several parameters, including
whether the entire regression is significant. It measures the change (reduction) in
the RSS that results from additional variables.

• Finally, the Lagrange multiplier (LM) test is an alternative to the F-test for testing
multiple restrictions.

How to diagnose and remedy problems
Diagnostics validate the model assumptions and help us prevent wrong conclusions when
interpreting the result and conducting statistical inference. They include goodness of fit
measures and various tests of the assumptions about the error term, including how closely
the residuals match a normal distribution.

Furthermore, diagnostics evaluate whether the residual variance is indeed constant or
exhibits heteroskedasticity (covered later in this section). They also test if the errors are
conditionally uncorrelated or exhibit serial correlation, that is, if knowing one error helps to
predict consecutive errors.

In addition to conducting the following diagnostic tests, you should always visually inspect
the residuals. This helps to detect whether they reflect systematic patterns, as opposed to
random noise that suggests the model is missing one or more factors that drive the outcome.

Linear Models – From Risk Factors to Return Forecasts

[182]

Goodness of fit
Goodness-of-fit measures assess how well a model explains the variation in the outcome.
They help to evaluate the quality of the model specification, for instance, when selecting
among different model designs.

Goodness-of-fit metrics differ in how they measure the fit. Here, we will focus on in-
sample metrics; we will use out-of-sample testing and cross-validation when we focus on
predictive models in the next section.

Prominent goodness-of-fit measures include the (adjusted) R2, which should be maximized
and is based on the least-squares estimate:

• R2 measures the share of the variation in the outcome data explained by the model

and is computed as 𝑅𝑅2 = 1 − RSSTSS , where TSS is the sum of squared deviations of the

outcome from its mean. It also corresponds to the squared correlation coefficient
between the actual outcome values and those estimated by the model. The implicit
goal is to maximize R2. However, it never decreases as we add more variables. One
of the shortcomings of R2, therefore, is that it encourages overfitting.

• The adjusted R2 penalizes R2 for adding more variables; each additional variable
needs to reduce the RSS significantly to produce better goodness of fit.

Alternatively, the Akaike information criterion (AIC) and the Bayesian information
criterion (BIC) are to be minimized and are based on the maximum-likelihood estimate:

• AIC = −2 log(ℒ∗) + 2𝑘𝑘 , where ℒ∗ is the value of the maximized likelihood function
and k is the number of parameters.

• BIC = −2 log(ℒ∗) + log(𝑁𝑁)𝑘𝑘 , where N is the sample size.

Both metrics penalize for complexity. BIC imposes a higher penalty, so it might underfit
relative to AIC and vice versa.

Conceptually, AIC aims to find the model that best describes an unknown data-generating
process, whereas BIC tries to find the best model among the set of candidates. In practice,
both criteria can be used jointly to guide model selection when the goal is an in-sample
fit; otherwise, cross-validation and selection based on estimates of generalization error are
preferable.

Heteroskedasticity

GMT assumption 5 requires the residual covariance to take the shape Σ = 𝜎𝜎2𝑰𝑰 , that
is, a diagonal matrix with entries equal to the constant variance of the error term.
Heteroskedasticity occurs when the residual variance is not constant but differs across
observations. If the residual variance is positively correlated with an input variable, that
is, when errors are larger for input values that are far from their mean, then OLS standard
error estimates will be too low; consequently, the t-statistic will be inflated, leading to false
discoveries of relationships where none actually exist.

Chapter 7

[183]

Diagnostics starts with a visual inspection of the residuals. Systematic patterns in the
(supposedly random) residuals suggest statistical tests of the null hypothesis that errors
are homoscedastic against various alternatives. These tests include the Breusch–Pagan and
White tests.

There are several ways to correct OLS estimates for heteroskedasticity:

• Robust standard errors (sometimes called White standard errors) take
heteroskedasticity into account when computing the error variance using a so-
called sandwich estimator.

• Clustered standard errors assume that there are distinct groups in your data that
are homoscedastic, but the error variance differs between groups. These groups
could be different asset classes or equities from different industries.

Several alternatives to OLS estimate the error covariance matrix using different
assumptions when Σ ≠ 𝜎𝜎2𝑰𝑰 . The following are available in statsmodels:

• Weighted least squares (WLS): For heteroskedastic errors where the covariance
matrix has only diagonal entries, as for OLS, but now the entries are allowed to vary.

• Feasible generalized least squares (GLSAR): For autocorrelated errors that follow
an autoregressive AR(p) process (see Chapter 9, Time-Series Models for Volatility
Forecasts and Statistical Arbitrage).

• Generalized least squares (GLS): For arbitrary covariance matrix structure;
yields efficient and unbiased estimates in the presence of heteroskedasticity
or serial correlation.

Serial correlation

Serial correlation means that consecutive residuals produced by linear regression are
correlated, which violates the fourth GMT assumption. Positive serial correlation implies
that the standard errors are underestimated and that the t-statistics will be inflated,
leading to false discoveries if ignored. However, there are procedures to correct for serial
correlation when calculating standard errors.

The Durbin–Watson statistic diagnoses serial correlation. It tests the hypothesis that the OLS
residuals are not autocorrelated against the alternative that they follow an autoregressive
process (which we will explore in the next chapter). The test statistic ranges from 0 to 4;
values near 2 indicate non-autocorrelation, lower values suggest positive autocorrelation, and
higher values indicate negative autocorrelation. The exact threshold values depend on the
number of parameters and observations and need to be looked up in tables.

Linear Models – From Risk Factors to Return Forecasts

[184]

Multicollinearity

Multicollinearity occurs when two or more independent variables are highly correlated.
This poses several challenges:

• It is difficult to determine which factors influence the dependent variable.
• The individual p-values can be misleading—a p-value can be high, even if the

variable is, in fact, important.

• The confidence intervals for the regression coefficients will be too wide, possibly
even including zero. This complicates the determination of an independent
variable's effect on the outcome.

There is no formal or theory-based solution that corrects for multicollinearity. Instead,
try to remove one or more of the correlated input variables, or increase the sample size.

How to run linear regression in practice
The accompanying notebook, linear_regression_intro.ipynb, illustrates a simple and
then a multiple linear regression, the latter using both OLS and gradient descent. For the
multiple regression, we generate two random input variables x

1
 and x

2
 that range from -50

to +50, and an outcome variable that's calculated as a linear combination of the inputs, plus
random Gaussian noise, to meet the normality assumption GMT 6:𝑦𝑦 𝑦 50 + 𝑥𝑥1 + 3𝑥𝑥2 + 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖0𝜖50)

OLS with statsmodels
We use statsmodels to estimate a multiple regression model that accurately reflects the
data-generating process, as follows:

import statsmodels.api as sm

X_ols = sm.add_constant(X)

model = sm.OLS(y, X_ols).fit()
model.summary()

This yields the following OLS Regression Results summary:

Chapter 7

[185]

Figure 7.2: OLS Regression Results summary

The upper part of the summary displays the dataset characteristics—namely, the estimation
method and the number of observations and parameters—and indicates that standard error
estimates do not account for heteroskedasticity. The middle panel shows the coefficient
values that closely reflect the artificial data-generating process. We can confirm that the
estimates displayed in the middle of the summary result can be obtained using the OLS
formula derived previously:

beta = np.linalg.inv(X_ols.T.dot(X_ols)).dot(X_ols.T.dot(y))

pd.Series(beta, index=X_ols.columns)

const 53.29

X_1 0.99

X_2 2.96

The following code visualizes how the model fitted by the model to the randomly
generated data points:

three_dee = plt.figure(figsize=(15, 5)).gca(projection='3d')
three_dee.scatter(data.X_1, data.X_2, data.Y, c='g')

data['y-hat'] = model.predict()

to_plot = data.set_index(['X_1', 'X_2']).unstack().loc[:, 'y-hat']

three_dee.plot_surface(X_1, X_2, to_plot.values, color='black', alpha=0.2,
linewidth=1, antialiased=True)

for _, row in data.iterrows():

 plt.plot((row.X_1, row.X_1), (row.X_2, row.X_2), (row.Y, row['y-hat']),
 'k-');

three_dee.set_xlabel('X_1');three_dee.set_ylabel('X_2');three_dee.set_
zlabel('Y, \hat{Y}')

Linear Models – From Risk Factors to Return Forecasts

[186]

Figure 7.3 displays the resulting hyperplane and original data points:

Figure 7.3: Regression hyperplane

The upper right part of the panel displays the goodness-of-fit measures we just discussed,
alongside the F-test, which rejects the hypothesis that all coefficients are zero and
irrelevant. Similarly, the t-statistics indicate that intercept and both slope coefficients are,
unsurprisingly, highly significant.

The bottom part of the summary contains the residual diagnostics. The left panel displays
skew and kurtosis, which are used to test the normality hypothesis. Both the Omnibus
and the Jarque–Bera tests fail to reject the null hypothesis that the residuals are normally
distributed. The Durbin–Watson statistic tests for serial correlation in the residuals and
has a value near 2, which, given two parameters and 625 observations, fails to reject the
hypothesis of no serial correlation, as outlined in the previous section on this topic.

Lastly, the condition number provides evidence about multicollinearity: it is the ratio
of the square roots of the largest and the smallest eigenvalue of the design matrix that
contains the input data. A value above 30 suggests that the regression may have significant
multicollinearity.

statsmodels includes additional diagnostic tests that are linked in the notebook.

Stochastic gradient descent with sklearn
The sklearn library includes an SGDRegressor model in its linear_models module. To learn
the parameters for the same model using this method, we need to standardize the data
because the gradient is sensitive to the scale.

We use the StandardScaler() for this purpose: it computes the mean and the standard
deviation for each input variable during the fit step, and then subtracts the mean and
divides by the standard deviation during the transform step, which we can conveniently
conduct in a single fit_transform() command:

scaler = StandardScaler()

X_ = scaler.fit_transform(X)

Chapter 7

[187]

Then, we instantiate SGDRegressor using the default values except for a random_state
setting to facilitate replication:

sgd = SGDRegressor(loss='squared_loss',

 fit_intercept=True,
 shuffle=True, # shuffle data for better estimates
 random_state=42,

 learning_rate='invscaling', # reduce rate over time

 eta0=0.01, # parameters for learning rate path

 power_t=0.25)

Now, we can fit the sgd model, create the in-sample predictions for both the OLS and the
sgd models, and compute the root mean squared error for each:

sgd.fit(X=X_, y=y)
resids = pd.DataFrame({'sgd': y - sgd.predict(X_),

 'ols': y - model.predict(sm.add_constant(X))})

resids.pow(2).sum().div(len(y)).pow(.5)

ols 48.22

sgd 48.22

As expected, both models yield the same result. We will now take on a more ambitious
project using linear regression to estimate a multi-factor asset pricing model.

How to build a linear factor model
Algorithmic trading strategies use factor models to quantify the relationship between the
return of an asset and the sources of risk that are the main drivers of these returns. Each
factor risk carries a premium, and the total asset return can be expected to correspond to a
weighted average of these risk premia.

There are several practical applications of factor models across the portfolio management
process, from construction and asset selection to risk management and performance
evaluation. The importance of factor models continues to grow as common risk factors are
now tradeable:

• A summary of the returns of many assets, by a much smaller number of factors,
reduces the amount of data required to estimate the covariance matrix when
optimizing a portfolio.

• An estimate of the exposure of an asset or a portfolio to these factors allows for the
management of the resulting risk, for instance, by entering suitable hedges when
risk factors are themselves traded or can be proxied.

• A factor model also permits the assessment of the incremental signal content of new
alpha factors.

Linear Models – From Risk Factors to Return Forecasts

[188]

• A factor model can also help assess whether a manager's performance, relative
to a benchmark, is indeed due to skillful asset selection and market timing, or if
the performance can instead be explained by portfolio tilts toward known return
drivers. These drivers can, today, be replicated as low-cost, passively managed
funds that do not incur active management fees.

The following examples apply to equities, but risk factors have been identified for all asset
classes (Ang 2014).

From the CAPM to the Fama–French factor models
Risk factors have been a key ingredient to quantitative models since the capital asset
pricing model (CAPM) explained the expected returns of all N assets 𝑟𝑟𝑖𝑖, 𝑖𝑖 𝑖 𝑖, 𝑖 , 𝑖𝑖 using
their respective exposure 𝛽𝛽𝑖𝑖 to a single factor, the expected excess return of the overall
market over the risk-free rate 𝑟𝑟𝑓𝑓 . The CAPM model takes the following linear form:𝐸𝐸[𝑟𝑟𝑖𝑖] = 𝛼𝛼𝑖𝑖 + 𝑟𝑟𝑓𝑓 + 𝛽𝛽𝑖𝑖(𝐸𝐸[𝑟𝑟𝑚𝑚] − 𝑟𝑟𝑓𝑓

This differs from the classic fundamental analysis, à la Dodd and Graham, where returns
depend on firm characteristics. The rationale is that, in the aggregate, investors cannot
eliminate this so-called systematic risk through diversification. Hence, in equilibrium,
they require compensation for holding an asset commensurate with its systematic risk.
The model implies that, given efficient markets where prices immediately reflect all public
information, there should be no superior risk-adjusted returns. In other words, the value of 𝛼𝛼 should be zero.

Empirical tests of the model use linear regression and have consistently failed, for example,
by identifying anomalies in the form of superior risk-adjusted returns that do not depend
on overall market exposure, such as higher returns for smaller firms (Goyal 2012).

These failures have prompted a lively debate about whether the efficient markets or the
single factor aspect of the joint hypothesis is to blame. It turns out that both premises are
probably wrong:

• Joseph Stiglitz earned the 2001 Nobel Prize in economics in part for showing that
markets are generally not perfectly efficient: if markets are efficient, there is no
value in collecting data because this information is already reflected in prices.
However, if there is no incentive to gather information, it is hard to see how it
should be already reflected in prices.

• On the other hand, theoretical and empirical improvements of the CAPM suggest
that additional factors help explain some of the anomalies mentioned previously,
which result in various multi-factor models.

Chapter 7

[189]

Stephen Ross proposed the arbitrage pricing theory (APT) in 1976 as an alternative that
allows for several risk factors while eschewing market efficiency. In contrast to the CAPM,
it assumes that opportunities for superior returns due to mispricing may exist but will
quickly be arbitraged away. The theory does not specify the factors, but research suggests
that the most important are changes in inflation and industrial production, as well as
changes in risk premia or the term structure of interest rates.

Kenneth French and Eugene Fama (who won the 2013 Nobel Prize) identified additional
risk factors that depend on firm characteristics and are widely used today. In 1993, the
Fama–French three-factor model added the relative size and value of firms to the single
CAPM source of risk. In 2015, the five-factor model further expanded the set to include
firm profitability and level of investment, which had been shown to be significant in the
intervening years. In addition, many factor models include a price momentum factor.

The Fama–French risk factors are computed as the return difference on diversified
portfolios with high or low values, according to metrics that reflect a given risk factor.
These returns are obtained by sorting stocks according to these metrics and then going
long stocks above a certain percentile, while shorting stocks below a certain percentile.
The metrics associated with the risk factors are defined as follows:

• Size: Market equity (ME)

• Value: Book value of equity (BE) divided by ME

• Operating profitability (OP): Revenue minus cost of goods sold/assets

• Investment: Investment/assets

There are also unsupervised learning techniques for the data-driven discovery of
risk factors that use factors and principal component analysis. We will explore this in
Chapter 13, Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning.

Obtaining the risk factors
Fama and French make updated risk factors and research portfolio data available through
their website, and you can use the pandas_datareader library to obtain the data. For this
application, refer to the fama_macbeth.ipynb notebook for the following code examples and
additional detail.

In particular, we will be using the five Fama–French factors that result from sorting stocks,
first into three size groups and then into two, for each of the remaining three firm-specific
factors. Hence, the factors involve three sets of value-weighted portfolios formed as 3 × 2
sorts on size and book-to-market, size and operating profitability, and size and investment.
The risk factor values computed as the average returns of the portfolios (PF) are outlined in
the following table:

Linear Models – From Risk Factors to Return Forecasts

[190]

Concept Label Name Risk factor calculation

Size SMB Small minus big Nine small stock PF minus nine large stock PF.

Value HML High minus low
Two value PF minus two growth (with low BE/
ME value) PF.

Profitability RMW Robust minus weak Two robust OP PF minus two weak OP PF.

Investment CMA
Conservative minus
aggressive

Two conservative investment portfolios, minus
two aggressive investment portfolios.

Market Rm-Rf
Excess return on the
market

Value-weight return of all firms incorporated in
and listed on major US exchanges with good data,
minus the one-month Treasury bill rate.

We will use returns at a monthly frequency that we will obtain for the period 2010–2017,
as follows:

import pandas_datareader.data as web

ff_factor = 'F-F_Research_Data_5_Factors_2x3'
ff_factor_data = web.DataReader(ff_factor, 'famafrench', start='2010',
 end='2017-12')[0]

ff_factor_data.info()
PeriodIndex: 96 entries, 2010-01 to 2017-12

Freq: M

Data columns (total 6 columns):

Mkt-RF 96 non-null float64
SMB 96 non-null float64
HML 96 non-null float64
RMW 96 non-null float64
CMA 96 non-null float64
RF 96 non-null float64

Fama and French also made numerous portfolios available that we can use to illustrate
the estimation of the factor exposures, as well as the value of the risk premia available in
the market for a given time period. We will use a panel of the 17 industry portfolios at a
monthly frequency. We will subtract the risk-free rate from the returns because the factor
model works with excess returns:

ff_portfolio = '17_Industry_Portfolios'
ff_portfolio_data = web.DataReader(ff_portfolio, 'famafrench', start='2010',
 end='2017-12')[0]

ff_portfolio_data = ff_portfolio_data.sub(ff_factor_data.RF, axis=0)
ff_factor_data = ff_factor_data.drop('RF', axis=1)
ff_portfolio_data.info()
PeriodIndex: 96 entries, 2010-01 to 2017-12

Freq: M

Data columns (total 17 columns):

Food 96 non-null float64

Chapter 7

[191]

Mines 96 non-null float64
Oil 96 non-null float64
...

Rtail 96 non-null float64
Finan 96 non-null float64
Other 96 non-null float64

We will now build a linear factor model based on this panel data using a method that
addresses the failure of some basic linear regression assumptions.

Fama–Macbeth regression
Given data on risk factors and portfolio returns, it is useful to estimate the portfolio's
exposure to these returns to learn how much they drive the portfolio's returns. It is also of
interest to understand the premium that the market pays for the exposure to a given factor,
that is, how much taking this risk is worth. The risk premium then permits to estimate the
return for any portfolio provide we know or can assume its factor exposure.

More formally, we will have i=1, ..., N asset or portfolio returns over t=1, ..., T periods, and
each asset's excess period return will be denoted. The goal is to test whether the j=1, ..., M
factors explain the excess returns and the risk premium associated with each factor. In our
case, we have N=17 portfolios and M=5 factors, each with 96 periods of data.

Factor models are estimated for many stocks in a given period. Inference problems will
likely arise in such cross-sectional regressions because the fundamental assumptions
of classical linear regression may not hold. Potential violations include measurement
errors, covariation of residuals due to heteroskedasticity and serial correlation, and
multicollinearity (Fama and MacBeth 1973).

To address the inference problem caused by the correlation of the residuals, Fama and
MacBeth proposed a two-step methodology for a cross-sectional regression of returns on
factors. The two-stage Fama–Macbeth regression is designed to estimate the premium
rewarded for the exposure to a particular risk factor by the market. The two stages consist of:

• First stage: N time-series regression, one for each asset or portfolio, of its excess
returns on the factors to estimate the factor loadings. In matrix form, for each asset:𝒓𝒓𝑖𝑖𝑇𝑇 𝑇 𝑇 = 𝑭𝑭𝑇𝑇 𝑇 𝑇𝑇𝑇 𝑇 𝑇𝑇 𝜷𝜷𝑖𝑖𝑇𝑇𝑇 𝑇 𝑇𝑇 𝑇 𝑇 𝑇 𝝐𝝐𝑖𝑖𝑇𝑇 𝑇 𝑇

• Second stage: T cross-sectional regression, one for each time period, to estimate the
risk premium. In matrix form, we obtain a vector of risk premia for each period:𝒓𝒓𝑡𝑡𝑁𝑁 𝑁 𝑁𝑁𝑁 𝑁 𝑁𝑁 = �̂�𝜷𝑁𝑁 𝑁 𝑁𝑁𝑁 𝑁 𝑁𝑁 𝝀𝝀𝒕𝒕𝑁𝑁𝑁 𝑁 𝑁𝑁 𝑁 𝑁

Linear Models – From Risk Factors to Return Forecasts

[192]

Now, we can compute the factor risk premia as the time average and get a t-statistic to
assess their individual significance, using the assumption that the risk premia estimates are
independent over time: 𝑡𝑡 𝑡 λ𝑗𝑗𝜎𝜎𝜎λ𝑗𝑗)/√𝜎𝑇𝑇)
If we had a very large and representative data sample on traded risk factors, we could
use the sample mean as a risk premium estimate. However, we typically do not have a
sufficiently long history to, and the margin of error around the sample mean could be quite
large. The Fama–Macbeth methodology leverages the covariance of the factors with other
assets to determine the factor premia.

The second moment of asset returns is easier to estimate than the first moment, and
obtaining more granular data improves estimation considerably, which is not true of mean
estimation.

We can implement the first stage to obtain the 17 factor loading estimates as follows:

betas = []

for industry in ff_portfolio_data:
 step1 = OLS(endog=ff_portfolio_data.loc[ff_factor_data.index, industry],
 exog=add_constant(ff_factor_data)).fit()
 betas.append(step1.params.drop('const'))

betas = pd.DataFrame(betas,

 columns=ff_factor_data.columns,
 index=ff_portfolio_data.columns)
betas.info()

Index: 17 entries, Food to Other

Data columns (total 5 columns):

Mkt-RF 17 non-null float64
SMB 17 non-null float64
HML 17 non-null float64
RMW 17 non-null float64
CMA 17 non-null float64

For the second stage, we run 96 regressions of the period returns for the cross section of
portfolios on the factor loadings:

lambdas = []

for period in ff_portfolio_data.index:
 step2 = OLS(endog=ff_portfolio_data.loc[period, betas.index],
 exog=betas).fit()
 lambdas.append(step2.params)

lambdas = pd.DataFrame(lambdas,

 index=ff_portfolio_data.index,
 columns=betas.columns.tolist())

lambdas.info()

Chapter 7

[193]

PeriodIndex: 96 entries, 2010-01 to 2017-12

Freq: M

Data columns (total 5 columns):

Mkt-RF 96 non-null float64
SMB 96 non-null float64
HML 96 non-null float64
RMW 96 non-null float64
CMA 96 non-null float64

Finally, we compute the average for the 96 periods to obtain our factor risk premium
estimates:

lambdas.mean()

Mkt-RF 1.243632

SMB -0.004863

HML -0.688167

RMW -0.237317

CMA -0.318075

RF -0.013280

The linearmodels library extends statsmodels with various models for panel data and also
implements the two-stage Fama–MacBeth procedure:

model = LinearFactorModel(portfolios=ff_portfolio_data,
 factors=ff_factor_data)
res = model.fit()

This provides us with the same result:

Figure 7.4: LinearFactorModel estimation summary

The accompanying notebook illustrates the use of categorical variables by using industry
dummies when estimating risk premia for a larger panel of individual stocks.

Linear Models – From Risk Factors to Return Forecasts

[194]

Regularizing linear regression using shrinkage
The least-squares method to train a linear regression model will produce the best linear and
unbiased coefficient estimates when the Gauss–Markov assumptions are met. Variations
like GLS fare similarly well, even when OLS assumptions about the error covariance matrix
are violated. However, there are estimators that produce biased coefficients to reduce
the variance and achieve a lower generalization error overall (Hastie, Tibshirani, and
Friedman 2009).

When a linear regression model contains many correlated variables, their coefficients will
be poorly determined. This is because the effect of a large positive coefficient on the RSS
can be canceled by a similarly large negative coefficient on a correlated variable. As a result,
the risk of prediction errors due to high variance increases because this wiggle room for the
coefficients makes the model more likely to overfit to the sample.

How to hedge against overfitting
One popular technique to control overfitting is that of regularization, which involves the
addition of a penalty term to the error function to discourage the coefficients from reaching
large values. In other words, size constraints on the coefficients can alleviate the potentially
negative impact on out-of-sample predictions. We will encounter regularization methods
for all models since overfitting is such a pervasive problem.

In this section, we will introduce shrinkage methods that address two motivations to
improve on the approaches to linear models discussed so far:

• Prediction accuracy: The low bias but high variance of least-squares estimates
suggests that the generalization error could be reduced by shrinking or setting
some coefficients to zero, thereby trading off a slightly higher bias for a reduction in
the variance of the model.

• Interpretation: A large number of predictors may complicate the interpretation or
communication of the big picture of the results. It may be preferable to sacrifice some
detail to limit the model to a smaller subset of parameters with the strongest effects.

Shrinkage models restrict the regression coefficients by imposing a penalty on their size.
They achieve this goal by adding a term 𝑆𝑆(𝛃𝛃) to the objective function. This term implies
that the coefficients of a shrinkage model minimize the RSS, plus a penalty that is positively
related to the (absolute) size of the coefficients.

The added penalty thus turns the linear regression coefficients into the solution to a
constrained minimization problem that, in general, takes the following Lagrangian form:

�̂�𝜷𝑺𝑺 = argmin𝜷𝜷𝑆𝑆 ∑ [(𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − ∑ 𝛽𝛽𝑗𝑗𝑥𝑥𝑗𝑗𝑝𝑝
𝑗𝑗𝑗𝑗)2 + 𝜆𝜆 𝜆𝜆(𝜷𝜷)]𝑁𝑁

𝑖𝑖𝑗𝑗 = argmin𝜷𝜷𝑆𝑆 𝒚𝒚 − 𝑿𝑿𝜷𝜷 − 𝜆𝜆 𝜆𝜆(𝜷𝜷)

Chapter 7

[195]

The regularization parameter λ determines the size of the penalty effect, that is, the
strength of the regularization. As soon as λ is positive, the coefficients will differ from the
unconstrained least squared parameters, which implies a biased estimate. You should
choose hyperparameter λ adaptively via cross-validation to minimize an estimate of the
expected prediction error. We will illustrate how to do so in the next section.

Shrinkage models differ by how they calculate the penalty, that is, the functional form of
S. The most common versions are the ridge regression, which uses the sum of the squared
coefficients, and the lasso model, which bases the penalty on the sum of the absolute values
of the coefficients.

Elastic net regression, which is not explicitly covered here, uses a combination of both.
Scikit-learn includes an implementation that works very similarly to the examples we
will demonstrate here.

How ridge regression works
Ridge regression shrinks the regression coefficients by adding a penalty to the objective
function that equals the sum of the squared coefficients, which in turn corresponds to the
L2 norm of the coefficient vector (Hoerl and Kennard 1970):

𝑆𝑆(𝜷𝜷) =∑𝛽𝛽𝑖𝑖2 = ‖𝜷𝜷‖2𝑝𝑝
𝑖𝑖𝑖𝑖

Hence, the ridge coefficients are defined as:

�̂�𝜷Ridge = argmin𝜷𝜷Ridge ∑ [(𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − ∑ 𝛽𝛽𝑗𝑗𝑥𝑥𝑗𝑗𝑝𝑝
𝑗𝑗𝑗𝑗)2 + 𝜆𝜆 ∑ 𝜷𝜷𝑗𝑗2𝑝𝑝

𝑗𝑗𝑗𝑗]𝑁𝑁
𝑖𝑖𝑗𝑗 = argmin𝜷𝜷Ridge (𝒚𝒚 − 𝑿𝑿𝜷𝜷)𝑇𝑇(𝒚𝒚 − 𝑿𝑿𝜷𝜷) + 𝜆𝜆𝜷𝜷𝑻𝑻𝜷𝜷

The intercept 𝛽𝛽0 has been excluded from the penalty to make the procedure independent of
the origin chosen for the output variable—otherwise, adding a constant to all output values
would change all slope parameters, as opposed to a parallel shift.

It is important to standardize the inputs by subtracting from each input the corresponding
mean and dividing the result by the input's standard deviation. This is because the ridge
solution is sensitive to the scale of the inputs. There is also a closed solution for the ridge
estimator that resembles the OLS case:�̂�𝜷Ridge = (𝑿𝑿𝑇𝑇𝑿𝑿𝑿 𝜆𝜆𝜆𝜆)−1𝑿𝑿𝑇𝑇𝒚𝒚

Linear Models – From Risk Factors to Return Forecasts

[196]

The solution adds the scaled identity matrix 𝜆𝜆𝜆𝜆 to XTX before inversion, which guarantees
that the problem is non-singular, even if XTX does not have full rank. This was one of the
motivations for using this estimator when it was originally introduced.

The ridge penalty results in the proportional shrinkage of all parameters. In the case
of orthonormal inputs, the ridge estimates are just a scaled version of the least-squares
estimates, that is: �̂�𝜷Ridge = �̂�𝜷LS1 + λ

Using the singular value decomposition (SVD) of the input matrix X, we can gain
insight into how the shrinkage affects inputs in the more common case where they are not
orthonormal. The SVD of a centered matrix represents the principal components of a matrix
(see Chapter 13, Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning)
that capture uncorrelated directions in the column space of the data in descending order
of variance.

Ridge regression shrinks the coefficients relative to the alignment of input variables with
the directions in the data that exhibit most variance. More specifically, it shrinks those
coefficients the most that represent inputs aligned with the principal components that
capture less variance. Hence, the assumption that's implicit in ridge regression is that the
directions in the data that vary the most will be most influential or most reliable when
predicting the output.

How lasso regression works
The lasso (Hastie, Tibshirani, and Wainwright 2015), known as basis pursuit in signal
processing, also shrinks the coefficients by adding a penalty to the sum of squares of the
residuals, but the lasso penalty has a slightly different effect. The lasso penalty is the sum of
the absolute values of the coefficient vector, which corresponds to its L1 norm. Hence, the
lasso estimate is defined by:

�̂�𝜷Lasso = argmin𝜷𝜷Lasso ∑ [(𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − ∑ 𝛽𝛽𝑗𝑗𝑥𝑥𝑗𝑗𝑝𝑝
𝑗𝑗𝑗𝑗)2 + 𝜆𝜆 ∑|𝛽𝛽𝑗𝑗|𝑝𝑝

𝑗𝑗𝑗𝑗]𝑁𝑁
𝑖𝑖𝑗𝑗 = argmin𝜷𝜷Lasso (𝒚𝒚 − 𝑿𝑿𝜷𝜷)𝑇𝑇(𝒚𝒚 − 𝑿𝑿𝜷𝜷) + 𝜆𝜆𝜷𝜷|

Similar to ridge regression, the inputs need to be standardized. The lasso penalty makes
the solution nonlinear, and there is no closed-form expression for the coefficients, as in
ridge regression. Instead, the lasso solution is a quadratic programming problem, and
there are efficient algorithms that compute the entire path of coefficients, which results in
different values of λ with the same computational cost as ridge regression.

The lasso penalty had the effect of gradually reducing some coefficients to zero as the
regularization increases. For this reason, the lasso can be used for the continuous selection
of a subset of features.

Chapter 7

[197]

Let's now move on and put the various linear regression models to practical use and
generate predictive stock trading signals.

How to predict returns with linear regression
In this section, we will use linear regression with and without shrinkage to predict returns
and generate trading signals.

First, we need to create the model inputs and outputs. To this end, we'll create features
along the lines we discussed in Chapter 4, Financial Feature Engineering – How to Research
Alpha Factors, as well as forward returns for various time horizons, which we will use as
outcomes for the models.

Then, we will apply the linear regression models discussed in the previous section
to illustrate their usage with statsmodels and sklearn and evaluate their predictive
performance. In the next chapter, we will use the results to develop a trading strategy
and demonstrate the end-to-end process of backtesting a strategy driven by a machine
learning model.

Preparing model features and forward returns
To prepare the data for our predictive model, we need to:

• Select a universe of equities and a time horizon

• Build and transform alpha factors that we will use as features

• Calculate forward returns that we aim to predict

• And (potentially) clean our data

The notebook preparing_the_model_data.ipynb contains the code examples for this section.

Creating the investment universe

We will use daily equity data from the Quandl Wiki US Stock Prices dataset for the years
2013 to 2017. See the instructions in the data directory in the root folder of the GitHub
repository for this book on how to obtain the data.

We start by loading the daily (adjusted) open, high, low, close, and volume (OHLCV)
prices and metadata, which includes sector information. Use the path to DATA_STORE, where
you originally saved the Quandl Wiki data:

START = '2013-01-01'

END = '2017-12-31'

idx = pd.IndexSlice # to select from pd.MultiIndex

DATA_STORE = '../data/assets.h5'

with pd.HDFStore(DATA_STORE) as store:

Linear Models – From Risk Factors to Return Forecasts

[198]

 prices = (store['quandl/wiki/prices']

 .loc[idx[START:END, :],

 ['adj_open', 'adj_close', 'adj_low',

 'adj_high', 'adj_volume']]

 .rename(columns=lambda x: x.replace('adj_', ''))

 .swaplevel()

 .sort_index())

 stocks = (store['us_equities/stocks']

 .loc[:, ['marketcap', 'ipoyear', 'sector']])

We remove tickers that do not have at least 2 years of data:

MONTH = 21

YEAR = 12 * MONTH

min_obs = 2 * YEAR

nobs = prices.groupby(level='ticker').size()

keep = nobs[nobs > min_obs].index

prices = prices.loc[idx[keep, :], :]

Next, we clean up the sector names and ensure that we only use equities with both price
and sector information:

stocks = stocks[~stocks.index.duplicated() & stocks.sector.notnull()]

clean up sector names

stocks.sector = stocks.sector.str.lower().str.replace(' ', '_')

stocks.index.name = 'ticker'

shared = (prices.index.get_level_values('ticker').unique()

 .intersection(stocks.index))

stocks = stocks.loc[shared, :]

prices = prices.loc[idx[shared, :], :]

For now, we are left with 2,265 tickers with daily price data for at least 2 years. First, there's
the prices DataFrame:

prices.info(null_counts=True)

MultiIndex: 2748774 entries, (A, 2013-01-02) to (ZUMZ, 2017-12-29)

Data columns (total 5 columns):

open 2748774 non-null float64
close 2748774 non-null float64
low 2748774 non-null float64
high 2748774 non-null float64
volume 2748774 non-null float64
memory usage: 115.5+ MB

Chapter 7

[199]

Next, there's the stocks DataFrame:

stocks.info()

Index: 2224 entries, A to ZUMZ

Data columns (total 3 columns):

marketcap 2222 non-null float64
ipoyear 962 non-null float64
sector 2224 non-null object

memory usage: 69.5+ KB

We will use a 21-day rolling average of the (adjusted) dollar volume traded to select the
most liquid stocks for our model. Limiting the number of stocks also has the benefit of
reducing training and backtesting time; excluding stocks with low dollar volumes can also
reduce the noise of price data.

The computation requires us to multiply the daily close price with the corresponding
volume and then apply a rolling mean to each ticker using .groupby(), as follows:

prices['dollar_vol'] = prices.loc[:, 'close'].mul(prices.loc[:, 'volume'],
axis=0)

prices['dollar_vol'] = (prices

 .groupby('ticker',

 group_keys=False,

 as_index=False)

 .dollar_vol

 .rolling(window=21)

 .mean()

 .reset_index(level=0, drop=True))

We then use this value to rank stocks for each date so that we can select, for example,
the 100 most-traded stocks for a given date:

prices['dollar_vol_rank'] = (prices

 .groupby('date')

 .dollar_vol

 .rank(ascending=False))

Selecting and computing alpha factors using TA-Lib

We will create a few momentum and volatility factors using TA-Lib, as described in
Chapter 4, Financial Feature Engineering – How to Research Alpha Factors.

First, we add the relative strength index (RSI), as follows:

prices['rsi'] = prices.groupby(level='ticker').close.apply(RSI)

Linear Models – From Risk Factors to Return Forecasts

[200]

A quick evaluation shows that, for the 100 most-traded stocks, the mean and median 5-day
forward returns are indeed decreasing in the RSI values, grouped to reflect the commonly
30/70 buy/sell thresholds:

(prices[prices.dollar_vol_rank<100]

 .groupby('rsi_signal')['target_5d'].describe())

rsi_signal count Mean std min 25% 50% 75% max

(0, 30] 4,154 0.12% 1.01% -5.45% -0.34% 0.11% 0.62% 4.61%

(30, 70] 107,329 0.05% 0.76% -16.48% -0.30% 0.06% 0.42% 7.57%

(70, 100] 10,598 0.00% 0.63% -8.79% -0.28% 0.01% 0.31% 5.86%

Then, we compute Bollinger Bands. The TA-Lib BBANDS function returns three values so
that we set up a function that returns a DataFrame with the higher and lower bands for use
with groupby() and apply():

def compute_bb(close):

 high, mid, low = BBANDS(close)

 return pd.DataFrame({'bb_high': high, 'bb_low': low}, index=close.index)

prices = (prices.join(prices

 .groupby(level='ticker')

 .close

 .apply(compute_bb)))

We take the percentage difference between the stock price and the upper or lower Bollinger
Band and take logs to compress the distribution. The goal is to reflect the current value,
relative to the recent volatility trend:

prices['bb_high'] = prices.bb_high.sub(prices.close).div(prices.bb_high).
apply(np.log1p)

prices['bb_low'] = prices.close.sub(prices.bb_low).div(prices.close).
apply(np.log1p)

Next, we compute the average true range (ATR), which takes three inputs, namely, the
high, low, and close prices. We standardize the result to make the metric more comparable
across stocks:

def compute_atr(stock_data):

 df = ATR(stock_data.high, stock_data.low,

 stock_data.close, timeperiod=14)

 return df.sub(df.mean()).div(df.std())

prices['atr'] = (prices.groupby('ticker', group_keys=False)

 .apply(compute_atr))

Chapter 7

[201]

Finally, we generate the moving average convergence/divergence (MACD) indicator, which
reflects the difference between a shorter and a longer-term exponential moving average:

def compute_macd close:

 macd = MACD(close)[0]

 return (macd - np.mean(macd))/np.std(macd)

prices['macd'] = (prices

 .groupby('ticker', group_keys=False)

 .close

 .apply(lambda x: MACD(x)[0]))

Adding lagged returns

To capture the price trend for various historical lags, we compute the corresponding
returns and transform the result into the daily geometric mean. We'll use lags for 1 day; 1
and 1 weeks; and 1, 2, and 3 months. We'll also winsorize the returns by clipping the values
at the 0.01st and 99.99th percentile:

q = 0.0001

lags = [1, 5, 10, 21, 42, 63]

for lag in lags:

 prices[f'return_{lag}d'] = (prices.groupby(level='ticker').close

 .pct_change(lag)

 .pipe(lambda x: x.clip(lower=x.quantile(q),

 upper=x.quantile(1 - q)

))

 .add(1)

 .pow(1 / lag)

 .sub(1)

)

We then shift the daily, (bi-)weekly, and monthly returns to use them as features for the
current observations. In other words, in addition to the latest returns for these periods,
we also use the prior five results. For example, we shift the weekly returns for the prior
5 weeks so that they align with the current observations and can be used to predict the
current forward return:

for t in [1, 2, 3, 4, 5]:

 for lag in [1, 5, 10, 21]:

 prices[f'return_{lag}d_lag{t}'] = (prices.groupby(level='ticker')

 [f'return_{lag}d'].shift(t * lag))

Linear Models – From Risk Factors to Return Forecasts

[202]

Generating target forward returns

We will test predictions for various lookahead periods. The goal is to identify the holding
period that produces the best predictive accuracy, as measured by the information
coefficient (IC).

More specifically, we shift returns for time horizon t back by t days to use them as forward
returns. For instance, we shift the 5-day return from t

0
 to t

5
 back by 5 days so that this value

becomes the model target for t
0
. We can generate daily, (bi-)weekly, and monthly forward

returns as follows:

for t in [1, 5, 10, 21]:

 prices[f'target_{t}d'] = prices.groupby(level='ticker')[f'return_{t}d'].
shift(-t)

Dummy encoding of categorical variables

We need to convert any categorical variable into a numeric format so that the linear
regression can process it. For this purpose, we will use a dummy encoding that creates
individual columns for each category level and flags the presence of this level in the
original categorical column with an entry of 1, and 0 otherwise. The pandas function get_
dummies() automates dummy encoding. It detects and properly converts columns of type
objects, as illustrated here. If you need dummy variables for columns containing integers,
for instance, you can identify them using the keyword columns:

df = pd.DataFrame({'categories': ['A','B', 'C']})

 categories

0 A

1 B

2 C

pd.get_dummies(df)

 categories_A categories_B categories_C

0 1 0 0

1 0 1 0

2 0 0 1

When converting all categories into dummy variables and estimating the model with an
intercept (as you typically would), you inadvertently create multicollinearity: the matrix
now contains redundant information, no longer has full rank, and instead becomes
singular.

It is simple to avoid this by removing one of the new indicator columns. The coefficient
on the missing category level will now be captured by the intercept (which is always 1,
including when every remaining category dummy is 0).

Chapter 7

[203]

Use the drop_first keyword to correct the dummy variables accordingly:

pd.get_dummies(df, drop_first=True)
 categories_B categories_C

0 0 0

1 1 0

2 0 1

To capture seasonal effects and changing market conditions, we create time indictor
variables for the year and month:

prices['year'] = prices.index.get_level_values('date').year

prices['month'] = prices.index.get_level_values('date').month

Then, we combine our price data with the sector information and create dummy variables
for the time and sector categories:

prices = prices.join(stocks[['sector']])

prices = pd.get_dummies(prices,

 columns=['year', 'month', 'sector'],

 prefix=['year', 'month', ''],
 prefix_sep=['_', '_', ''],
 drop_first=True)

We obtain some 50 features as a result that we can now use with the various regression
models discussed in the previous section.

Linear OLS regression using statsmodels
In this section, we will demonstrate how to run statistical inference with stock return data
using statsmodels and interpret the results. The notebook 04_statistical_inference_of_
stock_returns_with_statsmodels.ipynb contains the code examples for this section.

Selecting the relevant universe

Based on our ranked rolling average of the dollar volume, we select the top 100 stocks for
any given trading day in our sample:

data = data[data.dollar_vol_rank<100]

We then create our outcome variables and features, as follows:

y = data.filter(like='target')
X = data.drop(y.columns, axis=1)

Linear Models – From Risk Factors to Return Forecasts

[204]

Estimating the vanilla OLS regression

We can estimate a linear regression model using OLS with statsmodels, as demonstrated
previously. We select a forward return, for example, for a 5-day holding period, and fit the
model accordingly:

target = 'target_5d'

model = OLS(endog=y[target], exog=add_constant(X))

trained_model = model.fit()
trained_model.summary()

Diagnostic statistics

You can view the full summary output in the notebook. We will omit it here to save some
space, given the large number of features, and only display the diagnostic statistics:

===

Omnibus: 33104.830 Durbin-Watson: 0.436

Prob(Omnibus): 0.000 Jarque-Bera (JB): 1211101.670

Skew: -0.780 Prob(JB): 0.00

Kurtosis: 19.205 Cond. No. 79.8

===

The diagnostic statistics show a low p-value for the Jarque–Bera statistic, suggesting that
the residuals are not normally distributed: they exhibit negative skew and high kurtosis.
The left panel of Figure 7.5 plots the residual distribution versus the normal distribution
and highlights this shortcoming. In practice, this implies that the model is making more
large errors than "normal":

Figure 7.5: Residual distribution and autocorrelation plots

Furthermore, the Durbin–Watson statistic is low at 0.43 so that we comfortably reject the
null hypothesis of "no autocorrelation" at the 5 percent level. Hence, the residuals are likely
positively correlated. The right panel of the preceding figure plots the autocorrelation
coefficients for the first 10 lags, pointing to a significant positive correlation up to lag 4. This
result is due to the overlap in our outcomes: we are predicting 5-day returns for each day so
that outcomes for consecutive days contain four identical returns.

Chapter 7

[205]

If our goal were to understand which factors are significantly associated with forward
returns, we would need to rerun the regression using robust standard errors (a parameter
in statsmodels' .fit() method) or use a different method altogether, such as a panel model
that allows for more complex error covariance.

Linear regression using scikit-learn
Since sklearn is tailored toward prediction, we will evaluate the linear regression model
based on its predictive performance using cross-validation. You can find the code samples for
this section in the notebook 05_predicting_stock_returns_with_linear_regression.ipynb.

Selecting features and targets

We will select the universe for our experiment, as we did previously in the OLS case,
limiting tickers to the 100 most traded in terms of the dollar value on any given date. The
sample still contains 5 years of data from 2013-2017.

Cross-validating the model

Our data consists of numerous time series, one for each security. As discussed in Chapter 6,
The Machine Learning Process, sequential data like time series requires careful cross-validation
to be set up so that we do not inadvertently introduce look-ahead bias or leakage.

We can achieve this using the MultipleTimeSeriesCV class that we introduced in Chapter 6,
The Machine Learning Process. We initialize it with the desired lengths for the train and test
periods, the number of test periods that we would like to run, and the number of periods in
our forecasting horizon. The split() method returns a generator yielding pairs of train and
test indices, which we can then use to select outcomes and features. The number of pairs
depends on the parameter n_splits.

The test periods do not overlap and are located at the end of the period available in the
data. After a test period is used, it becomes part of the training data that rolls forward and
remains constant in size.

We will test this using 63 trading days, or 3 months, to train the model and then predict
1-day returns for the following 10 days. As a result, we can use around 75 10-day splits
during the 3 years, starting in 2015. We will begin by defining the basic parameters and
data structures, as follows:

train_period_length = 63

test_period_length = 10

n_splits = int(3 * YEAR/test_period_length)

lookahead =1

cv = MultipleTimeSeriesCV(n_splits=n_splits,

 test_period_length=test_period_length,

 lookahead=lookahead,

 train_period_length=train_period_length)

Linear Models – From Risk Factors to Return Forecasts

[206]

The cross-validation loop iterates over the train and test indices provided by TimeSeriesCV,
selects features and outcomes, trains the model, and predicts the returns for the test
features. We also capture the root mean squared error and the Spearman rank correlation
between the actual and predicted values:

target = f'target_{lookahead}d'

lr_predictions, lr_scores = [], []

lr = LinearRegression()

for i, (train_idx, test_idx) in enumerate(cv.split(X), 1):

 X_train, y_train, = X.iloc[train_idx], y[target].iloc[train_idx]

 X_test, y_test = X.iloc[test_idx], y[target].iloc[test_idx]

 lr.fit(X=X_train, y=y_train)
 y_pred = lr.predict(X_test)

 preds_by_day = (y_test.to_frame('actuals').assign(predicted=y_pred)

 .groupby(level='date'))

 ic = preds_by_day.apply(lambda x: spearmanr(x.predicted,

 x.actuals)[0] * 100)

 rmese = preds_by_day.apply(lambda x: np.sqrt(

 mean_squared_error(x.predicted, x.actuals)))

 scores = pd.concat([ic.to_frame('ic'), rmse.to_frame('rmse')], axis=1)

 lr_scores.append(scores)

 lr_predictions.append(preds)

The cross-validation process takes 2 seconds. We'll evaluate the results in the next section.

Evaluating the results – information coefficient and RMSE
We have captured 3 years of daily test predictions for our universe. To evaluate the model's
predictive performance, we can compute the information coefficient for each trading day,
as well as for the entire period by pooling all forecasts.

The left panel of Figure 7.6 (see the code in the notebook) shows the distribution of the rank
correlation coefficients computed for each day and displays their mean and median, which
are close to 1.95 and 2.56, respectively.

The figure's right panel shows a scatterplot of the predicted and actual 1-day returns across
all test periods. The seaborn jointplot estimates a robust regression that assigns lower
weights to outliers and shows a small positive relationship. The rank correlation of actual
and predicted returns for the entire 3-year test period is positive but low at 0.017 and
statistically significant:

Chapter 7

[207]

Figure 7.6: Daily and pooled IC for linear regression

In addition, we can track how predictions performed in terms of the IC on a daily basis.
Figure 7.7 displays a 21-day rolling average for both the daily information coefficient and
the RMSE, as well as their respective means for the validation period. This perspective
highlights that the small positive IC for the entire period hides substantial variation that
ranges from -10 to +10:

Figure 7.7: 21-day rolling average for the daily IC and RMSE for the linear regression model

Linear Models – From Risk Factors to Return Forecasts

[208]

Ridge regression using scikit-learn
We will now move on to the regularized ridge model, which we will use to evaluate
whether parameter constraints improve on the linear regression's predictive performance.
Using the ridge model allows us to select the hyperparameter that determines the weight
of the penalty term in the model's objective function, as discussed previously in the section
Shrinkage methods: regularization for linear regression.

Tuning the regularization parameters using cross-validation

For ridge regression, we need to tune the regularization parameter with the keyword alpha,
which corresponds to the λ we used previously. We will try 18 values from 10-4 to 104,
where larger values imply stronger regularization:

ridge_alphas = np.logspace(-4, 4, 9)

ridge_alphas = sorted(list(ridge_alphas) + list(ridge_alphas * 5))

We will apply the same cross-validation parameters as in the linear regression case, training
for 3 months to predict 10 days of daily returns.

The scale sensitivity of the ridge penalty requires us to standardize the inputs using
StandardScaler. Note that we always learn the mean and the standard deviation from the
training set using the .fit_transform() method and then apply these learned parameters
to the test set using the .transform() method. To automate the preprocessing, we create a
Pipeline, as illustrated in the following code example. We also collect the ridge coefficients.
Otherwise, cross-validation resembles the linear regression process:

for alpha in ridge_alphas:

 model = Ridge(alpha=alpha,

 fit_intercept=False,
 random_state=42)

 pipe = Pipeline([

 ('scaler', StandardScaler()),

 ('model', model)])

 for i, (train_idx, test_idx) in enumerate(cv.split(X), 1):

 X_train, y_train = X.iloc[train_idx], y[target].iloc[train_idx]

 X_test, y_test = X.iloc[test_idx], y[target].iloc[test_idx]

 pipe.fit(X=X_train, y=y_train)
 y_pred = pipe.predict(X_test)

Chapter 7

[209]

 preds = y_test.to_frame('actuals').assign(predicted=y_pred)

 preds_by_day = preds.groupby(level='date')

 scores = pd.concat([preds_by_day.apply(lambda x:

 spearmanr(x.predicted,

 x.actuals)[0] * 100)

 .to_frame('ic'),

 preds_by_day.apply(lambda x: np.sqrt(

 mean_squared_error(

 y_pred=x.predicted,

 y_true=x.actuals)))

 .to_frame('rmse')], axis=1)

 ridge_scores.append(scores.assign(alpha=alpha))

 ridge_predictions.append(preds.assign(alpha=alpha))

 coeffs.append(pipe.named_steps['model'].coef_)

Cross-validation results and ridge coefficient paths
We can now plot the IC for each hyperparameter value to visualize how it evolves as the
regularization increases. The results show that we get the highest mean and median IC
value for λ = 100 .

For these levels of regularization, the right panel of Figure 7.8 shows that the coefficients
have been slightly shrunk compared to the (almost) unconstrained model with λ = 10−4 :

Figure 7.8: Ridge regression cross-validation results

The left panel of the figure shows that the predictive accuracy increases only slightly in
terms of the mean and median IC values for optimal regularization values.

Linear Models – From Risk Factors to Return Forecasts

[210]

Top 10 coefficients
The standardization of the coefficients allows us to draw conclusions about their relative
importance by comparing their absolute magnitude. Figure 7.9 displays the 10 most relevant
coefficients for regularization using λ = 100 , averaged over all trained models:

Figure 7.9: Daily IC distribution and most important coefficients

For this simple model and sample period, lagged monthly returns and various sector
indicators played the most important role.

Lasso regression using sklearn
The lasso implementation looks very similar to the ridge model we just ran. The main
difference is that lasso needs to arrive at a solution using iterative coordinate descent,
whereas ridge regression can rely on a closed-form solution. This can lead to longer
training times.

Cross-validating the lasso model

The cross-validation code only differs with respect to the Pipeline setup. The Lasso object
lets you set the tolerance and the maximum number of iterations it uses to determine
whether it has converged or should abort, respectively. You can also rely on a warm_start
so that the next training starts from the last optimal coefficient values. Please refer to the
sklearn documentation and the notebook for additional detail.

We will use eight alpha values in the range 10-10 to 10-3:

lasso_alphas = np.logspace(-10, -3, 8)

for alpha in lasso_alphas:

 model = Lasso(alpha=alpha,

 fit_intercept=False,
 random_state=42,

 tol=1e-4,

 max_iter=1000,

Chapter 7

[211]

 warm_start=True,

 selection='random')

 pipe = Pipeline([

 ('scaler', StandardScaler()),

 ('model', model)])

Evaluating the results – IC and lasso path

As we did previously, we can plot the average information coefficient for all test sets used
during cross-validation. We can see once more that regularization improves the IC over the
unconstrained model, delivering the best out-of-sample result at a level of λ = 10−4 .

The optimal regularization value is different from ridge regression because the penalty
consists of the sum of the absolute, not the squared values of the relatively small coefficient
values. We can also see in Figure 7.10 that for this regularization level, the coefficients have
been similarly shrunk, as in the ridge regression case:

Figure 7.10: Lasso cross-validation results

The mean and median IC coefficients are slightly higher for lasso regression in this case,
and the best-performing models use, on average, a different set of coefficients:

Figure 7.11: Lasso daily IC distribution and top 10 coefficients

Linear Models – From Risk Factors to Return Forecasts

[212]

Comparing the quality of the predictive signals
In sum, ridge and lasso regression often produce similar results. Ridge regression often
computes faster, but lasso regression also offers continuous feature subset selection by
gradually reducing coefficients to zero, hence eliminating features.

In this particular setting, lasso regression produces the best mean and median IC values, as
displayed in Figure 7.12:

Figure 7.12: Mean and median daily IC for the three models

Furthermore, we can use Alphalens to compute various metrics and visualizations that
reflect the signal quality of the model's predictions, as introduced in Chapter 4, Financial
Feature Engineering – How to Research Alpha Factors. The notebook 06_evaluating_signals_
using_alphalens.ipynb contains the code examples that combine the model predictions
with price information to generate the alpha factor input needed by Alphalens.

The following table shows the alpha and beta values for portfolios invested in, according
to different quintiles of the model predictions. In this simple example, the differences in
performance are very small:

Metric Alpha Beta

Model 1D 5D 10D 21D 1D 5D 10D 21D

Linear
regression

0.03 0.02 0.007 0.004 -0.012 -0.081 -0.059 0.019

Ridge regression 0.029 0.022 0.012 0.008 -0.01 -0.083 -0.060 0.021

Lasso regression 0.03 0.021 0.009 0.006 -0.011 -0.081 -0.057 0.02

Linear classification
The linear regression model discussed so far assumes a quantitative response variable.
In this section, we will focus on approaches to modeling qualitative output variables for
inference and prediction, a process that is known as classification and that occurs even
more frequently than regression in practice.

Chapter 7

[213]

Predicting a qualitative response for a data point is called classifying that observation
because it involves assigning the observation to a category, or class. In practice,
classification methods often predict probabilities for each of the categories of a qualitative
variable and then use this probability to decide on the proper classification.

We could approach this classification problem by ignoring the fact that the output variable
assumes discrete values, and then applying the linear regression model to try to predict a
categorical output using multiple input variables. However, it is easy to construct examples
where this method performs very poorly. Furthermore, it doesn't make intuitive sense for
the model to produce values larger than 1 or smaller than 0 when we know that y ∈ [0,1] .
There are many different classification techniques, or classifiers, that are available to predict
a qualitative response. In this section, we will introduce the widely used logistic regression,
which is closely related to linear regression. We will address more complex methods in
the following chapters on generalized additive models, which includes decision trees and
random forests, as well as gradient boosting machines and neural networks.

The logistic regression model
The logistic regression model arises from the desire to model the probabilities of the output
classes, given a function that is linear in x, just like the linear regression model, while at
the same time ensuring that they sum to one and remain in [0, 1], as we would expect from
probabilities.

In this section, we will introduce the objective and functional form of the logistic regression
model and describe the training method. We will then illustrate how to use logistic
regression for statistical inference with macro data using statsmodels, as well as how to
predict price movements using the regularized logistic regression implemented by sklearn.

The objective function

To illustrate the objective function, we'll use the output variable y, which takes on the
value 1 if a stock return is positive over a given time horizon d, and 0 otherwise:𝑦𝑦𝑡𝑡 = {1 𝑟𝑟𝑡𝑡𝑡𝑡𝑡 > 00 otherwise

We could easily extend y to three categories, where 0 and 2 reflect negative and positive
price moves beyond a certain threshold, and 1 otherwise.

Rather than modeling the output variable y directly, logistic regression models the
probability that y belongs to either of the categories, given a vector of alpha factors or
features x

t
. In other words, logistic regression models the probability that the stock price

goes up, depending on the values of the variables included in the model:𝑃𝑃𝑃𝑃𝑃𝑡𝑡) = 𝑃𝑃𝑟𝑟𝑃𝑦𝑦𝑡𝑡 = 1|𝑃𝑃𝑡𝑡

Linear Models – From Risk Factors to Return Forecasts

[214]

The logistic function

To prevent the model from producing values outside the [0, 1] interval, we must model p(x)
using a function that only gives outputs between 0 and 1 over the entire domain of x. The
logistic function meets this requirement and always produces an S-shaped curve and so,
regardless of the value of x, we will obtain a prediction that makes sense in probability terms:𝑝𝑝(𝑥𝑥) = 𝑒𝑒𝛽𝛽0+∑ 𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖1 + 𝑒𝑒𝛽𝛽0+∑ 𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑒𝑒𝒙𝒙𝒙𝒙1 + 𝑒𝑒𝒙𝒙𝒙𝒙

Here, the vector x includes a 1 for the intercept captured by the first component of 𝛃𝛃𝛃 𝛃𝛃0 . We
can transform this expression to isolate the part that looks like a linear regression to arrive
at: 𝑝𝑝𝑝𝑝𝑝𝑝1 − 𝑝𝑝𝑝𝑝𝑝𝑝⏟ =odds 𝑒𝑒𝛽𝛽0+∑ 𝛽𝛽𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖 ⟺ log(𝑝𝑝𝑝𝑝𝑝𝑝1 − 𝑝𝑝𝑝𝑝𝑝𝑝)⏟ logit = 𝛽𝛽0 +∑ 𝛽𝛽𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖

The quantity p(x)/[1−p(x)] is called the odds, an alternative way to express probabilities
that may be familiar from gambling. This can take on any value odds between 0 and ∞ ,
where low values also imply low probabilities and high values imply high probabilities.

The logit is also called log-odds (since it is the logarithm of the odds). Hence, logistic
regression represents a logit that is linear in x and looks a lot like the preceding
linear regression.

Maximum likelihood estimation

The coefficient vector 𝛃𝛃 must be estimated using the available training data. Although we
could use (nonlinear) least squares to fit the logistic regression model, the more general
method of maximum likelihood is preferred, since it has better statistical properties. As
we have just discussed, the basic intuition behind using maximum likelihood to fit a
logistic regression model is to seek estimates for 𝛃𝛃 such that the predicted probability 𝑝𝑝𝑝
corresponds as closely as possible to the actual outcome. In other words, we try to find �̂�𝛽
such that these estimates yield a number close to 1 for all cases where the stock price went
up, and a number close to 0 otherwise. More formally, we are seeking to maximize the
likelihood function: max𝛽𝛽 ℒ(𝜷𝜷) = ∏ 𝑝𝑝(𝑝𝑝𝑖𝑖) ∏ (1 − 𝑝𝑝(𝑝𝑝𝑖𝑖′))𝑖𝑖′:𝑦𝑦𝑖𝑖′=0𝑖𝑖:𝑦𝑦𝑖𝑖=1

It is easier to work with sums than with products, so let's take logs on both sides
to get the log-likelihood function and the corresponding definition of the logistic
regression coefficients:

𝜷𝜷ML = argmax logℒ(𝜷𝜷) =∑(𝑦𝑦𝑖𝑖 log 𝑝𝑝(𝒙𝒙𝑖𝑖, 𝜷𝜷) + (1 − 𝑦𝑦𝑖𝑖 log(1 − 𝑝𝑝 (𝒙𝒙𝑖𝑖, 𝜷𝜷)))𝑁𝑁
𝑖𝑖𝑖𝑖

Chapter 7

[215]

To maximize this equation, we set the derivatives of ℒ with respect to 𝛃𝛃 to zero. This yields
p+1 so-called score equations, which are nonlinear in the parameters and can be solved
using iterative numerical methods.

How to conduct inference with statsmodels
We will illustrate how to use logistic regression with statsmodels based on a simple built-in
dataset containing quarterly US macro data from 1959 to 2009 (see the notebook logistic_
regression_macro_data for details).

The variables and their transformations are listed in the following table:

Variable Description Transformation

realgdp Real gross domestic product Annual Growth Rate

realcons Real personal consumption expenditures Annual Growth Rate

realinv Real gross private domestic investment Annual Growth Rate

realgovt Real federal expenditures and gross investment Annual Growth Rate

realdpi Real private disposable income Annual Growth Rate

m1 M1 nominal money stock Annual Growth Rate

tbilrate Monthly Treasury bill rate Level

unemp Seasonally adjusted unemployment rate (%) Level

infl Inflation rate Level

realint Real interest rate Level

To obtain a binary target variable, we compute the 20-quarter rolling average of the annual
growth rate of quarterly real GDP. We then assign 1 if the current growth exceeds the
moving average and 0 otherwise. Finally, we shift the indicator variables to align the next
quarter's outcome with the current quarter.

We use an intercept and convert the quarter values into dummy variables and train the
logistic regression model, as follows:

import statsmodels.api as sm

data = pd.get_dummies(data.drop(drop_cols, axis=1), columns=['quarter'],
drop_first=True).dropna()
model = sm.Logit(data.target, sm.add_constant(data.drop('target', axis=1)))

result = model.fit()
result.summary()

Linear Models – From Risk Factors to Return Forecasts

[216]

This produces the following summary for our model, which shows 198 observations and
13 variables, including an intercept:

Figure 7.13: Logit regression results

The summary indicates that the model has been trained using maximum likelihood and
provides the maximized value of the log-likelihood function at -67.9.

The LL-Null value of -136.42 is the result of the maximized log-likelihood function when
only an intercept is included. It forms the basis for the pseudo-R2 statistic and the log-
likelihood ratio (LLR) test.

The pseudo-R2 statistic is a substitute for the familiar R2 available under least squares. It is
computed based on the ratio of the maximized log-likelihood function for the null model m

0

and the full model m
1
, as follows: 𝜌𝜌2 = 1 − logℒ(𝑚𝑚1∗)log ℒ(𝑚𝑚0∗)

The values vary from 0 (when the model does not improve the likelihood) to 1, where the
model fits perfectly and the log-likelihood is maximized at 0. Consequently, higher values
indicate a better fit.

The LLR test generally compares a more restricted model and is computed as:LLR = −2 log(ℒ(𝑚𝑚0∗)/ℒ(𝑚𝑚1∗)) = 2(log ℒ(𝑚𝑚1∗) − logℒ(𝑚𝑚0∗))

Chapter 7

[217]

The null hypothesis is that the restricted model performs better, but the low p-value
suggests that we can reject this hypothesis and prefer the full model over the null model.
This is similar to the F-test for linear regression (where we can also use the LLR test when
we estimate the model using MLE).

The z-statistic plays the same role as the t-statistic in the linear regression output and
is equally computed as the ratio of the coefficient estimate and its standard error. The
p-values also indicate the probability of observing the test statistic, assuming the null
hypothesis 𝐻𝐻0 ∶ 𝛽𝛽 𝛽 𝛽 that the population coefficient is zero. We can reject this hypothesis
for the intercept, realcons, realinv, realgovt, realdpi, and unemp.

Predicting price movements with logistic regression
The lasso L1 penalty and the ridge L2 penalty can both be used with logistic regression.
They have the same shrinkage effect that we have just discussed, and the lasso can again be
used for variable selection with any linear regression model.

Just as with linear regression, it is important to standardize the input variables as the
regularized models are scale sensitive. The regularization hyperparameter also requires
tuning using cross-validation, as in the case of linear regression.

How to convert a regression into a classification problem
We will continue with the price prediction example, but now we will binarize the outcome
variable so that it takes on the value 1 whenever the 1-day return is positive and 0
otherwise (see the notebook predicting_price_movements_with_logistic_regression.
ipynb for the code examples given in this section):

target = 'target_1d'

y['label'] = (y[target] > 0).astype(int)

The outcomes are slightly unbalanced, with more positive than negative moves:

y.label.value_counts()

1 56443

0 53220

With this new categorical outcome variable, we can now train a logistic regression using the
default L2 regularization.

Linear Models – From Risk Factors to Return Forecasts

[218]

Cross-validating the logistic regression hyperparameters

For logistic regression, the regularization is formulated inversely to linear regression:
higher values for λ imply less regularization and vice versa.

We will cross-validate 11 options for the regularization hyperparameter using our custom
TimeSeriesCV, as follows:

n_splits = 4*252

cv = TimeSeriesCV(n_splits=n_splits,

 test_period_length=1,

 train_period_length=252)

Cs = np.logspace(-5, 5, 11)

The train-test loop now uses sklearn's LogisticRegression and computes the roc_auc_
score (see the notebook for details):

for C in Cs:

 model = LogisticRegression(C=C, fit_intercept=True)

 pipe = Pipeline([

 ('scaler', StandardScaler()),

 ('model', model)])

 for i, (train_idx, test_idx) in enumerate(cv.split(X), 1):

 X_train, y_train, = X.iloc[train_idx], y.label.iloc[train_idx]

 pipe.fit(X=X_train, y=y_train)
 X_test, y_test = X.iloc[test_idx], y.label.iloc[test_idx]

 y_score = pipe.predict_proba(X_test)[:, 1]

 auc = roc_auc_score(y_score=y_score, y_true=y_test)

In addition, we can also compute the IC based on the predicted probabilities and the actual
returns:

 actuals = y[target].iloc[test_idx]

 ic, pval = spearmanr(y_score, actuals)

Chapter 7

[219]

Evaluating the results using AUC and IC

We can again plot the AUC result for the range of hyperparameter values. In Figure 7.14,
the left panel shows that the best median AUC results for C=0.1, whereas the best mean
AUC corresponds to C=10-3. The right panel displays the distribution of the information
coefficients for the model with C=104. This also highlights that we obtain somewhat higher
values for the mean and the median compared to the regression models shown previously:

Figure 7.14: Logistic regression

In the next chapter, we will use the predictions produced by these basic models to generate
signals for trading strategies and demonstrate how to backtest their performance.

Summary
In this chapter, we introduced the first of our machine learning models using the important
baseline case of linear models for regression and classification. We explored the formulation
of the objective functions for both tasks, learned about various training methods, and
learned how to use the model for both inference and prediction.

We applied these new machine learning techniques to estimate linear factor models that
are very useful to manage risks, assess new alpha factors, and attribute performance. We
also applied linear regression and classification to accomplish the first predictive task of
predicting stock returns in absolute and directional terms.

In the next chapter, we will put together what we have covered so far in the form of the
machine learning for trading workflow. This process starts with sourcing and preparing the
data about a specific investment universe and the computation of useful features, continues
with the design and evaluation of machine learning models to extract actionable signals
from these features, and culminates in the simulated execution and evaluation of a strategy
that translates these signals into optimized portfolios.

[221]

8
The ML4T Workflow –

From Model to Strategy Backtesting

Now, it's time to integrate the various building blocks of the machine learning for trading
(ML4T) workflow that we have so far discussed separately. The goal of this chapter is to
present an end-to-end perspective of the process of designing, simulating, and evaluating
a trading strategy driven by an ML algorithm. To this end, we will demonstrate in more
detail how to backtest an ML-driven strategy in a historical market context using the
Python libraries backtrader and Zipline.

The ultimate objective of the ML4T workflow is to gather evidence from historical data.
This helps us decide whether to deploy a candidate strategy in a live market and put
financial resources at risk. This process builds on the skills you developed in the previous
chapters because it relies on your ability to:

• Work with a diverse set of data sources to engineer informative factors

• Design ML models that generate predictive signals to inform your trading strategy

• Optimize the resulting portfolio from a risk-return perspective

A realistic simulation of your strategy also needs to faithfully represent how security
markets operate and how trades are executed. Therefore, the institutional details of
exchanges, such as which order types are available and how prices are determined, also
matter when you design a backtest or evaluate whether a backtesting engine includes
the requisite features for accurate performance measurements. Finally, there are several
methodological aspects that require attention to avoid biased results and false discoveries
that will lead to poor investment decisions.

The ML4T Workflow – From Model to Strategy Backtesting

[222]

More specifically, after working through this chapter, you will be able to:

• Plan and implement end-to-end strategy backtesting

• Understand and avoid critical pitfalls when implementing backtests

• Discuss the advantages and disadvantages of vectorized versus event-driven
backtesting engines

• Identify and evaluate the key components of an event-driven backtester

• Design and execute the ML4T workflow using data sources at both minute and
daily frequencies, with ML models trained separately or as part of the backtest

• Use Zipline and backtrader

How to backtest an ML-driven strategy
In a nutshell, the ML4T workflow, illustrated in Figure 8.1, is about backtesting a trading
strategy that leverages machine learning to generate trading signals, select and size
positions, or optimize the execution of trades. It involves the following steps, with a specific
investment universe and horizon in mind:

1. Source and prepare market, fundamental, and alternative data

2. Engineer predictive alpha factors and features

3. Design, tune, and evaluate ML models to generate trading signals

4. Decide on trades based on these signals, for example, by applying rules

5. Size individual positions in the portfolio context

6. Simulate the resulting trades triggered using historical market data

7. Evaluate how the resulting positions would have performed

You can find the code samples for this chapter and links to
additional resources in the corresponding directory of the GitHub
repository. The notebooks include color versions of the images.

Chapter 8

[223]

Figure 8.1: The ML4T workflow

When we discussed the ML process in Chapter 6, The Machine Learning Process, we
emphasized that the model's learning should generalize well to new applications. In other
words, the predictions of an ML model trained on a given set of data should perform
equally well when provided new input data. Similarly, the (relative) backtest performance
of a strategy should be indicative of future market performance.

Before we take a look at how backtesting engines run historical simulations, we need
to review several methodological challenges. Failing to properly address them will render
results unreliable and lead to poor decisions about the strategy's live implementation.

Backtesting pitfalls and how to avoid them
Backtesting simulates an algorithmic strategy based on historical data, with the goal of
producing performance results that generalize to new market conditions. In addition to the
generic uncertainty around predictions in the context of ever-changing markets, several
implementation aspects can bias the results and increase the risk of mistaking in-sample
performance for patterns that will hold out-of-sample.

The ML4T Workflow – From Model to Strategy Backtesting

[224]

These aspects are under our control and include the selection and preparation of data,
unrealistic assumptions about the trading environment, and the flawed application and
interpretation of statistical tests. The risks of false backtest discoveries multiply with
increasing computing power, bigger datasets, and more complex algorithms that facilitate
the misidentification of apparent signals in a noisy sample.

In this section, we will outline the most serious and common methodological mistakes. Please
refer to the literature on multiple testing for further detail, in particular, a series of articles by
Marcos Lopez de Prado collected in Advances in Financial Machine Learning (2018). We will
also introduce the deflated Sharpe ratio (SR), which illustrates how to adjust metrics that
result from repeated trials when using the same set of financial data for your analysis.

Getting the data right
Data issues that undermine the validity of a backtest include look-ahead bias, survivorship
bias, outlier control, as well as the selection of the sample period. We will address each of
these in turn.

Look-ahead bias – use only point-in-time data

At the heart of an algorithmic strategy are trading rules that trigger actions based on data.
Look-ahead bias emerges when we develop or evaluate trading rules using historical
information before it was known or available. The resulting performance measures will
be misleading and not representative of the future when data availability differs during live
strategy execution.

A common cause of this bias is the failure to account for corrections or restatements of
reported financials after their initial publication. Stock splits or reverse splits can also
generate look-ahead bias. For example, when computing the earnings yield, earnings-
per-share (EPS) data is usually reported on a quarterly basis, whereas market prices are
available at a much higher frequency. Therefore, adjusted EPS and price data need to be
synchronized, taking into account when the available data was, in fact, released to market
participants.

The solution involves the careful validation of the timestamps of all data that enters a
backtest. We need to guarantee that conclusions are based only on point-in-time data that
does not inadvertently include information from the future. High-quality data providers
ensure that these criteria are met. When point-in-time data is not available, we need to
make (conservative) assumptions about the lag in reporting.

Survivorship bias – track your historical universe

Survivorship bias arises when the backtest data contains only securities that are currently
active while omitting assets that have disappeared over time, due to, for example,
bankruptcy, delisting, or acquisition. Securities that are no longer part of the investment
universe often did not perform well, and failing to include these cases positively skew the
backtest result.

Chapter 8

[225]

The solution, naturally, is to verify that datasets include all securities available over time,
as opposed to only those that are still available when running the test. In a way, this is
another way of ensuring the data is truly point-in-time.

Outlier control – do not exclude realistic extremes

Data preparation typically includes some treatment of outliers such as winsorizing,
or clipping, extreme values. The challenge is to identify outliers that are truly not
representative of the period under analysis, as opposed to any extreme values that are
an integral part of the market environment at that time. Many market models assume
normally distributed data when extreme values are observed more frequently, as suggested
by fat-tailed distributions.

The solution involves a careful analysis of outliers with respect to the probability of
extreme values occurring and adjusting the strategy parameters to this reality.

Sample period – try to represent relevant future scenarios

A backtest will not yield representative results that generalize to the future if the sample
data does not reflect the current (and likely future) environment. A poorly chosen
sample data might lack relevant market regime aspects, for example, in terms of volatility
or volumes, fail to include enough data points, or contain too many or too few extreme
historical events.

The solution involves using sample periods that include important market phenomena
or generating synthetic data that reflects the relevant market characteristics.

Getting the simulation right
Practical issues related to the implementation of the historical simulation include:

• Failure to mark to market to accurately reflect market prices and account
for drawdowns

• Unrealistic assumptions about the availability, cost, or market impact of trades

• Incorrect timing of signals and trade execution

Let's see how to identify and address each of these issues.

Mark-to-market performance – track risks over time

A strategy needs to meet investment objectives and constraints at all times. If it performs
well over the course of the backtest but leads to unacceptable losses or volatility over time,
this will (obviously) not be practical. Portfolio managers need to track and report the value
of their positions, called mark to market, on a regular basis and possibly in real time.

The solution involves plotting performance over time or calculating (rolling) risk metrics,
such as the value at risk (VaR) or the Sortino ratio.

The ML4T Workflow – From Model to Strategy Backtesting

[226]

Transaction costs – assume a realistic trading environment

Markets do not permit the execution of all trades at all times or at the targeted price. A
backtest that assumes trades that may not actually be available or would have occurred at
less favorable terms will produce biased results.

Practical shortcomings include a strategy that assumes short sales when there may be no
counterparty, or one that underestimates the market impact of trades (slippage) that are
large or deal in less liquid assets, or the costs that arise due to broker fees.

The solution includes a limitation to a liquid universe and/or realistic parameter
assumptions for trading and slippage costs. This also safeguards against misleading
conclusions from unstable factor signals that decay fast and produce a high portfolio
turnover.

Timing of decisions – properly sequence signals and trades

Similar to look-ahead bias, the simulation could make unrealistic assumptions about
when it receives and trades on signals. For instance, signals may be computed from close
prices when trades are only available at the next open, with possibly quite different prices.
When we evaluate performance using the close price, the backtest results will not represent
realistic future outcomes.

The solution involves careful orchestration of the sequence of signal arrival, trade
execution, and performance evaluation.

Getting the statistics right
The most prominent challenge when backtesting validity, including published results, is
the discovery of spurious patterns due to multiple testing. Selecting a strategy based on the
tests of different candidates on the same data will bias the choice. This is because a positive
outcome is more likely caused by the stochastic nature of the performance measure itself.
In other words, the strategy overfits the test sample, producing deceptively positive results
that are unlikely to generalize to future data that's encountered during live trading.

Hence, backtest performance is only informative if the number of trials is reported to allow
for an assessment of the risk of selection bias. This is rarely the case in practical or academic
research, inviting doubts about the validity of many published claims.

Furthermore, the risk of backtest overfitting does not only arise from running numerous
tests but also affects strategies designed based on prior knowledge of what works and
doesn't. Since the risks include the knowledge of backtests run by others on the same data,
backtest-overfitting is very hard to avoid in practice.

Proposed solutions include prioritizing tests that can be justified using investment or
economic theory, rather than arbitrary data-mining efforts. It also implies testing in a
variety of contexts and scenarios, including possibly on synthetic data.

Chapter 8

[227]

The minimum backtest length and the deflated SR
Marcos Lopez de Prado (http://www.quantresearch.info/) has published extensively on
the risks of backtesting and how to detect or avoid it. This includes an online simulator of
backtest-overfitting (http://datagrid.lbl.gov/backtest/, Bailey, et al. 2015).

Another result includes an estimate of the minimum length of the backtest period that an
investor should require to avoid selecting a strategy that achieves a certain SR for a given
number of in-sample trials, but has an expected out-of-sample SR of zero. The result implies
that, for example, 2 years of daily backtesting data does not support conclusions about
more than seven strategies. 5 years of data expands this number to 45 strategy variations.
See Bailey, Borwein, and Prado (2016) for implementation details.

Bailey and Prado (2014) also derived a deflated SR to compute the probability that the SR is
statistically significant while controlling for the inflationary effect of multiple testing, non-
normal returns, and shorter sample lengths. (See the multiple_testing subdirectory for the
Python implementation of deflated_sharpe_ratio.py and references for the derivation of
the related formulas.)

Optimal stopping for backtests

In addition to limiting backtests to strategies that can be justified on theoretical grounds
as opposed to mere data-mining exercises, an important question is when to stop running
additional tests.

One way to answer this question relies on the solution to the secretary problem from the
optimal stopping theory. This problem assumes we are selecting an applicant based on
interview results and need to decide whether to hold an additional interview or choose
the most recent candidate. In this context, the optimal rule is to always reject the first n/e
candidates and then select the first candidate that surpasses all the previous options. Using
this rule results in a 1/e probability of selecting the best candidate, irrespective of the size n
of the candidate pool.

Translating this rule directly to the backtest context produces the following
recommendation: test a random sample of 1/e (roughly 37 percent) of reasonable strategies
and record their performance. Then, continue with the tests until a strategy outperforms
those tested before. This rule applies to tests of several alternatives, with the goal of
choosing a near-best as soon as possible while minimizing the risk of a false positive. See
the resources listed on GitHub for additional information.

How a backtesting engine works
Put simply, a backtesting engine iterates over historical prices (and other data), passes the
current values to your algorithm, receives orders in return, and keeps track of the resulting
positions and their value.

http://www.quantresearch.info/
http://datagrid.lbl.gov/backtest/

The ML4T Workflow – From Model to Strategy Backtesting

[228]

In practice, there are numerous requirements for creating a realistic and robust simulation
of the ML4T workflow that was depicted in Figure 8.1 at the beginning of this chapter. The
difference between vectorized and event-driven approaches illustrates how the faithful
reproduction of the actual trading environment adds significant complexity.

Vectorized versus event-driven backtesting
A vectorized backtest is the most basic way to evaluate a strategy. It simply multiplies
a signal vector that represents the target position size with a vector of returns for the
investment horizon to compute the period performance.

Let's illustrate the vectorized approach using the daily return predictions that we created
using ridge regression in the previous chapter. Using a few simple technical factors, we
predicted the returns for the next day for the 100 stocks with the highest recent dollar trading
volume (see Chapter 7, Linear Models – From Risk Factors to Return Forecasts, for details).

We'll transform the predictions into signals for a very simple strategy: on any given trading
day, we will go long on the 10 highest positive predictions and go short on the lowest 10
negative predictions. If there are fewer positive or negative predictions, we'll hold fewer
long or short positions. The notebook vectorized_backtest contains the following code
example, and the script data.py creates the input data stored in backtest.h5.

First, we load the data for our strategy, as well as S&P 500 prices (which we convert into
daily returns) to benchmark the performance:

sp500 = web.DataReader('SP500', 'fred', '2014', '2018').pct_change()

data = pd.read_hdf('00_data/backtest.h5', 'data')
data.info()
MultiIndex: 187758 entries, ('AAL', Timestamp('2014-12-09 00:00:00')) to
('ZTS', Timestamp('2017-11-30 00:00:00'))
Data columns (total 6 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 predicted 74044 non-null float64
 1 open 187758 non-null float64
 2 high 187758 non-null float64
 3 low 187758 non-null float64
 4 close 187758 non-null float64
 5 volume 187758 non-null float64

The data combines daily return predictions and OHLCV market data for 253 distinct stocks
over the 2014-17 period, with 100 equities for each day. Now, we can compute the daily
forward returns and convert these and the predictions into wide format, with one ticker
per column:

daily_returns = data.open.unstack('ticker').sort_index().pct_change()

fwd_returns = daily_returns.shift(-1)

predictions = data.predicted.unstack('ticker')

Chapter 8

[229]

The next step is to select positive and negative predictions, rank them in descending and
ascending fashion, and create long and short signals using an integer mask that identifies the
top 10 on each side with identifies the predictions outside the top 10 with a one, and a zero:

long_signals = (predictions.where(predictions>0).rank(axis=1,
ascending=False) > 10).astype(int)

short_signals = (predictions.where(predictions<0).rank(axis=1) > 10).
astype(int)

We can then multiply the binary DataFrames with the forward returns (using their negative
inverse for the shorts) to get the daily performance of each position, assuming equal-sized
investments. The daily average of these returns corresponds to the performance of equal-
weighted long and short portfolios, and the sum reflects the overall return of a market-
neutral long-short strategy:

long_returns = long_signals.mul(fwd_returns).mean(axis=1)

short_returns = short_signals.mul(-fwd_returns).mean(axis=1)

strategy = long_returns.add(short_returns).to_frame('strategy')

When we compare the results, as shown in Figure 8.2, our strategy performed well
compared to the S&P 500 for the first 2 years of the period – that is, until the benchmark
catches up and our strategy underperforms during 2017.

The strategy returns are also less volatile with a standard deviation of 0.002 compared to
0.008 for the S&P 500; the correlation is low and negative at -0.093:

Figure 8.2: Vectorized backtest results

While this approach permits a quick back-of-the-envelope evaluation, it misses important
features of a robust, realistic, and user-friendly backtest engine; for example:

• We need to manually align the timestamps of predictions and returns (using
pandas' built-in capabilities) and do not have any safeguards against inadvertent
look-ahead bias.

The ML4T Workflow – From Model to Strategy Backtesting

[230]

• There is no explicit position sizing and representation of the trading process that
accounts for costs and other market realities, or an accounting system that tracks
positions and their performance.

• There is also no performance measurement other than what we compute after the
fact, and risk management rules like stop-loss are difficult to simulate.

That's where event-driven backtesting comes in. An event-driven backtesting engine
explicitly simulates the time dimension of the trading environment and imposes
significantly more structure on the simulation. This includes the use of historical calendars
that define when trades can be made and when quotes are available. The enforcement of
timestamps also helps to avoid look-ahead bias and other implementation errors mentioned
in the previous section (but there is no guarantee).

Generally, event-driven systems aim to capture the actions and constraints encountered by
a strategy more closely and, ideally, can readily be converted into a live trading engine that
submits actual orders.

Key implementation aspects
The requirements for a realistic simulation may be met by a single platform that supports
all steps of the process in an end-to-end fashion, or by multiple tools that each specialize
in different aspects.

For instance, you could handle the design and testing of ML models that generate signals
using generic ML libraries like scikit-learn, or others that we will encounter in this book, and
feed the model outputs into a separate backtesting engine. Alternatively, you could run the
entire ML4T workflow end-to-end on a single platform like Quantopian or QuantConnect.

The following sections highlight key items and implementation details that need to be
addressed to put this process into action.

Data ingestion – format, frequency, and timing

The first step in the process concerns the sources of data. Traditionally, algorithmic trading
strategies focused on market data, namely the OHLCV price and volume data that we
discussed in Chapter 2, Market and Fundamental Data – Sources and Techniques. Today, data
sources are more diverse and raise the question of how many different storage formats and
data types to support, and whether to use a proprietary or custom format or rely on third-
party or open source formats.

Another aspect is the frequency of data sources that can be used and whether sources
at different frequencies can be combined. Common options in increasing order of
computational complexity and memory and storage requirements include daily, minute,
and tick frequency. Intermediate frequencies are also possible. Algorithmic strategies tend
to perform better at higher frequencies, even though quantamental investors are gaining
ground, as discussed in Chapter 1, Machine Learning for Trading – From Idea to Execution.
Regardless, institutional investors will certainly require tick frequency.

Chapter 8

[231]

Finally, data ingestion should also address point-in-time constraints to avoid look-ahead
bias, as outlined in the previous section. The use of trading calendars helps limit data to
legitimate dates and times; adjustments to reflect corporate actions like stock splits and
dividends or restatements that impact prices revealed at specific times need to be made
prior to ingestion.

Factor engineering – built-in factors versus libraries

To facilitate the engineering of alpha factors for use in ML models, many backtesting
engines include computational tools suitable for numerous standard transformations like
moving averages and various technical indicators. A key advantage of built-in factor
engineering is the easy conversion of the backtesting pipeline into a live trading engine
that applies the same computations to the input data.

The numerical Python libraries (pandas, NumPy, TA-Lib) presented in Chapter 4, Financial
Feature Engineering – How to Research Alpha Factors, are an alternative to pre-compute
factors. This can be efficient when the goal is to reuse factors in various backtests that
amortize the computational cost.

ML models, predictions, and signals

As mentioned earlier, the ML workflow discussed in Chapter 6, The Machine Learning Process,
can be embedded in an end-to-end platform that integrates the model design and evaluation
part into the backtesting process. While convenient, this is also costly because model training
becomes part of the backtest when the goal is perhaps to fine-tune trading rules.

Similar to factor engineering, you can decouple these aspects and design, train, and
evaluate ML models using generic libraries for this purpose, and also provide the relevant
predictions as inputs to the backtester. We will mostly use this approach in this book
because it makes the exposition more concise and less repetitive.

Trading rules and execution

A realistic strategy simulation requires a faithful representation of the trading environment.
This includes access to relevant exchanges, the availability of the various order types
discussed in Chapter 2, Market and Fundamental Data – Sources and Techniques, and the
accounting for transaction costs. Costs include broker commissions, bid-ask spreads, and
slippage, giving us the difference between the target execution price and the price that's
eventually obtained. It is also important to ensure trades execute with delays that reflect
liquidity and operating hours.

The ML4T Workflow – From Model to Strategy Backtesting

[232]

Performance evaluation

Finally, a backtesting platform needs to facilitate performance evaluation. It can provide
standard metrics derived from its accounting of transactions, or provide an output of the
metrics that can be used with a library like pyfolio that's suitable for this purpose.

In the next two sections, we will explore two of the most popular backtesting libraries,
namely backtrader and Zipline.

backtrader – a flexible tool for local backtests
backtrader is a popular, flexible, and user-friendly Python library for local backtests with
great documentation, developed since 2015 by Daniel Rodriguez. In addition to a large and
active community of individual traders, there are several banks and trading houses that use
backtrader to prototype and test new strategies before porting them to a production-ready
platform using, for example, Java. You can also use backtrader for live trading with several
brokers of your choice (see the backtrader documentation and Chapter 23, Conclusions and
Next Steps).

We'll first summarize the key concepts of backtrader to clarify the big picture of the
backtesting workflow on this platform, and then demonstrate its usage for a strategy driven
by ML predictions.

Key concepts of backtrader's Cerebro architecture
backtrader's Cerebro (Spanish for "brain") architecture represents the key components of
the backtesting workflow as (extensible) Python objects. These objects interact to facilitate
processing input data and the computation of factors, formulate and execute a strategy,
receive and execute orders, and track and measure performance. A Cerebro instance
orchestrates the overall process from collecting inputs, executing the backtest bar by bar,
and providing results.

The library uses conventions for these interactions that allow you to omit some detail and
streamline the backtesting setup. I highly recommend browsing the documentation to dive
deeper if you plan on using backtrader to develop your own strategies.

Figure 8.3 outlines the key elements in the Cerebro architecture, and the following
subsections summarize their most important functionalities:

Chapter 8

[233]

Figure 8.3: The backtrader Cerebro architecture

Data feeds, lines, and indicators

Data feeds are the raw material for a strategy and contain information about individual
securities, such as OHLCV market data with a timestamp for each observation, but you can
customize the available fields. backtrader can ingest data from various sources, including
CSV files and pandas DataFrames, and from online sources like Yahoo Finance. There are
also extensions you can use to connect to online trading platforms like Interactive Brokers
to ingest live data and execute transactions. The compatibility with DataFrame objects
implies that you can load data from accessible by pandas, ranging from databases to HDF5
files. (See the demonstration in the How to use backtrader in practice section; also, see the I/O
section of the pandas documentation.)

Once loaded, we add the data feeds to a Cerebro instance, which, in turn, makes it available
to one or more strategies in the order received. Your strategy's trading logic can access each
data feed by name (for example, the ticker) or sequence number and retrieve the current
and past values of any field of the data feed. Each field is called a line.

backtrader comes with over 130 common technical indicators that allow you to compute
new values from lines or other indicators for each data feed to drive your strategy. You can
also use standard Python operations to derive new values. Usage is fairly straightforward
and well explained in the documentation.

The ML4T Workflow – From Model to Strategy Backtesting

[234]

From data and signals to trades – strategy

The Strategy object contains your trading logic that places orders based on data feed
information that the Cerebro instance presents at every bar during backtest execution. You
can easily test variations by configuring a Strategy to accept arbitrary parameters that you
define when adding an instance of your Strategy to your Cerebro.

For every bar of a backtest, the Cerebro instance calls either the .prenext() or .next()
method of your Strategy instance. The role of .prenext() is to address bars that do not yet
have complete data for all feeds, for example, before there are enough periods to compute
an indicator like a built-in moving average or if there is otherwise missing data. The default
is to do nothing, but you can add trading logic of your choice or call next() if your main
Strategy is designed to handle missing values (see the How to use backtrader in practice
section).

You can also use backtrader without defining an explicit Strategy and instead use a
simplified Signals interface. The Strategy API gives you more control and flexibility,
though; see the backtrader documentation for details on how to use the Signals API.

A Strategy outputs orders: let's see how backtrader handles these next.

Commissions instead of commission schemes

Once your Strategy has evaluated current and past data points at each bar, it needs to
decide which orders to place. backtrader lets you create several standard order types that
Cerebro passes to a Broker instance for execution and provides a notification of the result at
each bar.

You can use the Strategy methods buy() and sell() to place market, close, and limit orders,
as well as stop and stop-limit orders. Execution works as follows:

• Market order: Fills at the next open bar

• Close order: Fills at the next close bar

• Limit order: Executes only if a price threshold is met (for example, only buy up to a
certain price) during an (optional) period of validity

• Stop order: Becomes a market order if the price reaches a given threshold

• Stop limit order: Becomes a limit order once the stop is triggered

Chapter 8

[235]

In practice, stop orders differ from limit orders because they cannot be seen by the market
prior to the price trigger. backtrader also provides target orders that compute the required
size, taking into account the current position to achieve a certain portfolio allocation in
terms of the number of shares, the value of the position, or the percentage of portfolio
value. Furthermore, there are bracket orders that combine, for a long order, a buy with two
limit sell orders that activate as the buy executes. Should one of the sell orders fill or cancel,
the other sell order also cancels.

The Broker handles order execution, tracks the portfolio, cash value, and notifications and
implements transaction costs like commission and slippage. The Broker may reject trades if
there is not enough cash; it can be important to sequence buys and sells to ensure liquidity.
backtrader also has a cheat_on_open feature that permits looking ahead to the next bar,
to avoid rejected trades due to adverse price moves by the next bar. This feature will, of
course, bias your results.

In addition to commission schemes like a fixed or percentage amount of the absolute
transaction value, you can implement your own logic, as demonstrated later, for a flat fee
per share.

Making it all happen – Cerebro

The Cerebro control system synchronizes the data feeds based on the bars represented by
their timestamp, and runs the trading logic and broker actions on an event-by-event basis
accordingly. backtrader does not impose any restrictions on the frequency or the trading
calendar and can use multiple time frames in parallel.

It also vectorizes the calculation for indicators if it can preload source data. There are
several options you can use to optimize operations from a memory perspective (see the
Cerebro documentation for details).

How to use backtrader in practice
We are going to demonstrate backtrader using the daily return predictions from the ridge
regression from Chapter 7, Linear Models – From Risk Factors to Return Forecasts, as we did for
the vectorized backtest earlier in this chapter. We will create the Cerebro instance, load the
data, formulate and add the Strategy, run the backtest, and review the results.

The notebook backtesting_with_backtrader contains the following code examples and
some additional details.

The ML4T Workflow – From Model to Strategy Backtesting

[236]

How to load price and other data

We need to ensure that we have price information for all the dates on which we would
like to buy or sell stocks, not only for the days with predictions. To load data from a
pandas DataFrame, we subclass backtrader's PandasData class to define the fields that we
will provide:

class SignalData(PandasData):

 """

 Define pandas DataFrame structure
 """

 cols = OHLCV + ['predicted']

 # create lines

 lines = tuple(cols)

 # define parameters
 params = {c: -1 for c in cols}

 params.update({'datetime': None})

 params = tuple(params.items())

We then instantiate a Cerebro class and use the SignalData class to add one data feed for
each ticker in our dataset that we load from HDF5:

cerebro = bt.Cerebro() # create a "Cerebro" instance

idx = pd.IndexSlice

data = pd.read_hdf('00_data/backtest.h5', 'data').sort_index()

tickers = data.index.get_level_values(0).unique()

for ticker in tickers:

 df = data.loc[idx[ticker, :], :].droplevel('ticker', axis=0)

 df.index.name = 'datetime'

 bt_data = SignalData(dataname=df)

 cerebro.adddata(bt_data, name=ticker)

Now, we are ready to define our Strategy.

How to formulate the trading logic

Our MLStrategy subclasses backtrader's Strategy class and defines parameters that we can
use to modify its behavior. We also create a log file to create a record of the transactions:

class MLStrategy(bt.Strategy):
 params = (('n_positions', 10),
 ('min_positions', 5),
 ('verbose', False),
 ('log_file', 'backtest.csv'))

Chapter 8

[237]

 def log(self, txt, dt=None):

 """ Logger for the strategy"""

 dt = dt or self.datas[0].datetime.datetime(0)

 with Path(self.p.log_file).open('a') as f:
 log_writer = csv.writer(f)

 log_writer.writerow([dt.isoformat()] + txt.split(','))

The core of the strategy resides in the .next() method. We go long/short on the n_position
stocks with the highest positive/lowest negative forecast, as long as there are at least min_
positions positions. We always sell any existing positions that do not appear in the new
long and short lists and use order_target_percent to build equal-weights positions in the
new targets (log statements are omitted to save some space):

 def prenext(self):

 self.next()

 def next(self):

 today = self.datas[0].datetime.date()

 positions = [d._name for d, pos in self.getpositions().items() if pos]

 up, down = {}, {}

 missing = not_missing = 0

 for data in self.datas:

 if data.datetime.date() == today:

 if data.predicted[0] > 0:

 up[data._name] = data.predicted[0]

 elif data.predicted[0] < 0:

 down[data._name] = data.predicted[0]

 # sort dictionaries ascending/descending by value

 # returns list of tuples

 shorts = sorted(down, key=down.get)[:self.p.n_positions]

 longs = sorted(up, key=up.get, reverse=True)[:self.p.n_positions]

 n_shorts, n_longs = len(shorts), len(longs)

 # only take positions if at least min_n longs and shorts

 if n_shorts < self.p.min_positions or n_longs < self.p.min_positions:

 longs, shorts = [], []

 for ticker in positions:

 if ticker not in longs + shorts:

 self.order_target_percent(data=ticker, target=0)

 short_target = -1 / max(self.p.n_positions, n_short)

 long_target = 1 / max(self.p.top_positions, n_longs)

 for ticker in shorts:

 self.order_target_percent(data=ticker, target=short_target)

 for ticker in longs:

 self.order_target_percent(data=ticker, target=long_target)

Now, we need to configure our Cerebro instance and add our Strategy.

The ML4T Workflow – From Model to Strategy Backtesting

[238]

How to configure the Cerebro instance
We use a custom commission scheme that assumes we pay a fixed amount of $0.02 per
share that we buy or sell:

class FixedCommisionScheme(bt.CommInfoBase):

 """

 Simple fixed commission scheme for demo
 """

 params = (

 ('commission', .02),

 ('stocklike', True),

 ('commtype', bt.CommInfoBase.COMM_FIXED),

)

 def _getcommission(self, size, price, pseudoexec):

 return abs(size) * self.p.commission

Then, we define our starting cash amount and configure the broker accordingly:

cash = 10000

cerebro.broker.setcash(cash)

comminfo = FixedCommisionScheme()

cerebro.broker.addcommissioninfo(comminfo)

Now, all that's missing is adding the MLStrategy to our Cerebro instance, providing
parameters for the desired number of positions and the minimum number of long/shorts.
We'll also add a pyfolio analyzer so we can view the performance tearsheets we presented
in Chapter 5, Portfolio Optimization and Performance Evaluation:

cerebro.addanalyzer(bt.analyzers.PyFolio, _name='pyfolio')

cerebro.addstrategy(MLStrategy, n_positions=10, min_positions=5,

 verbose=True, log_file='bt_log.csv')
results = cerebro.run()

ending_value = cerebro.broker.getvalue()

f'Final Portfolio Value: {ending_value:,.2f}'

Final Portfolio Value: 10,502.32

The backtest uses 869 trading days and takes around 45 seconds to run. The following
figure shows the cumulative return and the evolution of the portfolio value, as well as the
daily value of long and short positions.

Performance looks somewhat similar to the preceding vectorized test, with outperformance
relative to the S&P 500 benchmark during the first half and poor performance thereafter.

Chapter 8

[239]

The backtesting_with_backtrader notebook contains the complete pyfolio results:

Figure 8.4: backtrader results

backtrader summary and next steps
backtrader is a very straightforward yet flexible and performant backtesting engine for
local backtesting. You can load any dataset at the frequency you desire from a broad range
of sources due to pandas compatibility. Strategy lets you define arbitrary trading logic; you
just need to ensure you access the distinct data feeds as needed. It also integrates well with
pyfolio for quick yet comprehensive performance evaluation.

In the demonstration, we applied our trading logic to predictions from a pre-trained model.
We can also train a model during backtesting because we can access data prior to the
current bar. Often, however, it is more efficient to decouple model training from strategy
selection and avoid duplicating model training.

One of the reasons for backtrader's popularity is the ability to use it for live trading with a
broker of your choosing. The community is very lively, and code to connect to brokers or
additional data sources, including for cryptocurrencies, is readily available online.

Zipline – scalable backtesting by Quantopian
The backtesting engine Zipline powers Quantopian's online research, backtesting, and live
(paper) trading platform. As a hedge fund, Quantopian aims to identify robust algorithms
that outperform, subject to its risk management criteria. To this end, they use competitions
to select the best strategies and allocate capital to share profits with the winners.

Quantopian first released Zipline in 2012 as version 0.5, and the latest version, 1.3, dates
from July 2018. Zipline works well with its sister libraries Alphalens, pyfolio, and empyrical
that we introduced in Chapter 4, Financial Feature Engineering – How to Research Alpha Factors
and Chapter 5, Portfolio Optimization and Performance Evaluation, and integrates well with
NumPy, pandas, and numeric libraries, but may not always support the latest version.

The ML4T Workflow – From Model to Strategy Backtesting

[240]

Zipline is designed to operate at the scale of thousands of securities, and each can be
associated with a large number of indicators. It imposes more structure on the backtesting
process than backtrader to ensure data quality by eliminating look-ahead bias, for example,
and optimize computational efficiency while executing a backtest. We'll take a look at the
key concepts and elements of the architecture, shown in Figure 8.5, before we demonstrate
how to use Zipline to backtest ML-driven models on the data of your choice.

Calendars and the Pipeline for robust simulations
Key features that contribute to the goals of scalability and reliability are data bundles that
store OHLCV market data with on-the-fly adjustments for splits and dividends, trading
calendars that reflect operating hours of exchanges around the world, and the powerful
Pipeline API (see the following diagram). We will discuss their usage in the following
sections to complement the brief Zipline introduction we gave in earlier chapters:

Figure 8.5: The Zipline architecture

Bundles – point-in-time data with on-the-fly adjustments
The principal data store is a bundle that resides on disk in compressed, columnar bcolz
format for efficient retrieval, combined with metadata stored in an SQLite database. Bundles
are designed to contain only OHLCV data and are limited to daily and minute frequency.
A great feature is that bundles store split and dividend information, and Zipline computes
point-in-time adjustments, depending on the time period you pick for your backtest.

Chapter 8

[241]

Zipline relies on the TradingCalendar library (also maintained by Quantopian) for
operational details on exchanges around the world, such as time zone, market open and
closing times, or holidays. Data sources have domains (for now, these are countries) and
need to conform to the assigned exchange calendar. Quantopian is actively developing
support for international securities, and these features may evolve.

After installation, the command zipline ingest -b bundle lets you install the Quandl Wiki
dataset (daily frequency) right away. The result ends up in the .zipline directory, which,
by default, resides in your home folder. In addition, you can design your own bundles, as
we'll see.

In addition to bundles, you can provide OHCLV data to an algorithm as a pandas
DataFrame or Panel. (Panel is recently deprecated, but Zipline is a few pandas versions
behind.) However, bundles are more convenient and efficient.

A shortcoming of bundles is that they do not let you store data other than price and volume
information. However, two alternatives let you accomplish this: the fetch_csv() function
downloads DataFrames from a URL and was designed for other Quandl data sources, for
example, fundamentals. Zipline reasonably expects the data to refer to the same securities
for which you have provided OHCLV data and aligns the bars accordingly. It's very easy
to patch the library to load a local CSV or HDF5 using pandas, and the GitHub repository
provides some guidance on how to do so.

In addition, DataFrameLoader and BlazeLoader permit you to feed additional attributes to
a Pipeline (see the DataFrameLoader demo later in this chapter). BlazeLoader can interface
with numerous sources, including databases. However, since the Pipeline API is limited to
daily data, fetch_csv() will be critical to adding features at a minute frequency, as we will
do in later chapters.

The Algorithm API – backtests on a schedule

The TradingAlgorithm class implements the Zipline Algorithm API and operates on
BarData that has been aligned with a given trading calendar. After the initial setup, the
backtest runs for a specified period and executes its trading logic as specific events occur.
These events are driven by the daily or minutely trading frequency, but you can also
schedule arbitrary functions to evaluate signals, place orders, and rebalance your portfolio,
or log information about the ongoing simulation.

You can execute an algorithm from the command line, in a Jupyter Notebook, or by using
the run_algorithm() method of the underlying TradingAlgorithm class. The algorithm
requires an initialize() method that is called once when the simulation starts. It keeps
state through a context dictionary and receives actionable information through a data
variable containing point-in-time current and historical data.

You can add properties to the context dictionary, which is available to all other
TradingAlgorithm methods, or register pipelines that perform more complex data
processing, such as computing alpha factors and filtering securities accordingly.

The ML4T Workflow – From Model to Strategy Backtesting

[242]

Algorithm execution occurs through optional methods that are either scheduled
automatically by Zipline or at user-defined intervals. The method before_trading_start()
is called daily before the market opens and primarily serves to identify a set of securities
the algorithm may trade during the day. The method handle_data() is called at the given
trading frequency, for example, every minute.

Upon completion, the algorithm returns a DataFrame containing portfolio performance
metrics if there were any trades, as well as user-defined metrics. As demonstrated in
Chapter 5, Portfolio Optimization and Performance Evaluation, the output is compatible with
pyfolio so that you can quickly create performance tearsheets.

Known issues

Zipline currently requires the presence of Treasury curves and the S&P 500 returns for
benchmarking (https://github.com/quantopian/zipline/issues/2480). The latter relies
on the IEX API, which now requires registration to obtain a key. It is easy to patch Zipline
to circumvent this and download data from the Federal Reserve, for instance. The GitHub
repository describes how to go about this. Alternatively, you can move the SPY returns
provided in zipline/resources/market_data/SPY_benchmark.csv to your .zipline folder,
which usually lives in your home directory, unless you changed its location.

Live trading (https://github.com/zipline-live/zipline) your own systems is only
available with Interactive Brokers and is not fully supported by Quantopian.

Ingesting your own bundles with minute data
We will use the NASDAQ100 2013-17 sample provided by AlgoSeek that we introduced
in Chapter 2, Market and Fundamental Data – Sources and Techniques, to demonstrate how to
write your own custom bundle. There are four steps:

1. Divide your OHCLV data into one file per ticker and store metadata and split and
dividend adjustments.

2. Write a script to pass the result to an ingest() function, which, in turn, takes care of
writing the bundle to bcolz and SQLite format.

3. Register the bundle in an extension.py script that lives in your .zipline directory in
your home folder, and symlink the data sources.

4. For AlgoSeek data, we also provide a custom TradingCalendar because it includes
trading activity outside NYSE market hours.

The directory custom_bundles contains the code examples for this section.

https://github.com/quantopian/zipline/issues/2480
https://github.com/zipline-live/zipline

Chapter 8

[243]

Getting your data ready to be bundled

In Chapter 2, Market and Fundamental Data – Sources and Techniques, we parsed the daily
files containing the AlgoSeek NASDAQ 100 OHLCV data to obtain a time series for each
ticker. We will use this result because Zipline also stores each security individually.

In addition, we obtain equity metadata using the pandas DataReader get_nasdaq_
symbols() function. Finally, since the Quandl Wiki data covers the NASDAQ 100 tickers
for the relevant period, we extract the split and dividend adjustments from that bundle's
SQLite database.

The result is an HDF5 store containing price and volume data on some 135 tickers, as well
as the corresponding meta and adjustment data. The script algoseek_preprocessing.py
illustrates this process.

Writing your custom bundle ingest function

The Zipline documentation outlines the required parameters for an ingest() function,
which kicks off the I/O process, but does not provide a lot of practical detail. The script
algoseek_1min_trades.py shows how to get this part to work for minute data.

There is a load_equities() function that provides the metadata, a ticker_generator()
function that feeds symbols to a data_generator(), which, in turn, loads and format each
symbol's market data, and an algoseek_to_bundle() function, which integrates all the
pieces and returns the desired ingest() function.

Time zone alignment matters because Zipline translates all data series to UTC; we add
US/Eastern time zone information to the OHCLV data and convert it to UTC. To facilitate
execution, we create symlinks for this script and the algoseek.h5 data in the custom_data
folder in the .zipline directory, which we'll add to the PATH in the next step so Zipline can
find this information.

Registering your bundle

Before we can run zipline ingest -b algoseek, we need to register our custom bundle so
Zipline knows what we are talking about. To this end, we'll add the following lines to an
extension.py script in the .zipline file, which you may have to create first, alongside some
inputs and settings (see the extension.py example).

The registration itself is fairly straightforward but highlights a few important details. First,
Zipline needs to be able to import the algoseek_to_bundle() function, so its location needs
to be on the search path, for example, by using sys.path.append(). Second, we reference a
custom calendar that we will create and register in the next step. Third, we need to inform
Zipline that our trading days are longer than the default 6 and a half hours of NYSE days to
avoid misalignments:

The ML4T Workflow – From Model to Strategy Backtesting

[244]

register('algoseek',

 algoseek_to_bundle(),

 calendar_name='AlgoSeek',

 minutes_per_day=960

)

Creating and registering a custom TradingCalendar

As mentioned previously, Quantopian also provides a TradingCalendar library to support
trading around the world. The package contains numerous examples, and it is fairly
straightforward to subclass one of the examples. Based on the NYSE calendar, we only
need to override the open/close times and change the name:

class AlgoSeekCalendar(XNYSExchangeCalendar):

 """

 A calendar for trading assets before and after market hours

 Open Time: 4AM, US/Eastern

 Close Time: 19:59PM, US/Eastern

 """

 @property

 def name(self):

 return "AlgoSeek"

 @property

 def open_time(self):

 return time(4, 0)

 @property

 def close_time(self):

 return time(19, 59)

We put the definition into extension.py and add the following registration:

register_calendar(

 'AlgoSeek',

 AlgoSeekCalendar())

And now, we can refer to this trading calendar to ensure a backtest includes off-market
hour activity.

Chapter 8

[245]

The Pipeline API – backtesting an ML signal
The Pipeline API facilitates the definition and computation of alpha factors for a cross-
section of securities from historical data. Pipeline significantly improves efficiency because
it optimizes computations over the entire backtest period, rather than tackling each
event separately. In other words, it continues to follow an event-driven architecture but
vectorizes the computation of factors where possible.

A pipeline uses factors, filters, and classifiers classes to define computations that produce
columns in a table with point-in-time values for a set of securities. Factors take one or more
input arrays of historical bar data and produce one or more outputs for each security.
There are numerous built-in factors, and you can also design your own CustomFactor
computations.

The following diagram depicts how loading the data using DataFrameLoader, computing
the predictive MLSignal using the Pipeline API, and various scheduled activities integrate
with the overall trading algorithm that's executed via the run_algorithm() function. We'll
go over the details and the corresponding code in this section:

Figure 8.6: ML signal backtest using Zipline's Pipeline API

You need to register your pipeline with the initialize() method and execute it at each
time step or on a custom schedule. Zipline provides numerous built-in computations, such
as moving averages or Bollinger Bands, that can be used to quickly compute standard
factors, but it also allows for the creation of custom factors, as we will illustrate next.

Most importantly, the Pipeline API renders alpha factor research modular because it
separates the alpha factor computation from the remainder of the algorithm, including the
placement and execution of trade orders and the bookkeeping of portfolio holdings, values,
and so on.

We'll now illustrate how to load the lasso model daily return predictions, together with
price data for our universe, into a pipeline and use a CustomFactor to select the top and
bottom 10 predictions as long and short positions, respectively. The notebook backtesting_
with_zipline contains the following code examples.

Our goal is to combine the daily return predictions with the OHCLV data from our Quandl
bundle, and then to go long on up to 10 equities with the highest predicted returns and
short on those with the lowest predicted returns, requiring at least five stocks on either side,
similar to the backtrader example above.

The ML4T Workflow – From Model to Strategy Backtesting

[246]

Enabling the DataFrameLoader for our Pipeline

First, we load our predictions for the 2015-17 period and extract the Zipline IDs for the ~250
stocks in our universe during this period using the bundle.asset_finder.lookup_symbols()
method, as shown in the following code:

def load_predictions(bundle):

 predictions = pd.read_hdf('../00_data/backtest.h5', 'data')
[['predicted']].dropna()

 tickers = predictions.index.get_level_values(0).unique().tolist()

 assets = bundle.asset_finder.lookup_symbols(tickers, as_of_date=None)
 predicted_sids = pd.Int64Index([asset.sid for asset in assets])

 ticker_map = dict(zip(tickers, predicted_sids))

 return (predictions

 .unstack('ticker')

 .rename(columns=ticker_map)

 .predicted

 .tz_localize('UTC')), assets

bundle_data = bundles.load('quandl')

predictions, assets = load_predictions(bundle_data)

To make the predictions available to the Pipeline API, we need to define a Column with a
suitable data type for a DataSet with an appropriate domain, like so:

class SignalData(DataSet):

 predictions = Column(dtype=float)
 domain = US_EQUITIES

While the bundle's OHLCV data can rely on the built-in USEquityPricingLoader, we need
to define our own DataFrameLoader, as follows:

signal_loader = {SignalData.predictions:

 DataFrameLoader(SignalData.predictions, predictions)}

In fact, we need to slightly modify the Zipline library's source code to bypass the
assumption that we will only load price data. To this end, we add a custom_loader
parameter to the run_algorithm method and ensure that this loader is used when the
pipeline needs one of SignalData's Column instances.

Chapter 8

[247]

Creating a pipeline with a custom ML factor

Our pipeline is going to have two Boolean columns that identify the assets we would like
to trade as long and short positions. To get there, we first define a CustomFactor called
MLSignal that just receives the current return predictions. The motivation is to allow us to
use some of the convenient Factor methods designed to rank and filter securities:

class MLSignal(CustomFactor):

 """Converting signals to Factor

 so we can rank and filter in Pipeline"""
 inputs = [SignalData.predictions]

 window_length = 1

 def compute(self, today, assets, out, preds):

 out[:] = preds

Now, we can set up our actual pipeline by instantiating CustomFactor, which requires no
arguments other than the defaults provided. We combine its top() and bottom() methods
with a filter to select the highest positive and lowest negative predictions:

def compute_signals():

 signals = MLSignal()

 return Pipeline(columns={

 'longs' : signals.top(N_LONGS, mask=signals > 0),

 'shorts': signals.bottom(N_SHORTS, mask=signals < 0)},

 screen=StaticAssets(assets))

The next step is to initialize our algorithm by defining a few context variables, setting
transaction cost parameters, performing schedule rebalancing and logging, and attaching
our pipeline:

def initialize(context):

 """

 Called once at the start of the algorithm.

 """

 context.n_longs = N_LONGS

 context.n_shorts = N_SHORTS

 context.min_positions = MIN_POSITIONS

 context.universe = assets

 set_slippage(slippage.FixedSlippage(spread=0.00))

 set_commission(commission.PerShare(cost=0, min_trade_cost=0))

The ML4T Workflow – From Model to Strategy Backtesting

[248]

 schedule_function(rebalance,

 date_rules.every_day(),

 time_rules.market_open(hours=1, minutes=30))

 schedule_function(record_vars,
 date_rules.every_day(),

 time_rules.market_close())

 pipeline = compute_signals()

 attach_pipeline(pipeline, 'signals')

Every day before the market opens, we run our pipeline to obtain the latest predictions:

def before_trading_start(context, data):

 """

 Called every day before market open.

 """

 output = pipeline_output('signals')

 context.trades = (output['longs'].astype(int)

 .append(output['shorts'].astype(int).mul(-1))

 .reset_index()

 .drop_duplicates()

 .set_index('index')

 .squeeze())

After the market opens, we place orders for our long and short targets and close all other
positions:

def rebalance(context, data):

 """

 Execute orders according to schedule_function() date & time rules.

 """

 trades = defaultdict(list)

 for stock, trade in context.trades.items():

 if not trade:

 order_target(stock, 0)

 else:

 trades[trade].append(stock)

 context.longs, context.shorts = len(trades[1]), len(trades[-1])

 if context.longs > context.min_positions and context.shorts > context.
min_positions:

 for stock in trades[-1]:

 order_target_percent(stock, -1 / context.shorts)

 for stock in trades[1]:

 order_target_percent(stock, 1 / context.longs)

Chapter 8

[249]

Now, we are ready to execute our backtest and pass the results to pyfolio:

results = run_algorithm(start=start_date,

 end=end_date,

 initialize=initialize,

 before_trading_start=before_trading_start,

 capital_base=1e6,

 data_frequency='daily',

 bundle='quandl',

 custom_loader=signal_loader) # need to modify zipline

returns, positions, transactions = pf.utils.extract_rets_pos_txn_from_
zipline(results)

Figure 8.7 shows the plots for the strategy's cumulative returns (left panel) and the rolling
Sharpe ratio, which are comparable to the previous backtrader example.

The backtest only takes around half the time, though:

Figure 8.7: Zipline backtest results

The notebook backtesting_with_zipline contains the full pyfolio tearsheet with additional
metrics and plots.

The ML4T Workflow – From Model to Strategy Backtesting

[250]

How to train a model during the backtest
We can also integrate the model training into our backtest. You can find the code for the
following end-to-end example of our ML4T workflow in the ml4t_with_zipline notebook:

Figure 8.8: Flowchart of Zipline backtest with model training

The goal is to roughly replicate the ridge regression daily return predictions we used earlier
and generated in Chapter 7, Linear Models – From Risk Factors to Return Forecasts. We will,
however, use a few additional pipeline factors to illustrate their usage. The principal new
element is a CustomFactor that receives features and returns them as inputs to train a model
and produce predictions.

Preparing the features – how to define pipeline factors
To create a pipeline factor, we need one or more input variables, a window_length that
indicates the number of most recent data points for each input and security, and the
computation we want to conduct.

A linear price trend that we estimate using linear regression (see Chapter 7, Linear Models –
From Risk Factors to Return Forecasts) works as follows: we use the 252 latest close prices to
compute the regression coefficient on a linear time trend:

class Trendline(CustomFactor):

 # linear 12-month price trend regression

 inputs = [USEquityPricing.close]

 window_length = 252

 def compute(self, today, assets, out, close):

 X = np.arange(self.window_length).reshape(-1, 1).astype(float)
 X -= X.mean()

 Y = close - np.nanmean(close, axis=0)

 out[:] = (X.T @ Y / np.var(X)) / self.window_length

We will use 10 custom and built-in factors as features for our model to capture risk factors
like momentum and volatility (see notebook ml4t_with_zipline for details). Next, we'll
come up with a CustomFactor that trains our model.

Chapter 8

[251]

How to design a custom ML factor

Our CustomFactor, called ML, will have StandardScaler and a stochastic gradient descent
(SGD) implementation of ridge regression as instance attributes, and we will train the
model 3 days a week:

class LinearModel(CustomFactor):

 """Obtain model predictions"""

 train_on_weekday = [0, 2, 4]

 def __init__(self, *args, **kwargs):

 super().__init__(self, *args, **kwargs)

 self._scaler = StandardScaler()

 self._model = SGDRegressor(penalty='L2')

 self._trained = False

The compute method generates predictions (addressing potential missing values), but first
checks if the model should be trained:

 def _maybe_train_model(self, today, returns, inputs):

 if (today.weekday() in self.train_on_weekday) or not self._trained:

 self._train_model(today, returns, inputs)

 def compute(self, today, assets, out, returns, *inputs):

 self._maybe_train_model(today, returns, inputs)

 # Predict most recent feature values

 X = np.dstack(inputs)[-1]

 missing = np.any(np.isnan(X), axis=1)

 X[missing, :] = 0

 X = self._scaler.transform(X)

 preds = self._model.predict(X)

 out[:] = np.where(missing, np.nan, preds)

The _train_model method is the centerpiece of the puzzle. It shifts the returns and aligns
the resulting forward returns with the factor features, removing missing values in the
process. It scales the remaining data points and trains the linear SGDRegressor:

 def _train_model(self, today, returns, inputs):

 scaler = self._scaler

 model = self._model

 shift_by = N_FORWARD_DAYS + 1

 outcome = returns[shift_by:].flatten()
 features = np.dstack(inputs)[:-shift_by]

The ML4T Workflow – From Model to Strategy Backtesting

[252]

 n_days, n_stocks, n_features = features.shape

 features = features.reshape(-1, n_features)

 features = features[~np.isnan(outcome)]

 outcome = outcome[~np.isnan(outcome)]

 outcome = outcome[np.all(~np.isnan(features), axis=1)]

 features = features[np.all(~np.isnan(features), axis=1)]

 features = scaler.fit_transform(features)

 model.fit(X=features, y=outcome)
 self._trained = True

The make_ml_pipeline() function preprocesses and combines the outcome, feature, and
model parts into a pipeline with a column for predictions:

def make_ml_pipeline(universe, window_length=21, n_forward_days=5):
 pipeline_columns = OrderedDict()

 # ensure that returns is the first input
 pipeline_columns['Returns'] = Returns(inputs=[USEquityPricing.open],
 mask=universe,
 window_length=n_forward_days + 1)

 # convert factors to ranks; append to pipeline
 pipeline_columns.update({k: v.rank(mask=universe)
 for k, v in features.items()})

 # Create ML pipeline factor.
 # window_length = length of the training period
 pipeline_columns['predictions'] = LinearModel(
 inputs=pipeline_columns.values(),
 window_length=window_length + n_forward_days,
 mask=universe)

 return Pipeline(screen=universe, columns=pipeline_columns)

Tracking model performance during a backtest

We obtain new predictions using the before_trading_start() function, which runs every
morning before the market opens:

def before_trading_start(context, data):
 output = pipeline_output('ml_model')
 context.predicted_returns = output['predictions']
 context.predicted_returns.index.rename(['date', 'equity'], inplace=True)

 evaluate_predictions(output, context)

Chapter 8

[253]

evaluate_predictions does exactly this: it tracks the past predictions of our model and
evaluates them once returns for the relevant time horizon materialize (in our example, the
next day):

def evaluate_predictions(output, context):
 # Look at past predictions to evaluate model performance out-of-sample
 # A day has passed, shift days and drop old ones
 context.past_predictions = {
 k - 1: v for k, v in context.past_predictions.items() if k > 0}

 if 0 in context.past_predictions:
 # Use today's forward returns to evaluate predictions
 returns, predictions = (output['Returns'].dropna()
 .align(context.past_predictions[0].dropna(),
 join='inner'))
 if len(returns) > 0 and len(predictions) > 0:
 context.ic = spearmanr(returns, predictions)[0]
 context.rmse = np.sqrt(
 mean_squared_error(returns, predictions))
 context.mae = mean_absolute_error(returns, predictions)

 long_rets = returns[predictions > 0].mean()
 short_rets = returns[predictions < 0].mean()
 context.returns_spread_bps = (
 long_rets - short_rets) * 10000

 # Store current predictions
 context.past_predictions[N_FORWARD_DAYS] = context.predicted_returns

We also record the evaluation on a daily basis so we can review it after the backtest:

Figure 8.9: Model out-of-sample performance

The ML4T Workflow – From Model to Strategy Backtesting

[254]

The following plots summarize the backtest performance in terms of the cumulative returns
and the rolling SR. The results have improved relative to the previous example (due to a
different feature set), yet the model still underperforms the benchmark since mid-2016:

Figure 8.10: Zipline backtest performance with model training

Please see the notebook for additional details on how we define a universe, run the
backtest, and rebalance and analyze the results using pyfolio.

Instead of how to use
The notebook ml4t_quantopian contains an example of how to backtest a strategy that
uses a simple ML model in the Quantopian research environment. The key benefit of
using Zipline in the Quantopian cloud is access to many additional datasets, including
fundamental and alternative data. See the notebook for more details on the various factors
that we can derive in this context.

Summary
In this chapter, we took a much closer look at how backtesting works, what challenges there
are, and how to manage them. We demonstrated how to use the two popular backtesting
libraries, backtrader and Zipline.

Most importantly, however, we walked through the end-to-end process of designing and
testing an ML model, showed you how to implement trading logic that acts on the signals
provided by the model's predictions, and saw how to conduct and evaluate backtests. Now,
we are ready to continue exploring a much broader and more sophisticated array of ML
models than the linear regressions we started with.

The next chapter will cover how to incorporate the time dimension into our models.

[255]

9
Time-Series Models for Volatility

Forecasts and Statistical Arbitrage

In Chapter 7, Linear Models – From Risk Factors to Asset Return Forecasts, we introduced linear
models for inference and prediction, starting with static models for a contemporaneous
relationship with cross-sectional inputs that have an immediate effect on the output. We
presented the ordinary least squares (OLS) learning algorithm, and saw that it produces
unbiased coefficients for a correctly specified model with residuals that are not correlated
with the input variables. Adding the assumption that the residuals have constant variance
guarantees that OLS produces the smallest mean squared prediction error among unbiased
estimators.

We also encountered panel data that had both cross-sectional and time-series dimensions,
when we learned how the Fama-Macbeth regressions estimate the value of risk factors over
time and across assets. However, the relationship between returns across time is typically
fairly low, so this procedure could largely ignore the time dimension.

Furthermore, we covered the regularized ridge and lasso regression models, which produce
biased coefficient estimates but can reduce the mean squared prediction error. These
predictive models took a more dynamic perspective and combined historical returns with
other inputs to predict forward returns.

In this chapter, we will build dynamic linear models to explicitly represent time and
include variables observed at specific intervals or lags. A key characteristic of time-series
data is their sequential order: rather than random samples of individual observations, as in
the case of cross-sectional data, our data is a single realization of a stochastic process that
we cannot repeat.

Time-Series Models for Volatility Forecasts and Statistical Arbitrage

[256]

Our goal is to identify systematic patterns in time series that help us predict how the time
series will behave in the future. More specifically, we will focus on models that extract
signals from a historical sequence of the output and, optionally, other contemporaneous or
lagged input variables to predict future values of the output. For example, we might try to
predict future returns for a stock using past returns, combined with historical returns of a
benchmark or macroeconomic variables. We will focus on linear time-series models before
turning to nonlinear models like recurrent or convolutional neural networks in Part 4.

Time-series models are very popular given the time dimension inherent to trading.
Key applications include the prediction of asset returns and volatility, as well as the
identification of the co-movements of asset price series. Time-series data is likely to
become more prevalent as an ever-broader array of connected devices collects regular
measurements with potential signal content.

We will first introduce the tools we can use to diagnose time-series characteristics and to
extract features that capture potential patterns. Then, we will cover how to diagnose and
achieve time-series stationarity. Next, we will introduce univariate and multivariate time-
series models and apply them in order to forecast macro data and volatility patterns. We
will conclude with the concept of cointegration and how to apply it to develop a pairs
trading strategy.

In particular, we will cover the following topics:

• How to use time-series analysis to prepare and inform the modeling process

• Estimating and diagnosing univariate autoregressive and moving-average models

• Building autoregressive conditional heteroskedasticity (ARCH) models to predict
volatility

• How to build multivariate vector autoregressive models

• Using cointegration to develop a pairs trading strategy

Tools for diagnostics and feature extraction
A time series is a sequence of values separated by discrete intervals that are typically even
spaced (except for missing values). A time series is often modeled as a stochastic process
consisting of a collection of random variables, 𝑦𝑦(𝑡𝑡1),… , 𝑦𝑦(𝑡𝑡𝑇𝑇) , with one variable for each
point in time, 𝑡𝑡𝑖𝑖 , 𝑖𝑖 𝑖 𝑖,𝑖 , 𝑖𝑖 . A univariate time series consists of a single value, y, at each
point in time, whereas a multivariate time series consists of several observations that can be
represented by a vector.

You can find the code samples for this chapter and links to additional resources
in the corresponding directory of the GitHub repository. The notebooks
include color versions of the images. For a thorough introduction to the topics
of this chapter from an investment perspective, see Tsay (2005) and Fabozzi,
Focardi, and Kolm (2010).

Chapter 9

[257]

The number of periods, ∆𝑡𝑡 𝑡 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑗𝑗 , between distinct points in time, t
i
, tj, is called lag, with

T-1 distinct lags for each time series. Just as relationships between different variables at
a given point in time is key for cross-sectional models, relationships between data points
separated by a given lag are fundamental to analyzing and exploiting patterns in time series.

For cross-sectional models, we distinguished between input and output variables, or target
and predictors, with the labels y and x, respectively. In a time-series context, some or all of
the lagged values 𝑦𝑦𝑡𝑡𝑡𝑡, 𝑦𝑦𝑡𝑡𝑡𝑡, … , 𝑦𝑦𝑡𝑡𝑇𝑇 of the outcome y play the role of the input or x values in
the cross-section context.

A time series is called white noise if it is a sequence of independent and identically
distributed (IID) random variables, 𝜖𝜖𝑡𝑡 , with finite mean and variance. In particular, the
series is called a Gaussian white noise if the random variables are normally distributed
with a mean of zero and a constant variance of 𝜎𝜎 .

A time series is linear if it can be written as a weighted sum of past disturbances, 𝜖𝜖𝑡𝑡 , that are
also called innovations and are here assumed to represent white noise, and the mean of the
series, 𝜇𝜇 : 𝑦𝑦𝑡𝑡 = 𝜇𝜇 𝜇 𝜇 𝜇𝜇𝑖𝑖𝜖𝜖𝑡𝑡𝑡𝑖𝑖∞

𝑖𝑖𝑖𝑖 , 𝜇𝜇𝑖 = 1, 𝜖𝜖𝜖𝜖𝜖 𝜖𝜖 𝜖

A key goal of time-series analysis is to understand the dynamic behavior that is driven by
the coefficients, 𝑎𝑎𝑖𝑖 . The analysis of time series offers methods tailored to this type of data
with the goal of extracting useful patterns that, in turn, help us build predictive models.

We will introduce the most important tools for this purpose, including the decomposition
into key systematic elements, the analysis of autocorrelation, and rolling window statistics
such as moving averages.

For most of the examples in this chapter, we will work with data provided by the Federal
Reserve that you can access using pandas-datareader, which we introduced in Chapter 2,
Market and Fundamental Data – Sources and Techniques. The code examples for this section are
available in the notebook tsa_and_stationarity.

How to decompose time-series patterns
Time-series data typically contains a mix of patterns that can be decomposed into several
components. In particular, a time series often combines systematic components like trend,
seasonality, and cycles with unsystematic noise. These components can be modeled as a
linear combination (for example, when fluctuations do not depend on the level of the series)
or in a nonlinear, multiplicative form.

Based on the model assumptions, they can also be split up automatically. Statsmodels
includes a simple method to split the time series into separate trend, seasonal, and residual
components using moving averages. We can apply it to monthly data on industrial
manufacturing that contain both a strong trend component and a seasonality component,
as follows:

Time-Series Models for Volatility Forecasts and Statistical Arbitrage

[258]

import statsmodels.tsa.api as tsa

industrial_production = web.DataReader('IPGMFN', 'fred', '1988', '2017-12').
squeeze()

components = tsa.seasonal_decompose(industrial_production, model='additive')

ts = (industrial_production.to_frame('Original')

 .assign(Trend=components.trend)

 .assign(Seasonality=components.seasonal)

 .assign(Residual=components.resid))

ts.plot(subplots=True, figsize=(14, 8));

Figure 9.1 shows the resulting charts that display the additive components. The residual
component would be the focus of subsequent modeling efforts, assuming that the trend and
seasonality components are more deterministic and amenable to simple extrapolation:

Figure 9.1: Time-series decomposition into trend, seasonality, and residuals

There are more sophisticated model-based approaches—see, for example, Chapter 6, The
Machine Learning Process, in Hyndman and Athanasopoulos (2018).

Rolling window statistics and moving averages
Given the sequential ordering of time-series data, it is natural to compute familiar
descriptive statistics for periods of a given length. The goal is to detect whether the series is
stable or changes over time and obtain a smoothed representation that captures systematic
aspects while filtering out the noise.

Chapter 9

[259]

Rolling window statistics serve this process: they produce a new time series where each
data point represents a summary statistic computed for a certain period of the original
data. Moving averages are the most familiar example. The original data points can enter
the computation with weights that are equal or, for example, emphasize more recent data
points. Exponential moving averages recursively compute weights that decay for data
points further in the past. The new data points are typically a summary of all preceding
data points, but they can also be computed from a surrounding window.

The pandas library includes rolling or expanding windows and allows for various weight
distributions. In a second step, you can apply computations to each set of data captured
by a window. These computations include built-in functions for individual series, such as
the mean or the sum, and the correlation or covariance for several series, as well as user-
defined functions.

We used this functionality to engineer features in Chapter 4, Financial Feature Engineering
– How to Research Alpha Factors, and Chapter 7, Linear Models – From Risk Factors to Return
Forecasts, for example. The moving average and exponential smoothing examples in the
following section will also apply these tools.

Early forecasting models included moving-average models with exponential weights
called exponential smoothing models. We will encounter moving averages again as key
building blocks for linear time series. Forecasts that rely on exponential smoothing methods
use weighted averages of past observations, where the weights decay exponentially as
the observations get older. Hence, a more recent observation receives a higher associated
weight. These methods are popular for time series that do not have very complicated or
abrupt patterns.

How to measure autocorrelation
Autocorrelation (also called serial correlation) adapts the concept of correlation to the
time-series context: just as the correlation coefficient measures the strength of a linear
relationship between two variables, the autocorrelation coefficient, 𝜌𝜌𝑘𝑘 , measures the extent
of a linear relationship between time-series values separated by a given lag, k:𝜌𝜌𝑘𝑘 = ∑ (𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑦)(𝑦𝑦𝑡𝑡𝑡𝑘𝑘 − 𝑦𝑦𝑦)𝑇𝑇𝑡𝑡𝑡𝑘𝑘𝑡𝑡∑ (𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑦)2𝑇𝑇𝑡𝑡𝑡𝑡

Hence, we can calculate one autocorrelation coefficient for each of the T-1 lags in a time
series of length T. The autocorrelation function (ACF) computes the correlation coefficients
as a function of the lag.

Time-Series Models for Volatility Forecasts and Statistical Arbitrage

[260]

The autocorrelation for a lag larger than 1 (that is, between observations more than one
timestep apart) reflects both the direct correlation between these observations and the
indirect influence of the intervening data points. The partial autocorrelation removes this
influence and only measures the linear dependence between data points at the given lag
distance, T. Removing means using the residuals of a linear regression with the outcome
x

t
 and the lagged values x

t-1
, x

t-2
, …, x

T-1
 as features (also known as an AR(T-1) model,

which we'll discuss in the next section on univariate time-series models). The partial
autocorrelation function (PACF) provides all the correlations that result once the effects of
a correlation at shorter lags have been removed, as described previously.

There are also algorithms that estimate the partial autocorrelation from the sample
autocorrelation based on the exact theoretical relationship between the PACF and the ACF.

A correlogram is simply a plot of the ACF or PACF for sequential lags, k=0,1,...,n. It
allows us to inspect the correlation structure across lags at one glance (see Figure 9.3 for an
example). The main usage of correlograms is to detect any autocorrelation after the removal
of a deterministic trend or seasonality. Both the ACF and the PACF are key diagnostic tools
for the design of linear time-series models, and we will review examples of ACF and PACF
plots in the following section on time-series transformations.

How to diagnose and achieve stationarity
The statistical properties, such as the mean, variance, or autocorrelation, of a stationary
time series are independent of the period—that is, they don't change over time.
Thus, stationarity implies that a time series does not have a trend or seasonal effects.
Furthermore, it requires that descriptive statistics, such as the mean or the standard
deviation, when computed for different rolling windows, are constant or do not change
significantly over time. A stationary time series reverts to its mean, and the deviations have
a constant amplitude, while short-term movements are always alike in a statistical sense.

More formally, strict stationarity requires the joint distribution of any subset of time-
series observations to be independent of time with respect to all moments. So, in addition
to the mean and variance, higher moments such as skew and kurtosis also need to be
constant, irrespective of the lag between different observations. In most applications, such
as most time-series models in this chapter that we can use to model asset returns, we limit
stationarity to first and second moments so that the time series is covariance stationary
with constant mean, variance, and autocorrelation. However, we abandon this assumption
when building modeling volatility and explicitly assume the variance to change over time
in predictable ways.

Note that we specifically allow for dependence between output values at different lags,
just like we want the input data for linear regression to be correlated with the outcome.
Stationarity implies that these relationships are stable. Stationarity is a key assumption
of classical statistical models. The following two subsections introduce transformations
that can help make a time series stationary, as well as how to address the special case of a
stochastic trend caused by a unit root.

Chapter 9

[261]

Transforming a time series to achieve stationarity
To satisfy the stationarity assumption of many time-series models, we need to transform the
original series, often in several steps. Common transformations include the (natural) logarithm
to convert an exponential growth pattern into a linear trend and stabilize the variance.
Deflation implies dividing a time series by another series that causes trending behavior, for
example, dividing a nominal series by a price index to convert it into a real measure.

A series is trend-stationary if it reverts to a stable long-run linear trend. It can often be
made stationary by fitting a trend line using linear regression and using the residuals. This
implies including the time index as an independent variable in a linear regression model,
possibly combined with logging or deflating.

In many cases, detrending is not sufficient to make the series stationary. Instead, we need
to transform the original data into a series of period-to-period and/or season-to-season
differences. In other words, we use the result of subtracting neighboring data points or values at
seasonal lags from each other. Note that when such differencing is applied to a log-transformed
series, the results represent instantaneous growth rates or returns in a financial context.

If a univariate series becomes stationary after differencing d times, it is said to be integrated
of the order of d, or simply integrated if d=1. This behavior is due to unit roots, which we
will explain next.

Handling instead of how to handle
Unit roots pose a particular problem for determining the transformation that will render
a time series stationary. We will first explain the concept of a unit root before discussing
diagnostics tests and solutions.

On unit roots and random walks

Time series are often modeled as stochastic processes of the following autoregressive form
so that the current value is a weighted sum of past values, plus a random disturbance:𝑦𝑦𝑡𝑡 = 𝑎𝑎1𝑦𝑦𝑡𝑡𝑡1 + 𝑎𝑎2𝑦𝑦𝑡𝑡𝑡2+ . . . +𝑎𝑎𝑝𝑝𝑦𝑦𝑡𝑡𝑡𝑝𝑝 + 𝜖𝜖𝑡𝑡

We will explore these models in more detail as the AR building block for ARIMA models
in the next section on univariate time-series models. Such a process has a characteristic
equation of the following form:𝑚𝑚𝑝𝑝 − 𝑚𝑚𝑝𝑝𝑝𝑝𝑎𝑎𝑝 − 𝑚𝑚𝑝𝑝𝑝𝑝𝑎𝑎𝑝− . . . −𝑎𝑎𝑝𝑝 = 0

If one of the (up to) p roots of this polynomial equals 1, then the process is said to have a
unit root. It will be non-stationary but will not necessarily have a trend. If the remaining
roots of the characteristic equation are less than 1 in absolute terms, the first difference
of the process will be stationary, and the process is integrated of order 1 or I(1). With
additional roots larger than 1 in absolute terms, the order of integration is higher and
additional differencing will be required.

Time-Series Models for Volatility Forecasts and Statistical Arbitrage

[262]

In practice, time series of interest rates or asset prices are often not stationary because
there isn't a price level to which the series reverts. The most prominent example of a non-
stationary series is the random walk. Given a time series of prices p

t
 with starting price

p
0
(for example, a stock's IPO price) and a white-noise disturbance 𝜖𝜖𝑡𝑡 , then a random walk

satisfies the following autoregressive relationship:

𝑝𝑝𝑡𝑡 = 𝑝𝑝𝑡𝑡𝑡𝑡 + 𝜖𝜖𝑡𝑡 =∑𝜖𝜖𝑠𝑠𝑡𝑡
𝑠𝑠𝑡𝑠 + 𝑝𝑝𝑠

Repeated substitution shows that the current value, p
t
, is the sum of all prior disturbances

or innovations, 𝜖𝜖𝑡𝑡 , and the initial price, p
0
. If the equation includes a constant term, then the

random walk is said to have drift.

The random walk is thus an autoregressive stochastic process of the following form:𝑦𝑦𝑡𝑡 = 𝑎𝑎1𝑦𝑦𝑡𝑡𝑡1 + 𝜖𝜖𝑡𝑡, 𝑎𝑎1 = 1

It has the characteristic equation 𝑚𝑚 𝑚 𝑚𝑚1 = 0 with a unit root and is both non-stationary
and integrated of order 1. On the one hand, given the IID nature of ε , the variance of
the time series equals 𝑡𝑡𝑡2 , which is not second-order stationary, and implies that, in
principle, the series could assume any value over time. On the other hand, taking the
first difference, ∆𝑝𝑝𝑡𝑡 = 𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡𝑡𝑡𝑡 , leaves ∆𝑝𝑝𝑡𝑡 = 𝜀𝜀𝑡𝑡 , which is stationary, given the statistical
assumption about ε .
The defining characteristic of a non-stationary series with a unit-root is long memory: since
current values are the sum of past disturbances, large innovations persist for much longer
than for a mean-reverting, stationary series.

How to diagnose a unit root

Statistical unit root tests are a common way to determine objectively whether (additional)
differencing is necessary. These are statistical hypothesis tests of stationarity that are
designed to determine whether differencing is required.

The augmented Dickey-Fuller test (ADF test) evaluates the null hypothesis that a
time-series sample has a unit root against the alternative of stationarity. It regresses
the differenced time series on a time trend, the first lag, and all lagged differences, and
computes a test statistic from the value of the coefficient on the lagged time-series value.
statsmodels makes it easy to implement (see the notebook tsa_and_stationarity).

Formally, the ADF test for a time series, 𝑦𝑦𝑡𝑡 , runs the linear regression where α is a constant, 𝛽𝛽 is a coefficient on a time trend, and p refers to the number of lags used in the model:∆𝑦𝑦𝑡𝑡 = 𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼 𝛼 𝛼𝛼𝑦𝑦𝑡𝑡𝑡𝑡 𝛼 𝛿𝛿𝑡∆𝑦𝑦𝑡𝑡𝑡𝑡𝛼. . . 𝛼𝛿𝛿𝑝𝑝𝑡𝑡∆𝑦𝑦𝑡𝑡𝑡𝑝𝑝𝑡𝑡 𝛼 𝜖𝜖𝑡𝑡

Chapter 9

[263]

The constraint 𝛼𝛼 𝛼 𝛼𝛼 𝛼 𝛼 implies a random walk, whereas only 𝛽𝛽 𝛽 𝛽 implies a random
walk with drift. The lag order is usually decided using the Akaike information criterion
(AIC) and Bayesian information criterion (BIC) information criteria introduced in
Chapter 7, Linear Models – From Risk Factors to Return Forecasts.

The ADF test statistic uses the sample coefficient γ , which, under the null hypothesis of
unit-root non-stationarity, equals zero and is negative otherwise. It intends to demonstrate
that, for an integrated series, the lagged series value should not provide useful information
in predicting the first difference above and beyond lagged differences.

How to remove unit roots and work with the resulting series

In addition to using the difference between neighboring data points to remove a constant
pattern of change, we can apply seasonal differencing to remove patterns of seasonal
change. This involves taking the difference of values at a lag distance that represents the
length of the seasonal pattern. For monthly data, this usually involves differences at lag 12,
and for quarterly data, it involves differences at lag 4 to remove both seasonality and
linear trend.

Identifying the correct transformation and, in particular, the appropriate number and lags
for differencing is not always clear-cut. Some heuristics have been suggested, which can be
summarized as follows:

• Lag-1 autocorrelation close to zero or negative, or autocorrelation generally small
and patternless: there is no need for higher-order differencing

• Positive autocorrelations up to 10+ lags: the series probably needs higher-order
differencing

• Lag-1 autocorrelation < -0.5: the series may be over-differenced

• Slightly over- or under-differencing can be corrected with AR or MA terms (see the
next section on univariate time-series models)

Some authors recommend fractional differencing as a more flexible approach to rendering
an integrated series stationary, and may be able to keep more information or signal than
simple or seasonal differences at discrete intervals. See, for example, Chapter 5, Portfolio
Optimization and Performance Evaluation, in Marcos Lopez de Prado (2018).

Time-series transformations in practice
The charts in Figure 9.2 shows time series for the NASDAQ stock index and industrial
production for the 30 years through 2017 in their original form, as well as the transformed
versions after applying the logarithm and subsequently applying the first and seasonal
differences (at lag 12), respectively.

The charts also display the ADF p-value, which allows us to reject the hypothesis of unit-
root non-stationarity after all transformations in both cases:

Time-Series Models for Volatility Forecasts and Statistical Arbitrage

[264]

Figure 9.2: Time-series transformations and unit-root test results

We can further analyze the relevant time-series characteristics for the transformed
series using a Q-Q plot that compares the quantiles of the distribution of the time-series
observation to the quantiles of the normal distribution and the correlograms based on the
ACF and PACF.

For the NASDAQ plots in Figure 9.3, we can see that while there is no trend, the variance is
not constant but rather shows clustered spikes around periods of market turmoil in the late
1980s, 2001, and 2008. The Q-Q plot highlights the fat tails of the distribution with extreme
values that are more frequent than the normal distribution would suggest.

The ACF and the PACF show similar patterns, with autocorrelation at several lags
appearing to be significant:

Figure 9.3: Descriptive statistics for transformed NASDAQ Composite index

Chapter 9

[265]

For the monthly time series on industrial manufacturing production, we can see a large
negative outlier following the 2008 crisis, as well as the corresponding skew in the Q-Q
plot (see Figure 9.4). The autocorrelation is much higher than for the NASDAQ returns and
declines smoothly. The PACF shows distinct positive autocorrelation patterns at lags 1 and
13 and significant negative coefficients at lags 3 and 4:

Figure 9.4: Descriptive statistics for transformed industrial production data

Univariate time-series models
Multiple linear-regression models expressed the variable of interest as a linear combination
of the inputs, plus a random disturbance. In contrast, univariate time-series models relate
the current value of the time series to a linear combination of lagged values of the series,
current noise, and possibly past noise terms.

While exponential smoothing models are based on a description of the trend and
seasonality in the data, ARIMA models aim to describe the autocorrelations in the data.
ARIMA(p, d, q) models require stationarity and leverage two building blocks:

• Autoregressive (AR) terms consisting of p lagged values of the time series

• Moving average (MA) terms that contain q lagged disturbances

The I stands for integrated because the model can account for unit-root non-stationarity by
differentiating the series d times. The term autoregression underlines that ARIMA models
imply a regression of the time series on its own values.

Time-Series Models for Volatility Forecasts and Statistical Arbitrage

[266]

We will introduce the ARIMA building blocks, AR and MA models, and explain how to
combine them in autoregressive moving-average (ARMA) models that may account for
series integration as ARIMA models or include exogenous variables as AR(I)MAX models.
Furthermore, we will illustrate how to include seasonal AR and MA terms to extend the
toolbox so that it also includes SARMAX models.

How to build autoregressive models
An AR model of order p aims to capture the linear dependence between time-series values
at different lags and can be written as follows:AR(𝑝𝑝): 𝑦𝑦𝑡𝑡 = ∅0 + ∅1𝑦𝑦𝑡𝑡𝑡1 + ∅2𝑦𝑦𝑡𝑡𝑡2+. . . +∅𝑝𝑝𝑦𝑦𝑡𝑡𝑡𝑝𝑝 + 𝜖𝜖𝑡𝑡 , 𝜖𝜖𝜖𝜖. 𝜖. 𝜖

This closely resembles a multiple linear regression on lagged values of y
t
. This model has

the following characteristic equation:1 − ∅1𝑥𝑥 − ∅2𝑥𝑥2−. . . −∅𝑝𝑝𝑥𝑥𝑝𝑝 = 0

The inverses of the solution to this polynomial of degree p in x are the characteristic
roots, and the AR(p) process is stationary if all roots are less than 1 in absolute terms, and
unstable otherwise. For a stationary series, multistep forecasts will converge to the mean of
the series.

We can estimate the model parameters with the familiar least squares method using the
p+1, ..., T observations to ensure there is data for each lagged term and the outcome.

How to identify the number of lags

In practice, the challenge consists of deciding on the appropriate order p of lagged terms.
The time-series analysis tools for serial correlation, which we discussed in the How to
measure autocorrelation section, play a key role in making this decision.

More specifically, a visual inspection of the correlogram often provides helpful clues:

• The ACF estimates the autocorrelation between observations at different lags,
which, in turn, results from both direct and indirect linear dependence. Hence, if
an AR model of order k is the correct model, the ACF will show a significant serial
correlation up to lag k and, due to the inertia caused by the indirect effects of the
linear relationship, will extend to subsequent lags until it eventually trails off as the
effect weakens.

• The PACF, in turn, only measures the direct linear relationship between
observations a given lag apart so that it will not reflect correlation for lags beyond k.

How to diagnose model fit
If the model properly captures the linear dependence across lags, then the residuals
should resemble white noise, and the ACF should highlight the absence of significant
autocorrelation coefficients.

Chapter 9

[267]

In addition to a residual plot, the Ljung-Box Q-statistic allows us to test the hypothesis that
the residual series follows white noise. The null hypothesis is that all m serial correlation
coefficients are zero against the alternative that some coefficients are not. The test statistic is
computed from the sample autocorrelation coefficients 𝜌𝜌𝑘𝑘 for different lags k and follows a
X2 distribution:

𝑄𝑄(𝑚𝑚) = 𝑇𝑇(𝑇𝑇 𝑇 𝑇)∑ 𝜌𝜌𝑙𝑙2𝑇𝑇 𝑇 𝑇𝑇𝑚𝑚
𝑡𝑡𝑡𝑡

As we will see, statsmodels provides information about the significance of coefficients for
different lags, and insignificant coefficients should be removed. If the Q-statistic rejects the
null hypothesis of no autocorrelation, you should consider additional AR terms.

How to build moving-average models
An MA(q) model uses q past disturbances rather than lagged values of the time series in a
regression-like model, as follows:MA(𝑞𝑞): 𝑦𝑦𝑡𝑡 = 𝑐𝑐 𝑐 𝑐𝑐𝑡𝑡 𝑐 𝜃𝜃1𝑐𝑐𝑡𝑡𝑡1 𝑐 𝜃𝜃2𝑐𝑐𝑡𝑡𝑡2𝑐. . . 𝑐𝜃𝜃𝑝𝑝𝑐𝑐𝑡𝑡𝑡𝑝𝑝, 𝑐𝑐𝜖𝜖. 𝜖. 𝜖

Since we do not observe the white-noise disturbance values, 𝜖𝜖𝑡𝑡 , MA(q) is not a regression
model like the ones we have seen so far. Rather than using least squares, MA(q) models are
estimated using maximum likelihood (MLE), alternatively initializing or estimating the
disturbances at the beginning of the series and then recursively and iteratively computing
the remainder.

The MA(q) model gets its name from representing each value of y
t
 as a weighted moving

average of the past q innovations. In other words, current estimates represent a correction
relative to past errors made by the model. The use of moving averages in MA(q) models
differs from that of exponential smoothing, or the estimation of seasonal time-series
components, because an MA(q) model aims to forecast future values, as opposed to
denoising or estimating the trend cycle of past values.

MA(q) processes are always stationary because they are the weighted sum of white noise
variables that are, themselves, stationary.

How to identify the number of lags

A time series generated by an MA(q) process is driven by the residuals of the prior q model
predictions. Hence, the ACF for the MA(q) process will show significant coefficients for
values up to lag q and then decline sharply because this is how the model assumes the
series values have been generated.

Note how this differs from the AR case we just described, where the PACF would show a
similar pattern.

Time-Series Models for Volatility Forecasts and Statistical Arbitrage

[268]

The relationship between the AR and MA models

An AR(p) model can always be expressed as an MA(∞) process using repeated substitution,
as in the random walk example in the How to handle stochastic trends caused by unit roots
section.

When the coefficients of the MA(q) process meet certain size constraints, it also becomes
invertible and can be expressed as an AR(∞) process (see Tsay, 2005, for details).

How to build ARIMA models and extensions
Autoregressive integrated moving-average—ARIMA(p, d, q)—models combine AR(p) and
MA(q) processes to leverage the complementarity of these building blocks and simplify
model development. They do this using a more compact form and reducing the number of
parameters, in turn reducing the risk of overfitting.

The models also take care of eliminating unit-root non-stationarity by using the dth
difference of the time-series values. An ARIMA(p, 1, q) model is the same as using an
ARMA(p, q) model with the first differences of the series. Using y' to denote the original
series after non-seasonal differencing d times, the ARIMA(p, d, q) model is simply:ARIMA(𝑝𝑝𝑝 𝑝𝑝𝑝 𝑝𝑝) ∶ 𝑦𝑦𝑡𝑡′ = AR(𝑝𝑝) + MA(𝑝𝑝) = 𝜙𝜙0 + 𝜙𝜙1𝑦𝑦𝑡𝑡𝑡1′ +. . . +𝜙𝜙𝑝𝑝𝑦𝑦𝑡𝑡𝑡𝑝𝑝′ + 𝜖𝜖𝑡𝑡 + 𝜃𝜃1𝜖𝜖𝑡𝑡𝑡1+. . . +𝜃𝜃𝑞𝑞𝜖𝜖𝑡𝑡𝑡𝑞𝑞 𝑝 𝜖𝜖 𝜖 𝜖.𝜖.𝜖.
ARIMA models are also estimated using MLE. Depending on the implementation, higher-
order models may generally subsume lower-order models.

For example, up to version 0.11, statsmodels includes all lower-order p and q terms and
does not permit removing coefficients for lags below the highest value. In this case, higher-
order models will always fit better. Be careful not to overfit your model to the data by using
too many terms. The most recent version, which is 0.11 at the time of writing, added an
experimental new ARIMA model with more flexible configuration options.

How to model differenced series
There are also guidelines for designing the univariate times-series models when using data:

• A model without differencing assumes that the original series is stationary,
including mean-reverting. It normally includes a constant term to allow for a non-
zero mean.

• A model with one order of differencing assumes that the original series has a
constant trend and should thus include a constant term.

• A model with two orders of differencing assumes that the original series has a time-
varying trend and should not include a constant.

Chapter 9

[269]

How to identify the number of AR and MA terms

Since AR(p) and MA(q) terms interact, the information provided by the ACF and PACF is
no longer reliable and can only be used as a starting point.

Traditionally, the AIC and BIC information criteria have been used to rely on in-sample fit
when selecting the model design. Alternatively, we can rely on out-of-sample tests to cross-
validate multiple parameter choices.

The following summary provides some guidance on how to choose the model order in the
case of considering AR and MA models in isolation:

• The lag beyond which the PACF cuts off is the indicated number of AR terms. If the
PACF of the differenced series cuts off sharply and/or the lag-1 autocorrelation is
positive, add one or more AR terms.

• The lag beyond which the ACF cuts off is the indicated number of MA terms.
If the ACF of the differenced series displays a sharp cutoff and/or the lag-1
autocorrelation is negative, consider adding an MA term to the model.

• AR and MA terms may cancel out each other's effects, so always try to reduce the
number of AR and MA terms by 1 if your model contains both to avoid overfitting,
especially if the more complex model requires more than 10 iterations to converge.

• If the AR coefficients sum to nearly one and suggest a unit root in the AR part of the
model, eliminate one AR term and difference the model once (more).

• If the MA coefficients sum to nearly one and suggest a unit root in the MA part of
the model, eliminate one MA term and reduce the order of differencing by one.

• Unstable long-term forecasts suggest there may be a unit root in the AR or MA part
of the model.

Adding features – ARMAX

An autoregressive moving-average model with exogenous inputs (ARMAX) model
adds input variables or covariate on the right-hand side of the ARMA time-series model
(assuming the series is stationary, so we can skip differencing):ARIMA(𝑝𝑝𝑝 𝑝𝑝𝑝 𝑝𝑝) ∶ 𝑦𝑦𝑡𝑡 = 𝛽𝛽𝛽𝛽𝑡𝑡 + AR(𝑝𝑝) + MA(𝑝𝑝) = 𝛽𝛽𝛽𝛽𝑡𝑡 + 𝜙𝜙0 + 𝜙𝜙1𝑦𝑦𝑡𝑡𝑡1 + ⋯ + 𝜙𝜙𝑝𝑝𝑦𝑦𝑡𝑡𝑡𝑝𝑝 + 𝜖𝜖𝑡𝑡 + 𝜃𝜃1𝜖𝜖𝑡𝑡𝑡1 + ⋯ + 𝜃𝜃𝑞𝑞𝜖𝜖𝑡𝑡𝑡𝑞𝑞 𝑝 𝜖𝜖 𝜖 𝜖𝜖𝜖𝜖𝜖𝜖
This resembles a linear regression model but is quite difficult to interpret. This is because
the effect of β on y

t
 is not the effect of an increase in x

t
 by one unit as in linear regression.

Instead, the presence of lagged values of y
t
 on the right-hand side of the equation implies

that the coefficient can only be interpreted, given the lagged values of the response variable,
which is hardly intuitive.

Time-Series Models for Volatility Forecasts and Statistical Arbitrage

[270]

Adding seasonal differencing – SARIMAX
For time series with seasonal effects, we can include AR and MA terms that capture the
seasonality's periodicity. For instance, when using monthly data and the seasonal effect
length is 1 year, the seasonal AR and MA terms would reflect this particular lag length.

The ARIMAX(p, d, q) model then becomes a SARIMAX(p, d, q) × (P, D, Q) model, which is a
bit more complicated to write out, but the statsmodels documentation (see link on GitHub)
provides this information in detail.

We will now build a seasonal ARMA model using macro-data to illustrate its
implementation.

How to forecast macro fundamentals
We will build a SARIMAX model for monthly data on an industrial production time series
for the 1988-2017 period. As illustrated in the first section on analytical tools, the data
has been log-transformed, and we are using seasonal (lag-12) differences. We estimate
the model for a range of both ordinary and conventional AR and MA parameters using
a rolling window of 10 years of training data, and evaluate the root mean square error
(RMSE) of the 1-step-ahead forecast, as shown in the following simplified code (see the
notebook arima_models for details):

for p1 in range(4): # AR order

 for q1 in range(4): # MA order

 for p2 in range(3): # seasonal AR order

 for q2 in range(3): # seasonal MA order

 y_pred = []

 for i, T in enumerate(range(train_size, len(data))):

 train_set = data.iloc[T - train_size:T]

 model = tsa.SARIMAX(endog=train_set, # model specification
 order=(p1, 0, q1),

 seasonal_order=(p2, 0, q2, 12)).fit()
 preds.iloc[i, 1] = model.forecast(steps=1)[0]

 mse = mean_squared_error(preds.y_true, preds.y_pred)

 results[(p1, q1, p2, q2)] = [np.sqrt(mse),

 preds.y_true.sub(preds.y_pred).std(),

 np.mean(aic)]

We also collect the AIC and BIC criteria, which show a very high rank correlation
coefficient of 0.94, with BIC favoring models with slightly fewer parameters than AIC. The
best five models by RMSE are:

Chapter 9

[271]

 RMSE AIC BIC

p1 q1 p2 q2

2 3 1 0 0.009323 -772.247023 -752.734581

3 2 1 0 0.009467 -768.844028 -749.331586

2 2 1 0 0.009540 -770.904835 -754.179884

 3 0 0 0.009773 -760.248885 -743.523935

 2 0 0 0.009986 -758.775827 -744.838368

We reestimate a SARIMA(2, 0 ,3) × (1, 0, 0) model, as follows:

best_model = tsa.SARIMAX(endog=industrial_production_log_diff, order=(2, 0,
 3),

 seasonal_order=(1, 0, 0, 12)).fit()
print(best_model.summary())

We obtain the following summary:

Figure 9.5: SARMAX model results

The coefficients are significant, and the Q-statistic rejects the hypothesis of further
autocorrelation. The correlogram similarly indicates that we have successfully eliminated
the series' autocorrelation:

Time-Series Models for Volatility Forecasts and Statistical Arbitrage

[272]

Figure 9.6: SARIMAX model diagnostics

How to use time-series models to forecast volatility
A particularly important application for univariate time-series models in finance is the
prediction of volatility. This is because it is usually not constant over time, with bouts
of volatility clustering together. Changes in variance create challenges for time-series
forecasting using the classical ARIMA models that assume stationarity. To address this
challenge, we will now model volatility so that we can predict changes in variance.

Heteroskedasticity is the technical term for changes in a variable's variance. The ARCH
model expresses the variance of the error term as a function of the errors in previous
periods. More specifically, it assumes that the error variance follows an AR(p) model.

The generalized autoregressive conditional heteroskedasticity (GARCH) model broadens
the scope of ARCH to allow for ARMA models. Time-series forecasting often combines
ARIMA models for the expected mean and ARCH/GARCH models for the expected
variance of a time series. The 2003 Nobel Prize in Economics was awarded to Robert Engle
and Clive Granger for developing this class of models. The former also runs the Volatility
Lab at New York University's Stern School (vlab.stern.nyu.edu), which has numerous
online examples and tools concerning the models we will discuss.

The ARCH model

The ARCH(p) model is simply an AR(p) model that's applied to the variance of the
residuals of a time-series model, which makes this variance at time t conditional on lagged
observations of the variance.

http://vlab.stern.nyu.edu

Chapter 9

[273]

More specifically, the error terms, 𝜀𝜀𝑡𝑡 , are residuals of a linear model, such as ARIMA, on
the original time series and are split into a time-dependent standard deviation, 𝜎𝜎𝑡𝑡 , and a
disturbance, z

t
, as follows:ARCH(𝑝𝑝) ∶ var(𝑥𝑥𝑡𝑡) = 𝜎𝜎𝑡𝑡2 = 𝜔𝜔 𝜔 𝜔𝜔1𝜖𝜖𝑡𝑡𝑡12 𝜔 ⋯ 𝜔 𝜔𝜔𝑝𝑝𝜖𝜖𝑡𝑡𝑡𝑝𝑝2 𝜖𝜖𝑡𝑡 = 𝜎𝜎𝑡𝑡𝑧𝑧𝑡𝑡 𝑧𝑧𝑡𝑡 ∼ i.i.d.

An ARCH(p) model can be estimated using OLS. Engle proposed a method to identify
the appropriate ARCH order using the Lagrange multiplier test, which corresponds to
the F-test of the hypothesis that all coefficients in linear regression are zero (see Chapter 7,
Linear Models – From Risk Factors to Return Forecasts).

A key strength of the ARCH model is that it produces volatility estimates with positive
excess kurtosis — that is, fat tails relative to the normal distribution — which, in turn, is in
line with empirical observations about returns. Weaknesses include the assumption of the
same effect for positive and negative volatility shocks, whereas asset prices tend to respond
differently. It also does not explain the variations in volatility and is likely to overpredict
volatility because they respond slowly to large, isolated shocks to the return series.

For a properly specified ARCH model, the standardized residuals (divided by the model
estimate for the period of standard deviation) should resemble white noise and can be
subjected to a Ljung-Box Q test.

Generalizing ARCH – the GARCH model

The ARCH model is relatively simple but often requires many parameters to capture the
volatility patterns of an asset-return series. The GARCH model applies to a log-return
series, r

t
, with disturbances, 𝜖𝜖𝑡𝑡 = 𝑟𝑟𝑡𝑡 − 𝜇𝜇 , that follow a GARCH(p, q) model if:

𝜖𝜖𝑡𝑡 = 𝜎𝜎𝑡𝑡𝑧𝑧𝑡𝑡 , 𝜎𝜎𝑡𝑡2 = 𝜔𝜔 𝜔 𝜔 𝜔𝜔𝑖𝑖𝜖𝜖𝑡𝑡𝑡𝑖𝑖2𝑝𝑝
𝑖𝑖𝑖𝑖 𝜔 𝜔 𝛽𝛽𝑖𝑖𝜎𝜎𝑡𝑡𝑡𝑡𝑡2𝑞𝑞

𝑡𝑡𝑖𝑖 , 𝑧𝑧𝑡𝑡~i. i. d

The GARCH(p, q) model assumes an ARMA(p, q) model for the variance of the error term, 𝜀𝜀𝑡𝑡 .
Similar to ARCH models, the tail distribution of a GARCH(1,1) process is heavier than that
of a normal distribution. The model encounters the same weaknesses as the ARCH model.
For instance, it responds equally to positive and negative shocks.

To configure the lag order for ARCH and GARCH models, use the squared residuals of the
time series trained to predict the mean of the original series. The residuals are zero-centered
so that their squares are also the variance. Then, inspect the ACF and PACF plots of the
squared residuals to identify autocorrelation patterns in the variance of the time series.

Time-Series Models for Volatility Forecasts and Statistical Arbitrage

[274]

How to build a model that forecasts volatility

The development of a volatility model for an asset-return series consists of four steps:

1. Build an ARMA time-series model for the financial time series based on the serial
dependence revealed by the ACF and PACF

2. Test the residuals of the model for ARCH/GARCH effects, again relying on the
ACF and PACF for the series of the squared residual

3. Specify a volatility model if serial correlation effects are significant, and jointly
estimate the mean and volatility equations

4. Check the fitted model carefully and refine it if necessary

When applying volatility forecasting to return series, the serial dependence may be limited
so that a constant mean may be used instead of an ARMA model.

The arch library (see link to the documentation on GitHub) provides several options to
estimate volatility-forecasting models. You can model the expected mean as a constant, as
an AR(p) model, as discussed in the How to build autoregressive models, section or as more
recent heterogeneous autoregressive processes (HAR), which use daily (1 day), weekly (5
days), and monthly (22 days) lags to capture the trading frequencies of short-, medium-,
and long-term investors.

The mean models can be jointly defined and estimated with several conditional
heteroskedasticity models that include, in addition to ARCH and GARCH, the exponential
GARCH (EGARCH) model, which allows for asymmetric effects between positive and
negative returns, and the heterogeneous ARCH (HARCH) model, which complements the
HAR mean model.

We will use daily NASDAQ returns from 2000-2020 to demonstrate the usage of a GARCH
model (see the notebook arch_garch_models for details):

nasdaq = web.DataReader('NASDAQCOM', 'fred', '2000', '2020').squeeze()

nasdaq_returns = np.log(nasdaq).diff().dropna().mul(100) # rescale to
facilitate optimization

The rescaled daily return series exhibits only limited autocorrelation, but the squared
deviations from the mean do have substantial memory reflected in the slowly decaying
ACF and the PACF, which are high for the first two and cut off only after the first six lags:

plot_correlogram(nasdaq_returns.sub(nasdaq_returns.mean()).pow(2), lags=120,
 title='NASDAQ Daily Volatility')

Chapter 9

[275]

The function plot_correlogram produces the following output:

Figure 9.7: Daily NASDAQ composite volatility

Hence, we can estimate a GARCH model to capture the linear relationship of past
volatilities. We will use rolling 10-year windows to estimate a GARCH(p, q) model with p
and q ranging from 1-4 to generate one-step out-of-sample forecasts.

We then compare the RMSE of the predicted volatility relative to the actual squared
deviation of the return from its mean to identify the most predictive model. We are using
winsorized data to limit the impact of extreme return values being reflected in the very
high positive skew of the volatility:

trainsize = 10 * 252 # 10 years

data = nasdaq_returns.clip(lower=nasdaq_returns.quantile(.05),

 upper=nasdaq_returns.quantile(.95))

T = len(nasdaq_returns)

results = {}

for p in range(1, 5):

 for q in range(1, 5):

 print(f'{p} | {q}')

 result = []

 for s, t in enumerate(range(trainsize, T-1)):

 train_set = data.iloc[s: t]

 test_set = data.iloc[t+1] # 1-step ahead forecast

 model = arch_model(y=train_set, p=p, q=q).fit(disp='off')
 forecast = model.forecast(horizon=1)

 mu = forecast.mean.iloc[-1, 0]

 var = forecast.variance.iloc[-1, 0]

 result.append([(test_set-mu)**2, var])

Time-Series Models for Volatility Forecasts and Statistical Arbitrage

[276]

 df = pd.DataFrame(result, columns=['y_true', 'y_pred'])

 results[(p, q)] = np.sqrt(mean_squared_error(df.y_true, df.y_pred))

The GARCH(2, 2) model achieves the lowest RMSE (same value as GARCH(4, 2) but with
fewer parameters), so we go ahead and estimate this model to inspect the summary:

am = ConstantMean(nasdaq_returns.clip(lower=nasdaq_returns.quantile(.05),

 upper=nasdaq_returns.quantile(.95)))

am.volatility = GARCH(2, 0, 2)

am.distribution = Normal()

best_model = am.fit(update_freq=5)
print(best_model.summary())

The output shows the maximized log-likelihood, as well as the AIC and BIC criteria, which
are commonly minimized when selecting models based on in-sample performance (see
Chapter 7, Linear Models – From Risk Factors to Return Forecasts). It also displays the result
for the mean model, which, in this case, is just a constant estimate, as well as the GARCH
parameters for the constant omega, the AR parameters, α , and the MA parameters, β , all of
which are statistically significant:

Figure 9.8: GARCH Model results

Let's now explore models for multiple time series and the concept of cointegration, which
will enable a new trading strategy.

Multivariate time-series models
Multivariate time-series models are designed to capture the dynamic of multiple time series
simultaneously and leverage dependencies across these series for more reliable predictions.
The most comprehensive introduction to this subject is Lütkepohl (2005).

Chapter 9

[277]

Systems of equations
Univariate time-series models, like the ARMA approach we just discussed, are limited to
statistical relationships between a target variable and its lagged values or lagged disturbances
and exogenous series, in the case of ARMAX. In contrast, multivariate time-series models also
allow for lagged values of other time series to affect the target. This effect applies to all series,
resulting in complex interactions, as illustrated in the following diagram:

Figure 9.9: Interactions in univariate and multivariate time-series models

In addition to potentially better forecasting, multivariate time series are also used to gain
insights into cross-series dependencies. For example, in economics, multivariate time series
are used to understand how policy changes to one variable, such as an interest rate, may
affect other variables over different horizons.

The impulse-response function produced by the multivariate model serves this purpose
and allows us to simulate how one variable responds to a sudden change in other variables.
The concept of Granger causality analyzes whether one variable is useful in forecasting
another (in the least-squares sense). Furthermore, multivariate time-series models allow for
a decomposition of the prediction error variance to analyze how other series contribute.

The vector autoregressive (VAR) model
We will see how the vector autoregressive VAR(p) model extends the AR(p) model to
k series by creating a system of k equations, where each contains p lagged values of all k
series. In the simplest case, a VAR(1) model for k=2 takes the following form:𝑦𝑦1,𝑡𝑡 = 𝑐𝑐1 + 𝛼𝛼1,1𝑦𝑦1,𝑡𝑡𝑡1 + 𝛼𝛼1,2𝑦𝑦2,𝑡𝑡𝑡1 + 𝜖𝜖1,𝑡𝑡𝑦𝑦2,𝑡𝑡 = 𝑐𝑐2 + 𝛼𝛼2,1𝑦𝑦1,𝑡𝑡𝑡1 + 𝛼𝛼2,2𝑦𝑦2,𝑡𝑡𝑡1 + 𝜖𝜖2,𝑡𝑡
This model can be expressed somewhat more concisely in matrix form:[𝑦𝑦1,𝑡𝑡𝑦𝑦2,𝑡𝑡] = [𝑐𝑐1𝑐𝑐2] + [𝑎𝑎1,1 𝑎𝑎1,2𝑎𝑎2,1 𝑎𝑎2,2] [𝑦𝑦1,𝑡𝑡𝑡1𝑦𝑦2,𝑡𝑡𝑡2] + [𝜖𝜖1,𝑡𝑡𝜖𝜖2,𝑡𝑡]
The coefficients on the lagged values of the output provide information about the dynamics
of the series itself, whereas the cross-variable coefficients offer some insight into the
interactions across the series. This notation extends to k time series and order p, as follows:𝒚𝒚𝑡𝑡𝑘𝑘 𝑘 𝑘 = 𝒄𝒄𝑘𝑘 𝑘 𝑘 + 𝑨𝑨1𝑘𝑘 𝑘 𝑘𝑘 𝒚𝒚𝑡𝑡𝑡1𝑘𝑘 𝑘 𝑘+. . . + 𝑨𝑨𝑝𝑝𝑘𝑘 𝑘 𝑘𝑘 𝒚𝒚𝑡𝑡𝑡𝑝𝑝𝑘𝑘 𝑘 𝑘 + 𝝐𝝐𝑡𝑡𝑘𝑘 𝑘 𝑘

Time-Series Models for Volatility Forecasts and Statistical Arbitrage

[278]

VAR(p) models also require stationarity so that the initial steps from univariate time-series
modeling carry over. First, explore the series and determine the necessary transformations.
Then, apply the augmented Dickey-Fuller test to verify that the stationarity criterion is met
for each series and apply further transformations otherwise. It can be estimated with an
OLS conditional on initial information or with MLE, which is the equivalent for normally
distributed errors but not otherwise.

If some or all of the k series are unit-root non-stationary, they may be cointegrated (see the
next section). This extension of the unit root concept to multiple time series means that a
linear combination of two or more series is stationary and, hence, mean-reverting.

The VAR model is not equipped to handle this case without differencing; instead, use the
vector error correction model (VECM, Johansen and Juselius 1990). We will further explore
cointegration because, if present and assumed to persist, it can be leveraged for a pairs-
trading strategy.

The determination of the lag order also takes its cues from the ACF and PACF for each
series, but is constrained by the fact that the same lag order applies to all series. After
model estimation, residual diagnostics also call for a result resembling white noise, and
model selection can use in-sample information criteria or, if the goal is to use the model for
prediction, out-of-sample predictive performance to cross-validate alternative model designs.

As mentioned in the univariate case, predictions of the original time series require us to reverse
the transformations applied to make a series stationary before training the model.

Using the VAR model for macro forecasts
We will extend the univariate example of using a single time series of monthly data on
industrial production and add a monthly time series on consumer sentiment, both of
which are provided by the Federal Reserve's data service. We will use the familiar pandas-
datareader library to retrieve data from 1970 through 2017:

df = web.DataReader(['UMCSENT', 'IPGMFN'],
 'fred', '1970', '2017-12').dropna()

df.columns = ['sentiment', 'ip']

Log-transforming the industrial production series and seasonal differencing using a lag of
12 for both series yields stationary results:

df_transformed = pd.DataFrame({'ip': np.log(df.ip).diff(12),
 'sentiment': df.sentiment.diff(12)}).dropna()
test_unit_root(df_transformed) # see notebook for details and additional
plots

 p-value

ip 0.0003

sentiment 0.0000

Chapter 9

[279]

This leaves us with the following series:

Figure 9.10: Transformed time series: industrial production and consumer sentiment

To limit the size of the output, we will just estimate a VAR(1) model using the statsmodels
VARMAX implementation (which allows for optional exogenous variables) with a constant
trend using the first 480 observations:

model = VARMAX(df_transformed.loc[:'2017'], order=(1,1),
 trend='c').fit(maxiter=1000)

This produces the following summary:

Figure 9.11: VAR(1) model results

Time-Series Models for Volatility Forecasts and Statistical Arbitrage

[280]

The output contains the coefficients for both time-series equations, as outlined in the
preceding VAR(1) illustration. statsmodels provides diagnostic plots to check whether
the residuals meet the white noise assumptions. This is not exactly the case in this simple
example because the variance does not appear to be constant (upper left) and the quantile
plot shows differences in the distribution, namely fat tails (lower left):

Figure 9.12: statsmodels VAR model diagnostic plot

You can generate out-of-sample predictions as follows:

preds = model.predict(start=480, end=len(df_transformed)-1)

The following visualization of actual and predicted values shows how the prediction lags
the actual values and does not capture nonlinear, out-of-sample patterns well:

Figure 9.13: VAR model predictions versus actuals

Chapter 9

[281]

Cointegration – time series with a shared trend
We briefly mentioned cointegration in the previous section on multivariate time-series
models. Let's now explain this concept and how to diagnose its presence in more detail
before leveraging it for a statistical arbitrage trading strategy.

We have seen how a time series can have a unit root that creates a stochastic trend and
makes the time series highly persistent. When we use such an integrated time series in
their original, rather than in differenced, form as a feature in a linear regression model, its
relationship with the outcome will often appear statistically significant, even though it is
not. This phenomenon is called spurious regression (for details, see Chapter 18, CNNs for
Financial Time Series and Satellite Images, in Wooldridge, 2008). Therefore, the recommended
solution is to difference the time series so they become stationary before using them in a
model.

However, there is an exception when there are cointegration relationships between the
outcome and one or more input variables. To understand the concept of cointegration,
let's first remember that the residuals of a regression model are a linear combination of the
inputs and the output series.

Usually, the residuals of the regression of one integrated time series on one or more
such series yields non-stationary residuals that are also integrated, and thus behave
like a random walk. However, for some time series, this is not the case: the regression
produces coefficients that yield a linear combination of the time series in the form of the
residuals that are stationary, even though the individual series are not. Such time series are
cointegrated.

A non-technical example is that of a drunken man on a random walk accompanied by
his dog (on a leash). Both trajectories are non-stationary but cointegrated because the dog
will occasionally revert to his owner. In the trading context, arbitrage constraints imply
cointegration between spot and futures prices.

In other words, a linear combination of two or more cointegrated series has a stable
mean to which this linear combination reverts. This also applies when the individual series
are integrated of a higher order and the linear combination reduces the overall order of
integration.

Cointegration differs from correlation: two series can be highly correlated but need not be
cointegrated. For example, if two growing series are constant multiples of each other, their
correlation will be high, but any linear combination will also grow rather than revert to a
stable mean.

Cointegration is very useful: if two or more asset price series tend to revert to a common
mean, we can leverage deviations from the trend because they should imply future price
moves in the opposite direction. The mathematics behind cointegration is more involved, so
we will only focus on the practical aspects; for an in-depth treatment, see Lütkepohl (2005).

Time-Series Models for Volatility Forecasts and Statistical Arbitrage

[282]

In this section, we will address how we can identify pairs with such a long-term stationary
relationship, estimate the expected time for any disequilibrium to correct, and how to
utilize these tools to implement and backtest a long-short pairs trading strategy.

There are two approaches to testing for cointegration:

• The Engle-Granger two-step method

• The Johansen test

We'll discuss each in turn before we show how they help identify cointegrated securities
that tend to revert to a common trend, a fact that we can leverage for a statistical arbitrage
strategy.

The Engle-Granger two-step method
The Engle-Granger method is used to identify cointegration relationships between two
series. It involves both of the following:

1. Regressing one series on another to estimate the stationary long-term relationship

2. Applying an ADF unit-root test to the regression residual

The null hypothesis is that the residuals have a unit root and are integrated; if we can reject
it, then we assume that the residuals are stationary and, thus, the series are cointegrated
(Engle and Granger 1987).

A key benefit of this approach is that the regression coefficient represents the multiplier
that renders the combination stationary, that is, mean-reverting. Unfortunately, the test
results will differ, depending on which variable we consider independent, so that we try
both ways and then pick the relation with the more negative test statistic that has the lower
p-value.

Another downside is that this test is limited to pairwise relationships. The more complex
Johansen procedure can identify significant cointegration among up to a dozen time series.

The Johansen likelihood-ratio test
The Johansen procedure, in contrast, tests the restrictions imposed by cointegration on a
VAR model, as discussed in the previous section. More specifically, after subtracting the
target vector from both sides of a generic VAR(p) model, we obtain the error correction
model (ECM) formulation:∆𝒚𝒚𝒕𝒕 = 𝒄𝒄 𝒄 𝒄𝒄𝒚𝒚𝒕𝒕𝒕𝒕𝒕 𝒄 𝚪𝚪𝒕𝒕∆𝒚𝒚𝒕𝒕𝒕𝒕𝒕𝒄. . . 𝒄𝚪𝚪𝒑𝒑∆𝒚𝒚𝒕𝒕𝒕𝒑𝒑 𝒄 𝝐𝝐𝒕𝒕
The resulting modified VAR(p) equation has only one vector term in levels (y

t-1
) that is not

expressed as a difference using the ∆ operator. The nature of cointegration depends on the
rank of the coefficient matrix Π of this term (Johansen 1991).

Chapter 9

[283]

While this equation appears structurally similar to the ADF test setup, there are now
several potential constellations of common trends because there are multiple series
involved. To identify the number of cointegration relationships, the Johansen test
successively tests for an increasing rank of Π , starting at 0 (no cointegration). We will
explore the application to the case of two series in the following section.

Gonzalo and Lee (1998) discuss practical challenges due to misspecified model dynamics
and other implementation aspects, including how to combine both test procedures that we
will rely on for our sample statistical arbitrage strategy in the next section.

Statistical arbitrage with cointegration
Statistical arbitrage refers to strategies that employ some statistical model or method to take
advantage of what appears to be relative mispricing of assets, while maintaining a level of
market neutrality.

Pairs trading is a conceptually straightforward strategy that has been employed by
algorithmic traders since at least the mid-eighties (Gatev, Goetzmann, and Rouwenhorst
2006). The goal is to find two assets whose prices have historically moved together, track
the spread (the difference between their prices), and, once the spread widens, buy the
loser that has dropped below the common trend and short the winner. If the relationship
persists, the long and/or the short leg will deliver profits as prices converge and the
positions are closed.

This approach extends to a multivariate context by forming baskets from multiple securities
and trading one asset against a basket of two baskets against each other.

In practice, the strategy requires two steps:

1. Formation phase: Identify securities that have a long-term mean-reverting
relationship. Ideally, the spread should have a high variance to allow for frequent
profitable trades while reliably reverting to the common trend.

2. Trading phase: Trigger entry and exit trading rules as price movements cause the
spread to diverge and converge.

Several approaches to the formation and trading phases have emerged from increasingly
active research in this area, across multiple asset classes, over the last several years. The
next subsection outlines the key differences before we dive into an example application.

How to select and trade comoving asset pairs
A recent comprehensive survey of pairs trading strategies (Krauss 2017) identified four
different methodologies, plus a number of other more recent approaches, including ML-
based forecasts:

Time-Series Models for Volatility Forecasts and Statistical Arbitrage

[284]

• Distance approach: The oldest and most-studied method identifies candidate
pairs with distance metrics like correlation and uses non-parametric thresholds
like Bollinger Bands to trigger entry and exit trades. Its computational simplicity
allows for large-scale applications with demonstrated profitability across markets
and asset classes for extended periods of time since Gatev, et al. (2006). However,
performance has decayed more recently.

• Cointegration approach: As outlined previously, this approach relies on an
econometric model of a long-term relationship among two or more variables,
and allows for statistical tests that promise more reliability than simple distance
metrics. Examples in this category use the Engle-Granger and Johansen procedures
to identify pairs and baskets of securities, as well as simpler heuristics that aim to
capture the concept (Vidyamurthy 2004). Trading rules often resemble the simple
thresholds used with distance metrics.

• Time-series approach: With a focus on the trading phase, strategies in this category
aim to model the spread as a mean-reverting stochastic process and optimize entry
and exit rules accordingly (Elliott, Hoek, and Malcolm 2005). It assumes promising
pairs have already been identified.

• Stochastic control approach: Similar to the time-series approach, the goal is to
optimize trading rules using stochastic control theory to find value and policy
functions to arrive at an optimal portfolio (Liu and Timmermann 2013). We will
address this type of approach in Chapter 21, Generative Adversarial Networks for
Synthetic Time-Series Data.

• Other approaches: Besides pair identification based on unsupervised learning like
principal component analysis (see Chapter 13, Data-Driven Risk Factors and Asset
Allocation with Unsupervised Learning) and statistical models like copulas (Patton
2012), machine learning has become popular more recently to identify pairs based
on their relative price or return forecasts (Huck 2019). We will cover several
ML algorithms that can be used for this purpose and illustrate corresponding
multivariate pairs trading strategies in the coming chapters.

This summary of the various approaches offers barely a glimpse at the flexibility afforded
by the design of a pairs trading strategy. In addition to higher-level questions about pair
selection and trading rule logic, there are numerous parameters that we need to define for
implementation. These parameters include the following:

• Investment universe to screen for potential pairs or baskets

• Length of the formation period

• Strength of the relationship used to pick tradeable candidates

• Degree of deviation from and convergence to their common means to trigger entry
or exit trades or to adjust existing positions as spreads fluctuate

Chapter 9

[285]

Pairs trading in practice
The distance approach identifies pairs using the correlation of (normalized) asset prices or
their returns, and is simple and orders of magnitude less computationally intensive than
cointegration tests. The notebook cointegration_test illustrates this for a sample of ~150
stocks with 4 years of daily data: it takes ~30ms to compute the correlation with the returns
of an ETF, compared to 18 seconds for a suite of cointegration tests (using statsmodels) –
600x slower.

The speed advantage is particularly valuable. This is because the number of potential
pairs is the product of the number of candidates to be considered on either side so that
evaluating combinations of 100 stocks and 100 ETFs requires comparing 10,000 tests (we'll
discuss the challenge of multiple testing bias later).

On the other hand, distance metrics do not necessarily select the most profitable pairs:
correlation is maximized for perfect co-movement, which, in turn, eliminates actual
trading opportunities. Empirical studies confirm that the volatility of the price spread of
cointegrated pairs is almost twice as high as the volatility of the price spread of distance
pairs (Huck and Afawubo 2015).

To balance the tradeoff between computational cost and the quality of the resulting
pairs, Krauss (2017) recommends a procedure that combines both approaches based on his
literature review:

1. Select pairs with a stable spread that shows little drift to reduce the number of
candidates

2. Test the remaining pairs with the highest spread variance for cointegration

This process aims to select cointegrated pairs with lower divergence risk while ensuring
more volatile spreads that, in turn, generate higher profit opportunities.

A large number of tests introduce data snooping bias, as discussed in Chapter 6, The
Machine Learning Process: multiple testing is likely to increase the number of false positives
that mistakenly reject the null hypothesis of no cointegration. While statistical significance
may not be necessary for profitable trading (Chan 2008), a study of commodity pairs
(Cummins and Bucca 2012) shows that controlling the familywise error rate to improve the
tests' power, according to Romano and Wolf (2010), can lead to better performance.

In the following subsection, we'll take a closer look at how predictive various heuristics for
the degree of comovement of asset prices are for the result of cointegration tests.

The example code uses a sample of 172 stocks and 138 ETFs traded on the NYSE and
NASDAQ, with daily data from 2010 - 2019 provided by Stooq.

The securities represent the largest average dollar volume over the sample period in
their respective class; highly correlated and stationary assets have been removed. See the
notebook create_datasets in the data folder of the GitHub repository for instructions on
how to obtain the data, and the notebook cointegration_tests for the relevant code and
additional preprocessing and exploratory details.

Time-Series Models for Volatility Forecasts and Statistical Arbitrage

[286]

Distance-based heuristics to find cointegrated pairs
compute_pair_metrics() computes the following distance metrics for over 23,000 pairs of
stocks and Exchange Traded Funds (ETFs) for 2010-14 and 2015-19:

• The drift of the spread, defined as a linear regression of a time trend on the spread
• The spread's volatility

• The correlations between the normalized price series and between their returns

Low drift and volatility, as well as high correlation, are simple proxies for cointegration.

To evaluate the predictive power of these heuristics, we also run Engle-Granger and
Johansen cointegration tests using statsmodels for the preceding pairs. This takes place in
the loop in the second half of compute_pair_metrics().

We first estimate the optimal number of lags that we need to specify for the Johansen test.
For both tests, we assume that the cointegrated series (the spread) may have an intercept
different from zero but no trend:

def compute_pair_metrics(security, candidates):

 security = security.div(security.iloc[0])

 ticker = security.name

 candidates = candidates.div(candidates.iloc[0])

 # compute heuristics

 spreads = candidates.sub(security, axis=0)

 n, m = spreads.shape

 X = np.ones(shape=(n, 2))

 X[:, 1] = np.arange(1, n + 1)

 drift = ((np.linalg.inv(X.T @ X) @ X.T @ spreads).iloc[1]

 .to_frame('drift'))

 vol = spreads.std().to_frame('vol')

 corr_ret = (candidates.pct_change()

 .corrwith(security.pct_change())

 .to_frame('corr_ret'))

 corr = candidates.corrwith(security).to_frame('corr')

 metrics = drift.join(vol).join(corr).join(corr_ret).assign(n=n)

 tests = []

 # compute cointegration tests

 for candidate, prices in candidates.items():

 df = pd.DataFrame({'s1': security, 's2': prices})

 var = VAR(df)

 lags = var.select_order() # select VAR order

 k_ar_diff = lags.selected_orders['aic']

Chapter 9

[287]

 # Johansen Test with constant Term and estd. lag order

 cj0 = coint_johansen(df, det_order=0, k_ar_diff=k_ar_diff)
 # Engle-Granger Tests

 t1, p1 = coint(security, prices, trend='c')[:2]

 t2, p2 = coint(prices, security, trend='c')[:2]

 tests.append([ticker, candidate, t1, p1, t2, p2,

 k_ar_diff, *cj0.lr1])

 return metrics.join(tests)

To check for the significance of the cointegration tests, we compare the Johansen trace
statistic for rank 0 and 1 to their respective critical values and obtain the Engle-Granger
p-value.

We follow the recommendation by Gonzalo and Lee (1998), mentioned at the end of the
previous section, to apply both tests and accept pairs where they agree. The authors suggest
additional due diligence in case of disagreement, which we are going to skip:

spreads['trace_sig'] = ((spreads.trace0 > trace0_cv) &

 (spreads.trace1 > trace1_cv)).astype(int)

spreads['eg_sig'] = (spreads.p < .05).astype(int)

For the over 46,000 pairs across both sample periods, the Johansen test considers 3.2 percent
of the relationships as significant, while the Engle-Granger considers 6.5 percent. They
agree on 366 pairs (0.79 percent).

How well do the heuristics predict significant cointegration?
When we compare the distributions of the heuristics for series that are cointegrated
according to both tests with the remainder that is not, volatility and drift are indeed lower
(in absolute terms). Figure 9.14 shows that the picture is less clear for the two correlation
measures:

Figure 9.14: The distribution of heuristics, broken down by the significance of both cointegration tests

To evaluate the predictive accuracy of the heuristics, we first run a logistic regression model
with these features to predict significant cointegration. It achieves an
area-under-the-curve (AUC) cross-validation score of 0.815; excluding the correlation
metrics, it still scores 0.804. A decision tree does slightly better at AUC=0.821, with or
without the correlation features.

Time-Series Models for Volatility Forecasts and Statistical Arbitrage

[288]

Not least due to the strong class imbalance, there are large numbers of false positives:
correctly identifying 80 percent of the 366 cointegrated pairs implies over 16,500 false
positives, but eliminates almost 30,000 of the candidates. See the notebook cointegration_
tests for additional detail.

The key takeaway is that distance heuristics can help screen a large universe more
efficiently, but this comes at a cost of missing some cointegrated pairs and still requires
substantial testing.

Preparing the strategy backtest
In this section, we are going to implement a statistical arbitrage strategy based on
cointegration for the sample of stocks and ETFs and the 2017-2019 period. Some aspects are
simplified to streamline the presentation. See the notebook statistical_arbitrage_with_
cointegrated_pairs for the code examples and additional detail.

We first generate and store the cointegration tests for all candidate pairs and the
resulting trading signals. Then, we backtest a strategy based on these signals, given the
computational intensity of the process.

Precomputing the cointegration tests

First, we run quarterly cointegration tests over a 2-year lookback period on each of the
23,000 potential pairs, Then, we select pairs where both the Johansen and the Engle-
Granger tests agree for trading. We should exclude assets that are stationary during the
lookback period, but we eliminated assets that are stationary for the entire period, so we
skip this step to simplify it.

This procedure follows the steps outlined previously; please see the notebook for details.

Figure 9.15 shows the original stock and ETF series of the two different pairs selected for
trading; note the clear presence of a common trend over the sample period:

Figure 9.15: Price series for two selected pairs over the sample period

Chapter 9

[289]

Getting entry and exit trades

Now, we can compute the spread for each candidate pair based on a rolling hedge ratio.
We also calculate a Bollinger Band because we will consider moves of the spread larger
than two rolling standard deviations away from its moving average as long and short entry
signals, and crossings of the moving average in reverse as exit signals.

Smoothing prices with the Kalman filter
To this end, we first apply a rolling Kalman filter (KF) to remove some noise, as
demonstrated in Chapter 4, Financial Feature Engineering – How to Research Alpha Factors:

def KFSmoother(prices):

 """Estimate rolling mean"""

 kf = KalmanFilter(transition_matrices=np.eye(1),

 observation_matrices=np.eye(1),

 initial_state_mean=0,

 initial_state_covariance=1,

 observation_covariance=1,

 transition_covariance=.05)

 state_means, _ = kf.filter(prices.values)
 return pd.Series(state_means.flatten(),
 index=prices.index)

Computing the rolling hedge ratio using the Kalman filter
To obtain a dynamic hedge ratio, we use the KF for rolling linear regression, as follows:

def KFHedgeRatio(x, y):

 """Estimate Hedge Ratio"""

 delta = 1e-3

 trans_cov = delta / (1 - delta) * np.eye(2)

 obs_mat = np.expand_dims(np.vstack([[x], [np.ones(len(x))]]).T, axis=1)

 kf = KalmanFilter(n_dim_obs=1, n_dim_state=2,

 initial_state_mean=[0, 0],

 initial_state_covariance=np.ones((2, 2)),

 transition_matrices=np.eye(2),

 observation_matrices=obs_mat,

 observation_covariance=2,

 transition_covariance=trans_cov)

 state_means, _ = kf.filter(y.values)
 return -state_means

Time-Series Models for Volatility Forecasts and Statistical Arbitrage

[290]

Estimating the half-life of mean reversion

If we view the spread as a mean-reverting stochastic process in continuous time, we can
model it as an Ornstein-Uhlenbeck process. The benefit of this perspective is that we gain
a formula for the half-life of mean reversion, as an approximation of the time required for
the spread to converge again after a deviation (see Chapter 2, Market and Fundamental Data –
Sources and Techniques, in Chan 2013 for details):

def estimate_half_life(spread):

 X = spread.shift().iloc[1:].to_frame().assign(const=1)

 y = spread.diff().iloc[1:]
 beta = (np.linalg.inv(X.T@X)@X.T@y).iloc[0]

 halflife = int(round(-np.log(2) / beta, 0))
 return max(halflife, 1)

Computing spread and Bollinger Bands

The following function orchestrates the preceding computations and expresses the spread
as a z-score that captures deviations from the moving average with a window equal to two
half-lives in terms of the rolling standard deviations:

def get_spread(candidates, prices):

 pairs, half_lives = [], []

 periods = pd.DatetimeIndex(sorted(candidates.test_end.unique()))

 start = time()

 for p, test_end in enumerate(periods, 1):

 start_iteration = time()

 period_candidates = candidates.loc[candidates.test_end == test_end,

 ['y', 'x']]

 trading_start = test_end + pd.DateOffset(days=1)
 t = trading_start - pd.DateOffset(years=2)
 T = trading_start + pd.DateOffset(months=6) - pd.DateOffset(days=1)
 max_window = len(prices.loc[t: test_end].index)

 print(test_end.date(), len(period_candidates))

 for i, (y, x) in enumerate(zip(period_candidates.y,

 period_candidates.x), 1):

 pair = prices.loc[t: T, [y, x]]

 pair['hedge_ratio'] = KFHedgeRatio(

 y=KFSmoother(prices.loc[t: T, y]),

 x=KFSmoother(prices.loc[t: T, x]))[:, 0]

 pair['spread'] = pair[y].add(pair[x].mul(pair.hedge_ratio))

 half_life = estimate_half_life(pair.spread.loc[t: test_end])

 spread = pair.spread.rolling(window=min(2 * half_life,

 max_window))

 pair['z_score'] = pair.spread.sub(spread.mean()).div(spread.

Chapter 9

[291]

std())

 pairs.append(pair.loc[trading_start: T].assign(s1=y, s2=x,
period=p, pair=i).drop([x, y], axis=1))

 half_lives.append([test_end, y, x, half_life])

 return pairs, half_lives

Getting entry and exit dates for long and short positions

Finally, we use the set of z-scores to derive trading signals:

1. We enter a long (short) position if the z-score is below (above) two, which implies the
spread has moved two rolling standard deviations below (above) the moving average

2. We exit trades when the spread crosses the moving average again

We derive rules on a quarterly basis for the set of pairs that passed the cointegration tests
during the prior lookback period but allow pairs to exit during the subsequent 3 months.

We again simplify this by dropping pairs that do not close during this 6-month period.
Alternatively, we could have handled this using the stop-loss risk management that we
included in the strategy (see the next section on backtesting):

def get_trades(data):

 pair_trades = []

 for i, ((period, s1, s2), pair) in enumerate(
 data.groupby(['period', 's1', 's2']), 1):

 if i % 100 == 0:

 print(i)

 first3m = pair.first('3M').index
 last3m = pair.last('3M').index

 entry = pair.z_score.abs() > 2

 entry = ((entry.shift() != entry)

 .mul(np.sign(pair.z_score))

 .fillna(0)
 .astype(int)

 .sub(2))

 exit = (np.sign(pair.z_score.shift().fillna(method='bfill'))
 != np.sign(pair.z_score)).astype(int) - 1

 trades = (entry[entry != -2].append(exit[exit == 0])

 .to_frame('side')

 .sort_values(['date', 'side'])

 .squeeze())

Time-Series Models for Volatility Forecasts and Statistical Arbitrage

[292]

 trades.loc[trades < 0] += 2

 trades = trades[trades.abs().shift() != trades.abs()]

 window = trades.loc[first3m.min():first3m.max()]
 extra = trades.loc[last3m.min():last3m.max()]

 n = len(trades)

 if window.iloc[0] == 0:

 if n > 1:

 print('shift')

 window = window.iloc[1:]

 if window.iloc[-1] != 0:

 extra_exits = extra[extra == 0].head(1)

 if extra_exits.empty:

 continue

 else:

 window = window.append(extra_exits)

 trades = (pair[['s1', 's2', 'hedge_ratio', 'period', 'pair']]

 .join(window. to_frame('side'), how='right'))

 trades.loc[trades.side == 0, 'hedge_ratio'] = np.nan

 trades.hedge_ratio = trades.hedge_ratio.ffill()
 pair_trades.append(trades)

 return pair_trades

Backtesting the strategy using backtrader
Now, we are ready to formulate our strategy on our backtesting platform, execute it, and
evaluate the results. To do so, we need to track our pairs, in addition to individual portfolio
positions, and monitor the spread of active and inactive pairs to apply our trading rules.

Tracking pairs with a custom DataClass

To account for active pairs, we define a dataclass (introduced in Python 3.7—see the
Python documentation for details). This data structure, called Pair, allows us to store the
pair components, their number of shares, and the hedge ratio, and compute the current
spread and the return, among other things. See a simplified version in the following code:

@dataclass

class Pair:

 period: int

 s1: str

 s2: str

 size1: float
 size2: float
 long: bool

 hr: float

Chapter 9

[293]

 p1: float
 p2: float
 entry_date: date = None

 exit_date: date = None

 entry_spread: float = np.nan
 exit_spread: float = np.nan

 def compute_spread(self, p1, p2):

 return p1 * self.size1 + p2 * self.size2

 def compute_spread_return(self, p1, p2):

 current_spread = self.compute_spread(p1, p2)

 delta = self.entry_spread - current_spread

 return (delta / (np.sign(self.entry_spread) *

 self.entry_spread))

Running and evaluating the strategy

Key implementation aspects include:

• The daily exit from pairs that have either triggered the exit rule or exceeded a given
negative return

• The opening of new long and short positions for pairs whose spreads triggered
entry signals

• In addition, we adjust positions to account for the varying number of pairs

The code for the strategy itself takes up too much space to display here; see the notebook
pairs_trading_backtest for details.

Figure 9.16 shows that, at least for the 2017-2019 period, this simplified strategy had its moments
(note that we availed ourselves of some lookahead bias and ignored transaction costs).

Under these lax assumptions, it underperformed the S&P 500 at the beginning and end of
the period and was otherwise roughly in line (left panel). It yields an alpha of 0.08 and a
negative beta of -0.14 (right panel), with an average Sharpe ratio of 0.75 and a Sortino ratio
of 1.05 (central panel):

Figure 9.16: Strategy performance metrics

Time-Series Models for Volatility Forecasts and Statistical Arbitrage

[294]

While we should take these performance metrics with a grain of salt, the strategy
demonstrates the anatomy of a statistical arbitrage based on cointegration in the form of
pairs trading. Let's take a look at a few steps you could take to build on this framework to
produce better performance.

Extensions – how to do better
Cointegration is a very useful concept to identify pairs or groups of stocks that tend to
move in unison. Compared to the statistical sophistication of cointegration, we used very
simple and static trading rules; the computation on a quarterly basis also distorts the
strategy, as the patterns of long and short holdings show (see notebook).

To be successful, you will, at a minimum, need to screen a larger universe and optimize
several of the parameters, including the trading rules. Moreover, risk management should
account for concentrated positions that arise when certain assets appear relatively often on
the same side of a traded pair.

You could also operate with baskets as opposed to individual pairs; however, to address
the growing number of candidates, you would likely need to constrain the composition of
the baskets.

As mentioned in the Pairs trading – statistical arbitrage with cointegration section, there are
alternatives that aim to predict price movements. In the following chapters, we will explore
various machine learning models that aim to predict the absolute size or the direction
of price movements for a given investment universe and horizon. Using these forecasts
as long and short entry signals is a natural extension or alternative to the pairs trading
framework that we studied in this section.

Summary
In this chapter, we explored linear time-series models for the univariate case of individual
series, as well as multivariate models for several interacting series. We encountered
applications that predict macro fundamentals, models that forecast asset or portfolio
volatility with widespread use in risk management, and multivariate VAR models
that capture the dynamics of multiple macro series. We also looked at the concept of
cointegration, which underpins the popular pair-trading strategy.

Similar to Chapter 7, Linear Models – From Risk Factors to Return Forecasts, we saw how linear
models impose a lot of structure, that is, they make strong assumptions that potentially
require transformations and extensive testing to verify that these assumptions are met. If
they are, model-training and interpretation are straightforward, and the models provide
a good baseline that more complex models may be able to improve on. In the next two
chapters, we will see two examples of this, namely random forests and gradient boosting
models, and we will encounter several more in Part 4, which is on deep learning.

[295]

10
Bayesian ML – Dynamic Sharpe

Ratios and Pairs Trading

In this chapter, we will introduce Bayesian approaches to machine learning (ML) and how
their different perspective on uncertainty adds value when developing and evaluating
trading strategies.

Bayesian statistics allows us to quantify uncertainty about future events and refine our
estimates in a principled way as new information arrives. This dynamic approach adapts
well to the evolving nature of financial markets. It is particularly useful when there are
fewer relevant data and we require methods that systematically integrate prior knowledge
or assumptions.

We will see that Bayesian approaches to machine learning allow for richer insights into
the uncertainty around statistical metrics, parameter estimates, and predictions. The
applications range from more granular risk management to dynamic updates of predictive
models that incorporate changes in the market environment. The Black-Litterman approach
to asset allocation (see Chapter 5, Portfolio Optimization and Performance Evaluation) can be
interpreted as a Bayesian model. It computes the expected return of an asset as an average
of the market equilibrium and the investor's views, weighted by each asset's volatility,
cross-asset correlations, and the confidence in each forecast.

More specifically, in this chapter, we will cover:
• How Bayesian statistics apply to ML

• Probabilistic programming with PyMC3

• Defining and training ML models using PyMC3
• How to run state-of-the-art sampling methods to conduct approximate inference

• Bayesian ML applications to compute dynamic Sharpe ratios, dynamic pairs trading
hedge ratios, and estimate stochastic volatility

Bayesian ML – Dynamic Sharpe Ratios and Pairs Trading

[296]

How Bayesian machine learning works
Classical statistics is said to follow the frequentist approach because it interprets
probability as the relative frequency of an event over the long run, that is, after observing
a large number of trials. In the context of probabilities, an event is a combination of one or
more elementary outcomes of an experiment, such as any of six equal results in rolls of two
dice or an asset price dropping by 10 percent or more on a given day).

Bayesian statistics, in contrast, views probability as a measure of the confidence or belief in
the occurrence of an event. The Bayesian perspective, thus, leaves more room for subjective
views and differences in opinions than the frequentist interpretation. This difference is
most striking for events that do not happen often enough to arrive at an objective measure
of long-term frequency.

Put differently, frequentist statistics assumes that data is a random sample from a
population and aims to identify the fixed parameters that generated the data. Bayesian
statistics, in turn, takes the data as given and considers the parameters to be random
variables with a distribution that can be inferred from data. As a result, frequentist
approaches require at least as many data points as there are parameters to be estimated.
Bayesian approaches, on the other hand, are compatible with smaller datasets, and well
suited for online learning from one sample at a time.

The Bayesian view is very useful for many real-world events that are rare or unique, at least
in important respects. Examples include the outcome of the next election or the question
of whether the markets will crash within 3 months. In each case, there is both relevant
historical data as well as unique circumstances that unfold as the event approaches.

We will first introduce Bayes' theorem, which crystallizes the concept of updating beliefs
by combining prior assumptions with new empirical evidence, and compare the resulting
parameter estimates with their frequentist counterparts. We will then demonstrate two
approaches to Bayesian statistical inference, namely conjugate priors and approximate
inference, which produce insights into the posterior distribution of latent (that is,
unobserved) parameters, such as the expected value:

• Conjugate priors facilitate the updating process by providing a closed-form
solution that allows us to precisely compute the solution. However, such exact,
analytical methods are not always available.

• Approximate inference simulates the distribution that results from combining
assumptions and data and uses samples from this distribution to compute
statistical insights.

You can find the code samples for this chapter and links to
additional resources in the corresponding directory of the GitHub
repository. The notebooks include color versions of the images.

Chapter 10

[297]

How to update assumptions from empirical evidence

"When the facts change, I change my mind. What do you do, sir?"

 – John Maynard Keynes

The theorem that Reverend Thomas Bayes came up with, over 250 years ago, uses
fundamental probability theory to prescribe how probabilities or beliefs should change
as relevant new information arrives. The preceding Keynes quotation captures that spirit.
It relies on the conditional and total probability and the chain rule; see Bishop (2006) and
Gelman et al. (2013) for an introduction and more.

The probabilistic belief concerns a single parameter or a vector of parameters (also:
hypotheses). Each parameter can be discrete or continuous. 𝜃𝜃 could be a one-dimensional
statistic like the (discrete) mode of a categorical variable or a (continuous) mean, or a higher
dimensional set of values like a covariance matrix or the weights of a deep neural network.

A key difference to frequentist statistics is that Bayesian assumptions are expressed as
probability distributions rather than parameter values. Consequently, while frequentist
inference focuses on point estimates, Bayesian inference yields probability distributions.

Bayes' theorem updates the beliefs about the parameters of interest by computing the
posterior probability distribution from the following inputs, as shown in Figure 10.1:

• The prior distribution indicates how likely we consider each possible hypothesis.

• The likelihood function outputs the probability of observing a dataset when given
certain values for the parameters 𝜃𝜃 , that is, for a specific hypothesis.

• The evidence measures how likely the observed data is, given all possible
hypotheses. Hence, it is the same for all parameter values and serves to normalize
the numerator.

Figure 10.1: How evidence updates the prior to the posterior probability distribution

Bayesian ML – Dynamic Sharpe Ratios and Pairs Trading

[298]

The posterior is the product of prior and likelihood, divided by the evidence. Thus, it
reflects the probability distribution of the hypothesis, updated by taking into account
both prior assumptions and the data. Viewed differently, the posterior probability results
from applying the chain rule, which, in turn, factorizes the joint distribution of data and
parameters.

With higher-dimensional, continuous variables, the formulation becomes more complex
and involves (multiple) integrals. Also, an alternative formulation uses odds to express the
posterior odds as the product of the prior odds, times the likelihood ratio (see Gelman et
al. 2013).

Exact inference – maximum a posteriori estimation
Practical applications of Bayes' rule to exactly compute posterior probabilities are quite
limited. This is because the computation of the evidence term in the denominator is quite
challenging. The evidence reflects the probability of the observed data over all possible
parameter values. It is also called the marginal likelihood because it requires "marginalizing
out" the parameters' distribution by adding or integrating over their distribution. This is
generally only possible in simple cases with a small number of discrete parameters that
assume very few values.

Maximum a posteriori probability (MAP) estimation leverages the fact that the evidence is a
constant factor that scales the posterior to meet the requirements for a probability distribution.
Since the evidence does not depend on 𝜃𝜃 , the posterior distribution is proportional to the
product of the likelihood and the prior. Hence, MAP estimation chooses the value of 𝜃𝜃 that
maximizes the posterior given the observed data and the prior belief, that is, the mode of the
posterior.

The MAP approach contrasts with the Maximum Likelihood Estimation (MLE) of
parameters that define a probability distribution. MLE picks the parameter value 𝜃𝜃 that
maximizes the likelihood function for the observed training data.

A look at the definitions highlights that MAP differs from MLE by including the prior
distribution. In other words, unless the prior is a constant, the MAP estimate will differ
from its MLE counterpart: 𝜃𝜃MLE = arg max𝜃𝜃 𝑃𝑃(𝑋𝑋|𝜃𝜃)

The MLE solution tends to reflect the frequentist notion that probability estimates should
reflect observed ratios. On the other hand, the impact of the prior on the MAP estimate
often corresponds to adding data that reflects the prior assumptions to the MLE. For
example, a strong prior that a coin is biased can be incorporated in the MLE context by
adding skewed trial data.

Prior distributions are a critical ingredient to Bayesian models. We will now introduce
some convenient choices that facilitate analytical inference.

Chapter 10

[299]

How to select priors
The prior should reflect knowledge about the distribution of the parameters because it
influences the MAP estimate. If a prior is not known with certainty, we need to make a
choice, often from several reasonable options. In general, it is good practice to justify the
prior and check for robustness by testing whether alternatives lead to the same conclusion.

There are several types of priors:

• Objective priors maximize the impact of the data on the posterior. If the parameter
distribution is unknown, we can select an uninformative prior like a uniform
distribution, also called a flat prior, over a relevant range of parameter values.

• In contrast, subjective priors aim to incorporate information external to the model
into the estimate. In the Black-Litterman context, the investor's belief about an
asset's future return would be an example of a subjective prior.

• An empirical prior combines Bayesian and frequentist methods and uses historical
data to eliminate subjectivity, for example, by estimating various moments to fit a
standard distribution. Using some historical average of daily returns rather than a
belief about future returns would be an example of a simple empirical prior.

In the context of an ML model, the prior can be viewed as a regularizer because it limits
the values that the posterior can assume. Parameters that have zero prior probability, for
instance, are not part of the posterior distribution. Generally, more good data allows for
stronger conclusions and reduces the influence of the prior.

How to keep inference simple – conjugate priors

A prior distribution is conjugate with respect to the likelihood when the resulting posterior
is of the same class or family of distributions as the prior, except for different parameters.
For example, when both the prior and the likelihood are normally distributed, then the
posterior is also normally distributed.

The conjugacy of prior and likelihood implies a closed-form solution for the posterior that
facilitates the update process and avoids the need to use numerical methods to approximate the
posterior. Moreover, the resulting posterior can be used as the prior for the next update step.

Let's illustrate this process using a binary classification example for stock price movements.

Dynamic probability estimates of asset price moves

When the data consists of binary Bernoulli random variables with a certain success
probability for a positive outcome, the number of successes in repeated trials follows a
binomial distribution. The conjugate prior is the beta distribution with support over the
interval [0, 1] and two shape parameters to model arbitrary prior distributions over the
success probability. Hence, the posterior distribution is also a beta distribution that we can
derive by directly updating the parameters.

Bayesian ML – Dynamic Sharpe Ratios and Pairs Trading

[300]

We will collect samples of different sizes of binarized daily S&P 500 returns, where the
positive outcome is a price increase. Starting from an uninformative prior that allocates
equal probability to each possible success probability in the interval [0, 1], we compute the
posterior for different evidence samples.

The following code sample shows that the update consists of simply adding the observed
numbers of success and failure to the parameters of the prior distribution to obtain the
posterior:

n_days = [0, 1, 3, 5, 10, 25, 50, 100, 500]

outcomes = sp500_binary.sample(n_days[-1])

p = np.linspace(0, 1, 100)

uniform (uninformative) prior

a = b = 1

for i, days in enumerate(n_days):

 up = outcomes.iloc[:days].sum()

 down = days - up

 update = stats.beta.pdf(p, a + up , b + down)

The resulting posterior distributions have been plotted in the following image. They
illustrate the evolution from a uniform prior that views all success probabilities as equally
likely to an increasingly peaked distribution.

After 500 samples, the probability is concentrated near the actual probability of a positive
move at 54.7 percent from 2010 to 2017. It also shows the small differences between MLE
and MAP estimates, where the latter tends to be pulled slightly toward the expected value
of the uniform prior:

Figure 10.2: Posterior distributions of the probability that the S&P 500 goes up the next day after up to 500 updates

Chapter 10

[301]

In practice, the use of conjugate priors is limited to low-dimensional cases. In addition, the
simplified MAP approach avoids computing the evidence term but has a key shortcoming,
even when it is available: it does not return a distribution so that we can derive a measure
of uncertainty or use it as a prior. Hence, we need to resort to an approximate rather
than exact inference using numerical methods and stochastic simulations, which we will
introduce next.

Deterministic and stochastic approximate inference
For most models of practical relevance, it will not be possible to derive the exact posterior
distribution analytically and compute expected values for the latent parameters. The model
may have too many parameters, or the posterior distribution may be too complex for an
analytical solution:

• For continuous variables, the integrals may not have closed-form solutions, while
the dimensionality of the space and the complexity of the integrand may prohibit
numerical integration.

• For discrete variables, the marginalizations involve summing over all possible
configurations of the hidden variables, and though this is always possible in
principle, we often find in practice that there may be exponentially many hidden
states that render this calculation prohibitively expensive.

Although for some applications the posterior distribution over unobserved parameters will
be of interest, most often, it is primarily required to evaluate expectations, for example, to
make predictions. In such situations, we can rely on approximate inference, which includes
stochastic and deterministic approaches:

• Stochastic techniques based on Markov chain Monte Carlo (MCMC) sampling
have popularized the use of Bayesian methods across many domains. They
generally have the property to converge to the exact result. In practice, sampling
methods can be computationally demanding and are often limited to small-scale
problems.

• Deterministic methods called variational inference or variational Bayes are
based on analytical approximations to the posterior distribution and can scale
well to large applications. They make simplifying assumptions, for example, that
the posterior factorizes in a particular way or it has a specific parametric form,
such as a Gaussian. Hence, they do not generate exact results and can be used as
complements to sampling methods.

We will outline both approaches in the following two sections.

Bayesian ML – Dynamic Sharpe Ratios and Pairs Trading

[302]

Markov chain MonteCarlo sampling

Sampling is about drawing samples X=(x
1
, …, x

n
) from a given distribution p(x). Assuming

the samples are independent, the law of large numbers ensures that for a growing
number of samples, the fraction of a given instance x

i
 in the sample (for the discrete case)

corresponds to its probability p(x=x
i
). In the continuous case, the analogous reasoning

applies to a given region of the sample space. Hence, averages over samples can be used as
unbiased estimators of the expected values of parameters of the distribution.

A practical challenge consists of ensuring independent sampling because the distribution
is unknown. Dependent samples may still be unbiased, but tend to increase the variance
of the estimate, so that more samples will be needed for an equally precise estimate as for
independent samples.

Sampling from a multivariate distribution is computationally demanding as the number
of states increases exponentially with the number of dimensions. Numerous algorithms
facilitate the process; we will introduce a few popular variations of MCMC-based methods
here.

A Markov chain is a dynamic stochastic model that describes a random walk over a set
of states connected by transition probabilities. The Markov property stipulates that the
process has no memory and that the next step only depends on the current state. In other
words, this depends on whether the present, past, and future are independent, that is,
information about past states does not help to predict the future beyond what we know
from the present.

Monte Carlo methods rely on repeated random sampling to approximate results that may
be deterministic but that do not permit an exact analytic solution. It was developed during
the Manhattan Project to estimate energy at the atomic level and received its enduring code
name to ensure secrecy.

Many algorithms apply the Monte Carlo method to a Markov chain and generally proceed
as follows:

1. Start at the current position

2. Draw a new position from a proposal distribution

3. Evaluate the probability of the new position in light of data and prior distributions

a. If sufficiently likely, move to the new position
b. Otherwise, remain at the current position

4. Repeat from step 1
5. After a given number of iterations, return all accepted positions

Chapter 10

[303]

MCMC methods aim to identify and explore interesting regions of the posterior that
concentrate significant probability density. The memoryless process is said to converge
when it consistently moves through nearby high-probability states of the posterior where
the acceptance rate increases. A key challenge is to balance the need for random exploration
of the sample space with the risk of reducing the acceptance rate.

The initial steps of the process are likely more reflective of the starting position than the posterior,
and are typically discarded as burn-in samples. A key MCMC property is that the process should
"forget" about its initial position after a certain (but unknown) number of iterations.

The remaining samples are called the trace of the process. Assuming convergence, the
relative frequency of samples approximates the posterior and can be used to compute
expected values based on the law of large numbers.

As already indicated, the precision of the estimate depends on the serial correlation of
the samples collected by the random walk, each of which, by design, depends only on the
previous state. Higher correlation limits the effective exploration of the posterior and needs
to be subjected to diagnostic tests.

General techniques to design such a Markov chain include Gibbs sampling, the
Metropolis-Hastings algorithm, and more recent Hamiltonian MCMC methods,
which tend to perform better.

Gibbs sampling

Gibbs sampling simplifies multivariate sampling to a sequence of one-dimensional draws.
From some starting point, it iteratively holds n-1 variables constant while sampling the nth
variable. It incorporates this sample and repeats it.

The algorithm is very simple and easy to implement but produces highly correlated
samples that slow down convergence. The sequential nature also prevents parallelization.
See Casella and George (1992) for a detailed description and explanation.

Metropolis-Hastings sampling

The Metropolis-Hastings algorithm randomly proposes new locations based on its
current state. It does so to effectively explore the sample space and reduce the correlation
of samples relative to Gibbs sampling. To ensure that it samples from the posterior, it
evaluates the proposal using the product of prior and likelihood, which is proportional
to the posterior. It accepts with a probability that depends on the result relative to the
corresponding value for the current sample.

A key benefit of the proposal evaluation method is that it works with a proportional rather
than an exact evaluation of the posterior. However, it can take a long time to converge.
This is because the random movements that are not related to the posterior can reduce
the acceptance rate so that a large number of steps produces only a small number of
(potentially correlated) samples. The acceptance rate can be tuned by reducing the variance
of the proposal distribution, but the resulting smaller steps imply less exploration. See Chib
and Greenberg (1995) for a detailed, introductory exposition of the algorithm.

Bayesian ML – Dynamic Sharpe Ratios and Pairs Trading

[304]

Hamiltonian Monte Carlo – going NUTS

Hamiltonian Monte Carlo (HMC) is a hybrid method that leverages the first-order
derivative information of the gradient of the likelihood. With this, it proposes new states
for exploration and overcomes some of the MCMC challenges. In addition, it incorporates
momentum to efficiently "jump around" the posterior. As a result, it converges faster to
a high-dimensional target distribution than simpler random walk Metropolis or Gibbs
sampling. See Betancourt (2018) for a comprehensive conceptual introduction.

The No U-Turn Sampler (NUTS, Hoffman and Gelman 2011) is a self-tuning HMC
extension that adaptively regulates the size and number of moves around the posterior
before selecting a proposal. It works well on high-dimensional and complex posterior
distributions, and allows many complex models to be fit without specialized knowledge
about the fitting algorithm itself. As we will see in the next section, it is the default sampler
in PyMC3.

Variational inference and automatic differentiation
Variational inference (VI) is an ML method that approximates probability densities
through optimization. In the Bayesian context, it approximates the posterior distribution, as
follows:

1. Select a parametrized family of probability distributions

2. Find the member of this family closest to the target, as measured by Kullback-
Leibler divergence

Compared to MCMC, variational Bayes tends to converge faster and scales better to large
data. While MCMC approximates the posterior with samples from the chain that will
eventually converge arbitrarily close to the target, variational algorithms approximate the
posterior with the result of the optimization that is not guaranteed to coincide with the target.

Variational inference is better suited for large datasets, for example, hundreds of millions
of text documents, so we can quickly explore many models. In contrast, MCMC will deliver
more accurate results on smaller datasets or when time and computational resources pose
fewer constraints. For example, MCMC would be a good choice if you had spent 20 years
collecting a small but expensive dataset, are confident that your model is appropriate,
and you require precise inferences. See Salimans, Kingma, and Welling (2015) for a more
detailed comparison.

The downside of variational inference is the need for model-specific derivations and the
implementation of a tailored optimization routine, which slows down widespread adoption.

The recent Automatic Differentiation Variational Inference (ADVI) algorithm automates
this process so that the user only specifies the model, expressed as a program, and ADVI
automatically generates a corresponding variational algorithm (see the references on
GitHub for implementation details).

We will see that PyMC3 supports various variational inference techniques, including ADVI.

Chapter 10

[305]

Probabilistic programming with PyMC3
Probabilistic programming provides a language to describe and fit probability distributions
so that we can design, encode, and automatically estimate and evaluate complex models. It
aims to abstract away some of the computational and analytical complexity to allow us to
focus on the conceptually more straightforward and intuitive aspects of Bayesian reasoning
and inference.

The field has become quite dynamic since new languages emerged after Uber open
sourced Pyro (based on PyTorch). Google, more recently, added a probability module to
TensorFlow.

As a result, the practical relevance and use of Bayesian methods in ML will likely
increase to generate insights into uncertainty and, in particular, for use cases that require
transparent rather than black-box models.

In this section, we will introduce the popular PyMC3 library, which implements advanced
MCMC sampling and variational inference for ML models using Python. Together with
Stan (named after Stanislaw Ulam, who invented the Monte Carlo method, and developed
by Andrew Gelman at Columbia University since 2012), PyMC3 is the most popular
probabilistic programming language.

Bayesian machine learning with Theano
PyMC3 was released in January 2017 to add Hamiltonian MC methods to the Metropolis-
Hastings sampler used in PyMC2 (released 2012). PyMC3 uses Theano as its computational
backend for dynamic C compilation and automatic differentiation. Theano is a matrix-
focused and GPU-enabled optimization library developed at Yoshua Bengio's Montreal
Institute for Learning Algorithms (MILA), which inspired TensorFlow. MILA recently
ceased to further develop Theano due to the success of newer deep learning libraries (see
Chapter 16, Word Embeddings for Earnings Calls and SEC Filings, for details).

The PyMC3 workflow – predicting a recession
PyMC3 aims for intuitive and readable, yet powerful, syntax that reflects how statisticians
describe models. The modeling process generally follows these three steps:

1. Encode a probability model by defining:
a. The prior distributions that quantify knowledge and uncertainty about

latent variables

b. The likelihood function that conditions the parameters on observed data

PyMC4, released in alpha in December 2019, uses TensorFlow instead
of Theano and aims to limit the impact on the API (see the link to the
repository on GitHub).

Bayesian ML – Dynamic Sharpe Ratios and Pairs Trading

[306]

2. Analyze the posterior using one of the options described in the previous section:

a. Obtain a point estimate using MAP inference

b. Sample from the posterior using MCMC methods

c. Approximate the posterior using variational Bayes

3. Check your model using various diagnostic tools

4. Generate predictions

The resulting model can be used for inference to gain detailed insights into parameter
values, as well as to predict outcomes for new data points.

We will illustrate this workflow using a simple logistic regression to model the prediction
of a recession (see the notebook pymc3_workflow). Subsequently, we will use PyMC3 to
compute and compare Bayesian Sharpe ratios, estimate dynamic pairs trading ratios, and
implement Bayesian linear time-series models.

The data – leading recession indicators

We will use a small and simple dataset so we can focus on the workflow. We will use the
Federal Reserve's Economic Data (FRED) service (see Chapter 2, Market and Fundamental
Data – Sources and Techniques) to download the US recession dates, as defined by the
National Bureau of Economic Research (NBER). We will also source four variables that
are commonly used to predict the onset of a recession (Kelley 2019) and available via FRED,
namely:

• The long-term spread of the treasury yield curve, defined as the difference
between the 10-year and the 3-month Treasury yields

• The University of Michigan's consumer sentiment indicator

• The National Financial Conditions Index (NFCI)

• The NFCI nonfinancial leverage subindex

The recession dates are identified on a quarterly basis; we will resample all series'
frequency to monthly frequency to obtain some 457 observations from 1982-2019. If a
quarter is labeled as a recession, we consider all months in that quarter as such.

We will build a model that intends to answer the question: will the US economy be in
recession x months into the future? In other words, we do not focus on predicting only the
first month of a recession; this limits the imbalance to 48 recessionary months.

To this end, we need to pick a lead time; plenty of research has been conducted into
a suitable time horizon for various leading indicators: the yield curve tends to send signals
up to 24 months ahead of a recession; the NFCI indicators tend to have a shorter lead time
(see Kelley, 2019).

Chapter 10

[307]

The following table largely confirms this experience: it displays the mutual information (see
Chapter 6, The Machine Learning Process) between the binary recession variable and the four
leading indicators for horizons from 1-24 months:

Figure 10.3: Mutual information between recession and leading indicators for horizons from 1-24 months

To strike a balance between the shorter horizon for the NFCI indicators and the yield
curve, we will pick 12 months as our prediction horizon. The following plots are for the
distribution of each indicator, broken down by recession status:

Figure 10.4: Leading indicator distributions by recession status

This shows that recessions tend to be associated with a negative long-term spread of the
treasury yield curve, also known as an inverted yield curve, when short-term interest rates
rise above long-term rates. The NFCI indicators behave as we would expect; the sentiment
indicator appears to have the weakest association.

Model definition – Bayesian logistic regression
As discussed in Chapter 6, The Machine Learning Process, logistic regression estimates a
linear relationship between a set of features and a binary outcome, mediated by a sigmoid
function to ensure the model produces probabilities. The frequentist approach resulted
in point estimates for the parameters that measure the influence of each feature on the
probability that a data point belongs to the positive class, with confidence intervals based
on assumptions about the parameter distribution.

In contrast, Bayesian logistic regression estimates the posterior distribution over the
parameters itself. The posterior allows for more robust estimates of what is called a
Bayesian credible interval for each parameter, with the benefit of more transparency about
the model's uncertainty.

A probabilistic program consists of observed and unobserved random variables (RVs).
As discussed previously, we define the observed RVs via likelihood distributions
and unobserved RVs via prior distributions. PyMC3 includes numerous probability
distributions for this purpose.

Bayesian ML – Dynamic Sharpe Ratios and Pairs Trading

[308]

The PyMC3 library makes it very straightforward to perform approximate Bayesian
inference for logistic regression. Logistic regression models the probability that the
economy will be in recession 12 months after month i based on k features, as outlined on the
left side of the following figure:

Figure 10.5: Bayesian logistic regression

We will use the context manager with to define a manual_logistic_model that we can refer
to later as a probabilistic model:

1. The RVs for the unobserved parameters for intercept and two features are
expressed using uninformative priors, These assume normal distributions with a
mean of 0 and a standard deviation of 100.

2. The likelihood combines the parameters with the data according to the specification
of the logistic regression.

3. The outcome is modeled as a Bernoulli RV with the success probability given by the
likelihood:

with pm.Model() as manual_logistic_model:

 # coefficients as rvs with uninformative priors
 intercept = pm.Normal('intercept', 0, sd=100)

 beta_1 = pm.Normal('beta_1', 0, sd=100)

 beta_2 = pm.Normal('beta_2', 0, sd=100)

 # Likelihood transforms rvs into probabilities p(y=1)

 # according to logistic regression model.

 likelihood = pm.invlogit(intercept +

 beta_1 * data.yield_curve +

 beta_2 * data.leverage)

 # Outcome as Bernoulli rv with success probability

 # given by sigmoid function conditioned on actual data

 pm.Bernoulli(name='logit',

 p=likelihood,

 observed=data.recession)

Chapter 10

[309]

Model visualization and plate notation

The command pm.model_to_graphviz(manual_logistic_model) produces the plate notation
displayed on the right in Figure 10.5. It shows the unobserved parameters as light ovals and
the observed elements as dark ovals. The rectangle indicates the number of repetitions of
the observed model element implied by the data that are included in the model definition.

The generalized linear models module

PyMC3 includes numerous common models so that we can limit the manual specification
for custom applications.

The following code defines the same logistic regression as a member of the Generalized
Linear Models (GLM) family. It does so using the formula format inspired by the statistical
language R and is ported to Python by the patsy library:

with pm.Model() as logistic_model:

 pm.glm.GLM.from_formula(recession ~ yield_curve + leverage,

 data,

 family=pm.glm.families.Binomial())

Exact MAP inference

We obtain point MAP estimates for the three parameters using the just-defined model's
.find_MAP() method. As expected, a lower spread value increases the recession probability,
as does higher leverage (but to a lesser extent):

with logistic_model:

 map_estimate = pm.find_MAP()
print_map(map_estimate)

Intercept -4.892884

yield_curve -3.032943

leverage 1.534055

PyMC3 solves the optimization problem of finding the posterior point with the highest
density using the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm,
but offers several alternatives provided by the SciPy library.

The MAP point estimates are identical to the corresponding statsmodels coefficients (see
the notebook pymc3_workflow).

Approximate inference – MCMC

If we are only interested in point estimates for the model parameters, then for this simple
model, the MAP estimate would be sufficient. More complex, custom probabilistic models
require sampling techniques to obtain a posterior probability for the parameters.

Bayesian ML – Dynamic Sharpe Ratios and Pairs Trading

[310]

We will use the model with all its variables to illustrate MCMC inference:

formula = 'recession ~ yield_curve + leverage + financial_conditions +
sentiment'

with pm.Model() as logistic_model:

 pm.glm.GLM.from_formula(formula=formula,

 data=data,

 family=pm.glm.families.Binomial())

note that pymc3 uses y for the outcome

logistic_model.basic_RVs

[Intercept, yield_curve, leverage, financial_conditions, sentiment, y]

Note that variables measured on very different scales can slow down the sampling process.
Hence, we first apply the scale() function provided by scikit-learn to standardize all
features.

Once we have defined our model like this with the new formula, we are ready to perform
inference to approximate the posterior distribution. MCMC sampling algorithms are
available through the pm.sample() function.

By default, PyMC3 automatically selects the most efficient sampler and initializes the
sampling process for efficient convergence. For a continuous model, PyMC3 chooses the
NUTS sampler discussed in the previous section. It also runs variational inference via ADVI
to find good starting parameters for the sampler. One among several alternatives is to use
the MAP estimate.

To see what convergence looks like, we first draw only 100 samples after tuning the
sampler for 1,000 iterations. These will be discarded. The sampling process can be
parallelized for multiple chains using the cores argument (except when using GPU):

with logistic_model:

 trace = pm.sample(draws=100,

 tune=1000,

 init='adapt_diag',

 chains=4,

 cores=4,

 random_seed=42)

The resulting trace contains the sampled values for each RV. We can inspect the posterior
distribution of the chains using the plot_traces() function:

plot_traces(trace, burnin=0)

Chapter 10

[311]

Figure 10.6 shows both the sample distribution and their values over time for the first two
features and the intercept (see the notebook for the full output). At this point, the sampling
process has not converged since for each of the features, the four traces yield quite different
results; the numbers shown vertically in the left five panels are the averages of the modes of
the distributions generated by the four traces:

Figure 10.6: Traces after 100 samples

We can continue sampling by providing the trace of a prior run as input. After an
additional 20,000 samples, we observe a much different picture, as shown in the following
figure. This shows how the sampling process is now much closer to convergence. Also, note
that the initial coefficient point estimates were relatively close to the current values:

Figure 10.7: Traces after an additional 50,000 samples

We can compute the credible intervals, the Bayesian counterpart of confidence intervals,
as percentiles of the trace. The resulting boundaries reflect our confidence about the range
of the parameter value for a given probability threshold, as opposed to the number of times
the parameter will be within this range for a large number of trials. Figure 10.8 shows the
credible intervals for the variables' yield curve and leverage, expressed in terms of the odds
ratio that results from raising e to the power of the coefficient value (see Chapter 7, Linear
Models – From Risk Factors to Return Forecasts).

Bayesian ML – Dynamic Sharpe Ratios and Pairs Trading

[312]

See the notebook pymc3_workflow for the implementation:

Figure 10.8: Credible intervals for yield curve and leverage

Approximate inference – variational Bayes

The interface for variational inference is very similar to the MCMC implementation. We
just use fit() instead of the sample() function, with the option to include an early stopping
CheckParametersConvergence callback if the distribution-fitting process converges up to a
given tolerance:

with logistic_model:

 callback = CheckParametersConvergence(diff='absolute')
 approx = pm.fit(n=100000,
 callbacks=[callback])

We can draw samples from the approximated distribution to obtain a trace object, as we did
previously for the MCMC sampler:

trace_advi = approx.sample(10000)

Inspection of the trace summary shows that the results are slightly less accurate.

Model diagnostics

Bayesian model diagnostics includes validating that the sampling process has converged
and consistently samples from high-probability areas of the posterior, as well as confirming
that the model represents the data well.

Convergence

We can visualize the samples over time and their distributions to check the quality of the
results. The charts shown in the following image show the posterior distributions after an
initial 100 and an additional 200,000 samples, respectively, and illustrate how convergence
implies that multiple chains identify the same distribution:

Chapter 10

[313]

Figure 10.9: Traces after 400 and after over 200,000 samples

PyMC3 produces various summary statistics for a sampler. These are available as
individual functions in the stats module, or by providing a trace to the function
pm.summary().

The following table includes the (separately computed) statsmodels logit coefficients in
the first column to show that, in this simple case, both models slightly agree because the
sample mean does not match the coefficients. This is likely due to the high degree of quasi-
separation: the yield curve's high predictability allows for the perfect prediction of 17
percent of the data points, which, in turn, leads to poorly defined MLE estimates for the
logistic regression (see the statsmodels output in the notebook for more information):

Parameters

statsmodels PyMC3

Coefficients Mean SD
HPD
3%

HPD
97%

Effective
Samples R hat

Intercept -5.22 -5.47 0.71 -6.82 -4.17 68,142 1.00

yield_curve -3.30 -3.47 0.51 -4.44 -2.55 70,479 1.00

leverage 1.98 2.08 0.40 1.34 2.83 72,639 1.00

financial_
conditions -0.65 -0.70 0.33 -1.33 -0.07 91,104 1.00

sentiment -0.33 -0.34 0.26 -0.82 0.15 106,751 1.00

The remaining columns contain the highest posterior density (HPD) estimate for the
minimum width credible interval, the Bayesian version of a confidence interval, which,
here, is computed at the 95 percent level. The n_eff statistic summarizes the number of
effective (not rejected) samples resulting from the ~100,000 draws.

Bayesian ML – Dynamic Sharpe Ratios and Pairs Trading

[314]

R-hat, also known as the Gelman-Rubin statistic, checks convergence by comparing the
variance between chains to the variance within each chain. If the sampler converged, these
variances should be identical, that is, the chains should look similar. Hence, the statistic
should be near 1.

For high-dimensional models with many variables, it becomes cumbersome to inspect
numerous traces. When using NUTS, the energy plot helps us assess problems of
convergence. It summarizes how efficiently the random process explores the posterior. The
plot shows the energy and the energy transition matrix, which should be well matched, as
in the example shown in the right-hand panel of the following image:

Figure 10.10: Forest and energy plot

Posterior predictive checks

Posterior predictive checks (PPCs) are very useful for examining how well a model fits the
data. They do so by generating data from the model using parameters from draws from
the posterior. We use the function pm.sample_ppc for this purpose and obtain n samples for
each observation (the GLM module automatically names the outcome 'y'):

ppc = pm.sample_ppc(trace_NUTS, samples=500, model=logistic_model)

ppc['y'].shape

(500, 445)

We can evaluate the in-sample fit using the area under the receiver-operating characteristic
curve (AUC, see Chapter 6, The Machine Learning Process) score to, for example, compare
different models:

roc_auc_score(y_score=np.mean(ppc['y'], axis=0),

 y_true=data.income)

0.9483627204030226

The result is fairly high at almost 0.95.

Chapter 10

[315]

How to generate predictions

Predictions use Theano's shared variables to replace the training data with test data before
running posterior predictive checks. To allow for visualization and to simplify the
exposition, we use the yield curve variable as the only predictor and ignore the time-series
nature of our data.

Instead, we create the train and test sets using scikit-learn's basic train_test_split()
function, stratified by the outcome, to maintain the class imbalance:

X = data[['yield_curve']]

labels = X.columns

y = data.recession

X_train, X_test, y_train, y_test = train_test_split(X, y,

 test_size=0.2,

 random_state=42,

 stratify=y)

We then create a shared variable for that training set, which we replace with the test set in
the next step. Note that we need to use NumPy arrays and provide a list of column labels:

X_shared = theano.shared(X_train.values)

with pm.Model() as logistic_model_pred:

 pm.glm.GLM(x=X_shared, labels=labels,

 y=y_train, family=pm.glm.families.Binomial())

We then run the sampler, as we did previously:

with logistic_model_pred:

 pred_trace = pm.sample(draws=10000,

 tune=1000,

 chains=2,

 cores=2,

 init='adapt_diag')

Now, we substitute the test data for the train data on the shared variable and apply the
pm.sample_ppc function to the resulting trace:

X_shared.set_value(X_test)

ppc = pm.sample_ppc(pred_trace,

 model=logistic_model_pred,

 samples=100)

y_score = np.mean(ppc['y'], axis=0)

roc_auc_score(y_score=np.mean(ppc['y'], axis=0),

 y_true=y_test)

0.8386

Bayesian ML – Dynamic Sharpe Ratios and Pairs Trading

[316]

The AUC score for this simple model is 0.86. Clearly, it is much easier to predict the same
recession for another month if the training set already includes examples of this recession
from nearby months. Keep in mind that we are using this model for demonstration
purposes only.

Figure 10.11 plots the predictions that were sampled from the 100 Monte Carlo chain and
the uncertainty surrounding them, as well as the actual binary outcomes and the logistic
curve corresponding to the model predictions:

Figure 10.11: Single-variable model predictions

Summary and key takeaways

We have built a simple logistic regression model to predict the probability that the US
economy will be in recession in 12 months using four leading indicators. For this simple
model, we could get exact MAP estimates of the coefficient values, which we could then use
to parameterize the model and make predictions.

However, more complex, custom probability models will not allow for this shortcut, and
MAP estimates also do not generate insight into the posterior distribution beyond the
point estimate. For this reason, we demonstrated how to run approximate inference using
PyMC3. The results illustrated how we learn about the posterior distribution for each of
the model parameters, but also showed that even for a small model, the computational
cost increases considerably compared to statsmodels MLE estimates. Nonetheless, for
sophisticated probabilistic models, sampling-based solutions are the only way to learn
about the data.

We will now proceed to illustrate how to apply Bayesian analysis to some trading-related
use cases.

Chapter 10

[317]

Bayesian ML for trading
Now that we are familiar with the Bayesian approach to ML and probabilistic programming
with PyMC3, let's explore a few relevant trading-related applications, namely:

• Modeling the Sharpe ratio as a probabilistic model for more insightful performance
comparison

• Computing pairs trading hedge ratios using Bayesian linear regression

• Analyzing linear time series models from a Bayesian perspective

Thomas Wiecki, one of the main PyMC3 authors who also leads Data Science at
Quantopian, has created several examples that the following sections follow and build on.
The PyMC3 documentation has many additional tutorials (see GitHub for links).

Bayesian Sharpe ratio for performance comparison
In this section, we will illustrate:

• How to define the Sharpe Ratio (SR) as a probabilistic model using PyMC3

• How to compare its posterior distributions for different return series

The Bayesian estimation for two series offers very rich insights because it provides the
complete distributions of the credible values for the effect size, the group SR means
and their difference, as well as standard deviations and their difference. The Python
implementation is due to Thomas Wiecki and was inspired by the R package BEST
(Meredith and Kruschke, 2018).

Relevant use cases of a Bayesian SR include the analysis of differences between alternative
strategies, or between a strategy's in-sample return and its out-of-sample return (see the
notebook bayesian_sharpe_ratio for details). The Bayesian SR is also part of pyfolio's
Bayesian tearsheet.

Defining a custom probability model
To model the SR as a probabilistic model, we need the priors about the distribution of
returns and the parameters that govern this distribution. The Student t distribution exhibits
fat tails relative to the normal distribution for low degrees of freedom (DF), and is a
reasonable choice to capture this aspect of returns.

We thus need to model the three parameters of this distribution, namely the mean and
standard deviation of returns, and the DF. We'll assume normal and uniform distributions
for the mean and the standard deviation, respectively, and an exponential distribution for
the DF with a sufficiently low expected value to ensure fat tails.

Bayesian ML – Dynamic Sharpe Ratios and Pairs Trading

[318]

The returns are based on these probabilistic inputs, and the annualized SR results from the
standard computation, ignoring a risk-free rate (using daily returns). We will provide AMZN
stock returns from 2010-2018 as input (see the notebook for more on data preparation):

mean_prior = data.stock.mean()

std_prior = data.stock.std()

std_low = std_prior / 1000

std_high = std_prior * 1000

with pm.Model() as sharpe_model:

 mean = pm.Normal('mean', mu=mean_prior, sd=std_prior)

 std = pm.Uniform('std', lower=std_low, upper=std_high)

 nu = pm.Exponential('nu_minus_two', 1 / 29, testval=4) + 2

 returns = pm.StudentT('returns', nu=nu, mu=mean, sd=std,

observed=data.stock)

 sharpe = returns.distribution.mean / returns.distribution.variance **

.5 * np.sqrt(252)

 pm.Deterministic('sharpe', sharpe)

The plate notation, which we introduced in the previous section on the PyMC3 workflow,
visualizes the three parameters and their relationships, along with the returns and the
number of observations we provided in the following diagram:

Figure 10.12: The Bayesian SR in plate notation

We then run the MCMC sampling process we introduced in the previous section (see the
notebook bayesian_sharpe_ratio for the implementation details that follow the familiar
workflow). After some 25,000 samples for each of four chains, we obtain the posterior
distributions for the model parameters as follows, with the results appearing in the
following plots:

plot_posterior(data=trace);

Figure 10.13: The posterior distribution for the model parameters

Chapter 10

[319]

Now that we know how to evaluate the SR for a single asset or portfolio, let's see how we
can compare the performance of two different return series using the Bayesian SR.

Comparing the performance of two return series

To compare the performance of two return series, we will model each group's SR separately
and compute the effect size as the difference between the volatility-adjusted returns. The
corresponding probability model, displayed in the following diagram, is naturally larger
because it includes two SRs, plus their difference:

Figure 10.14: The difference between two Bayesian SRs in plate notation

Once we have defined the model, we run it through the MCMC sampling process to obtain
the posterior distribution for its parameters. We use 2,037 daily returns for the AMZN
stock 2010-2018 and compare it with S&P 500 returns for the same period. We could use the
returns on any of our strategy backtests instead of the AMZN returns.

Visualizing the traces reveals granular performance insights into the distributions of each
metric, as illustrated by the various plots in Figure 10.15:

Figure 10.15: The posterior distributions for the differences between two Bayesian SRs

The most important metric is the difference between the two SRs in the bottom panel.
Given the full posterior distribution, it is straightforward to visualize or compute the
probability that one return series is superior from an SR perspective.

Bayesian ML – Dynamic Sharpe Ratios and Pairs Trading

[320]

Bayesian rolling regression for pairs trading
In the previous chapter, we introduced pairs trading as a popular trading strategy that
relies on the cointegration of two or more assets. Given such assets, we need to estimate
the hedging ratio to decide on the relative magnitude of long and short positions. A basic
approach uses linear regression. You can find the code for this section in the notebook
rolling_regression, which follows Thomas Wiecki's rolling regression example (see the
link to the PyMC3 tutorials on GitHub).

A popular example of pairs trading candidates is ETF GLD, which reflects the gold price
and a gold mining stock like GFI. We source the close price data using yfinance for the
2004-2020 period. The left panel of Figure 10.16 shows the historical price series, while
the right panel shows a scatter plot of historical prices, where the hue indicates the time
dimension to highlight how the correlation appears to have been evolving. Note that

we should be using the returns, as we did in Chapter 9, Time-Series Models for Volatility
Forecasts and Statistical Arbitrage, to compute the hedge ratio; however, using the prices
series creates more striking visualizations. The modeling process itself remains unaffected:

Figure 10.16: Price series and correlation over time of two pairs of trading candidates

We want to illustrate how a rolling Bayesian linear regression can track changes in the
relationship between the prices of the two assets over time. The main idea is to incorporate
the time dimension into a linear regression by allowing for changes in the regression
coefficients. Specifically, we will assume that intercept and slope follow a random walk
through time: 𝛼𝛼𝑡𝑡~𝑁𝑁(𝛼𝛼𝑡𝑡𝑡𝑡, 𝜎𝜎𝛼𝛼2)𝛽𝛽𝑡𝑡~𝑁𝑁(𝛽𝛽𝑡𝑡𝑡𝑡, 𝜎𝜎𝛽𝛽2)

We specify model_randomwalk using PyMC3's built-in pm.GaussianRandomWalk process. It
requires us to define a standard deviation for both intercept alpha and slope beta:

model_randomwalk = pm.Model()

with model_randomwalk:

 sigma_alpha = pm.Exponential('sigma_alpha', 50.)

 alpha = pm.GaussianRandomWalk('alpha',

 sd=sigma_alpha,

 shape=len(prices))

Chapter 10

[321]

 sigma_beta = pm.Exponential('sigma_beta', 50.)

 beta = pm.GaussianRandomWalk('beta',

 sd=sigma_beta,

 shape=len(prices))

Given the specification of the probabilistic model, we will now define the regression and
connect it to the input data:

with model_randomwalk:

 # Define regression
 regression = alpha + beta * prices_normed.GLD

 # Assume prices are normally distributed

 # Get mean from regression.

 sd = pm.HalfNormal('sd', sd=.1)

 likelihood = pm.Normal('y',

 mu=regression,

 sd=sd,

 observed=prices_normed.GFI)

Now, we can run our MCMC sampler to generate the posterior distribution for the model
parameters:

with model_randomwalk:

 trace_rw = pm.sample(tune=2000,

 cores=4,

 draws=200,

 nuts_kwargs=dict(target_accept=.9))

Figure 10.17 depicts how the intercept and slope coefficients have changed over the years,
underlining the evolving correlations:

Figure 10.17: Changes in intercept and slope coefficients over time

Using the dynamic regression coefficients, we can now visualize how the hedge ratio
suggested by the rolling regression would have changed over the years using this Bayesian
approach, which models the coefficients as a random walk.

Bayesian ML – Dynamic Sharpe Ratios and Pairs Trading

[322]

The following plot combines the prices series and the regression lines, where the hue once
again indicates the timeline (view this in the notebook for the color output):

Figure 10.18: Rolling regression lines and price series

For our last example, we'll implement a Bayesian stochastic volatility model.

Stochastic volatility models
As discussed in the previous chapter, asset prices have time-varying volatility. In some
periods, returns are highly variable, while in others, they are very stable. We covered
ARCH/GARCH models that approach this challenge from a classical linear regression
perspective in Chapter 9, Time-Series Models for Volatility Forecasts and Statistical Arbitrage.

Bayesian stochastic volatility models capture this volatility phenomenon with a latent
volatility variable, modeled as a stochastic process. The No-U-Turn Sampler was
introduced using such a model (Hoffman, et al. 2011), and the notebook stochastic_
volatility illustrates this use case with daily data for the S&P 500 after 2000. Figure 10.19
shows several volatility clusters throughout the period:

Chapter 10

[323]

Figure 10.19: Daily S&P 500 log returns

The probabilistic model specifies that the log returns follow a t-distribution, which has
fat tails, as also generally observed for asset returns. The t-distribution is governed by the
parameter ν , which represents the DF. It is also called the normality parameter because the
t-distribution approaches the normal distribution as ν increases. This parameter is assumed
to have an exponential distribution with parameter λ = 0.1 .

Furthermore, the log returns are assumed to have mean zero, while the standard deviation
follows a random walk with a standard deviation that also has an exponential distribution:𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝜎𝜎𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣50𝑣𝑣𝑠𝑠𝑖𝑖𝑣𝑣𝑣N𝑣rm𝑣𝑣𝑣𝑠𝑠𝑖𝑖𝑖𝑖, 𝜎𝜎𝑖2𝑣𝑣𝑣𝑣g𝑣𝑟𝑟𝑖𝑖𝑣𝑣𝑣𝑣𝑡𝑡𝑣𝑣𝑣, 0, 𝑣𝑣𝑣 𝑣𝑡𝑡𝑠𝑠𝑖𝑖𝑣𝑣

We implement this model in PyMC3 as follows to mirror its probabilistic specification,
using log returns to match the model:

prices = pd.read_hdf('../data/assets.h5', key='sp500/prices').loc['2000':,
 'Close']

log_returns = np.log(prices).diff().dropna()

with pm.Model() as model:

 step_size = pm.Exponential('sigma', 50.)

 s = GaussianRandomWalk('s', sd=step_size,

 shape=len(log_returns))

 nu = pm.Exponential('nu', .1)

 r = pm.StudentT('r', nu=nu,

 lam=pm.math.exp(-2*s),

 observed=log_returns)

Bayesian ML – Dynamic Sharpe Ratios and Pairs Trading

[324]

Next, we draw 5,000 NUTS samples after a burn-in period of 2,000 samples, using a higher
acceptance rate than the default of 0.8, as recommended for problematic posteriors by the
PyMC3 docs (see the appropriate links on GitHub):

with model:

 trace = pm.sample(tune=2000,

 draws=5000,

 nuts_kwargs=dict(target_accept=.9))

Auto-assigning NUTS sampler...

Initializing NUTS using jitter+adapt_diag...

Multiprocess sampling (4 chains in 4 jobs)

NUTS: [nu, s, sigma]

Sampling 4 chains, 0 divergences: 100%|██████████| 28000/28000 [27:46<00:00,
16.80draws/s]

The estimated number of effective samples is smaller than 200 for some
parameters.

After 28,000 total samples for the four chains, the trace plot in the following image confirms
that the sampling process has converged:

Figure 10.20: Trace plot for the stochastic volatility model

When we plot the samples against the S&P 500 returns in Figure 10.21, we see that this
simple stochastic volatility model tracks the volatility clusters fairly well:

Chapter 10

[325]

Figure 10.21: Model

Keep in mind that this represents the in-sample fit. As a next step, you should try to
evaluate the predictive accuracy. We covered how to make predictions in the previous
subsection on rolling linear regression and used time-series cross validation in several
previous chapters, which provides you with all the tools you need for this purpose!

Summary
In this chapter, we explored Bayesian approaches to machine learning. We saw that they
have several advantages, including the ability to encode prior knowledge or opinions,
deeper insights into the uncertainty surrounding model estimates and predictions, and
suitability for online learning, where each training sample incrementally impacts the
model's prediction.

We learned to apply the Bayesian workflow from model specification to estimation,
diagnostics, and prediction using PyMC3 and explored several relevant applications.
We will encounter more Bayesian models in Chapter 14, Text Data for Trading – Sentiment
Analysis, where we'll discuss natural language processing and topic modeling, and in
Chapter 20, Autoencoders for Conditional Risk Factors and Asset Pricing, where we'll introduce
variational autoencoders.

The next chapter introduces nonlinear, tree-based models, namely decision trees, and
shows how to combine multiple models into an ensemble of trees to create a random forest.

[327]

11
Random Forests – A Long-Short

Strategy for Japanese Stocks

In this chapter, we will learn how to use two new classes of machine learning models for
trading: decision trees and random forests. We will see how decision trees learn rules
from data that encode nonlinear relationships between the input and the output variables.
We will illustrate how to train a decision tree and use it for prediction with regression and
classification problems, visualize and interpret the rules learned by the model, and tune the
model's hyperparameters to optimize the bias-variance trade-off and prevent overfitting.

Decision trees are not only important standalone models but are also frequently used as
components in other models. In the second part of this chapter, we will introduce ensemble
models that combine multiple individual models to produce a single aggregate prediction
with lower prediction-error variance.

We will illustrate bootstrap aggregation, often called bagging, as one of several methods
to randomize the construction of individual models and reduce the correlation of the
prediction errors made by an ensemble's components. We will illustrate how bagging
effectively reduces the variance and learn how to configure, train, and tune random
forests. We will see how random forests, as an ensemble of a (potentially large) number
of decision trees, can dramatically reduce prediction errors, at the expense of some loss
in interpretation.

Then, we will proceed and build a long-short trading strategy that uses a random forest
to generate profitable signals for large-cap Japanese equities over the last 3 years. We will
source and prepare the stock price data, tune the hyperparameters of a random forest
model, and backtest trading rules based on the model's signals. The resulting long-short
strategy uses machine learning rather than the cointegration relationship we saw in Chapter

9, Time-Series Models for Volatility Forecasts and Statistical Arbitrage, to identify and trade
baskets of securities whose prices will likely move in opposite directions over a given
investment horizon.

Random Forests – A Long-Short Strategy for Japanese Stocks

[328]

In short, after reading this chapter, you will be able to:

• Use decision trees for regression and classification
• Gain insights from decision trees and visualize the rules learned from the data

• Understand why ensemble models tend to deliver superior results

• Use bootstrap aggregation to address the overfitting challenges of decision trees
• Train, tune, and interpret random forests

• Employ a random forest to design and evaluate a profitable trading strategy

Decision trees – learning rules from data
A decision tree is a machine learning algorithm that predicts the value of a target variable
based on decision rules learned from data. The algorithm can be applied to both regression
and classification problems by changing the objective function that governs how the tree
learns the rules.

We will discuss how decision trees use rules to make predictions, how to train them to
predict (continuous) returns as well as (categorical) directions of price movements, and how
to interpret, visualize, and tune them effectively. See Rokach and Maimon (2008) and Hastie,
Tibshirani, and Friedman (2009) for additional details and further background information.

How trees learn and apply decision rules
The linear models we studied in Chapter 7, Linear Models – From Risk Factors to Return
Forecasts, and Chapter 9, Time-Series Models for Volatility Forecasts and Statistical Arbitrage,
learn a set of parameters to predict the outcome using a linear combination of the input
variables, possibly after being transformed by an S-shaped link function, in the case of
logistic regression.

Decision trees take a different approach: they learn and sequentially apply a set of rules
that split data points into subsets and then make one prediction for each subset. The
predictions are based on the outcome values for the subset of training samples that result
from the application of a given sequence of rules. Classification trees predict a probability
estimated from the relative class frequencies or the value of the majority class directly,
whereas regression trees compute prediction from the mean of the outcome values for the
available data points.

Each of these rules relies on one particular feature and uses a threshold to split the samples
into two groups, with values either below or above the threshold for this feature. A binary
tree naturally represents the logic of the model: the root is the starting point for all samples,
nodes represent the application of the decision rules, and the data moves along the edges as it
is split into smaller subsets until it arrives at a leaf node, where the model makes a prediction.

You can find the code samples for this chapter and links to additional
resources in the corresponding directory of the GitHub repository. The
notebooks include color versions of the images.

Chapter 11

[329]

For a linear model, the parameter values allow an interpretation of the impact of the input
variables on the output and the model's prediction. In contrast, for a decision tree, the various
possible paths from the root to the leaves determine how the features and their values lead
to specific decisions by the model. As a consequence, decision trees are capable of capturing
interdependence among features that linear models cannot capture "out of the box."

The following diagram highlights how the model learns a rule. During training, the
algorithm scans the features and, for each feature, seeks to find a cutoff that splits the data
to minimize the loss that results from predictions made. It does so using the subsets that
would result from the split, weighted by the number of samples in each subset:

Figure 11.1: How a decision tree learns rules from data

To build an entire tree during training, the learning algorithm repeats this process of
dividing the feature space, that is, the set of possible values for the p input variables, X

1
, X

2
,

..., X
p
, into mutually-exclusive and collectively exhaustive regions, each represented by a

leaf node. Unfortunately, the algorithm will not be able to evaluate every possible partition
of the feature space, given the explosive number of possible combinations of sequences of
features and thresholds. Tree-based learning takes a top-down, greedy approach, known as
recursive binary splitting, to overcome this computational limitation.

This process is recursive because it uses subsets of data resulting from prior splits. It is
top-down because it begins at the root node of the tree, where all observations still belong
to a single region, and then successively creates two new branches of the tree by adding
one more split to the predictor space. It is greedy because the algorithm picks the best
rule in the form of a feature-threshold combination based on the immediate impact on
the objective function, rather than looking ahead and evaluating the loss several steps
ahead. We will return to the splitting logic in the more specific context of regression and
classification trees because this represents the major difference between them.

The number of training samples continues to shrink as recursive splits add new nodes to
the tree. If rules split the samples evenly, resulting in a perfectly balanced tree with an
equal number of children for every node, then there would be 2n nodes at level n, each
containing a corresponding fraction of the total number of observations. In practice, this is
unlikely, so the number of samples along some branches may diminish rapidly, and trees
tend to grow to different levels of depth along different paths.

Random Forests – A Long-Short Strategy for Japanese Stocks

[330]

Recursive splitting would continue until each leaf node contains only a single sample and
the training error has been reduced to zero. We will introduce several methods to limit
splits and prevent this natural tendency of decision trees to produce extreme overfitting.

To arrive at a prediction for a new observation, the model uses the rules that it inferred
during training to decide which leaf node the data point should be assigned to, and then
uses the mean (for regression) or the mode (for classification) of the training observations
in the corresponding region of the feature space. A smaller number of training samples in a
given region of the feature space, that is, in a given leaf node, reduces the confidence in the
prediction and may reflect overfitting.

Decision trees in practice
In this section, we will illustrate how to use tree-based models to gain insight and make
predictions. To demonstrate regression trees, we predict returns, and for the classification
case, we return to the example of positive and negative asset price moves. The code
examples for this section are in the notebook decision_trees, unless stated otherwise.

The data – monthly stock returns and features

We will select a subset of the Quandl US equity dataset covering the period 2006-2017 and
follow a process similar to our first feature engineering example in Chapter 4, Financial
Feature Engineering – How to Research Alpha Factors. We will compute monthly returns
and 25 (hopefully) predictive features for the 500 most-traded stocks based on the 5-year
moving average of their dollar volume, yielding 56,756 observations. The features include:

• Historical returns for the past 1, 3, 6, and 12 months.

• Momentum indicators that relate the most recent 1- or 3-month returns to those for
longer horizons.

• Technical indicators designed to capture volatility like the (normalized) average
true range (NATR and ATR) and momentum like the relative strength index (RSI).

• Factor loadings for the five Fama-French factors based on rolling OLS regressions.
• Categorical variables for year and month, as well as sector.

Figure 11.2 displays the mutual information between these features and the monthly
returns we use for regression (left panel) and their binarized classification counterpart,
which represents positive or negative price moves for the same period. It shows that, on a
univariate basis, there appear to be substantial differences in the signal content regarding
both outcomes across the features.

More details can be found in the data_prep notebook in the GitHub repository for this
chapter. The decision tree models in this chapter are not equipped to handle missing or
categorical variables, so we will drop the former and apply dummy encoding (see Chapter

4, Financial Feature Engineering – How to Research Alpha Factors and Chapter 6, The Machine
Learning Process) to the categorical sector variable:

Chapter 11

[331]

Figure 11.2: Mutual information for features and returns or price move direction

Building a regression tree with time-series data

Regression trees make predictions based on the mean outcome value for the training
samples assigned to a given node, and typically rely on the mean-squared error to select
optimal rules during recursive binary splitting.

Given a training set, the algorithm iterates over the p predictors, X
1
, X

2
, ..., X

p
, and n

possible cutpoints, s
1
, s

2
, ..., s

n
, to find an optimal combination. The optimal rule splits the

feature space into two regions, {X|X
i
 < s

j
} and {X|X

i
 > s

j
}, with values for the X

i
 feature

either below or above the s
j
 threshold, so that predictions based on the training subsets

maximize the reduction of the squared residuals relative to the current node.

Let's start with a simplified example to facilitate visualization and also demonstrate how we
can use time-series data with a decision tree. We will only use 2 months of lagged returns to
predict the following month, in the vein of an AR(2) model from the previous chapter:𝑟𝑟𝑡𝑡 = 𝑓𝑓(𝑟𝑟𝑡𝑡𝑡𝑡, 𝑟𝑟𝑡𝑡𝑡𝑡)
Using scikit-learn, configuring and training a regression tree is very straightforward:

from sklearn.tree import DecisionTreeRegressor

configure regression tree
regression_tree = DecisionTreeRegressor(criterion='mse',

 max_depth=6,

 min_samples_leaf=50)

Create training data

y = data.target

X = data.drop(target, axis=1)

X2 = X.loc[:, ['t-1', 't-2']]

fit model
regression_tree.fit(X=X2, y=y)
fit OLS model
ols_model = sm.OLS(endog=y, exog=sm.add_constant(X2)).fit()

Random Forests – A Long-Short Strategy for Japanese Stocks

[332]

The OLS summary and a visualization of the first two levels of the decision tree reveal the
striking differences between the models (see Figure 11.3). The OLS model provides three
parameters for the intercepts and the two features in line with the linear assumption this
model makes about the function.

In contrast, the regression tree chart displays, for each node of the first two levels, the
feature and threshold used to split the data (note that features can be used repeatedly), as
well as the current value of the mean-squared error (MSE), the number of samples, and the
predicted value based on these training samples. Also, note that training the decision tree
takes 58 milliseconds compared to 66 microseconds for the linear regression. While both
models run fast with only two features, the difference is a factor of 1,000:

Figure 11.3: OLS results and regression tree

The tree chart also highlights the uneven distribution of samples across the nodes as the
numbers vary between 545 and 55,000 samples after the first splits.

To further illustrate the different assumptions about the functional form of the relationships
between the input variables and the output, we can visualize the current return predictions
as a function of the feature space, that is, as a function of the range of values for the lagged
returns. The following image shows the current monthly return as a function of returns one
and two periods ago for linear regression (left panel) and the regression tree:

Figure 11.4: Decision surfaces for linear regression and the regression tree

Chapter 11

[333]

The linear regression model result on the left-hand side underlines the linearity of the
relationship between lagged and current returns, whereas the regression tree chart on
the right illustrates the nonlinear relationship encoded in the recursive partitioning of the
feature space.

Building a classification tree
A classification tree works just like the regression version, except that the categorical nature
of the outcome requires a different approach to making predictions and measuring the loss.
While a regression tree predicts the response for an observation assigned to a leaf node
using the mean outcome of the associated training samples, a classification tree uses the
mode, that is, the most common class among the training samples in the relevant region.
A classification tree can also generate probabilistic predictions based on relative class
frequencies.

How to optimize for node purity

When growing a classification tree, we also use recursive binary splitting, but instead of
evaluating the quality of a decision rule using the reduction of the mean-squared error, we
can use the classification error rate, which is simply the fraction of the training samples in a
given (leaf) node that do not belong to the most common class.

However, the alternative measures, either Gini impurity or cross-entropy, are preferred
because they are more sensitive to node purity than the classification error rate, as you can
see in Figure 11.5. Node purity refers to the extent of the preponderance of a single class in
a node. A node that only contains samples with outcomes belonging to a single class is pure
and implies successful classification for this particular region of the feature space.

Let's see how to compute these measures for a classification outcome with K categories
0,1,…, K-1 (with K=2, in the binary case). For a given node m, let pmk be the proportion of
samples from the kth class:

Gini impurity = ∑ 𝑝𝑝𝑚𝑚𝑚𝑚(1 − 𝑝𝑝𝑚𝑚𝑚𝑚)𝑚𝑚cross entropy = − ∑ 𝑝𝑝𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑚𝑚𝑚𝑚)𝑚𝑚

The following plot shows that both the Gini impurity and cross-entropy measures are
maximized over the [0, 1] interval when the class proportions are even, or 0.5 in the binary
case. Both measures decline when the class proportions approach zero or one and the
child nodes tend toward purity as a result of a split. At the same time, they imply a higher
penalty for node impurity than the classification error rate:

Random Forests – A Long-Short Strategy for Japanese Stocks

[334]

Figure 11.5: Classification loss functions

Note that cross-entropy takes almost 20 times as long to compute as the Gini measure (see
the notebook for details).

How to train a classification tree
We will now train, visualize, and evaluate a classification tree with up to five consecutive
splits using 80 percent of the samples for training to predict the remaining 20 percent. We
will take a shortcut here to simplify the illustration and use the built-in train_test_split,
which does not protect against lookahead bias, as the custom MultipleTimeSeriesCV
iterator we introduced in Chapter 6, The Machine Learning Process and will use later in this
chapter.

The tree configuration implies up to 25=32 leaf nodes that, on average, in the balanced case,
would contain over 1,400 of the training samples. Take a look at the following code:

randomize train-test split

X_train, X_test, y_train, y_test = train_test_split(X, y_binary, test_
size=0.2, random_state=42)

configure & train tree learner

clf = DecisionTreeClassifier(criterion='gini',
 max_depth=5,

 random_state=42)

clf.fit(X=X_train, y=y_train)
Output:

DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=5,
 max_features=None, max_leaf_nodes=None,

 min_impurity_decrease=0.0, min_impurity_split=None,

 min_samples_leaf=1, min_samples_split=2,

Chapter 11

[335]

 min_weight_fraction_leaf=0.0, presort=False, random_state=42,

 splitter='best')

The output after training the model displays all the DecisionTreeClassifier parameters. We
will address these in more detail in the Hyperparameter tuning section.

Visualizing a decision tree

You can visualize the tree using the Graphviz library (see GitHub for installation
instructions) because scikit-learn can output a description of the tree using the DOT
language used by that library. You can configure the output to include feature and class
labels and limit the number of levels to keep the chart readable, as follows:

dot_data = export_graphviz(classifier,
 out_file=None, # save to file and convert to png
 feature_names=X.columns,

 class_names=['Down', 'Up'],

 max_depth=3,

 filled=True,
 rounded=True,

 special_characters=True)

graphviz.Source(dot_data)

The following diagram shows how the model uses different features and indicates the split
rules for both continuous and categorical (dummy) variables. Under the label value for each
node, the chart shows the number of samples from each class and, under the label class, the
most common class (there were more up months during the sample period):

Figure 11.6: Visualization of a classification tree

Random Forests – A Long-Short Strategy for Japanese Stocks

[336]

Evaluating decision tree predictions

To evaluate the predictive accuracy of our first classification tree, we will use our test set to
generate predicted class probabilities, as follows:

only keep probabilities for pos. class

y_score = classifier.predict_proba(X=X_test)[:, 1]

The .predict_proba() method produces one probability for each class. In the binary class,
these probabilities are complementary and sum to 1, so we only need the value for the
positive class. To evaluate the generalization error, we will use the area under the curve
based on the receiver-operating characteristic, which we introduced in Chapter 6, The
Machine Learning Process. The result indicates a significant improvement above and beyond
the baseline value of 0.5 for a random prediction (but keep in mind that the cross-validation
method here does not respect the time-series nature of the data):

roc_auc_score(y_score=y_score, y_true=y_test)

0.6341

Overfitting and regularization
Decision trees have a strong tendency to overfit, especially when a dataset has a large
number of features relative to the number of samples. As discussed in previous chapters,
overfitting increases the prediction error because the model does not only learn the signal
contained in the training data, but also the noise.

There are multiple ways to address the risk of overfitting, including:

• Dimensionality reduction (see Chapter 13, Data-Driven Risk Factors and Asset
Allocation with Unsupervised Learning) improves the feature-to-sample ratio by
representing the existing features with fewer, more informative, and less noisy
features.

• Ensemble models, such as random forests, combine multiple trees while
randomizing the tree construction, as we will see in the second part of this chapter.

Decision trees provide several regularization hyperparameters to limit the growth of a
tree and the associated complexity. While every split increases the number of nodes, it
also reduces the number of samples available per node to support a prediction. For each
additional level, twice the number of samples is needed to populate the new nodes with the
same sample density.

Tree pruning is an additional tool to reduce the complexity of a tree. It does so by
eliminating nodes or entire parts of a tree that add little value but increase the model's
variance. Cost-complexity-pruning, for instance, starts with a large tree and recursively
reduces its size by replacing nodes with leaves, essentially running the tree construction
in reverse. The various steps produce a sequence of trees that can then be compared using
cross-validation to select the ideal size.

Chapter 11

[337]

How to regularize a decision tree

The following table lists the key parameters available for this purpose in the scikit-learn
decision tree implementation. After introducing the most important parameters, we will
illustrate how to use cross-validation to optimize the hyperparameter settings with respect
to the bias-variance trade-off and lower prediction errors:

Parameter Description Default Options

max_depth

The maximum number of levels:
split the nodes until max_depth
has been reached. All leaves are
pure or contain fewer samples
than min_samples_split.

None int

max_features
Number of features to consider
for a split.

None

None: all features
int: # features

float: fraction

auto, sqrt: sqrt(n_
features)

log2: log2(n_
features)

max_leaf_nodes
Split nodes until creating this
many leaves.

None
None: unlimited
int

min_impurity_decrease
Split node if impurity decreases
by at least this value.

0 float

min_samples_leaf

A split will only be considered if
there are at least min_samples_
leaf training samples in each of
the left and right branches.

1

int;

float (as a percent
of N)

min_samples_split
The minimum number of
samples required to split an
internal node.

2
int; float (percent
of N)

min_weight_fraction_
leaf

The minimum weighted fraction
of the sum total of all sample
weights needed at a leaf node.
Samples have equal weight
unless sample_weight is
provided in the fit method.

0

The max_depth parameter imposes a hard limit on the number of consecutive splits and
represents the most straightforward way to cap the growth of a tree.

Random Forests – A Long-Short Strategy for Japanese Stocks

[338]

The min_samples_split and min_samples_leaf parameters are alternative, data-driven
ways to limit the growth of a tree. Rather than imposing a hard limit on the number of
consecutive splits, these parameters control the minimum number of samples required to
further split the data. The latter guarantees a certain number of samples per leaf, while the
former can create very small leaves if a split results in a very uneven distribution. Small
parameter values facilitate overfitting, while a high number may prevent the tree from
learning the signal in the data. The default values are often quite low, and you should use
cross-validation to explore a range of potential values. You can also use a float to indicate a
percentage, as opposed to an absolute number.

The scikit-learn documentation contains additional details about how to use the
various parameters for different use cases; see the resources linked on GitHub for more
information.

Decision tree pruning

Recursive binary-splitting will likely produce good predictions on the training set but tends
to overfit the data and produce poor generalization performance. This is because it leads to
overly complex trees, which are reflected in a large number of leaf nodes, or partitioning of
the feature space. Fewer splits and leaf nodes imply an overall smaller tree and often lead
to better predictive performance, as well as interpretability.

One approach to limit the number of leaf nodes is to avoid further splits unless they yield
significant improvements in the objective metric. The downside of this strategy, however, is
that sometimes, splits that result in small improvements enable more valuable splits later as
the composition of the samples keeps changing.

Tree pruning, in contrast, starts by growing a very large tree before removing or pruning
nodes to reduce the large tree to a less complex and overfit subtree. Cost-complexity-
pruning generates a sequence of subtrees by adding a penalty for adding leaf nodes to the
tree model and a regularization parameter, similar to the lasso and ridge linear-regression
models, that modulates the impact of the penalty. Applied to the large tree, an increasing
penalty will automatically produce a sequence of subtrees. Cross-validation of the
regularization parameter can be used to identify the optimal, pruned subtree.

This method was introduced in scikit-learn version 0.22; see Esposito et al. (1997) for a
survey of how various methods work and perform.

Hyperparameter tuning
Decision trees offer an array of hyperparameters to control and tune the training
result. Cross-validation is the most important tool to obtain an unbiased estimate of
the generalization error, which, in turn, permits an informed choice among the various
configuration options. scikit-learn offers several tools to facilitate the process of cross-
validating numerous parameter settings, namely the GridSearchCV convenience class,
which we will illustrate in the next section. Learning curves also allow diagnostics that
evaluate potential benefits of collecting additional data to reduce the generalization error.

Chapter 11

[339]

Using GridsearchCV with a custom metric

As highlighted in Chapter 6, The Machine Learning Process, scikit-learn provides a method
to define ranges of values for multiple hyperparameters. It automates the process of cross-
validating the various combinations of these parameter values to identify the optimal
configuration. Let's walk through the process of automatically tuning your model.

The first step is to instantiate a model object and define a dictionary where the keywords
name the hyperparameters, and the values list the parameter settings to be tested:

reg_tree = DecisionTreeRegressor(random_state=42)

param_grid = {'max_depth': [2, 3, 4, 5, 6, 7, 8, 10, 12, 15],

 'min_samples_leaf': [5, 25, 50, 100],

 'max_features': ['sqrt', 'auto']}

Then, instantiate the GridSearchCV object, providing the estimator object and parameter
grid, as well as a scoring method and cross-validation choice, to the initialization method.

We set our custom MultipleTimeSeriesSplit class to train the model for 60 months, or 5
years, of data and to validate performance using the subsequent 6 months, repeating the
process over 10 folds to cover an out-of-sample period of 5 years:

cv = MultipleTimeSeriesCV(n_splits=10,

 train_period_length=60,

 test_period_length=6,

 lookahead=1)

We use the roc_auc metric to score the classifier, and define a custom information
coefficient (IC) metric using scikit-learn's make_scorer function for the regression model:

def rank_correl(y, y_pred):

 return spearmanr(y, y_pred)[0]

ic = make_scorer(rank_correl)

We can parallelize the search using the n_jobs parameter and automatically obtain a
trained model that uses the optimal hyperparameters by setting refit=True.

With all the settings in place, we can fit GridSearchCV just like any other model:

gridsearch_reg = GridSearchCV(estimator=reg_tree,

 param_grid=param_grid,

 scoring=ic,

 n_jobs=-1,

 cv=cv, # custom MultipleTimeSeriesSplit

 refit=True,
 return_train_score=True)

gridsearch_reg.fit(X=X, y=y)

Random Forests – A Long-Short Strategy for Japanese Stocks

[340]

The training process produces some new attributes for our GridSearchCV object, most
importantly the information about the optimal settings and the best cross-validation score
(now using the proper setup, which avoids lookahead bias).

The following table lists the parameters and scores for the best regression and classification
model, respectively. With a shallower tree and more regularized leaf nodes, the regression
tree achieves an IC of 0.083, while the classifier's AUC score is 0.525:

Parameter Regression Classification

max_depth 6 12

max_features sqrt sqrt

min_samples_leaf 50 5

Score 0.0829 0.5250

The automation is quite convenient, but we also would like to inspect how the performance
evolves for different parameter values. Upon completion of this process, the GridSearchCV
object makes detailed cross-validation results available so that we can gain more insights.

How to inspect the tree structure

The notebook also illustrates how to run cross-validation more manually to obtain
custom tree attributes, such as the total number of nodes or leaf nodes associated with
certain hyperparameter settings. The following function accesses the internal .tree_
attribute to retrieve information about the total node count, as well as how many of
these nodes are leaf nodes:

def get_leaves_count(tree):

 t = tree.tree_

 n = t.node_count

 leaves = len([i for i in range(t.node_count) if t.children_left[i]== -1])

 return leaves

We can combine this information with the train and test scores to gain detailed knowledge
about the model behavior throughout the cross-validation process, as follows:

train_scores, val_scores, leaves = {}, {}, {}

for max_depth in range(1, 26):

 print(max_depth, end=' ', flush=True)
 clf = DecisionTreeClassifier(criterion='gini',
 max_depth=max_depth,

 min_samples_leaf=10,

 max_features='auto',

 random_state=42)

 train_scores[max_depth], val_scores[max_depth] = [], []

 leaves[max_depth] = []

 for train_idx, test_idx in cv.split(X):

 X_train, = X.iloc[train_idx],

Chapter 11

[341]

 y_train = y_binary.iloc[train_ idx]

 X_test, y_test = X.iloc[test_idx], y_binary.iloc[test_idx]

 clf.fit(X=X_train, y=y_train)
 train_pred = clf.predict_proba(X=X_train)[:, 1]

 train_score = roc_auc_score(y_score=train_pred, y_true=y_train)

 train_scores[max_depth].append(train_score)

 test_pred = clf.predict_proba(X=X_test)[:, 1]

 val_score = roc_auc_score(y_score=test_pred, y_true=y_test)

 val_scores[max_depth].append(val_score)

 leaves[max_depth].append(get_leaves_count(clf))

The following plot displays how the number of leaf nodes increases with the depth of the
tree. Due to the sample size of each cross-validation fold containing 60 months with around
500 data points each, the number of leaf nodes is limited to around 3,000 when limiting the
number of min_samples_leaf to 10 samples:

Figure 11.7: Visualization of a classification tree

Comparing regression and classification performance
To take a closer look at the performance of the models, we will show the cross-validation
performance for various levels of depth, while maintaining the other parameter settings
that produced the best grid search results. Figure 11.8 displays the train and the validation
scores and highlights the degree of overfitting for deeper trees. This is because the training
scores steadily increase, whereas validation performance remains flat or decreases.

Note that, for the classification tree, the grid search suggested 12 levels for the best
predictive accuracy. However, the plot shows similar AUC scores for less complex trees,
with three or seven levels. We would prefer a shallower tree that promises comparable
generalization performance while reducing the risk of overfitting:

Random Forests – A Long-Short Strategy for Japanese Stocks

[342]

Figure 11.8: Train and validation scores for both models

Diagnosing training set size with learning curves

A learning curve is a useful tool that displays how the validation and training scores
evolve as the number of training samples increases.

The purpose of the learning curve is to find out whether and how much the model would
benefit from using more data during training. It also helps to diagnose whether the model's
generalization error is more likely driven by bias or variance.

If the training score meets performance expectations and the validation score exhibits
significant improvement as the training sample grows, training for a longer lookback
period or obtaining more data might add value. If, on the other hand, both the validation
and the training score converge to a similarly poor value, despite an increasing training set
size, the error is more likely due to bias, and additional training data is unlikely to help.

The following image depicts the learning curves for the best regression and
classification models:

Figure 11.9: Learning curves for the best version of each model

Especially for the regression model, the validation performance improves with a larger
training set. This suggests that a longer training period may yield better results. Try it
yourself to see if it works!

Chapter 11

[343]

Gaining insight from feature importance

Decision trees can not only be visualized to inspect the decision path for a given feature,
but can also summarize the contribution of each feature to the rules learned by the model to
fit the training data.

Feature importance captures how much the splits produced by each feature help optimize
the model's metric used to evaluate the split quality, which in our case is the Gini impurity.
A feature's importance is computed as the (normalized) total reduction of this metric and
takes into account the number of samples affected by a split. Hence, features used earlier
in the tree where the nodes tend to contain more samples are typically considered of
higher importance.

Figure 11.10 shows the plots for feature importance for the top 15 features of each model.
Note how the order of features differs from the univariate evaluation based on the mutual
information scores given at the beginning of this section. Clearly, the ability of decision
trees to capture interdependencies, such as between time periods and other features, can
alter the value of each feature:

Figure 11.10: Feature importance for the best regression and classification models

Strengths and weaknesses of decision trees

Regression and classification trees approach making predictions very differently from the
linear models we have explored in the previous chapters. How do you decide which model
is more suitable for the problem at hand? Consider the following:

• If the relationship between the outcome and the features is approximately linear (or
can be transformed accordingly), then linear regression will likely outperform a more
complex method, such as a decision tree that does not exploit this linear structure.

• If the relationship appears highly nonlinear and more complex, decision trees will
likely outperform the classical models. Keep in mind that the complexity of the
relationship needs to be systematic or "real," rather than driven by noise, which
leads more complex models to overfit.

Random Forests – A Long-Short Strategy for Japanese Stocks

[344]

Several advantages have made decision trees very popular:

• They are fairly straightforward to understand and to interpret, not least because
they can be easily visualized and are thus more accessible to a non-technical
audience. Decision trees are also referred to as white-box models, given the high
degree of transparency about how they arrive at a prediction. Black-box models,
such as ensembles and neural networks, may deliver better prediction accuracy, but
the decision logic is often much more challenging to understand and interpret.

• Decision trees require less data preparation than models that make stronger
assumptions about the data or are more sensitive to outliers and require data
standardization (such as regularized regression).

• Some decision tree implementations handle categorical input, do not require the
creation of dummy variables (improving memory efficiency), and can work with
missing values, as we will see in Chapter 12, Boosting Your Trading Strategy, but this
is not the case for scikit-learn.

• Prediction is fast because it is logarithmic in the number of leaf nodes (unless the
tree becomes extremely unbalanced).

• It is possible to validate the model using statistical tests and account for its
reliability (see the references for more details).

Decision trees also have several key disadvantages:

• Decision trees have a built-in tendency to overfit to the training set and produce a
high generalization error. The key steps to address this weakness are pruning and
regularization using the early-stopping criteria that limits tree growth, as outlined
in this section.

• Decision trees are also sensitive to unbalanced class weights and may produce
biased trees. One option is to oversample the underrepresented classes or
undersample the more frequent class. It is typically better, though, to use class
weights and directly adjust the objective function.

• The high variance of decision trees is tied to their ability to closely adapt to a
training set. As a result, minor variations in the data can produce wide swings in
the tree's structure and, consequently, the model's predictions. A key prevention
mechanism is the use of an ensemble of randomized decision trees that have low
bias and produce uncorrelated prediction errors.

• The greedy approach to decision-tree learning optimizes local criteria that reduce
the prediction error at the current node and do not guarantee a globally optimal
outcome. Again, ensembles consisting of randomized trees help to mitigate this
problem.

We will now turn to the ensemble method of mitigating the risk of overfitting that's
inherent when using decision trees.

Chapter 11

[345]

Random forests – making trees more reliable
Decision trees are not only useful for their transparency and interpretability. They are also
fundamental building blocks for more powerful ensemble models that combine many
individual trees, while randomly varying their design to address the overfitting problems
we just discussed.

Why ensemble models perform better
Ensemble learning involves combining several machine learning models into a single new
model that aims to make better predictions than any individual model. More specifically,
an ensemble integrates the predictions of several base estimators, trained using one or
more learning algorithms, to reduce the generalization error that these models produce
on their own.

For ensemble learning to achieve this goal, the individual models must be:

• Accurate: Outperform a naive baseline (such as the sample mean or class
proportions)

• Independent: Predictions are generated differently to produce different errors

Ensemble methods are among the most successful machine learning algorithms, in
particular for standard numerical data. Large ensembles are very successful in machine
learning competitions and may consist of many distinct individual models that have been
combined by hand or using another machine learning algorithm.

There are several disadvantages to combining predictions made by different models. These
include reduced interpretability and higher complexity and cost of training, prediction, and
model maintenance. As a result, in practice (outside of competitions), the small gains in
accuracy from large-scale ensembling may not be worth the added costs.

There are two groups of ensemble methods that are typically distinguished between,
depending on how they optimize the constituent models and then integrate the results for a
single ensemble prediction:

• Averaging methods train several base estimators independently and then average
their predictions. If the base models are not biased and make different prediction
errors that are not highly correlated, then the combined prediction may have lower
variance and can be more reliable. This resembles the construction of a portfolio from
assets with uncorrelated returns to reduce the volatility without sacrificing the return.

• Boosting methods, in contrast, train base estimators sequentially with the specific
goal of reducing the bias of the combined estimator. The motivation is to combine
several weak models into a powerful ensemble.

We will focus on automatic averaging methods in the remainder of this chapter and
boosting methods in Chapter 12, Boosting Your Trading Strategy.

Random Forests – A Long-Short Strategy for Japanese Stocks

[346]

Bootstrap aggregation
We saw that decision trees are likely to make poor predictions due to high variance, which
implies that the tree structure is quite sensitive to the available training sample. We have
also seen that a model with low variance, such as linear regression, produces similar
estimates, despite different training samples, as long as there are sufficient samples given
the number of features.

For a given a set of independent observations, each with a variance of 𝜎𝜎2 , the standard
error of the sample mean is given by 𝜎𝜎𝜎√𝑛𝑛 . In other words, averaging over a larger set of
observations reduces the variance. A natural way to reduce the variance of a model and its
generalization error would, thus, be to collect many training sets from the population, train
a different model on each dataset, and average the resulting predictions.

In practice, we do not typically have the luxury of many different training sets. This
is where bagging, short for bootstrap aggregation, comes in. Bagging is a general-
purpose method that's used to reduce the variance of a machine learning model, which is
particularly useful and popular when applied to decision trees.

We will first explain how this technique mitigates overfitting and then show how to apply
it to decision trees.

How bagging lowers model variance

Bagging refers to the aggregation of bootstrap samples, which are random samples with
replacement. Such a random sample has the same number of observations as the original
dataset but may contain duplicates due to replacement.

Bagging increases predictive accuracy but decreases model interpretability because it's no
longer possible to visualize the tree to understand the importance of each feature. As an
ensemble algorithm, bagging methods train a given number of base estimators on these
bootstrapped samples and then aggregate their predictions into a final ensemble prediction.

Bagging reduces the variance of the base estimators to reduce their generalization error by:

1. Randomizing how each tree is grown

2. Averaging their predictions

It is often a straightforward approach to improve on a given model without the need to
change the underlying algorithm. This technique works best with complex models that
have low bias and high variance, such as deep decision trees, because its goal is to limit
overfitting. Boosting methods, in contrast, work best with weak models, such as shallow
decision trees.

There are several bagging methods that differ by the random sampling process they apply
to the training set:

• Pasting draws random samples from the training data without replacement,
whereas bagging samples with replacement.

Chapter 11

[347]

• Random subspaces randomly sample from the features (that is, the columns)
without replacement.

• Random patches train base estimators by randomly sampling both observations
and features.

Bagged decision trees

To apply bagging to decision trees, we create bootstrap samples from our training data
by repeatedly sampling with replacement. Then, we train one decision tree on each of
these samples and create an ensemble prediction by averaging over the predictions of the
different trees. You can find the code for this example in the notebook bagged_decision_
trees, unless otherwise noted.

Bagged decision trees are usually grown large, that is, they have many levels and leaf
nodes and are not pruned so that each tree has a low bias but high variance. The effect of
averaging their predictions then aims to reduce their variance. Bagging has been shown
to substantially improve predictive performance by constructing ensembles that combine
hundreds or even thousands of trees trained on bootstrap samples.

To illustrate the effect of bagging on the variance of a regression tree, we can use the
BaggingRegressor meta-estimator provided by scikit-learn. It trains a user-defined base
estimator based on parameters that specify the sampling strategy:

• max_samples and max_features control the size of the subsets drawn from the rows
and the columns, respectively.

• bootstrap and bootstrap_features determine whether each of these samples is
drawn with or without replacement.

The following example uses an exponential function to generate training samples for a
single DecisionTreeRegressor and a BaggingRegressor ensemble that consists of 10 trees,
each grown 10 levels deep. Both models are trained on the random samples and predict
outcomes for the actual function with added noise.

Since we know the true function, we can decompose the mean-squared error into bias,
variance, and noise, and compare the relative size of these components for both models
according to the following breakdown:𝐸𝐸[𝑦𝑦0 − 𝑓𝑓(𝑥𝑥0)]2 = Var(𝑓𝑓(𝑥𝑥0)) + [Bias(𝑓𝑓(𝑥𝑥0))]2 + 𝑉𝑉𝑉𝑉𝑉𝑉(𝑉𝑉)
We will draw 100 random samples of 250 training and 500 test observations each to train
each model and collect the predictions:

noise = .5 # noise relative to std(y)

noise = y.std() * noise

X_test = choice(x, size=test_size, replace=False)

max_depth = 10

n_estimators=10

tree = DecisionTreeRegressor(max_depth=max_depth)

Random Forests – A Long-Short Strategy for Japanese Stocks

[348]

bagged_tree = BaggingRegressor(base_estimator=tree, n_estimators=n_
estimators)

learners = {'Decision Tree': tree, 'Bagging Regressor': bagged_tree}

predictions = {k: pd.DataFrame() for k, v in learners.items()}

for i in range(reps):

 X_train = choice(x, train_size)

 y_train = f(X_train) + normal(scale=noise, size=train_size)

 for label, learner in learners.items():

 learner.fit(X=X_train.reshape(-1, 1), y=y_train)
 preds = pd.DataFrame({i: learner.predict(X_test.reshape(-1, 1))},
 index=X_test)

 predictions[label] = pd.concat([predictions[label], preds], axis=1)

For each model, the plots in Figure 11.11 show:

• The mean prediction and a band of two standard deviations around the mean
(upper panel)

• The bias-variance-noise breakdown based on the values for the true function
(bottom panel)

We find that the variance of the predictions of the individual decision tree (left side)
is almost twice as high as that for the small ensemble of 10 bagged trees, based on
bootstrapped samples:

Figure 11.11: Bias-variance breakdown for individual and bagged decision trees

See the notebook bagged_decision_trees for implementation details.

Chapter 11

[349]

How to build a random forest
The random forest algorithm builds on the randomization introduced by bagging to further
reduce variance and improve predictive performance.

In addition to training each ensemble member on bootstrapped training data, random
forests also randomly sample from the features used in the model (without replacement).
Depending on the implementation, the random samples can be drawn for each tree or each
split. As a result, the algorithm faces different options when learning new rules, either at
the level of a tree or for each split.

The sample size for the features differs between regression and classification trees:

• For classification, the sample size is typically the square root of the number of
features.

• For regression, it can be anywhere from one-third to all features and should be
selected based on cross-validation.

The following diagram illustrates how random forests randomize the training of individual
trees and then aggregate their predictions into an ensemble prediction:

Figure 11.12: How a random forest grows individual trees

The goal of randomizing the features in addition to the training observations is to further
decorrelate the prediction errors of the individual trees. All features are not created equal,
and a small number of highly relevant features will be selected much more frequently
and earlier in the tree-construction process, making decision trees more alike across the
ensemble. However, the less the generalization errors of individual trees correlate, the more
the overall variance will be reduced.

Random Forests – A Long-Short Strategy for Japanese Stocks

[350]

How to train and tune a random forest
The key configuration parameters include the various hyperparameters for the individual
decision trees introduced in the How to tune the hyperparameters section. The following table
lists additional options for the two RandomForest classes:

Keyword Default Description

bootstrap TRUE Bootstrap samples during training

n_estimators 10 Number of trees in the forest

oob_score FALSE Uses out-of-bag samples to estimate the R2 on unseen data

The bootstrap parameter activates the bagging algorithm just described. Bagging, in
turn, enables the computation of the out-of-bag score (oob_score), which estimates the
generalization accuracy from samples not included in the bootstrap sample used to train a
given tree (see the Out-of-bag testing section).

The parameter n_estimators defines the number of trees to be grown as part of the forest.
Larger forests perform better, but also take more time to build. It is important to monitor
the cross-validation error as the number of base learners grows. The goal is to identify
when the rising cost of training an additional tree outweighs the benefit of reducing the
validation error, or when the latter starts to increase again.

The max_features parameter controls the size of the randomly selected feature subsets
available when learning a new decision rule and to split a node. A lower value reduces the
correlation of the trees and, thus, the ensemble's variance, but may also increase the bias. As
pointed out at the beginning of this section, good starting values are the number of training
features for regression problems and the square root of this number for classification
problems, but will depend on the relationships among features and should be optimized
using cross-validation.

Random forests are designed to contain deep fully-grown trees, which can be created
using max_depth=None and min_samples_split=2. However, these values are not necessarily
optimal, especially for high-dimensional data with many samples and, consequently,
potentially very deep trees that can become very computationally, and memory, intensive.

The RandomForest class provided by scikit-learn supports parallel training and prediction
by setting the n_jobs parameter to the k number of jobs to run on different cores. The -1
value uses all available cores. The overhead of interprocess communication may limit the
speedup from being linear so that k jobs may take more than 1/k the time of a single job.
Nonetheless, the speedup is often quite significant for large forests or deep individual
trees that may take a meaningful amount of time to train when the data is large, and split
evaluation becomes costly.

As always, the best parameter configuration should be identified using cross-validation.
The following steps illustrate the process. The code for this example is in the notebook
random_forest_tuning.

Chapter 11

[351]

We will use GridSearchCV to identify an optimal set of parameters for an ensemble of
classification trees:

rf_clf = RandomForestClassifier(n_estimators=100,
 criterion='gini',

 max_depth=None,

 min_samples_split=2,

 min_samples_leaf=1,

 min_weight_fraction_leaf=0.0,

 max_features='auto',

 max_leaf_nodes=None,

 min_impurity_decrease=0.0,

 min_impurity_split=None,

 bootstrap=True, oob_score=False,

 n_jobs=-1, random_state=42)

We use the same 10-fold custom cross-validation as in the decision tree example previously
and populate the parameter grid with values for the key configuration settings:

cv = MultipleTimeSeriesCV(n_splits=10, train_period_length=60,

 test_period_length=6, lookahead=1)

clf = RandomForestClassifier(random_state=42, n_jobs=-1)
param_grid = {'n_estimators': [50, 100, 250],

 'max_depth': [5, 15, None],

 'min_samples_leaf': [5, 25, 100]}

Configure GridSearchCV using the preceding as input:

gridsearch_clf = GridSearchCV(estimator=clf,

 param_grid=param_grid,

 scoring='roc_auc',

 n_jobs=-1,

 cv=cv,

 refit=True,
 return_train_score=True,

 verbose=1)

We run our grid search as before and find the following result for the best-performing
regression and classification models. A random forest regression model does better with
shallower trees compared to the classifier but otherwise uses the same settings:

Parameter Regression Classification
max_depth 5 15

min_samples_leaf 5 5

n_estimators 100 100

Score 0.0435 0.5205

Random Forests – A Long-Short Strategy for Japanese Stocks

[352]

However, both models underperform their individual decision tree counterparts,
highlighting that more complex models do not necessarily outperform simpler approaches,
especially when the data is noisy and the risk of overfitting is high.

Feature importance for random forests
A random forest ensemble may contain hundreds of individual trees, but it is still possible
to obtain an overall summary measure of feature importance from bagged models.

For a given feature, the importance score is the total reduction in the objective function's
value due to splits on this feature and is averaged over all trees. Since the objective function
takes into account how many features are affected by a split, features used near the top of a
tree will get higher scores due to the larger number of observations contained in the smaller
number of available nodes. By averaging over many trees grown in a randomized fashion,
the feature importance estimate loses some variance and becomes more accurate.

The score is measured in terms of the mean-squared error for regression trees and the Gini
impurity or entropy for classification trees. scikit-learn further normalizes feature importance
so that it sums up to 1. Feature importance thus computed is also popular for feature selection
as an alternative to the mutual information measures we saw in Chapter 6, The Machine
Learning Process (see SelectFromModel in the sklearn.feature_selection module).

Figure 11.13 shows the values for the top 15 features for both models. The regression model
relies much more on time periods than the better-performing decision tree:

Figure 11.13: Random forest feature importance

Out-of-bag testing
Random forests offer the benefit of built-in cross-validation because individual trees
are trained on bootstrapped versions of the training data. As a result, each tree uses,
on average, only two-thirds of the available observations. To see why, consider that a
bootstrap sample has the same size, n, as the original sample, and each observation has
the same probability, 1/n, to be drawn. Hence, the probability of not entering a bootstrap
sample at all is (1-1/n)n, which converges (quickly) to 1/e, or roughly one third.

Chapter 11

[353]

This remaining one-third of the observations that are not included in the training set is used
to grow a bagged tree called out-of-bag (OOB) observations, and can serve as a validation
set. Just as with cross-validation, we predict the response for an OOB sample for each tree
built without this observation, and then average the predicted responses (if regression is
the goal) or take a majority vote or predicted probability (if classification is the goal) for a
single ensemble prediction for each OOB sample. These predictions produce an unbiased
estimate of the generalization error, which is conveniently computed during training.

The resulting OOB error is a valid estimate of the generalization error for this observation.
This is because the prediction is produced using decision rules learned in the absence of this
observation. Once the random forest is sufficiently large, the OOB error closely approximates
the leave-one-out cross-validation error. The OOB approach to estimate the test error is very
efficient for large datasets where cross-validation can be computationally costly.

However, the same caveats apply as for cross-validation: you need to take care to avoid
a lookahead bias that would ensue if OOB observations could be selected out-of-order. In
practice, this makes it very difficult to use OOB testing with time-series data, where the
validation set needs to be selected subject to the sequential nature of the data.

Pros and cons of random forests
Bagged ensemble models have both advantages and disadvantages.

The advantages of random forests include:

• Depending on the use case, a random forest can perform on par with the best
supervised learning algorithms.

• Random forests provide a reliable feature importance estimate.

• They offer efficient estimates of the test error without incurring the cost of repeated
model training associated with cross-validation.

On the other hand, the disadvantages of random forests include:

• An ensemble model is inherently less interpretable than an individual decision tree.

• Training a large number of deep trees can have high computational costs (but can
be parallelized) and use a lot of memory.

• Predictions are slower, which may create challenges for applications that require
low latency.

Let's now take a look at how we can use a random forest for a trading strategy.

Long-short signals for Japanese stocks
In Chapter 9, Time-Series Models for Volatility Forecasts and Statistical Arbitrage, we used
cointegration tests to identify pairs of stocks with a long-term equilibrium relationship in
the form of a common trend to which their prices revert.

Random Forests – A Long-Short Strategy for Japanese Stocks

[354]

In this chapter, we will use the predictions of a machine learning model to identify assets
that are likely to go up or down so we can enter market-neutral long and short positions,
accordingly. The approach is similar to our initial trading strategy that used linear
regression in Chapter 7, Linear Models – From Risk Factors to Return Forecasts, and Chapter 8,
The ML4T Workflow – From Model to Strategy Backtesting.

Instead of the scikit-learn random forest implementation, we will use the LightGBM
package, which has been primarily designed for gradient boosting. One of several
advantages is LightGBM's ability to efficiently encode categorical variables as numeric
features rather than using one-hot dummy encoding (Fisher 1958). We'll provide a more
detailed introduction in the next chapter, but the code samples should be easy to follow as
the logic is similar to the scikit-learn version.

The data – Japanese equities
We are going to design a strategy for a universe of Japanese stocks, using data provided
by Stooq, a Polish data provider that currently offers interesting datasets for various asset
classes, markets, and frequencies, which we also relied upon in Chapter 9, Time-Series
Models for Volatility Forecasts and Statistical Arbitrage.

While there is little transparency regarding the sourcing and quality of the data, it has
the powerful advantage of currently being free of charge. In other words, we get to
experiment with data on stocks, bonds, commodities, and FX at daily, hourly, and 5-minute
frequencies, but should take the results with a large grain of salt.

The create_datasets notebook in the data directory of this book's GitHub repository
contains instructions for downloading the data and storing them in HDF5 format. For this
example, we are using price data on some 3,000 Japanese stocks for the 2010-2019 period.
The last 2 years will serve as the out-of-sample test period, while the prior years will serve
as our cross-validation sample for model selection.

Please refer to the notebook japanese_equity_features for the code samples in this section.
We remove tickers with more than five consecutive missing values and only keep the 1,000
most-traded stocks.

The features – lagged returns and technical indicators

We'll keep it relatively simple and combine historical returns for 1, 5, 10, 21, and 63 trading
days with several technical indicators provided by TA-Lib (see Chapter 4, Financial Feature
Engineering – How to Research Alpha Factors).

More specifically, we compute for each stock:

• Percentage price oscillator (PPO): A normalized version of the moving average
convergence/divergence (MACD) indicator that measures the difference between
the 14-day and the 26-day exponential moving average to capture differences in
momentum across assets.

Chapter 11

[355]

• Normalized average true range (NATR): Measures price volatility in a way that
can be compared across assets.

• Relative strength index (RSI): Another popular momentum indicator (see
Chapter 4, Financial Feature Engineering – How to Research Alpha Factors for details).

• Bollinger Bands: Ratios of the moving average to the moving standard deviations
used to identify opportunities for mean reversion.

We will also include markers for the time periods year, month, and weekday, and rank
stocks on a scale from 1 to 20 with respect to their latest return for each of the six intervals
on each trading day.

The outcomes – forward returns for different horizons
To test the predictive ability of a random forest given these features, we generate forward
returns for the same intervals up to 21 trading days (1 month).

The leads and lags implied by the historical and forward returns cause some loss of data
that increases with the investment horizon. We end up with 2.3 million observations on 18
features and 4 outcomes for 941 stocks.

The ML4T workflow with LightGBM
We will now embark on selecting a random forest model that produces tradeable signals.
Several studies have done so successfully; see, for instance, Krauss, Do, and Huck (2017)
and Rasekhschaffe and Jones (2019) and the resources referenced there.

We will use the fast and memory-efficient LightGBM implementation that's open sourced
by Microsoft and most popular for gradient boosting, which is the topic of the next chapter,
where we will take a closer look at the various LightGBM features.

We will begin by discussing key experimental design decisions, then build and evaluate
a predictive model whose signals will drive the trading strategy that we will design and
evaluate in the final step. Please refer to the notebook random_forest_return_signals for
the code samples in this section, unless otherwise stated.

From universe selection to hyperparameter tuning

To develop a trading strategy that uses a machine learning model, we need to make several
decisions on the scope and design of the model, including:

• Lookback period: How many historical trading days to use for training

• Lookahead period: How many days into the future to predict returns

• Test period: For how many consecutive days to make predictions with the
same model

• Hyperparameters: Which parameters and configurations to evaluate
• Ensembling: Whether to rely on a single model or some combination of

multiple models

Random Forests – A Long-Short Strategy for Japanese Stocks

[356]

To evaluate the options of interest, we also need to select a universe and time period for
cross-validation, as well as an out-of-sample test period and universe. More specifically,
we cross-validate several options for the period up to 2017 on a subset of our sample of
Japanese stocks.

Once we've settled on a model, we'll define trading rules and backtest the strategy that uses
the signals of our model out-of-sample over the last 2 years on the complete universe to
validate its performance.

For the time-series cross-validation, we'll rely on the MultipleTimeSeriesCV that we
developed in Chapter 7, Linear Models – From Risk Factors to Return Forecasts, to parameterize
the length of the training and test period while avoiding lookahead bias. This custom CV
class permits us to:

• Train the model on a consecutive sample containing train_length days for each
ticker.

• Validate its performance during a subsequent period containing test_length
days and lookahead number of days, apart from the training period, to avoid data
leakage.

• Repeat for a given number of n_splits while rolling the train and validation
periods forward for test_length number of days each time.

We'll work on the model selection step in this section and on strategy backtesting in the
following one.

Sampling tickers to speed up cross-validation

Training a random forest takes quite a bit longer than linear regression and depends on the
configuration, where the number of trees and their depth are the main drivers.

To keep our experiments manageable, we'll select the 250 most-traded stocks over
the 2010-17 period to evaluate the performance of different outcomes and model
configurations, as follows:

DATA_DIR = Path('..', 'data')

prices = (pd.read_hdf(DATA_DIR / 'assets.h5', 'stooq/jp/tse/stocks/prices')

 .loc[idx[:, '2010': '2017'], :])

dollar_vol = prices.close.mul(prices.volume)

dollar_vol_rank = dollar_vol.groupby(level='date').rank(ascending=False)

universe = dollar_vol_rank.groupby(level='symbol').mean().nsmallest(250).index

Chapter 11

[357]

Defining lookback, lookahead, and roll-forward periods
Running our strategy requires training models on a rolling basis, using a certain number
of trading days (the lookback period) from our universe to learn the model parameters and
predict the outcome for a certain number of future days. In our example, we'll consider 63,
126, 252, 756, and 1,260 trading days for training while rolling forward and predicting for 5,
21, or 63 days during each iteration.

We will pair the parameters in a list for easy iteration and optional sampling and/or
shuffling, as follows:

train_lengths = [1260, 756, 252, 126, 63]

test_lengths = [5, 21, 63]

test_params = list(product(train_lengths, test_lengths))

n = len(test_params)

test_param_sample = np.random.choice(list(range(n)),

 size=int(n),

 replace=False)

test_params = [test_params[i] for i in test_param_sample]

Hyperparameter tuning with LightGBM

The LightGBM model accepts a large number of parameters, as the documentation explains
in detail (see https://lightgbm.readthedocs.io/ and the next chapter). For our purposes,
we just need to enable the random forest algorithm by defining boosting_type, setting
bagging_freq to a positive number, and setting objective to regression:

base_params = dict(boosting_type='rf',

 objective='regression',

 bagging_freq=1)

Next, we select the hyperparameters most likely to affect the predictive accuracy, namely:

• The number of trees to grow for the model (num_boost_round)

• The share of rows (bagging_fraction) and columns (feature_fraction) used
for bagging

• The minimum number of samples required in a leaf (min_data_in_leaf) to control
for overfitting

Another benefit of LightGBM is that we can evaluate a trained model for a subset of its
trees (or continue training after a certain number of evaluations), which allows us to test
multiple num_iteration values during a single training session.

Alternatively, you can enable early_stopping to interrupt training when the loss metric for
a validation set no longer improves. However, the cross-validation performance estimates
will be biased upward as the model uses information on the outcome that will not be
available under realistic circumstances.

https://lightgbm.readthedocs.io/

Random Forests – A Long-Short Strategy for Japanese Stocks

[358]

We'll use the following values for the hyperparameters, which control the bagging method
and tree growth:

bagging_fraction_opts = [.5, .75, .95]

feature_fraction_opts = [.75, .95]

min_data_in_leaf_opts = [250, 500, 1000]

cv_params = list(product(bagging_fraction_opts,

 feature_fraction_opts,

 min_data_in_leaf_opts))

n_cv_params = len(cv_params)

Cross-validating signals over various horizons

To evaluate a model for a given set of hyperparameters, we will generate predictions using
the lookback, lookahead, and roll-forward periods.

First, we will identify categorical variables because LightGBM does not require one-hot
encoding; instead, it sorts the categories according to the outcome, which delivers better
results for regression trees, according to Fisher (1958). We'll create variables to identify
different periods:

categoricals = ['year', 'weekday', 'month']

for feature in categoricals:

 data[feature] = pd.factorize(data[feature], sort=True)[0]

To this end, we will create the binary LightGBM Dataset and configure
MultipleTimeSeriesCV using the given train_length and test_length, which determine
the number of splits for our 2-year validation period:

for train_length, test_length in test_params:

 n_splits = int(2 * YEAR / test_length)

 cv = MultipleTimeSeriesCV(n_splits=n_splits,

 test_period_length=test_length,

 lookahead=lookahead,

 train_period_length=train_length)

 label = label_dict[lookahead]

 outcome_data = data.loc[:, features + [label]].dropna()

 lgb_data = lgb.Dataset(data=outcome_data.drop(label, axis=1),

 label=outcome_data[label],

 categorical_feature=categoricals,

 free_raw_data=False)

Next, we take the following steps:

1. Select the hyperparameters for this iteration.

2. Slice the binary LightGM Dataset we just created into train and test sets.

Chapter 11

[359]

3. Train the model.

4. Generate predictions for the validation set for a range of num_iteration settings:

for p, (bagging_fraction, feature_fraction, min_data_in_leaf) \

 in enumerate(cv_params_):

 params = base_params.copy()

 params.update(dict(bagging_fraction=bagging_fraction,

 feature_fraction=feature_fraction,

 min_data_in_leaf=min_data_in_leaf))

 start = time()

 cv_preds, nrounds = [], []

 for i, (train_idx, test_idx) in \

 enumerate(cv.split(X=outcome_data)):

 lgb_train = lgb_data.subset(train_idx.tolist()).construct()

 lgb_test = lgb_data.subset(test_idx.tolist()).construct()

 model = lgb.train(params=params,

 train_set=lgb_train,

 num_boost_round=num_boost_round,

 verbose_eval=False)

 test_set = outcome_data.iloc[test_idx, :]

 X_test = test_set.loc[:, model.feature_name()]

 y_test = test_set.loc[:, label]

 y_pred = {str(n): model.predict(X_test, num_iteration=n)

 for n in num_iterations}

 cv_preds.append(y_test.to_frame('y_test')

 .assign(**y_pred).assign(i=i))

 nrounds.append(model.best_iteration)

5. To evaluate the validation performance, we compute the IC for the complete set of
predictions, as well as on a daily basis, for a range of numbers of iterations:

df = [by_day.apply(lambda x: spearmanr(x.y_test,

 x[str(n)])[0]).to_frame(n)

 for n in num_iterations]

ic_by_day = pd.concat(df, axis=1)

daily_ic.append(ic_by_day.assign(bagging_fraction=bagging_fraction,

 feature_fraction=feature_fraction,

 min_data_in_leaf=min_data_in_leaf))

cv_ic = [spearmanr(cv_preds.y_test, cv_preds[str(n)])[0]

 for n in num_iterations]

ic.append([bagging_fraction, feature_fraction,

 min_data_in_leaf, lookahead] + cv_ic)

Random Forests – A Long-Short Strategy for Japanese Stocks

[360]

Now, we need to assess the signal content of the predictions to select a model for our
trading strategy.

Analyzing cross-validation performance

First, we'll take a look at the distribution of the IC for the various train and test windows, as
well as prediction horizons across all hyperparameter settings. Then, we'll take a closer look
at the impact of the hyperparameter settings on the model's predictive accuracy.

IC for different lookback, roll-forward, and lookahead periods
The following image illustrates the distribution and quantiles of the daily mean IC for four
prediction horizons and five training windows, as well as the best-performing 21-day test
window. Unfortunately, it does not yield conclusive insights into whether shorter or longer
windows do better, but rather illustrates the degree of noise in the data due to the range of
model configurations we tested and the resulting lack of consistency in outcomes:

Figure 11.14: Distribution of the daily mean information coefficient for various model configurations

OLS regression of random forest configuration parameters
To understand in more detail how the parameters of our experiment affect the outcome, we
can run an OLS regression of these parameters on the daily mean IC. Figure 11.15 shows the
coefficients and confidence intervals for the 1- and 5-day lookahead periods.

All variables are one-hot encoded and can be interpreted relative to the smallest category
of each that is captured by the constant. The results differ across the horizons; the longest
training period works best for the 1-day prediction but yields the worst performance for 5
days, with no clear patterns. Longer training appears to improve the 1-day model up to a
certain point, but this is less clear for the 5-day model. The only somewhat consistent result
seems to suggest a lower bagging fraction and higher minimum sample settings:

Chapter 11

[361]

Figure 11.15: OLS coefficients and confidence intervals for the various random forest configuration parameters

Ensembling forecasts – signal analysis using Alphalens

Ultimately, we care about the signal content of the model predictions regarding our
investment universe and holding period. To this end, we'll evaluate the return spread
produced by equal-weighted portfolios invested in different quantiles of the predicted
returns using Alphalens.

As discussed in Chapter 4, Financial Feature Engineering – How to Research Alpha Factors,
Alphalens computes and visualizes various metrics that summarize the predictive
performance of an Alpha Factor. The notebook alphalens_signals_quality illustrates how
to combine the model predictions with price data in the appropriate format using the utility
function get_clean_factor_and_forward_returns.

To address some of the noise inherent in the CV predictions, we select the top three 1-day
models according to their mean daily IC and average their results.

When we provide the resulting signal to Alphalens, we find the following for a 1-day
holding period:

• Annualized alpha of 0.081 and beta of 0.083

• A mean period-wise spread between top and bottom quintile returns of 5.16
basis points

The following image visualizes the mean period-wise returns by factor quintile and the
cumulative daily forward returns associated with the stocks in each quintile:

Figure 11.16: Alphalens factor signal evaluation

Random Forests – A Long-Short Strategy for Japanese Stocks

[362]

The preceding image shows that the 1-day ahead predictions appear to contain useful
trading signals over a short horizon based on the return spread of the top and bottom
quintiles. We'll now move on and develop and backtest a strategy that uses predictions
generated by the top ten 1-day lookahead models that produced the results shown here for
the validation period.

The strategy – backtest with Zipline
To design and backtest a trading strategy using Zipline, we need to generate predictions
for our universe for the test period, ingest the Japanese equity data and load the signal into
Zipline, set up a pipeline, and define rebalancing rules to trigger trades accordingly.

Ingesting Japanese Equities into Zipline

We follow the process described in Chapter 8, The ML4T Workflow – From Model to Strategy
Backtesting, to convert our Stooq equity OHLCV data into a Zipline bundle. The directory
custom_bundle contains the preprocessing module that creates the asset IDs and metadata,
defines an ingest function that does the heavy lifting, and registers the bundle with an
extension.

The folder contains a README with additional instructions.

Running an in- and out-of-sample strategy backtest

The notebook random_forest_return_signals shows how to select the hyperparameters
that produced the best validation IC performance and generate forecasts accordingly.

We will use our 1-day model predictions and apply some simple logic: we will enter long
and short positions for the 25 assets with the highest positive and lowest negative predicted
returns. We will trade every day, as long as there are at least 15 candidates on either side,
and close out all positions that are not among the current top forecasts.

This time, we will also include a small trading commission of $0.05 per share but will not
use slippage since we are trading the most liquid Japanese stocks with a relatively modest
capital base.

The results – evaluation with pyfolio

The left panel shown in Figure 11.17 shows the in-sample (2016-17) and out-of-sample
(2018-19) performance of the strategy relative to the Nikkei 225, which was mostly flat
throughout the period.

The strategy earns 10.4 percent for in-sample and 5.5 percent for out-of-sample on an
annualized basis.

Chapter 11

[363]

The right panel shows the 3-month rolling Sharpe ratio, which reaches 0.96 in-sample and
0.61 out-of-sample:

Figure 11.17: Pyfolio strategy evaluation

The overall performance statistics highlight cumulative returns of 36.6 percent after the
(low) transaction costs of $0.05 cent per share, implying an out-of-sample alpha of 0.06
and a beta of 0.08 (relative to the NIKKEI 225). The maximum drawdown was 11.0 percent
in-sample and 8.7 percent out-of-sample:

All In-sample Out-of-sample

Months 48 25 23

Annual return 8.00% 10.40% 5.50%

Cumulative returns 36.60% 22.80% 11.20%

Annual volatility 10.20% 10.90% 9.60%

Sharpe ratio 0.8 0.96 0.61

Calmar ratio 0.72 0.94 0.63

Stability 0.82 0.82 0.64

Max drawdown -11.00% -11.00% -8.70%

Sortino ratio 1.26 1.53 0.95

Daily value at risk -1.30% -1.30% -1.20%

Alpha 0.08 0.11 0.06

Beta 0.06 0.04 0.08

The pyfolio tearsheets contain lots of additional details regarding exposure, risk profile,
and other aspects.

Random Forests – A Long-Short Strategy for Japanese Stocks

[364]

Summary
In this chapter, we learned about a new class of model capable of capturing a non-linear
relationship, in contrast to the classical linear models we had explored so far. We saw how
decision trees learn rules to partition the feature space into regions that yield predictions,
and thus segment the input data into specific regions.

Decision trees are very useful because they provide unique insights into the relationships
between features and target variables, and we saw how to visualize the sequence of
decision rules encoded in the tree structure.

Unfortunately, a decision tree is prone to overfitting. We learned that ensemble models
and the bootstrap aggregation method manage to overcome some of the shortcomings of
decision trees and render them useful as components of much more powerful composite
models.

In the next chapter, we will explore another ensemble model, boosting, which has come to
be considered one of the most important machine learning algorithms.

[365]

12
Boosting Your Trading Strategy

In the previous chapter, we saw how random forests improve on the predictions of a
decision tree by combining many trees into an ensemble. The key to reducing the high
variance of an individual tree is the use of bagging, short for bootstrap aggregation, which
introduces randomness into the process of growing individual trees. More specifically,
bagging samples from the data with replacements so that each tree is trained on a different
but equal-sized random subset, with some observations repeating. In addition, a random
forest randomly selects a subset of the features so that both the rows and the columns of
the training set for each tree are random versions of the original data. The ensemble then
generates predictions by averaging over the outputs of the individual trees.

Individual random forest trees are usually grown deep to ensure low bias while relying on
the randomized training process to produce different, uncorrelated prediction errors that
have a lower variance when aggregated than individual tree predictions. In other words,
the randomized training aims to decorrelate (think diversify) the errors of individual trees.
It does this so that the ensemble is less susceptible to overfitting, has a lower variance, and
thus generalizes better to new data.

This chapter explores boosting, an alternative ensemble algorithm for decision trees that
often produces even better results. The key difference is that boosting modifies the training
data for each new tree based on the cumulative errors made by the model so far. In contrast
to random forests that train many trees independently using samples of the training set,
boosting proceeds sequentially using reweighted versions of the data. State-of-the-art
boosting implementations also adopt the randomization strategies of random forests.

Over the last three decades, boosting has become one of the most successful machine
learning (ML) algorithms, dominating many ML competitions for structured, tabular data
(as opposed to high-dimensional image or speech data with a more complex input-out
relationship where deep learning excels). We will show how boosting works, introduce
several high-performance implementations, and apply boosting to high-frequency data
and backtest an intraday trading strategy.

Boosting Your Trading Strategy

[366]

More specifically, after reading this chapter, you will be able to:

• Understand how boosting differs from bagging and how gradient boosting evolved
from adaptive boosting.

• Design and tune adaptive boosting and gradient boosting models with scikit-learn.

• Build, tune, and evaluate gradient boosting models on large datasets using the
state-of-the-art implementations XGBoost, LightGBM, and CatBoost.

• Interpret and gain insights from gradient boosting models.

• Use boosting with high-frequency data to design an intraday strategy.

Getting started – adaptive boosting
Like bagging, boosting is an ensemble learning algorithm that combines base learners
(typically decision trees) into an ensemble. Boosting was initially developed for
classification problems, but can also be used for regression, and has been called one of the
most potent learning ideas introduced in the last 20 years (Hastie, Tibshirani, and Friedman
2009). Like bagging, it is a general method or metamethod that can be applied to many
statistical learning methods.

The motivation behind boosting was to find a method that combines the outputs of many
weak models, where "weak" means they perform only slightly better than a random guess,
into a highly accurate, boosted joint prediction (Schapire and Freund 2012).

In general, boosting learns an additive hypothesis, H
M

, of a form similar to linear regression.
However, each of the m= 1,..., M elements of the summation is a weak base learner, called
h

t
, which itself requires training. The following formula summarizes this approach:

𝐻𝐻𝑀𝑀(𝑥𝑥) = ∑ ℎ𝑡𝑡(𝑥𝑥)⏟ weak learner
𝑀𝑀
𝑚𝑚=1

As discussed in the previous chapter, bagging trains base learners on different random
samples of the data. Boosting, in contrast, proceeds sequentially by training the base
learners on data that it repeatedly modifies to reflect the cumulative learning. The goal is to
ensure that the next base learner compensates for the shortcomings of the current ensemble.
We will see in this chapter that boosting algorithms differ in how they define shortcomings.
The ensemble makes predictions using a weighted average of the predictions of the weak
models.

You can find the code samples for this chapter and links to additional
resources in the corresponding directory of the GitHub repository. The
notebooks include color versions of the images.

Chapter 12

[367]

The first boosting algorithm that came with a mathematical proof that it enhances the
performance of weak learners was developed by Robert Schapire and Yoav Freund around
1990. In 1997, a practical solution for classification problems emerged in the form of the adaptive
boosting (AdaBoost) algorithm, which won the Göedel Prize in 2003 (Freund and Schapire
1997). About another 5 years later, this algorithm was extended to arbitrary objective functions
when Leo Breiman (who invented random forests) connected the approach to gradient descent,
and Jerome Friedman came up with gradient boosting in 1999 (Friedman 2001).

Numerous optimized implementations, such as XGBoost, LightGBM, and CatBoost, which we
will look at later in this chapter, have emerged in recent years and firmly established gradient
boosting as the go-to solution for structured data. In the following sections, we'll briefly
introduce AdaBoost and then focus on the gradient boosting model, as well as the three state-
of-the-art implementations of this very powerful and flexible algorithm we just mentioned.

The AdaBoost algorithm
When it emerged in the 1990s, AdaBoost was the first ensemble algorithm to iteratively
adapt to the cumulative learning progress when fitting an additional ensemble member.
In particular, AdaBoost changed the weights on the training data to reflect the cumulative
errors of the current ensemble on the training set, before fitting a new, weak learner.
AdaBoost was the most accurate classification algorithm at the time, and Leo Breiman
referred to it as the best off-the-shelf classifier in the world at the 1996 NIPS conference
(Hastie, Tibshirani, and Friedman 2009).

Over the subsequent decades, the algorithm had a large impact on machine learning
because it provided theoretical performance guarantees. These guarantees only require
sufficient data and a weak learner that reliably predicts just better than a random guess. As
a result of this adaptive method that learns in stages, the development of an accurate ML
model no longer required accurate performance over the entire feature space. Instead, the
design of a model could focus on finding weak learners that just outperformed a coin flip
using a small subset of the features.

In contrast to bagging, which builds ensembles of very large trees to reduce bias, AdaBoost
grows shallow trees as weak learners, often producing superior accuracy with stumps—
that is, trees formed by a single split. The algorithm starts with an equally weighted
training set and then successively alters the sample distribution. After each iteration,
AdaBoost increases the weights of incorrectly classified observations and reduces the
weights of correctly predicted samples so that subsequent weak learners focus more on
particularly difficult cases. Once trained, the new decision tree is incorporated into the
ensemble with a weight that reflects its contribution to reducing the training error.

The AdaBoost algorithm for an ensemble of base learners, hm(x), m=1, ..., M, that predicts
discrete classes, y ∈ [−1, 1] , and N training observations can be summarized as follows:

1. Initialize sample weights w
i
=1/N for observations i=1, ..., N.

2. For each base classifier, hm, m=1, ..., M, do the following:

1. Fit hm(x) to the training data, weighted by w
i
.

2. Compute the base learner's weighted error rate 𝜀𝜀𝑚𝑚 on the training set.

Boosting Your Trading Strategy

[368]

3. Compute the base learner's ensemble weight 𝛼𝛼𝑚𝑚 as a function of its error
rate, as shown in the following formula:𝛼𝛼𝑚𝑚 = log (1 − 𝜀𝜀𝑚𝑚𝜀𝜀𝑚𝑚)

4. Update the weights for misclassified samples according to 𝑤𝑤𝑖𝑖 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒(𝛼𝛼𝑚𝑚)
3. Predict the positive class when the weighted sum of the ensemble members is

positive, and negative otherwise, as shown in the following formula:

𝐻𝐻(𝑥𝑥) = sign (∑ 𝛼𝛼𝑚𝑚ℎ𝑚𝑚(𝑥𝑥)⏟ weighted weak learner
𝑀𝑀
𝑚𝑚=1)

AdaBoost has many practical advantages, including ease of implementation and fast
computation, and can be combined with any method for identifying weak learners. Apart
from the size of the ensemble, there are no hyperparameters that require tuning. AdaBoost
is also useful for identifying outliers because the samples that receive the highest weights
are those that are consistently misclassified and inherently ambiguous, which is also typical
for outliers.

There are also disadvantages: the performance of AdaBoost on a given dataset depends on
the ability of the weak learner to adequately capture the relationship between features and
outcome. As the theory suggests, boosting will not perform well when there is insufficient
data, or when the complexity of the ensemble members is not a good match for the
complexity of the data. It can also be susceptible to noise in the data.

See Schapire and Freund (2012) for a thorough introduction and review of boosting algorithms.

Using AdaBoost to predict monthly price moves
As part of its ensemble module, scikit-learn provides an AdaBoostClassifier
implementation that supports two or more classes. The code examples for this section are in
the notebook boosting_baseline, which compares the performance of various algorithms
with a dummy classifier that always predicts the most frequent class.

We need to first define a base_estimator as a template for all ensemble members and
then configure the ensemble itself. We'll use the default DecisionTreeClassifier with max_
depth=1 — that is, a stump with a single split. Alternatives include any other model from
linear or logistic regression to a neural network that conforms to the scikit-learn interface
(see the documentation). However, decision trees are by far the most common in practice.

The complexity of base_estimator is a key tuning parameter because it depends on the
nature of the data. As demonstrated in the previous chapter, changes to max_depth should
be combined with appropriate regularization constraints using adjustments to, for example,
min_samples_split, as shown in the following code:

base_estimator = DecisionTreeClassifier(criterion='gini',
 splitter='best',

 max_depth=1,

Chapter 12

[369]

 min_samples_split=2,

 min_samples_leaf=20,

 min_weight_fraction_leaf=0.0,

 max_features=None,

 random_state=None,

 max_leaf_nodes=None,

 min_impurity_decrease=0.0,

 min_impurity_split=None)

In the second step, we'll design the ensemble. The n_estimators parameter controls the
number of weak learners, and learning_rate determines the contribution of each weak
learner, as shown in the following code. By default, weak learners are decision tree stumps:

ada_clf = AdaBoostClassifier(base_estimator=base_estimator,
 n_estimators=100,

 learning_rate=1.0,

 algorithm='SAMME.R',

 random_state=42)

The main tuning parameters that are responsible for good results are n_estimators and the
base_estimator complexity. This is because the depth of the tree controls the extent of the
interaction among the features.

We will cross-validate the AdaBoost ensemble using the custom OneStepTimeSeriesSplit,
a simplified version of the more flexible MultipleTimeSeriesCV (see Chapter 6, The Machine
Learning Process). It implements a 12-fold rolling time-series split to predict 1 month ahead
for the last 12 months in the sample, using all available prior data for training, as shown in
the following code:

cv = OneStepTimeSeriesSplit(n_splits=12, test_period_length=1, shuffle=True)
def run_cv(clf, X=X_dummies, y=y, metrics=metrics, cv=cv, fit_params=None):
 return cross_validate(estimator=clf,

 X=X,

 y=y,

 scoring=list(metrics.keys()),

 cv=cv,

 return_train_score=True,

 n_jobs=-1, # use all cores

 verbose=1,

 fit_params=fit_params)

The validation results show a weighted accuracy of 0.5068, an AUC score of 0.5348, and
precision and recall values of 0.547 and 0.576, respectively, implying an F1 score of 0.467.
This is marginally below a random forest with default settings that achieves a validation
AUC of 0.5358. Figure 12.1 shows the distribution of the various metrics for the 12 train and
test folds as a boxplot (note that the random forest perfectly fits the training set):

Boosting Your Trading Strategy

[370]

Figure 12.1: AdaBoost cross-validation performance

See the companion notebook for additional details on the code to cross-validate and process
the results.

Gradient boosting – ensembles for most tasks
AdaBoost can also be interpreted as a stagewise forward approach to minimizing an
exponential loss function for a binary outcome, y ∈ [−1, 1] , that identifies a new base
learner, hm, at each iteration, m, with the corresponding weight,𝛼𝛼𝑚𝑚 , and adds it to the
ensemble, as shown in the following formula:

argmin𝛼𝛼𝛼𝛼 ∑exp(−𝑦𝑦𝑖𝑖(𝑓𝑓𝑚𝑚𝑚𝑚(𝑥𝑥𝑖𝑖))⏟ current ensemble + 𝛼𝛼𝑚𝑚ℎ𝑚𝑚(𝑥𝑥𝑖𝑖)⏟ new member)𝑁𝑁
𝑖𝑖𝑖𝑚

This interpretation of AdaBoost as a gradient descent algorithm that minimizes a particular
loss function, namely exponential loss, was only discovered several years after its original
publication.

Chapter 12

[371]

Gradient boosting leverages this insight and applies the boosting method to a much
wider range of loss functions. The method enables the design of machine learning
algorithms to solve any regression, classification, or ranking problem, as long as it can be
formulated using a loss function that is differentiable and thus has a gradient. Common
example loss functions for different tasks include:

• Regression: The mean-squared and absolute loss

• Classification: Cross-entropy

• Learning to rank: Lambda rank loss

We covered regression and classification loss functions in Chapter 6, The Machine Learning
Process; learning to rank is outside the scope of this book, but see Nakamoto (2011) for an
introduction and Chen et al. (2009) for details on ranking loss.

The flexibility to customize this general method to many specific prediction tasks is
essential to boosting's popularity. Gradient boosting is also not limited to weak learners
and often achieves the best performance with decision trees several levels deep.

The main idea behind the resulting gradient boosting machines (GBMs) algorithm is
training the base learners to learn the negative gradient of the current loss function of the
ensemble. As a result, each addition to the ensemble directly contributes to reducing the
overall training error, given the errors made by prior ensemble members. Since each new
member represents a new function of the data, gradient boosting is also said to optimize
over the functions hm in an additive fashion.

In short, the algorithm successively fits weak learners hm, such as decision trees, to the
negative gradient of the loss function that is evaluated for the current ensemble, as shown
in the following formula:

𝐻𝐻𝑚𝑚(𝑥𝑥) = 𝐻𝐻𝑚𝑚𝑚𝑚(𝑥𝑥)⏟ current ensemble+ 𝛾𝛾𝑚𝑚ℎ𝑚𝑚(𝑥𝑥)⏟ new member = 𝐻𝐻𝑚𝑚𝑚𝑚(𝑥𝑥) + argmin𝛾𝛾𝛾𝛾 ∑𝐿𝐿(𝑦𝑦𝑖𝑖 𝛾 𝐻𝐻𝑚𝑚𝑚𝑚(𝑥𝑥𝑖𝑖) + ℎ(𝑥𝑥))⏟ loss function
𝑁𝑁
𝑖𝑖𝑖𝑚

In other words, at a given iteration m, the algorithm computes the gradient of the current
loss for each observation and then fits a regression tree to these pseudo-residuals. In
a second step, it identifies an optimal prediction for each leaf node that minimizes the
incremental loss due to adding this new learner to the ensemble.

This differs from standalone decision trees and random forests, where the prediction
depends on the outcomes for the training samples assigned to a terminal node, namely
their average, in the case of regression, or the frequency of the positive class for binary
classification. The focus on the gradient of the loss function also implies that gradient
boosting uses regression trees to learn both regression and classification rules because the
gradient is always a continuous function.

Boosting Your Trading Strategy

[372]

The final ensemble model makes predictions based on the weighted sum of the predictions of
the individual decision trees, each of which has been trained to minimize the ensemble loss,
given the prior prediction for a given set of feature values, as shown in the following diagram:

Figure 12.2: The gradient boosting algorithm

Gradient boosting trees have produced state-of-the-art performance on many
classification, regression, and ranking benchmarks. They are probably the most popular
ensemble learning algorithms as standalone predictors in a diverse set of ML competitions,
as well as in real-world production pipelines, for example, to predict click-through rates for
online ads.

The success of gradient boosting is based on its ability to learn complex functional
relationships in an incremental fashion. However, the flexibility of this algorithm requires
the careful management of the risk of overfitting by tuning hyperparameters that constrain
the model's tendency to learn noise, as opposed to the signal, in the training data.

We will introduce the key mechanisms to control the complexity of a gradient boosting tree
model, and then illustrate model tuning using the sklearn implementation.

How to train and tune GBM models
Boosting has often demonstrated remarkable resilience to overfitting, despite significant
growth of the ensemble and, thus, the complexity of the model. The combination of very
low and decreasing training error with non-increasing validation error is often associated
with improved confidence in the predictions: as boosting continues to grow the ensemble
with the goal of improving predictions for the most challenging cases, it adjusts the
decision boundary to maximize the distance, or margin, of the data points.

However, overfitting certainly happens, and the two key drivers of gradient boosting
performance are the size of the ensemble and the complexity of its constituent decision trees.

The control of the complexity of decision trees aims to avoid learning highly specific rules
that typically imply a very small number of samples in leaf nodes. We covered the most
effective constraints used to limit the ability of a decision tree to overfit to the training data
in the previous chapter. They include minimum thresholds for:

Chapter 12

[373]

• The number of samples to either split a node or accept it as a terminal node.

• The improvement in node quality, as measured by the purity or entropy for
classification, or mean-squared error for regression, to further grow the tree.

In addition to directly controlling the size of the ensemble, there are various regularization
techniques, such as shrinkage, that we encountered in the context of the ridge and lasso
linear regression models in Chapter 7, Linear Models – From Risk Factors to Return Forecasts.
Furthermore, the randomization techniques used in the context of random forests are also
commonly applied to gradient boosting machines.

Ensemble size and early stopping

Each boosting iteration aims to reduce the training loss, increasing the risk of overfitting for
a large ensemble. Cross-validation is the best approach to find the optimal ensemble size
that minimizes the generalization error.

Since the ensemble size needs to be specified before training, it is useful to monitor the
performance on the validation set and abort the training process when, for a given number
of iterations, the validation error no longer decreases. This technique is called early
stopping and is frequently used for models that require a large number of iterations and
are prone to overfitting, including deep neural networks.

Keep in mind that using early stopping with the same validation set for a large number of
trials will also lead to overfitting, but just for the particular validation set rather than the
training set. It is best to avoid running a large number of experiments when developing a
trading strategy as the risk of false discoveries increases significantly. In any case, keep a
hold-out test set to obtain an unbiased estimate of the generalization error.

Shrinkage and learning rate

Shrinkage techniques apply a penalty for increased model complexity to the model's loss
function. For boosting ensembles, shrinkage can be applied by scaling the contribution
of each new ensemble member down by a factor between 0 and 1. This factor is called
the learning rate of the boosting ensemble. Reducing the learning rate increases shrinkage
because it lowers the contribution of each new decision tree to the ensemble.

The learning rate has the opposite effect of the ensemble size, which tends to increase for
lower learning rates. Lower learning rates coupled with larger ensembles have been found
to reduce the test error, in particular for regression and probability estimation. Large
numbers of iterations are computationally more expensive but often feasible with fast,
state-of-the-art implementations as long as the individual trees remain shallow.

Depending on the implementation, you can also use adaptive learning rates that adjust to
the number of iterations, typically lowering the impact of trees added later in the process.
We will see some examples later in this chapter.

Boosting Your Trading Strategy

[374]

Subsampling and stochastic gradient boosting

As discussed in detail in the previous chapter, bootstrap averaging (bagging) improves the
performance of an otherwise noisy classifier.

Stochastic gradient boosting samples the training data without replacement at each
iteration to grow the next tree (whereas bagging uses sampling with replacement). The
benefit is lower computational effort due to the smaller sample and often better accuracy,
but subsampling should be combined with shrinkage.

As you can see, the number of hyperparameters keeps increasing, which drives up the
number of potential combinations. As a result, the risk of false positives increases when
choosing the best model from a large number of trials based on a limited amount of training
data. The best approach is to proceed sequentially and select parameter values individually
or use combinations of subsets of low cardinality.

How to use gradient boosting with sklearn
The ensemble module of sklearn contains an implementation of gradient boosting
trees for regression and classification, both binary and multiclass. The following
GradientBoostingClassifier initialization code illustrates the key tuning parameters.
The notebook sklearn_gbm_tuning contains the code examples for this section. More
recently (version 0.21), scikit-learn introduced a much faster, yet still experimental,
HistGradientBoostingClassifier inspired by the implementations in the following section.

The available loss functions include the exponential loss that leads to the AdaBoost
algorithm and the deviance that corresponds to the logistic regression for probabilistic
outputs. The friedman_mse node quality measure is a variation on the mean-squared
error, which includes an improvement score (see the scikit-learn documentation linked on
GitHub), as shown in the following code:

deviance = logistic reg; exponential: AdaBoost

gb_clf = GradientBoostingClassifier(loss='deviance',
shrinks the contribution of each tree

 learning_rate=0.1,

number of boosting stages

 n_estimators=100,

fraction of samples used t fit base learners
 subsample=1.0,

measures the quality of a split

 criterion='friedman_mse',

 min_samples_split=2,

 min_samples_leaf=1,

min. fraction of sum of weights

 min_weight_fraction_leaf=0.0,

Chapter 12

[375]

opt value depends on interaction

 max_depth=3,

 min_impurity_decrease=0.0,

 min_impurity_split=None,

 max_features=None,

 max_leaf_nodes=None,

 warm_start=False,

 presort='auto',

 validation_fraction=0.1,

 tol=0.0001)

Similar to AdaBoostClassifier, this model cannot handle missing values. We'll again use
12-fold cross-validation to obtain errors for classifying the directional return for rolling
1-month holding periods, as shown in the following code:

gb_cv_result = run_cv(gb_clf, y=y_clean, X=X_dummies_clean)

gb_result = stack_results(gb_cv_result)

We parse and plot the result to find a slight improvement—using default parameter
values—over both AdaBoostClassifier and the random forest as the test AUC increases to
0.537. Figure 12.3 shows boxplots for the various loss metrics we are tracking:

Figure 12.3: Cross-validation performance of the scikit-learn gradient boosting classifier

Boosting Your Trading Strategy

[376]

How to tune parameters with GridSearchCV

The GridSearchCV class in the model_selection module facilitates the systematic evaluation
of all combinations of the hyperparameter values that we would like to test. In the
following code, we will illustrate this functionality for seven tuning parameters, which,
when defined, will result in a total of 24 × 32 × 4 = 576 different model configurations:

cv = OneStepTimeSeriesSplit(n_splits=12)

param_grid = dict(

 n_estimators=[100, 300],

 learning_rate=[.01, .1, .2],

 max_depth=list(range(3, 13, 3)),

 subsample=[.8, 1],

 min_samples_split=[10, 50],

 min_impurity_decrease=[0, .01],

 max_features=['sqrt', .8, 1])

The .fit() method executes the cross-validation using the custom OneStepTimeSeriesSplit
and the roc_auc score to evaluate the 12 folds. Sklearn lets us persist the result, as it would
for any other model, using the joblib pickle implementation, as shown in the following code:

gs = GridSearchCV(gb_clf,

 param_grid,

 cv=cv,

 scoring='roc_auc',

 verbose=3,

 n_jobs=-1,

 return_train_score=True)

gs.fit(X=X, y=y)
persist result using joblib for more efficient storage of large numpy arrays
joblib.dump(gs, 'gbm_gridsearch.joblib')

The GridSearchCV object has several additional attributes, after completion, that we can
access after loading the pickled result. We can use them to learn which hyperparameter
combination performed best and its average cross-validation AUC score, which results in a
modest improvement over the default values. This is shown in the following code:

pd.Series(gridsearch_result.best_params_)

learning_rate 0.01

max_depth 9.00

max_features 1.00

min_impurity_decrease 0.01

min_samples_split 50.00

n_estimators 300.00

subsample 1.00

gridsearch_result.best_score_

0.5569

Chapter 12

[377]

Parameter impact on test scores

The GridSearchCV result stores the average cross-validation scores so that we can analyze
how different hyperparameter settings affect the outcome.

The six seaborn swarm plots in the right panel of Figure 12.4 show the distribution of AUC
test scores for all hyperparameter values. In this case, the highest AUC test scores required
a low learning_rate and a large value for max_features. Some parameter settings, such as a
low learning_rate, produce a wide range of outcomes that depend on the complementary
settings of other parameters:

Figure 12.4: Hyperparameter impact for the scikit-learn gradient boosting model

We will now explore how hyperparameter settings jointly affect the cross-validation
performance. To gain insight into how parameter settings interact, we can train a
DecisionTreeRegressor with the mean CV AUC as the outcome and the parameter settings,
encoded in one-hot or dummy format (see the notebook for details). The tree structure
highlights that using all features (max_features=1), a low learning_rate, and a max_depth
above three led to the best results, as shown in the following diagram:

Figure 12.5: Impact of the gradient boosting model hyperparameter settings on test performance

The bar chart in the left panel of Figure 12.4 displays the influence of the hyperparameter
settings in producing different outcomes, measured by their feature importance for a
decision tree that has grown to its maximum depth. Naturally, the features that appear near
the top of the tree also accumulate the highest importance scores.

Boosting Your Trading Strategy

[378]

How to test on the holdout set

Finally, we would like to evaluate the best model's performance on the holdout set that we
excluded from the GridSearchCV exercise. It contains the last 7 months of the sample period
(through February 2018; see the notebook for details).

We obtain a generalization performance estimate based on the AUC score of 0.5381 for the
first month of the hold-out period using the following code example:

idx = pd.IndexSlice

auc = {}

for i, test_date in enumerate(test_dates):

 test_data = test_feature_data.loc[idx[:, test_date], :]

 preds = best_model.predict(test_data)

 auc[i] = roc_auc_score(y_true=test_target.loc[test_data.index], y_
score=preds)

auc = pd.Series(auc)

The downside of the sklearn gradient boosting implementation is the limited training
speed, which makes it difficult to try out different hyperparameter settings quickly. In the
next section, we will see that several optimized implementations have emerged over the
last few years that significantly reduce the time required to train even large-scale models,
and have greatly contributed to a broader scope for applications of this highly effective
algorithm.

Using XGBoost, LightGBM, and CatBoost
Over the last few years, several new gradient boosting implementations have used various
innovations that accelerate training, improve resource efficiency, and allow the algorithm to
scale to very large datasets. The new implementations and their sources are as follows:

• XGBoost: Started in 2014 by T. Chen during his Ph.D. (T. Chen and Guestrin 2016)

• LightGBM: Released in January 2017 by Microsoft (Ke et al. 2017)

• CatBoost: Released in April 2017 by Yandex (Prokhorenkova et al. 2019)

These innovations address specific challenges of training a gradient boosting model
(see this chapter's README file on GitHub for links to the documentation). The XGBoost
implementation was the first new implementation to gain popularity: among the 29
winning solutions published by Kaggle in 2015, 17 solutions used XGBoost. Eight of these
solely relied on XGBoost, while the others combined XGBoost with neural networks.

We will first introduce the key innovations that have emerged over time and subsequently
converged (so that most features are available for all implementations), before illustrating
their implementation.

Chapter 12

[379]

How algorithmic innovations boost performance
Random forests can be trained in parallel by growing individual trees on independent
bootstrap samples. The sequential approach of gradient boosting, in contrast, slows
down training, which, in turn, complicates experimentation with the large number of
hyperparameters that need to be adapted to the nature of the task and the dataset.

To add a tree to the ensemble, the algorithm minimizes the prediction error with respect
to the negative gradient of the loss function, similar to a conventional gradient descent
optimizer. The computational cost during training is thus proportional to the time it
takes to evaluate potential split points for each feature.

Second-order loss function approximation

The most important algorithmic innovations lower the cost of evaluating the loss function
by using an approximation that relies on second-order derivatives, resembling Newton's
method to find stationary points. As a result, scoring potential splits becomes much faster.

As discussed, a gradient boosting ensemble H
M

 is trained incrementally to minimize the
sum of the prediction error and the regularization penalty. Denoting the prediction of the
outcome y

i
 by the ensemble after step m as �̂�𝑦𝑖𝑖(𝑚𝑚) , as a differentiable convex loss function

that measures the difference between the outcome and the prediction, and Ω as a penalty
that increases with the complexity of the ensemble H

M
. The incremental hypothesis h

m
 aims

to minimize the following objective L:

ℒ (𝑚𝑚) =∑ 𝑙𝑙(𝑦𝑦𝑖𝑖 , �̂�𝑦𝑖𝑖(𝑚𝑚))⏟ Loss at step m
𝑛𝑛
𝑖𝑖=1 +∑ Ω(𝐻𝐻𝑚𝑚)⏟ Regularization

𝑡𝑡
𝑖𝑖=1 =∑𝑙𝑙 (𝑦𝑦𝑖𝑖 , �̂�𝑦𝑖𝑖(𝑚𝑚−1) + ℎ𝑚𝑚(𝑥𝑥𝑖𝑖)⏟ additional tree)𝑛𝑛

𝑖𝑖=1 + Ω(𝐻𝐻𝑚𝑚)
The regularization penalty helps to avoid overfitting by favoring a model that uses simple
yet predictive regression trees. In the case of XGBoost, for example, the penalty for a
regression tree h depends on the number of leaves per tree T, the regression tree scores
for each terminal node w, and the hyperparameters 𝛾𝛾 and 𝜆𝜆 . This is summarized in the
following formula: Ω(ℎ) = 𝛾𝛾𝛾𝛾 + 12𝜆𝜆||𝑤𝑤||2

Therefore, at each step, the algorithm greedily adds the hypothesis hm that most improves
the regularized objective. The second-order approximation of a loss function, based on
a Taylor expansion, speeds up the evaluation of the objective, as summarized in the
following formula:

ℒ(𝑚𝑚𝑚 ≃∑[𝑔𝑔𝑖𝑖𝑓𝑓𝑚𝑚(𝑥𝑥𝑖𝑖𝑚 + 12ℎ𝑖𝑖𝑓𝑓𝑚𝑚2(𝑥𝑥𝑖𝑖𝑚] + Ω𝑛𝑛
𝑖𝑖𝑖𝑖 (ℎ𝑚𝑚𝑚

Boosting Your Trading Strategy

[380]

Here, g
i
 is the first-order gradient of the loss function before adding the new learner for a

given feature value, and h
i
 is the corresponding second-order gradient (or Hessian) value,

as shown in the following formulas:𝑔𝑔𝑖𝑖 = 𝜕𝜕�̂�𝑦𝑖𝑖(𝑚𝑚−1)𝑙𝑙(𝑦𝑦𝑖𝑖 , �̂�𝑦𝑖𝑖(𝑚𝑚−1)) ℎ𝑖𝑖 = 𝜕𝜕2�̂�𝑦𝑖𝑖(𝑚𝑚−1)𝑙𝑙(𝑦𝑦𝑖𝑖 , �̂�𝑦𝑖𝑖(𝑚𝑚−1))
The XGBoost algorithm was the first open source algorithm to leverage this approximation
of the loss function to compute the optimal leaf scores for a given tree structure and the
corresponding value of the loss function. The score consists of the ratio of the sums of the
gradient and Hessian for the samples in a terminal node. It uses this value to score the
information gain that would result from a split, similar to the node impurity measures
we saw in the previous chapter, but applicable to arbitrary loss functions. See Chen and
Guestrin (2016) for the detailed derivation.

Simplified split-finding algorithms
The original gradient boosting implementation by sklearn finds the optimal split
that enumerates all options for continuous features. This exact greedy algorithm is
computationally very demanding due to the potentially very large number of split options
for each feature. This approach faces additional challenges when the data does not fit in
memory or when training in a distributed setting on multiple machines.

An approximate split-finding algorithm reduces the number of split points by assigning
feature values to a user-determined set of bins, which can also greatly reduce the memory
requirements during training. This is because only a single value needs to be stored for
each bin. XGBoost introduced a quantile sketch algorithm that divides weighted training
samples into percentile bins to achieve a uniform distribution. XGBoost also introduced the
ability to handle sparse data caused by missing values, frequent zero-gradient statistics,
and one-hot encoding, and can learn an optimal default direction for a given split. As a
result, the algorithm only needs to evaluate non-missing values.

In contrast, LightGBM uses gradient-based one-side sampling (GOSS) to exclude a
significant proportion of samples with small gradients, and only uses the remainder to
estimate the information gain and select a split value accordingly. Samples with larger
gradients require more training and tend to contribute more to the information gain.

LightGBM also uses exclusive feature bundling to combine features that are mutually
exclusive, in that they rarely take nonzero values simultaneously, to reduce the number
of features. As a result, LightGBM was the fastest implementation when released and still
often performs best.

Chapter 12

[381]

Depth-wise versus leaf-wise growth

LightGBM differs from XGBoost and CatBoost in how it prioritizes which nodes to split.
LightGBM decides on splits leaf-wise, that is, it splits the leaf node that maximizes the
information gain, even when this leads to unbalanced trees. In contrast, XGBoost and
CatBoost expand all nodes depth-wise and first split all nodes at a given level of depth,
before adding more levels. The two approaches expand nodes in a different order and will
produce different results except for complete trees. The following diagram illustrates these
two approaches:

Figure 12.6: Depth-wise vs leaf-wise growth

LightGBM's leaf-wise splits tend to increase model complexity and may speed up
convergence, but also increase the risk of overfitting. A tree grown depth-wise with n levels
has up to 2n terminal nodes, whereas a leaf-wise tree with 2n leaves can have significantly
more levels and contain correspondingly fewer samples in some leaves. Hence, tuning
LightGBM's num_leaves setting requires extra caution, and the library allows us to control
max_depth at the same time to avoid undue node imbalance. More recent versions of
LightGBM also offer depth-wise tree growth.

GPU-based training

All new implementations support training and prediction on one or more GPUs to achieve
significant speedups. They are compatible with current CUDA-enabled GPUs. Installation
requirements vary and are evolving quickly. The XGBoost and CatBoost implementations
work for several current versions, but LightGBM may require local compilation (see
GitHub for links to the documentation).

The speedups depend on the library and the type of the data, and they range from low,
single-digit multiples to factors of several dozen. Activation of the GPU only requires the
change of a task parameter and no other hyperparameter modifications.

DART – dropout for additive regression trees

Rashmi and Gilad-Bachrach (2015) proposed a new model to train gradient boosting trees
to address a problem they labeled over-specialization: trees added during later iterations
tend only to affect the prediction of a few instances, while making a minor contribution to
the remaining instances. However, the model's out-of-sample performance can suffer, and
it may become over-sensitive to the contributions of a small number of trees.

Boosting Your Trading Strategy

[382]

The new algorithms employ dropouts that have been successfully used for learning
more accurate deep neural networks, where they mute a random fraction of the neural
connections during training. As a result, nodes in higher layers cannot rely on a few
connections to pass the information needed for the prediction. This method has made a
significant contribution to the success of deep neural networks for many tasks and has also
been used with other learning techniques, such as logistic regression.

DART, or dropout for additive regression trees, operates at the level of trees and mutes
complete trees as opposed to individual features. The goal is for trees in the ensemble
generated using DART to contribute more evenly toward the final prediction. In some cases,
this has been shown to produce more accurate predictions for ranking, regression, and
classification tasks. The approach was first implemented in LightGBM and is also available
for XGBoost.

Treatment of categorical features

The CatBoost and LightGBM implementations handle categorical variables directly without
the need for dummy encoding.

The CatBoost implementation (which is named for its treatment of categorical features)
includes several options to handle such features, in addition to automatic one-hot encoding.
It assigns either the categories of individual features or combinations of categories for
several features to numerical values. In other words, CatBoost can create new categorical
features from combinations of existing features. The numerical values associated with
the category levels of individual features or combinations of features depend on their
relationship with the outcome value. In the classification case, this is related to the
probability of observing the positive class, computed cumulatively over the sample, based
on a prior, and with a smoothing factor. See the CatBoost documentation for more detailed
numerical examples.

The LightGBM implementation groups the levels of the categorical features to maximize
homogeneity (or minimize variance) within groups with respect to the outcome values.
The XGBoost implementation does not handle categorical features directly and requires
one-hot (or dummy) encoding.

Additional features and optimizations

XGBoost optimizes computation in several respects to enable multithreading. Most
importantly, it keeps data in memory in compressed column blocks, where each column is
sorted by the corresponding feature value. It computes this input data layout once before
training and reuses it throughout to amortize the up-front cost. As a result, the search for
split statistics over columns becomes a linear scan of quantiles that can be done in parallel
and supports column subsampling.

The subsequently released LightGBM and CatBoost libraries built on these innovations, and
LightGBM further accelerated training through optimized threading and reduced memory
usage. Because of their open source nature, libraries have tended to converge over time.

Chapter 12

[383]

XGBoost also supports monotonicity constraints. These constraints ensure that the values
for a given feature are only positively or negatively related to the outcome over its entire
range. They are useful to incorporate external assumptions about the model that are known
to be true.

A long-short trading strategy with boosting
In this section, we'll design, implement, and evaluate a trading strategy for US equities
driven by daily return forecasts produced by gradient boosting models. We'll use the
Quandl Wiki data to engineer a few simple features (see the notebook preparing_the_
model_data for details), select a model while using 2015/16 as validation period, and run an
out-of-sample test for 2017.

As in the previous examples, we'll lay out a framework and build a specific example that
you can adapt to run your own experiments. There are numerous aspects that you can vary,
from the asset class and investment universe to more granular aspects like the features,
holding period, or trading rules. See, for example, the Alpha Factor Library in the Appendix
for numerous additional features.

We'll keep the trading strategy simple and only use a single ML signal; a real-life
application will likely use multiple signals from different sources, such as complementary
ML models trained on different datasets or with different lookahead or lookback periods.
It would also use sophisticated risk management, from simple stop-loss to value-at-risk
analysis.

Generating signals with LightGBM and CatBoost
XGBoost, LightGBM, and CatBoost offer interfaces for multiple languages, including
Python, and have both a scikit-learn interface that is compatible with other scikit-learn
features, such as GridSearchCV and their own methods to train and predict gradient
boosting models. The notebook boosting_baseline.ipynb that we used in the first two
sections of this chapter illustrates the scikit-learn interface for each library. The notebook
compares the predictive performance and running times of various libraries. It does so by
training boosting models to predict monthly US equity returns for the 2001-2018 range with
the features we created in Chapter 4, Financial Feature Engineering – How to Research Alpha
Factors.

The left panel of the following image displays the predictive accuracy of the forecasts of
1-month stock price movements using default settings for all implementations, measured in
terms of the mean AUC resulting from 12-fold cross-validation:

Boosting Your Trading Strategy

[384]

Figure 12.7: Predictive performance and runtimes of the various gradient boosting models

The predictive performance varies from 0.525 to 0.541. This may look like a small range
but with the random benchmark AUC at 0.5, the worst-performing model improves on the
benchmark by 5 percent while the best does so by 8 percent, which, in turn, is a relative
rise of 60 percent. CatBoost with GPUs and LightGBM (using integer-encoded categorical
variables) perform best, underlining the benefits of converting categorical into numerical
variables outlined previously.

The running time for the experiment varies much more significantly than the predictive
performance. LightGBM is 10x faster on this dataset than either XGBoost or CatBoost
(using GPU) while delivering very similar predictive performance. Due to this large speed
advantage and because GPU is not available to everyone, we'll focus on LightGBM but also
illustrate how to use CatBoost; XGBoost works very similarly to both.

Working with LightGBM and CatBoost models entails:

1. Creating library-specific binary data formats
2. Configuring and tuning various hyperparameters
3. Evaluating the results

We will describe these steps in the following sections. The notebook trading_signals_
with_lightgbm_and_catboost contains the code examples for this subsection, unless
otherwise noted.

From Python to C++ – creating binary data formats

LightGBM and CatBoost are written in C++ and translate Python objects, like a pandas
DataFrame, into binary data formats before precomputing feature statistics to accelerate the
search for split points, as described in the previous section. The result can be persisted to
accelerate the start of subsequent training.

We'll subset the dataset mentioned in the preceding section through the end of 2016 to
cross-validate several model configurations for various lookback and lookahead windows,
as well as different roll-forward periods and hyperparameters. Our approach to model
selection will be similar to the one we used in the previous chapter and uses the custom
MultipleTimeSeriesCV introduced in Chapter 7, Linear Models – From Risk Factors to Return
Forecasts.

Chapter 12

[385]

We select the train and validation sets, identify labels and features, and integer-encode
categorical variables with values starting at zero, as expected by LightGBM (not necessary
as long as the category codes have values less than 232, but avoids a warning):

data = (pd.read_hdf('data.h5', 'model_data')

 .sort_index()

 .loc[idx[:, :'2016'], :])

labels = sorted(data.filter(like='fwd').columns)
features = data.columns.difference(labels).tolist()

categoricals = ['year', 'weekday', 'month']

for feature in categoricals:

 data[feature] = pd.factorize(data[feature], sort=True)[0]

The notebook example iterates over many configurations, optionally using random
samples to speed up model selection using a diverse subset. The goal is to identify the most
impactful parameters without trying every possible combination.

To do so, we create the binary Dataset objects. For LightGBM, this looks as follows:

import lightgbm as lgb

outcome_data = data.loc[:, features + [label]].dropna()

lgb_data = lgb.Dataset(data=outcome_data.drop(label, axis=1),

 label=outcome_data[label],

 categorical_feature=categoricals,

 free_raw_data=False)

The CatBoost data structure is called Pool and works similarly:

cat_cols_idx = [outcome_data.columns.get_loc(c) for c in categoricals]

catboost_data = Pool(label=outcome_data[label],

 data=outcome_data.drop(label, axis=1),

 cat_features=cat_cols_idx)

For both libraries, we identify the categorical variables for conversion into numerical
variables based on outcome information, as described in the previous section. The CatBoost
implementation needs feature columns to be identified using indices rather than labels.

We can simply slice the binary datasets using the train and validation set indices provided
by MultipleTimeSeriesCV during cross-validation as follows, combining both examples into
one snippet:

for i, (train_idx, test_idx) in enumerate(cv.split(X=outcome_data)):

 lgb_train = lgb_data.subset(train_idx.tolist()).construct()

 train_set = catboost_data.slice(train_idx.tolist())

Boosting Your Trading Strategy

[386]

How to tune hyperparameters

LightGBM and CatBoost implementations come with numerous hyperparameters that
permit fine-grained control. Each library has parameter settings to:

• Specify the task objective and learning algorithm

• Design the base learners

• Apply various regularization techniques

• Handle early stopping during training

• Enable the use of GPU or parallelization on CPU

The documentation for each library details the various parameters. Since they implement
variations of the same algorithms, parameters may refer to the same concept but have
different names across libraries. The GitHub repository lists resources that clarify which
XGBoost and LightGBM parameters have a comparable effect.

Objectives and loss functions

The libraries support several boosting algorithms, including gradient boosting for trees and
linear base learners, as well as DART for LightGBM and XGBoost. LightGBM also supports
the GOSS algorithm, which we described previously, as well as random forests.

The appeal of gradient boosting consists of the efficient support of arbitrary differentiable
loss functions, and each library offers various options for regression, classification, and
ranking tasks. In addition to the chosen loss function, additional evaluation metrics can be
used to monitor performance during training and cross-validation.

Learning parameters

Gradient boosting models typically use decision trees to capture feature interaction, and
the size of individual trees is the most important tuning parameter. XGBoost and CatBoost
set the max_depth default to 6. In contrast, LightGBM uses a default num_leaves value of
31, which corresponds to five levels for a balanced tree, but imposes no constraints on
the number of levels. To avoid overfitting, num_leaves should be lower than 2max_depth. For
example, for a well-performing max_depth value of 7, you would set num_leaves to 70–80
rather than 27=128, or directly constrain max_depth.

The number of trees or boosting iterations defines the overall size of the ensemble. All
libraries support early_stopping to abort training once the loss functions register no further
improvements during a given number of iterations. As a result, it is often most efficient to
set a large number of iterations and stop training based on the predictive performance on a
validation set. However, keep in mind that the validation error will be biased upward due
to the implied lookahead bias.

The libraries also permit the use of custom loss metrics to track train and validation
performance and execute early_stopping. The notebook illustrates how to code the
information coefficient (IC) for LightGBM and CatBoost. However, we will not rely on
early_stopping for our experiments to avoid said bias.

Chapter 12

[387]

Regularization

All libraries implement the regularization strategies for base learners, such as minimum
values for the number of samples or the minimum information gain required for splits and
leaf nodes.

They also support regularization at the ensemble level using shrinkage, which is
implemented via a learning rate that constrains the contribution of new trees. It is also
possible to implement an adaptive learning rate via callback functions that lower the
learning rate as the training progresses, as has been successfully used in the context of
neural networks. Furthermore, the gradient boosting loss function can be constrained using
L1 or L2 regularization, similar to the ridge and lasso regression models, for example, by
increasing the penalty for adding more trees.

The libraries also allow for the use of bagging or column subsampling to randomize tree
growth for random forests and decorrelate prediction errors to reduce overall variance.
The quantization of features for approximate split finding adds larger bins as an additional
option to protect against overfitting.

Randomized grid search

To explore the hyperparameter space, we specify values for key parameters that we would
like to test in combination. The sklearn library supports RandomizedSearchCV to cross-
validate a subset of parameter combinations that are sampled randomly from specified
distributions. We will implement a custom version that allows us to monitor performance
so we can abort the search process once we're satisfied with the result, rather than
specifying a set number of iterations beforehand.

To this end, we specify options for the relevant hyperparameters of each library, generate
all combinations using the Cartesian product generator provided by the itertools library,
and shuffle the result.

In the case of LightGBM, we focus on the learning rate, the maximum size of the trees,
the randomization of the feature space during training, and the minimum number of data
points required for a split. This results in the following code, where we randomly select half
of the configurations:

learning_rate_ops = [.01, .1, .3]

max_depths = [2, 3, 5, 7]

num_leaves_opts = [2 ** i for i in max_depths]

feature_fraction_opts = [.3, .6, .95]

min_data_in_leaf_opts = [250, 500, 1000]

cv_params = list(product(learning_rate_ops,

 num_leaves_opts,

 feature_fraction_opts,

 min_data_in_leaf_opts))

n_params = len(cv_params)

Boosting Your Trading Strategy

[388]

randomly sample 50%

cvp = np.random.choice(list(range(n_params)),

 size=int(n_params / 2),

 replace=False)

cv_params_ = [cv_params[i] for i in cvp]

Now, we are mostly good to go: during each iteration, we create a MultipleTimeSeriesCV
instance based on the lookahead, train_period_length, and test_period_length
parameters, and cross-validate the selected hyperparameters accordingly over a 2-year
period.

Note that we generate validation predictions for a range of ensemble sizes so that we can
infer the optimal number of iterations:

num_iterations = [10, 25, 50, 75] + list(range(100, 501, 50))

num_boost_round = num_iterations[-1]

for lookahead, train_length, test_length in test_params:

 n_splits = int(2 * YEAR / test_length)

 cv = MultipleTimeSeriesCV(n_splits=n_splits,

 lookahead=lookahead,

 test_period_length=test_length,

 train_period_length=train_length)

 for p, param_vals in enumerate(cv_params_):

 for i, (train_idx, test_idx) in enumerate(cv.split(X=outcome_data)):

 lgb_train = lgb_data.subset(train_idx.tolist()).construct()

 model = lgb.train(params=params,

 train_set=lgb_train,

 num_boost_round=num_boost_round,

 verbose_eval=False)

 test_set = outcome_data.iloc[test_idx, :]

 X_test = test_set.loc[:, model.feature_name()]

 y_test = test_set.loc[:, label]

 y_pred = {str(n): model.predict(X_test, num_iteration=n) for n in
num_iterations}

Please see the notebook trading_signals_with_lightgbm_and_catboost for additional
details, including how to log results and compute and capture various metrics that we need
for the evaluation of the results, to which we'll turn to next.

How to evaluate the results

Now that cross-validation of numerous configurations has produced a large number of
results, we need to evaluate the predictive performance to identify the model that generates
the most reliable and profitable signals for our prospective trading strategy. The notebook
evaluate_trading_signals contains the code examples for this section.

Chapter 12

[389]

We produced a larger number of LightGBM models because it runs an order of magnitude
faster than CatBoost and will demonstrate some evaluation strategies accordingly.

Cross-validation results – LightGBM versus CatBoost

First, we compare the predictive performance of the models produced by the two libraries
across all configurations in terms of their validation IC, both across the entire validation
period and averaged over daily forecasts.

The following image shows that that LightGBM performs (slightly) better than CatBoost,
especially for longer horizons. This is not an entirely fair comparison because we ran more
configurations for LightGBM, which also, unsurprisingly, shows a wider dispersion of
outcomes:

Figure 12.8: Overall and daily IC for the LightGBM and CatBoost models over three prediction horizons

Regardless, we will focus on LightGBM results; see the notebooks trading_signals_with_
lightgbm_and_catboost and evaluate_trading_signals for more details on CatBoost or to
run your own experiments.

In view of the substantial dispersion across model results, let's take a closer look at the best-
performing parameter settings.

Best-performing parameter settings

The top-performing LightGBM models uses the following parameters for the three different
prediction horizons (see the notebook for details):

Lookahead
Learning
Rate

Leaves
Feature
Fraction

Min. Data
in Leaf

Daily Average Overall

IC # Rounds IC

Rounds

1 0.3 4 95% 1,000 1.70 75 4.41 50

1 0.3 4 95% 250 1.34 250 4.36 25

1 0.3 4 95% 1,000 1.70 75 4.30 75

5 0.1 8 95% 1,000 3.95 300 10.46 300

5 0.3 4 95% 1,000 3.43 150 10.32 50

Boosting Your Trading Strategy

[390]

5 0.3 4 95% 1,000 3.43 150 10.24 150

21 0.1 8 60% 500 5.84 25 13.97 10

21 0.1 32 60% 250 5.89 50 11.59 10

21 0.1 4 60% 250 7.33 75 11.40 10

Note that shallow trees produce the best overall IC across the three prediction horizons.
Longer training over 4.5 years also produced better results.

Hyperparameter impact – linear regression

Next, we'd like to understand if there's a systematic, statistical relationship between the
hyperparameters and the outcomes across daily predictions. To this end, we will run a
linear regression using the various LightGBM hyperparameter settings as dummy variables
and the daily validation IC as the outcome.

The chart in Figure 12.9 shows the coefficient estimates and their confidence intervals for
1- and 21-day forecast horizons. For the shorter horizon, a longer lookback period, a higher
learning rate, and deeper trees (more leaf nodes) have a positive impact. For the longer
horizon, the picture is a little less clear: shorter trees do better, but the lookback period is
not significant. A higher feature sampling rate also helps. In both cases, a larger ensemble
does better. Note that these results apply to this specific example only.

Figure 12.9: Coefficient estimates and their confidence intervals for different forecast horizons

Use IC instead of information coefficient
We average the top five models and provide the corresponding prices to Alphalens, in
order to compute the mean period-wise return earned on an equal-weighted portfolio
invested in the daily factor quintiles for various holding periods:

Chapter 12

[391]

Metric
Holding Period

1D 5D 10D 21D

Mean Period Wise
Spread (bps)

12.1654 6.9514 4.9465 4.4079

Ann. alpha 0.1759 0.0776 0.0446 0.0374

beta 0.0891 0.1516 0.1919 0.1983

We find a 12 bps spread between the top and the bottom quintile, which implies an annual
alpha of 0.176 while the beta is low at 0.089 (see Figure 12.10):

Figure 12.10: Average and cumulative returns by factor quantile

The following charts show the quarterly rolling IC for the 1-day and the 21-day forecasts
over the 2-year validation period for the best-performing models:

Figure 12.11: Rolling IC for 1-day and 21-day return forecasts

The average IC is 2.35 and 8.52 for the shorter and the longer horizon models, respectively,
and remain positive for the large majority of days in the sample.

We'll now take a look at how to gain additional insight into how the model works before we
select our models, generate predictions, define a trading strategy, and evaluate their performance.

Inside the black box – interpreting GBM results
Understanding why a model predicts a certain outcome is very important for several
reasons, including trust, actionability, accountability, and debugging. Insights into the
nonlinear relationship between features and the outcome uncovered by the model, as well
as interactions among features, are also of value when the goal is to learn more about the
underlying drivers of the phenomenon under study.

Boosting Your Trading Strategy

[392]

A common approach to gaining insights into the predictions made by tree ensemble
methods, such as gradient boosting or random forest models, is to attribute feature
importance values to each input variable. These feature importance values can be computed
on an individual basis for a single prediction or globally for an entire dataset (that is, for all
samples) to gain a higher-level perspective of how the model makes predictions.

The code examples for this section are in the notebook model_interpretation.

Feature importance

There are three primary ways to compute global feature importance values:

• Gain: This classic approach, introduced by Leo Breiman in 1984, uses the total
reduction of loss or impurity contributed by all splits for a given feature. The
motivation is largely heuristic, but it is a commonly used method to select features.

• Split count: This is an alternative approach that counts how often a feature is used
to make a split decision, based on the selection of features for this purpose based on
the resultant information gain.

• Permutation: This approach randomly permutes the feature values in a test set and
measures how much the model's error changes, assuming that an important feature
should create a large increase in the prediction error. Different permutation choices
lead to alternative implementations of this basic approach.

Individualized feature importance values that compute the relevance of features for a single
prediction are less common. This is because available model-agnostic explanation methods
are much slower than tree-specific methods.

All gradient boosting implementations provide feature-importance scores after training as
a model attribute. The LightGBM library provides two versions, as shown in the following
list:

• gain: Contribution of a feature to reducing the loss

• split: The number of times the feature was used

These values are available using the trained model's .feature_importance() method with
the corresponding importance_type parameter. For the best-performing LightGBM model,
the results for the 20 most important features are as shown in Figure 12.12:

Chapter 12

[393]

Figure 12.12: LightGBM feature importance

The time period indicators dominate, followed by the latest returns, the normalized ATR,
the sector dummy, and the momentum indicator (see the notebook for implementation
details).

Partial dependence plots

In addition to the summary contribution of individual features to the model's prediction,
partial dependence plots visualize the relationship between the target variable and a set of
features. The nonlinear nature of gradient boosting trees causes this relationship to depend
on the values of all other features. Hence, we will marginalize these features out. By doing
so, we can interpret the partial dependence as the expected target response.

We can visualize partial dependence only for individual features or feature pairs. The latter
results in contour plots that show how combinations of feature values produce different
predicted probabilities, as shown in the following code:

fig, axes = plot_partial_dependence(estimator=best_model,
 X=X,

 features=['return_12m', 'return_6m',

 'CMA', ('return_12m',
 'return_6m')],

 percentiles=(0.01, 0.99),

 n_jobs=-1,

 n_cols=2,

 grid_resolution=250)

Boosting Your Trading Strategy

[394]

After some additional formatting (see the companion notebook), we obtain the results
shown in Figure 12.13:

Figure 12.13: Partial dependence plots for scikit-learn GradientBoostingClassifier

The lower-right plot shows the dependence of the probability of a positive return over
the next month, given the range of values for lagged 12-month and 6-month returns, after
eliminating outliers at the [1%, 99%] percentiles. The month_9 variable is a dummy variable,
hence the step-function-like plot. We can also visualize the dependency in 3D, as shown in
the following code:

targets = ['return_12m', 'return_6m']

pdp, axes = partial_dependence(estimator=gb_clf,

 features=targets,

 X=X_,

 grid_resolution=100)

XX, YY = np.meshgrid(axes[0], axes[1])

Z = pdp[0].reshape(list(map(np.size, axes))).T

fig = plt.figure(figsize=(14, 8))

Chapter 12

[395]

ax = Axes3D(fig)
surf = ax.plot_surface(XX, YY, Z,

 rstride=1,

 cstride=1,

 cmap=plt.cm.BuPu,

 edgecolor='k')

ax.set_xlabel(' '.join(targets[0].split('_')).capitalize())

ax.set_ylabel(' '.join(targets[1].split('_')).capitalize())

ax.set_zlabel('Partial Dependence')

ax.view_init(elev=22, azim=30)

This produces the following 3D plot of the partial dependence of the 1-month return
direction on lagged 6-month and 12-months returns:

Figure 12.14: Partial dependence as a 3D plot

SHapley Additive exPlanations

At the 2017 NIPS conference, Scott Lundberg and Su-In Lee, from the University of
Washington, presented a new and more accurate approach to explaining the contribution
of individual features to the output of tree ensemble models called SHapley Additive
exPlanations, or SHAP values.

This new algorithm departs from the observation that feature-attribution methods for tree
ensembles, such as the ones we looked at earlier, are inconsistent—that is, a change in a
model that increases the impact of a feature on the output can lower the importance values
for this feature (see the references on GitHub for detailed illustrations of this).

Boosting Your Trading Strategy

[396]

SHAP values unify ideas from collaborative game theory and local explanations, and
have been shown to be theoretically optimal, consistent, and locally accurate based on
expectations. Most importantly, Lundberg and Lee have developed an algorithm that
manages to reduce the complexity of computing these model-agnostic, additive feature-
attribution methods from O(TLDM) to O(TLD2), where T and M are the number of trees and
features, respectively, and D and L are the maximum depth and number of leaves across
the trees. This important innovation permits the explanation of predictions from previously
intractable models with thousands of trees and features in a fraction of a second. An open
source implementation became available in late 2017 and is compatible with XGBoost,
LightGBM, CatBoost, and sklearn tree models.

Shapley values originated in game theory as a technique for assigning a value to each
player in a collaborative game that reflects their contribution to the team's success.
SHAP values are an adaptation of the game theory concept to tree-based models and are
calculated for each feature and each sample. They measure how a feature contributes to the
model output for a given observation. For this reason, SHAP values provide differentiated
insights into how the impact of a feature varies across samples, which is important, given
the role of interaction effects in these nonlinear models.

How to summarize SHAP values by feature

To get a high-level overview of the feature importance across a number of samples, there
are two ways to plot the SHAP values: a simple average across all samples that resembles
the global feature-importance measures computed previously (as shown in the left-hand
panel of Figure 12.15), or a scatterplot to display the impact of every feature for every
sample (as shown in the right-hand panel of the figure). They are very straightforward
to produce using a trained model from a compatible library and matching input data, as
shown in the following code:

load JS visualization code to notebook

shap.initjs()

explain the model's predictions using SHAP values

explainer = shap.TreeExplainer(model)

shap_values = explainer.shap_values(X_test)

shap.summary_plot(shap_values, X_test, show=False)

The scatterplot sorts features by their total SHAP values across all samples and then shows
how each feature impacts the model output, as measured by the SHAP value, as a function
of the feature's value, represented by its color, where red represents high values and blue
represents low values relative to the feature's range:

Chapter 12

[397]

Figure 12.15: SHAP summary plots

There are some interesting differences compared to the conventional feature importance
shown in Figure 12.12; namely, the MACD indicator turns out more important, as well as
the relative return measures.

How to use force plots to explain a prediction

The force plot in the following image shows the cumulative impact of various features
and their values on the model output, which in this case was 0.6, quite a bit higher than
the base value of 0.13 (the average model output over the provided dataset). Features
highlighted in red with arrows pointing to the right increase the output. The month being
October is the most important feature and increases the output from 0.338 to 0.537, whereas
the year being 2017 reduces the output.

Hence, we obtain a detailed breakdown of how the model arrived at a specific prediction,
as shown in the following plot:

Figure 12.16: SHAP force plot

Boosting Your Trading Strategy

[398]

We can also compute force plots for multiple data points or predictions at a time and use
a clustered visualization to gain insights into how prevalent certain influence patterns are
across the dataset. The following plot shows the force plots for the first 1,000 observations
rotated by 90 degrees, stacked horizontally, and ordered by the impact of different features
on the outcome for the given observation.

The implementation uses hierarchical agglomerative clustering of data points on the feature
SHAP values to identify these patterns, and displays the result interactively for exploratory
analysis (see the notebook), as shown in the following code:

shap.force_plot(explainer.expected_value, shap_values[:1000,:],
 X_test.iloc[:1000])

This produces the following output:

Figure 12.17: SHAP clustered force plot

How to analyze feature interaction

Lastly, SHAP values allow us to gain additional insights into the interaction effects between
different features by separating these interactions from the main effects. shap.dependence_
plot can be defined as follows:

shap.dependence_plot(ind='r01',

 shap_values=shap_values,

 features=X,

 interaction_index='r05',

 title='Interaction between 1- and 5-Day Returns')

It displays how different values for 1-month returns (on the x-axis) affect the outcome
(SHAP value on the y-axis), differentiated by 3-month returns (see the following plot):

Chapter 12

[399]

Figure 12.18: SHAP interaction plot

SHAP values provide granular feature attribution at the level of each individual prediction
and enable much richer inspection of complex models through (interactive) visualization.
The SHAP summary dot plot displayed earlier in this section (Figure 12.15) offers much
more differentiated insights than a global feature-importance bar chart. Force plots of
individual clustered predictions allow more detailed analysis, while SHAP dependence
plots capture interaction effects and, as a result, provide more accurate and detailed results
than partial dependence plots.

The limitations of SHAP values, as with any current feature-importance measure, concern
the attribution of the influence of variables that are highly correlated because their similar
impact can be broken down in arbitrary ways.

Backtesting a strategy based on a boosting ensemble
In this section, we'll use Zipline to evaluate the performance of a long-short strategy that
enters 25 long and 25 short positions based on a daily return forecast signal. To this end,
we'll select the best-performing models, generate forecasts, and design trading rules that act
on these predictions.

Based on our evaluation of the cross-validation results, we'll select one or several models
to generate signals for a new out-of-sample period. For this example, we'll combine
predictions for the best 10 LightGBM models to reduce variance for the 1-day forecast
horizon based on its solid mean quantile spread computed by Alphalens.

Boosting Your Trading Strategy

[400]

We just need to obtain the parameter settings for the best-performing models and then
train accordingly. The notebook making_out_of_sample_predictions contains the requisite
code. Model training uses the hyperparameter settings of the best-performing models and
data for the test period, but otherwise follows the logic used during cross-validation very
closely, so we'll omit the details here.

In the notebook backtesting_with_zipline, we've combined the predictions of the top 10
models for the validation and test periods, as follows:

def load_predictions(bundle):

 predictions = (pd.read_hdf('predictions.h5', 'train/01')

 .append(pd.read_hdf('predictions.h5', 'test/01')
 .drop('y_test', axis=1)))

 predictions = (predictions.loc[~predictions.index.duplicated()]

 .iloc[:, :10]

 .mean(1)

 .sort_index()

 .dropna()

 .to_frame('prediction'))

We'll use the custom ML factor that we introduced in Chapter 8, The ML4T Workflow – From
Model to Strategy Backtesting, to import the predictions and make it accessible in a pipeline.

We'll execute Pipeline from the beginning of the validation period to the end of the test
period. Figure 12.19 shows (unsurprisingly) solid in-sample performance with annual
returns of 27.3 percent, compared to 8.0 percent out-of-sample. The right panel of the image
shows the cumulative returns relative to the S&P 500:

Metric All In-sample Out-of-sample

Annual return 20.60% 27.30% 8.00%

Cumulative returns 75.00% 62.20% 7.90%

Annual volatility 19.40% 21.40% 14.40%

Sharpe ratio 1.06 1.24 0.61

Max drawdown -17.60% -17.60% -9.80%

Sortino ratio 1.69 2.01 0.87

Skew 0.86 0.95 -0.16

Kurtosis 8.61 7.94 3.07

Daily value at risk -2.40% -2.60% -1.80%

Daily turnover 115.10% 108.60% 127.30%

Alpha 0.18 0.25 0.05

Beta 0.24 0.24 0.22

The Sharpe ratio is 1.24 in-sample and 0.61 out-of-sample; the right panel shows the
quarterly rolling value. Alpha is 0.25 in-sample versus 0.05 out-of-sample, with beta values
of 0.24 and 0.22, respectively. The worst drawdown leads to losses of 17.59 percent in the
second half of 2015:

Chapter 12

[401]

Figure 12.19: Strategy performance—cumulative returns and rolling Sharpe ratio

Long trades are slightly more profitable than short trades, which lose on average:

Summary stats All trades Short trades Long trades

Total number of round_trips 22,352 11,631 10,721

Percent profitable 50.0% 48.0% 51.0%

Winning round_trips 11,131 5,616 5,515

Losing round_trips 11,023 5,935 5,088

Even round_trips 198 80 118

Lessons learned and next steps
Overall, we can see that despite using only market data in a highly liquid environment, the
gradient boosting models manage to deliver predictions that are significantly better than
random guesses. Clearly, profits are anything but guaranteed, not least since we made very
generous assumptions regarding transaction costs (note the high turnover).

However, there are several ways to improve on this basic framework, that is, by varying
parameters from more general and strategic to more specific and tactical aspects, such as:

1. Try a different investment universe (for example, fewer liquid stocks or other
assets).

2. Be creative about adding complementary data sources.

3. Engineer more sophisticated features.

4. Vary the experiment setup using, for example, longer or shorter holding and
lookback periods.

5. Come up with more interesting trading rules and use several rather than a single
ML signal.

Hopefully, these suggestions inspire you to build on the template we laid out and come up
with an effective ML-driven trading strategy!

Boosting Your Trading Strategy

[402]

Boosting for an intraday strategy
We introduced high-frequency trading (HFT) in Chapter 1, Machine Learning for Trading –
From Idea to Execution, as a key trend that accelerated the adoption of algorithmic strategies.
There is no objective definition of HFT that pins down the properties of the activities
it encompasses, including holding periods, order types (for example, passive versus
aggressive), and strategies (momentum or reversion, directional or liquidity provision,
and so on). However, most of the more technical treatments of HFT seem to agree that the
data driving HFT activity tends to be the most granular available. Typically, this would
be microstructure data directly from the exchanges such as the NASDAQ ITCH data
that we introduced in Chapter 2, Market and Fundamental Data – Sources and Techniques, to
demonstrate how it details every order placed, every execution, and every cancelation, and
thus permits the reconstruction of the full limit order book, at least for equities and except
for certain hidden orders.

The application of ML to HFT includes the optimization of trade execution both on official
exchanges and in dark pools. ML can also be used to generate trading signals, as we will
show in this section; see also Kearns and Nevmyvaka (2013) for additional details and
examples of how ML can add value in the HFT context.

This section uses the AlgoSeek NASDAQ 100 dataset from the Consolidated Feed
produced by the Securities Information Processor. The data includes information on the
National Best Bid and Offer quotes and trade prices at minute bar frequency. It also
contains some features on the price dynamic, such as the number of trades at the bid or ask
price, or those following positive and negative price moves at the tick level (see Chapter 2,
Market and Fundamental Data – Sources and Techniques, for additional background and the
download and preprocessing instructions in the data directory in the GitHub repository).

We'll first describe how we can engineer features for this dataset, then train a gradient
boosting model to predict the volume-weighted average price for the next minute, and then
evaluate the quality of the resulting trading signals.

Engineering features for high-frequency data
The dataset that AlgoSeek generously made available for this book contains over 50
variables on 100 tickers for any given day at minute frequency for the period 2013-2017. The
data also covers pre-market and after-hours trading, but we'll limit this example to official
market hours to the 390 minutes from 9:30 a.m. to 4:00 p.m. to somewhat restrict the size of
the data, as well as to avoid having to deal with periods of irregular trading activity. See the
notebook intraday_features for the code examples in this section.

We'll select 12 variables with over 51 million observations as raw material to create features
for an ML model. This will aim predict the 1-min forward return for the volume-weighted
average price:

MultiIndex: 51242505 entries, ('AAL', Timestamp('2014-12-22 09:30:00')) to
('YHOO', Timestamp('2017-06-16 16:00:00'))

Chapter 12

[403]

Data columns (total 12 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 first 51242500 non-null float64
 1 high 51242500 non-null float64
 2 low 51242500 non-null float64
 3 last 51242500 non-null float64
 4 price 49242369 non-null float64
 5 volume 51242505 non-null int64

 6 up 51242505 non-null int64

 7 down 51242505 non-null int64

 8 rup 51242505 non-null int64

 9 rdown 51242505 non-null int64

 10 atask 51242505 non-null int64

 11 atbid 51242505 non-null int64

dtypes: float64(5), int64(7)
memory usage: 6.1+ GB

Due to the large memory footprint of the data, we only create 20 simple features, namely:

• The lagged returns for each of the last 10 minutes.

• The number of shares traded with upticks and downticks during a bar, divided by
the total number of shares.

• The number of shares traded where the trade price is the same (repeated) following
and upticks or downticks during a bar, divided by the total number of shares.

• The difference between the number of shares traded at the ask versus the bid price,
divided by total volume during the bar.

• Several technical indicators, including the Balance of Power, the Commodity
Channel Index, and the Stochastic RSI (see the Appendix, Alpha Factor Library, for
details).

We'll make sure that we shift the data to avoid lookahead bias, as exemplified by the
computation of the Money Flow Index, which uses the TA-Lib implementation:

data['MFI'] = (by_ticker

 .apply(lambda x: talib.MFI(x.high,

 x.low,

 x['last'],

 x.volume,

 timeperiod=14)

 .shift()))

The following graph shows a standalone evaluation of the individual features' predictive
content using their rank correlation with the 1-minute forward returns. It reveals that the
recent lagged returns are presumably the most informative variables:

Boosting Your Trading Strategy

[404]

Figure 12.20: Information coefficient for high-frequency features

We can now proceed to train a gradient boosting model using these features.

Minute-frequency signals with LightGBM
To generate predictive signals for our HFT strategy, we'll train a LightGBM boosting model
to predict the 1-min forward returns. The model receives 12 months of minute data during
training the model and generates out-of-sample forecasts for the subsequent 21 trading
days. We'll repeat this for 24 train-test splits to cover the last 2 years of our 5-year sample.

The training process follows the preceding LightGBM example closely; see the notebook
intraday_model for the implementation details.

One key difference is the adaptation of the custom MultipleTimeSeriesCV to minute
frequency; we'll be referencing the date_time level of MultiIndex (see notebook for
implementation). We compute the lengths of the train and test periods based on 390
observations per ticker and day as follows:

DAY = 390 # minutes; 6.5 hrs (9:30 - 15:59)

MONTH = 21 # trading days

n_splits = 24

cv = MultipleTimeSeriesCV(n_splits=n_splits,

 lookahead=1,

 test_period_length=MONTH * DAY,

 train_period_length=12 * MONTH * DAY,

 date_idx='date_time')

The large data size significantly drives up training time, so we use default settings but set
the number to trees per ensemble to 250. We track the IC on the test set using the following
ic_lgbm() custom metric definition that we pass to the model's .train() method.

The custom metric receives the model prediction and the binary training dataset, which
we can use to compute any metric of interest; note that we set is_higher_better to True
since the model minimizes loss functions by default (see the LightGBM documentation for
additional information):

Chapter 12

[405]

def ic_lgbm(preds, train_data):

 """Custom IC eval metric for lightgbm"""

 is_higher_better = True

 return 'ic', spearmanr(preds, train_data.get_label())[0], is_higher_
better

model = lgb.train(params=params,

 train_set=lgb_train,

 valid_sets=[lgb_train, lgb_test],

 feval=ic_lgbm,

 num_boost_round=num_boost_round,

 early_stopping_rounds=50,

 verbose_eval=50)

At 250 iterations, the validation IC is still improving for most folds, so our results are not
optimal, but training already takes several hours this way. Let's now take a look at the
predictive content of the signals generated by our model.

Evaluating the trading signal quality
Now, we would like to know how accurate the model's out-of-sample predictions are, and
whether they could be the basis for a profitable trading strategy.

First, we compute the IC, both for all predictions and on a daily basis, as follows:

ic = spearmanr(cv_preds.y_test, cv_preds.y_pred)[0]

by_day = cv_preds.groupby(cv_preds.index.get_level_values('date_time').date)

ic_by_day = by_day.apply(lambda x: spearmanr(x.y_test, x.y_pred)[0])

daily_ic_mean = ic_by_day.mean()

daily_ic_median = ic_by_day.median()

For the 2 years of rolling out-of-sample tests, we obtain a statistically significant, positive
1.90. On a daily basis, the mean IC is 1.98 and the median IC equals 1.91.

These results clearly suggest that the predictions contain meaningful information about the
direction and size of short-term price movements that we could use for a trading strategy.

Next, we calculate the average and cumulative forward returns for each decile of the
predictions:

dates = cv_preds.index.get_level_values('date_time').date

cv_preds['decile'] = (cv_preds.groupby(dates, group_keys=False)

min_ret_by_decile = cv_preds.groupby(['date_time', 'decile']).y_test.mean()

 .apply(lambda x: pd.qcut(x.y_pred, q=10))))

Boosting Your Trading Strategy

[406]

cumulative_ret_by_decile = (min_ret_by_decile

 .unstack('decile')

 .add(1)

 .cumprod()

 .sub(1))

Figure 12.21 displays the results. The left panel shows the average 1-min return per decile
and indicates an average spread of 0.5 basis points per minute. The right panel shows the
cumulative return of an equal-weighted portfolio invested in each decile, suggesting that—
before transaction costs—a long-short strategy appears attractive:

Figure 12.21: Average 1-min returns and cumulative returns by decile

The backtest with minute data is quite time-consuming, so we've omitted this step;
however, feel free to experiment with Zipline or backtrader to evaluate this strategy under
more realistic assumptions regarding transaction costs or using proper risk controls.

Summary
In this chapter, we explored the gradient boosting algorithm, which is used to build
ensembles in a sequential manner, adding a shallow decision tree that only uses a very
small number of features to improve on the predictions that have been made. We saw how
gradient boosting trees can be very flexibly applied to a broad range of loss functions, as
well as offer many opportunities to tune the model to a given dataset and learning task.

Recent implementations have greatly facilitated the use of gradient boosting. They've done
this by accelerating the training process and offering more consistent and detailed insights
into the importance of features and the drivers of individual predictions.

Finally, we developed a simple trading strategy driven by an ensemble of gradient boosting
models that was actually profitable, at least before significant trading costs. We also saw
how to use gradient boosting with high-frequency data.

In the next chapter, we will turn to Bayesian approaches to machine learning.

[407]

13
Data-Driven Risk Factors and Asset

Allocation with Unsupervised Learning

Chapter 6, The Machine Learning Process, introduced how unsupervised learning adds value
by uncovering structures in data without the need for an outcome variable to guide the
search process. This contrasts with supervised learning, which was the focus of the last
several chapters: instead of predicting future outcomes, unsupervised learning aims to
learn an informative representation of the data that helps explore new data, discover useful
insights, or solve some other task more effectively.

Dimensionality reduction and clustering are the main tasks for unsupervised learning:

• Dimensionality reduction transforms the existing features into a new, smaller set
while minimizing the loss of information. Algorithms differ by how they measure
the loss of information, whether they apply linear or nonlinear transformations or
which constraints they impose on the new feature set.

• Clustering algorithms identify and group similar observations or features instead
of identifying new features. Algorithms differ in how they define the similarity of
observations and their assumptions about the resulting groups.

These unsupervised algorithms are useful when a dataset does not contain an outcome.
For instance, we may want to extract tradeable information from a large body of financial
reports or news articles. In Chapter 14, Text Data for Trading – Sentiment Analysis, we'll use
topic modeling to discover hidden themes that allow us to explore and summarize content
more effectively, and identify meaningful relationships that can help us to derive signals.

The algorithms are also useful when we want to extract information independently from
an outcome. For example, rather than using third-party industry classifications, clustering
allows us to identify synthetic groupings based on the attributes of assets useful for our
purposes, such as returns over a certain time horizon, exposure to risk factors, or similar
fundamentals. In this chapter, we will learn how to use clustering to manage portfolio risks
by identifying hierarchical relationships among asset returns.

Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning

[408]

More specifically, after reading this chapter, you will understand:

• How principal component analysis (PCA) and independent component analysis
(ICA) perform linear dimensionality reduction

• Identifying data-driven risk factors and eigenportfolios from asset returns using PCA

• Effectively visualizing nonlinear, high-dimensional data using manifold learning

• Using T-SNE and UMAP to explore high-dimensional image data

• How k-means, hierarchical, and density-based clustering algorithms work

• Using agglomerative clustering to build robust portfolios with hierarchical risk parity

Dimensionality reduction
In linear algebra terms, the features of a dataset create a vector space whose dimensionality
corresponds to the number of linearly independent rows or columns, whichever is larger.
Two columns are linearly dependent when they are perfectly correlated so that one can be
computed from the other using the linear operations of addition and multiplication.

In other words, they are parallel vectors that represent the same direction rather than
different ones in the data and thus only constitute a single dimension. Similarly, if one
variable is a linear combination of several others, then it is an element of the vector space
created by those columns and does not add a new dimension of its own.

The number of dimensions of a dataset matters because each new dimension can add a
signal concerning an outcome. However, there is also a downside known as the curse
of dimensionality: as the number of independent features grows while the number of
observations remains constant, the average distance between data points also grows,
and the density of the feature space drops exponentially, with dramatic implications for
machine learning (ML). Prediction becomes much harder when observations are more
distant, that is, different from each other. Alternative data sources, like text and images,
typically are of high dimensionality, but they generally affect models that rely on a large
number of features. The next section addresses the resulting challenges.

Dimensionality reduction seeks to represent the data more efficiently by using fewer
features. To this end, algorithms project the data to a lower-dimensional space while
discarding any variation that is not informative, or by identifying a lower-dimensional
subspace or manifold on or near to where the data lives.

A manifold is a space that locally resembles Euclidean space. One-dimensional manifolds
include a line or a circle, but not the visual representation of the number eight due to the
crossing point.

You can find the code samples for this chapter and links to additional
resources in the corresponding directory of the GitHub repository. The
notebooks include color versions of the images.

Chapter 13

[409]

The manifold hypothesis maintains that high-dimensional data often resides in a lower-
dimensional space, which, if identified, permits a faithful representation of the data in this
subspace. Refer to Fefferman, Mitter, and Narayanan (2016) for background information
and the description of an algorithm that tests this hypothesis.

Dimensionality reduction, therefore, compresses the data by finding a different, smaller
set of variables that capture what matters most in the original features to minimize the loss
of information. Compression helps counter the curse of dimensionality, economizes on
memory, and permits the visualization of salient aspects of higher-dimensional data that is
otherwise very difficult to explore.

Dimensionality reduction algorithms differ by the constraints they impose on the new
variables and how they aim to minimize the loss of information (see Burges 2010 for an
excellent overview):

• Linear algorithms like PCA and ICA constrain the new variables to be linear
combinations of the original features; for example, hyperplanes in a lower-
dimensional space. Whereas PCA requires the new features to be uncorrelated, ICA
goes further and imposes statistical independence, implying the absence of both
linear and nonlinear relationships.

• Nonlinear algorithms are not restricted to hyperplanes and can capture a more
complex structure in the data. However, given the infinite number of options, the
algorithms still need to make assumptions in order to arrive at a solution. Later in
this section, we will explain how t-distributed Stochastic Neighbor Embedding
(t-SNE) and Uniform Manifold Approximation and Projection (UMAP) are
very useful to visualize higher-dimensional data. Figure 13.1 illustrates how
manifold learning identifies a two-dimensional subspace in the three-dimensional
feature space. (The notebook manifold_learning illustrates the use of additional
algorithms, including local linear embedding.)

Figure 13.1: Nonlinear dimensionality reduction

The curse of dimensionality
An increase in the number of dimensions of a dataset means that there are more entries in
the vector of features that represents each observation in the corresponding Euclidean space.

Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning

[410]

We measure the distance in a vector space using the Euclidean distance, also known as
the L2 norm, which we applied to the vector of linear regression coefficients to train a
regularized ridge regression.

The Euclidean distance between two n-dimensional vectors with Cartesian coordinates p
= (p1, p2, ..., pn

) and q = (q1, q2, ..., qn
) is computed using the familiar formula developed by

Pythagoras:

 𝑑𝑑(𝑝𝑝 , 𝑞𝑞) = √∑(𝑝𝑝𝑖𝑖 − 𝑞𝑞𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

Therefore, each new dimension adds a non-negative term to the sum so that the distance
increases with the number of dimensions for distinct vectors. In other words, as the
number of features grows for a given number of observations, the feature space becomes
increasingly sparse, that is, less dense or emptier. On the flip side, the lower data density
requires more observations to keep the average distance between the data points the same.

Figure 13.2 illustrates the exponential growth in the number of data points needed to
maintain the average distance among observations as the number of dimensions increases.
10 points uniformly distributed on a line correspond to 102 points in two dimensions and
103 points in three dimensions in order to keep the density constant.

Figure 13.2: The number of features required to keep the average distance constant grows exponentially with the
number of dimensions

The notebook the_curse_of_dimensionality in the GitHub repository folder for this section
simulates how the average and minimum distances between data points increase as the
number of dimensions grows (see Figure 13.3).

Figure 13.3: Average distance of 1,000 data points in a unit hypercube

Chapter 13

[411]

The simulation randomly samples up to 2,500 features in the range [0, 1] from
an uncorrelated uniform or a correlated normal distribution. The average distance between
data points increases to over 11 times the unitary feature range for the normal distribution,
and to over 20 times in the (extreme) case of an uncorrelated uniform distribution.

When the distance between observations grows, supervised ML becomes more difficult
because predictions for new samples are less likely to be based on learning from similar
training features. Put simply, the number of possible unique rows grows exponentially as the
number of features increases, making it much harder to efficiently sample the space. Similarly,
the complexity of the functions learned by flexible algorithms that make fewer assumptions
about the actual relationship grows exponentially with the number of dimensions.

Flexible algorithms include the tree-based models we saw in Chapter 11, Random Forests
– A Long-Short Strategy for Japanese Stocks, and Chapter 12, Boosting Your Trading Strategy.
They also include the deep neural networks that we will cover later in the book, starting
with Chapter 16, Word Embeddings for Earnings Calls and SEC Filings. The variance of these
algorithms increases as more dimensions add opportunities to overfit to noise, resulting in
poor generalization performance.

Dimensionality reduction leverages the fact that, in practice, features are often correlated
or exhibit little variation. If so, it can compress data without losing much of the signal and
complements the use of regularization to manage prediction error due to variance and
model complexity.

The critical question that we take on in the following section then becomes: what are the
best ways to find a lower-dimensional representation of the data?

Linear dimensionality reduction
Linear dimensionality reduction algorithms compute linear combinations that translate,
rotate, and rescale the original features to capture significant variations in the data, subject
to constraints on the characteristics of the new features.

PCA, invented in 1901 by Karl Pearson, finds new features that reflect directions of
maximal variance in the data while being mutually uncorrelated. ICA, in contrast,
originated in signal processing in the 1980s with the goal of separating different signals
while imposing the stronger constraint of statistical independence.

This section introduces these two algorithms and then illustrates how to apply PCA to asset
returns in order to learn risk factors from the data, and build so-called eigenportfolios for
systematic trading strategies.

Principal component analysis

PCA finds linear combinations of the existing features and uses these principal components
to represent the original data. The number of components is a hyperparameter that
determines the target dimensionality and can be, at most, equal to the lesser of the number
of rows or columns.

Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning

[412]

PCA aims to capture most of the variance in the data to make it easy to recover the original
features and ensures that each component adds information. It reduces dimensionality by
projecting the original data into the principal component space.

The PCA algorithm works by identifying a sequence of components, each of which aligns
with the direction of maximum variance in the data after accounting for variation captured
by previously computed components. The sequential optimization ensures that new
components are not correlated with existing components and produces an orthogonal basis
for a vector space.

This new basis is a rotation of the original basis, such that the new axes point in the direction
of successively decreasing variance. The decline in the amount of variance of the original
data explained by each principal component reflects the extent of correlation among the
original features. In other words, the share of components that captures, for example, 95
percent of the original variation provides insight into the linearly independent information
in the original data.

Visualizing PCA in 2D

Figure 13.4 illustrates several aspects of PCA for a two-dimensional random dataset (refer to
the notebook pca_key_ideas):

• The left panel shows how the first and second principal components align with the
directions of maximum variance while being orthogonal.

• The central panel shows how the first principal component minimizes the
reconstruction error, measured as the sum of the distances between the data points
and the new axis.

• The right panel illustrates supervised OLS (refer to Chapter 7, Linear Models –
From Risk Factors to Return Forecasts), which approximates the outcome (x

2
) by

a line computed from the single feature x
1
. The vertical lines highlight how OLS

minimizes the distance along the outcome axis, whereas PCA minimizes the
distances that are orthogonal to the hyperplane.

Figure 13.4: PCA in 2D from various perspectives

Chapter 13

[413]

Key assumptions made by PCA

PCA makes several assumptions that are important to keep in mind. These include:

• High variance implies a high signal-to-noise ratio.

• The data is standardized so that the variance is comparable across features.

• Linear transformations capture the relevant aspects of the data.

• Higher-order statistics beyond the first and second moments do not matter, which
implies that the data has a normal distribution.

The emphasis on the first and second moments aligns with standard risk/return metrics,
but the normality assumption may conflict with the characteristics of market data.
Market data often exhibits skew or kurtosis (fat tails) that differ from those of the normal
distribution and will not be taken into account by PCA.

How the PCA algorithm works

The algorithm finds vectors to create a hyperplane of target dimensionality that minimizes
the reconstruction error, measured as the sum of the squared distances of the data points to
the plane. As illustrated previously, this goal corresponds to finding a sequence of vectors
that align with directions of maximum retained variance given the other components, while
ensuring all principal components are mutually orthogonal.

In practice, the algorithm solves the problem either by computing the eigenvectors of the
covariance matrix or by using the singular value decomposition (SVD).

We illustrate the computation using a randomly generated three-dimensional ellipse with
100 data points, as shown in the left panel of Figure 13.5, including the two-dimensional
hyperplane defined by the first two principal components. (Refer to the notebook the_math_
behind_pca for the code samples in the following three sections.)

Figure 13.5: Visual representation of dimensionality reduction from 3D to 2D

Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning

[414]

PCA based on the covariance matrix

We first compute the principal components using the square covariance matrix with the
pairwise sample covariances for the features x

i
, xj, i, j = 1, ..., n as entries in row i and column j:𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖,𝑗𝑗 = ∑ (𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖) (𝑥𝑥𝑗𝑗𝑖𝑖 − �̅�𝑥𝑗𝑗) 𝑁𝑁𝑖𝑖=1 𝑁𝑁 − 1

For a square matrix M of n dimension, we define the eigenvectors 𝜔𝜔𝑖𝑖 and eigenvalues 𝜆𝜆
i
,

i=1, ..., n as follows: 𝑀𝑀𝑀𝑀𝑖𝑖 = 𝜆𝜆𝑖𝑖𝑀𝑀𝑖𝑖
Therefore, we can represent the matrix M using eigenvectors and eigenvalues, where W is a
matrix that contains the eigenvectors as column vectors, and L is a matrix that contains 𝜆𝜆 i as
diagonal entries (and 0s otherwise). We define the eigendecomposition as:𝑀𝑀 = 𝑊𝑊𝑊𝑊𝑊𝑊−1

Using NumPy, we implement this as follows, where the pandas DataFrame data contains
the 100 data points of the ellipse:

compute covariance matrix:

cov = np.cov(data.T) # expects variables in rows by default

cov.shape

(3, 3)

Next, we calculate the eigenvectors and eigenvalues of the covariance matrix. The
eigenvectors contain the principal components (where the sign is arbitrary):

eigen_values, eigen_vectors = eig(cov)

eigen_vectors

array([[0.71409739, -0.66929454, -0.20520656],

 [-0.70000234, -0.68597301, -0.1985894],

 [0.00785136, -0.28545725, 0.95835928]])

We can compare the result with the result obtained from sklearn and find that they match
in absolute terms:

pca = PCA()

pca.fit(data)
C = pca.components_.T # columns = principal components

C

array([[0.71409739, 0.66929454, 0.20520656],

 [-0.70000234, 0.68597301, 0.1985894],

 [0.00785136, 0.28545725, -0.95835928]])

np.allclose(np.abs(C), np.abs(eigen_vectors))

True

Chapter 13

[415]

We can also verify the eigendecomposition, starting with the diagonal matrix L that
contains the eigenvalues:

eigenvalue matrix

ev = np.zeros((3, 3))

np.fill_diagonal(ev, eigen_values)
ev # diagonal matrix

array([[1.92923132, 0. , 0.],

 [0. , 0.55811089, 0.],

 [0. , 0. , 0.00581353]])

We find that the result does indeed hold:

decomposition = eigen_vectors.dot(ev).dot(inv(eigen_vectors))

np.allclose(cov, decomposition)

PCA using the singular value decomposition

Next, we'll take a look at the alternative computation using the SVD. This algorithm is
slower when the number of observations is greater than the number of features (which is
the typical case) but yields better numerical stability, especially when some of the features
are strongly correlated (which is often the reason to use PCA in the first place).

SVD generalizes the eigendecomposition that we just applied to the square and symmetric
covariance matrix to the more general case of m x n rectangular matrices. It has the form
shown at the center of the following figure. The diagonal values of Σ are the singular
values, and the transpose of V* contains the principal components as column vectors.

Figure 13.6: The SVD decomposed

In this case, we need to make sure our data is centered with mean zero (the computation of
the covariance earlier took care of this):

n_features = data.shape[1]

data_ = data - data.mean(axis=0)

Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning

[416]

Using the centered data, we compute the SVD:

U, s, Vt = svd(data_)

U.shape, s.shape, Vt.shape

((100, 100), (3,), (3, 3))

We can convert the vector s, which contains only singular values, into an n x m matrix and
show that the decomposition works:

S = np.zeros_like(data_)

S[:n_features, :n_features] = np.diag(s)

S.shape

(100, 3)

We find that the decomposition does indeed reproduce the standardized data:

np.allclose(data_, U.dot(S).dot(Vt))

True

Lastly, we confirm that the columns of the transpose of V* contain the principal
components:

np.allclose(np.abs(C), np.abs(Vt.T))

In the next section, we will demonstrate how sklearn implements PCA.

PCA with sklearn

The sklearn.decomposition.PCA implementation follows the standard API based on the
fit() and transform() methods that compute the desired number of principal components
and project the data into the component space, respectively. The convenience method fit_
transform() accomplishes this in a single step.

PCA offers three different algorithms that can be specified using the svd_solver parameter:

• full computes the exact SVD using the LAPACK solver provided by scipy.

• arpack runs a truncated version suitable for computing less than the full number of
components.

• randomized uses a sampling-based algorithm that is more efficient when the
dataset has more than 500 observations and features, and the goal is to compute less
than 80 percent of the components.

• auto also randomizes where it is most efficient; otherwise, it uses the full SVD.

Please view the references on GitHub for algorithmic implementation details.

Other key configuration parameters of the PCA object are:

Chapter 13

[417]

• n_components: Compute all principal components by passing None (the default),
or limit the number to int. For svd_solver=full, there are two additional options:
a float in the interval [0, 1] computes the number of components required to retain
the corresponding share of the variance in the data, and the option mle estimates the
number of dimensions using the maximum likelihood.

• whiten: If True, it standardizes the component vectors to unit variance, which, in
some cases, can be useful in a predictive model (the default is False).

To compute the first two principal components of the three-dimensional ellipsis and project
the data into the new space, use fit_transform():

pca2 = PCA(n_components=2)

projected_data = pca2.fit_transform(data)
projected_data.shape

(100, 2)

The explained variance of the first two components is very close to 100 percent:

pca2.explained_variance_ratio_

array([0.77381099, 0.22385721])

Figure 13.5 shows the projection of the data into the new two-dimensional space.

Independent component analysis

ICA is another linear algorithm that identifies a new basis to represent the original data but
pursues a different objective than PCA. Refer to Hyvärinen and Oja (2000) for a detailed
introduction.

ICA emerged in signal processing, and the problem it aims to solve is called blind source
separation. It is typically framed as the cocktail party problem, where a given number
of guests are speaking at the same time so that a single microphone records overlapping
signals. ICA assumes there are as many different microphones as there are speakers, each
placed at different locations so that they record a different mix of signals. ICA then aims to
recover the individual signals from these different recordings.

In other words, there are n original signals and an unknown square mixing matrix A that
produces an n-dimensional set of m observations so that𝑋𝑋𝑛𝑛 × 𝑚𝑚 = 𝐴𝐴𝑛𝑛 × 𝑛𝑛 𝑠𝑠𝑛𝑛 × 𝑚𝑚

The goal is to find the matrix W = A-1 that untangles the mixed signals to recover the sources.

The ability to uniquely determine the matrix W hinges on the non-Gaussian distribution
of the data. Otherwise, W could be rotated arbitrarily given the multivariate normal
distribution's symmetry under rotation. Furthermore, ICA assumes the mixed signal is the
sum of its components and is, therefore, unable to identify Gaussian components because
their sum is also normally distributed.

Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning

[418]

ICA assumptions

ICA makes the following critical assumptions:

• The sources of the signals are statistically independent

• Linear transformations are sufficient to capture the relevant information
• The independent components do not have a normal distribution

• The mixing matrix A can be inverted

ICA also requires the data to be centered and whitened, that is, to be mutually uncorrelated
with unit variance. Preprocessing the data using PCA, as outlined earlier, achieves the
required transformations.

The ICA algorithm

FastICA, used by sklearn, is a fixed-point algorithm that uses higher-order statistics to
recover the independent sources. In particular, it maximizes the distance to a normal
distribution for each component as a proxy for independence.

An alternative algorithm called InfoMax minimizes the mutual information between
components as a measure of statistical independence.

ICA with sklearn

The ICA implementation by sklearn uses the same interface as PCA, so there is little to
add. Note that there is no measure of explained variance because ICA does not compute
components successively. Instead, each component aims to capture the independent aspects
of the data.

Manifold learning – nonlinear dimensionality reduction
Linear dimensionality reduction projects the original data onto a lower-dimensional
hyperplane that aligns with informative directions in the data. The focus on linear
transformations simplifies the computation and echoes common financial metrics, such as
PCA's goal to capture the maximum variance.

However, linear approaches will naturally ignore signals reflected in nonlinear
relationships in the data. Such relationships are very important in alternative datasets
containing, for example, image or text data. Detecting such relationships during
exploratory analysis can provide important clues about the data's potential signal content.

In contrast, the manifold hypothesis emphasizes that high-dimensional data often lies
on or near a lower-dimensional nonlinear manifold that is embedded in the higher-
dimensional space. The two-dimensional Swiss roll displayed in Figure 13.1 (at the
beginning of this chapter) illustrates such a topological structure. Manifold learning aims to
find the manifold of intrinsic dimensionality and then represent the data in this subspace. A
simplified example uses a road as a one-dimensional manifold in a three-dimensional space
and identifies data points using house numbers as local coordinates.

Chapter 13

[419]

Several techniques approximate a lower-dimensional manifold. One example is locally
linear embedding (LLE), which was invented by Lawrence Saul and Sam Roweis (2000)
and used to "unroll" the Swiss roll shown in Figure 13.1 (view the examples in the manifold_
learning_lle notebook).

For each data point, LLE identifies a given number of nearest neighbors and computes
weights that represent each point as a linear combination of its neighbors. It finds a lower-
dimensional embedding by linearly projecting each neighborhood on global internal
coordinates on the lower-dimensional manifold and can be thought of as a sequence of
PCA applications.

Visualization requires that the reduction is at least three dimensions, possibly below the
intrinsic dimensionality, and poses the challenge of faithfully representing both the local
and global structure. This challenge relates to the curse of dimensionality; that is, while
the volume of a sphere expands exponentially with the number of dimensions, the lower-
dimensional space available to represent high-dimensional data is much more limited. For
instance, in 12 dimensions, there can be 13 equidistant points; however, in two dimensions,
there can only be 3 that form a triangle with sides of equal length. Therefore, accurately
reflecting the distance of one point to its high-dimensional neighbors in lower dimensions
risks distorting the relationships among all other points. The result is the crowding problem:
to maintain global distances, local points may need to be placed too closely together.

The next two sections cover techniques that have allowed us to make progress in
addressing the crowding problem for the visualization of complex datasets. We will use the
fashion MNIST dataset, which is a more sophisticated alternative to the classic handwritten
digit MNIST benchmark data used for computer vision. It contains 60,000 training and
10,000 test images of fashion objects in 10 classes (take a look at the sample images in the
notebook manifold_learning_intro). The goal of a manifold learning algorithm for this
data is to detect whether the classes lie on distinct manifolds to facilitate their recognition
and differentiation.

t-distributed Stochastic Neighbor Embedding

t-SNE is an award-winning algorithm, developed by Laurens van der Maaten and Geoff
Hinton in 2008, to detect patterns in high-dimensional data. It takes a probabilistic,
nonlinear approach to locate data on several different but related
low-dimensional manifolds. The algorithm emphasizes keeping similar points together in
low dimensions as opposed to maintaining the distance between points that are apart in
high dimensions, which results from algorithms like PCA that minimize squared distances.

The algorithm proceeds by converting high-dimensional distances into (conditional)
probabilities, where high probabilities imply low distance and reflect the likelihood of
sampling two points based on similarity. It accomplishes this by, first, positioning a normal
distribution over each point and computing the density for a point and each neighbor,
where the perplexity parameter controls the effective number of neighbors. In the second
step, it arranges points in low dimensions and uses similarly computed low-dimensional
probabilities to match the high-dimensional distribution. It measures the difference
between the distributions using the Kullback-Leibler divergence, which puts a high penalty
on misplacing similar points in low dimensions.

Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning

[420]

The low-dimensional probabilities use a Student's t-distribution with one degree of
freedom because it has fatter tails that reduce the penalty of misplacing points that are
more distant in high dimensions to manage the crowding problem.

The upper panels in Figure 13.7 show how t-SNE is able to differentiate between the
FashionMNIST image classes. A higher perplexity value increases the number of neighbors
used to compute the local structure and gradually results in more emphasis on global
relationships. (Refer to the repository for a high-resolution color version of this figure.)

Figure 13.7: t-SNE and UMAP visualization of Fashion MNIST image data for different hyperparameters

t-SNE is the current state of the art in high-dimensional data visualization. Weaknesses
include the computational complexity that scales quadratically in the number n of points
because it evaluates all pairwise distances, but a subsequent tree-based implementation has
reduced the cost to n log n.

Unfortunately, t-SNE does not facilitate the projection of new data points into the low-
dimensional space. The compressed output is not a very useful input for distance- or
density-based cluster algorithms because t-SNE treats small and large distances differently.

Uniform Manifold Approximation and Projection

UMAP is a more recent algorithm for visualization and general dimensionality reduction. It
assumes the data is uniformly distributed on a locally connected manifold and looks for the
closest low-dimensional equivalent using fuzzy topology. It uses a neighbors parameter,
which impacts the result in a similar
way to perplexity in the preceding section.

It is faster and hence scales better to large datasets than t-SNE and sometimes preserves the
global structure better than t-SNE. It can also work with different distance functions, including
cosine similarity, which is used to measure the distance between word count vectors.

The preceding figure illustrates how UMAP does indeed move the different clusters further
apart, whereas t-SNE provides more granular insight into the local structure.

Chapter 13

[421]

The notebook also contains interactive Plotly visualizations for each of the algorithms that
permit the exploration of the labels and identify which objects are placed close to each other.

PCA for trading
PCA is useful for algorithmic trading in several respects, including:

• The data-driven derivation of risk factors by applying PCA to asset returns

• The construction of uncorrelated portfolios based on the principal components of
the correlation matrix of asset returns

We will illustrate both of these applications in this section.

Data-driven risk factors
In Chapter 7, Linear Models – From Risk Factors to Return Forecasts, we explored risk factor
models used in quantitative finance to capture the main drivers of returns. These models
explain differences in returns on assets based on their exposure to systematic risk factors
and the rewards associated with these factors. In particular, we explored the Fama-French
approach, which specifies factors based on prior knowledge about the empirical behavior
of average returns, treats these factors as observable, and then estimates risk model
coefficients using linear regression.

An alternative approach treats risk factors as latent variables and uses factor analytic
techniques like PCA to simultaneously learn the factors from data and estimate how
they drive returns. In this section, we will demonstrate how this method derives factors
in a purely statistical or data-driven way with the advantage of not requiring ex ante
knowledge of the behavior of asset returns (see the notebook pca_and_risk_factor_models
for more details).

Preparing the data – top 350 US stocks

We will use the Quandl stock price data and select the daily adjusted close prices of the
500 stocks with the largest market capitalization and data for the 2010-2018 period. We will
then compute the daily returns as follows:

idx = pd.IndexSlice

with pd.HDFStore('../../data/assets.h5') as store:

 stocks = store['us_equities/stocks'].marketcap.nlargest(500)

 returns = (store['quandl/wiki/prices']

 .loc[idx['2010': '2018', stocks.index], 'adj_close']

 .unstack('ticker')

 .pct_change())

Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning

[422]

We obtain 351 stocks and returns for over 2,000 trading days:

returns.info()

DatetimeIndex: 2072 entries, 2010-01-04 to 2018-03-27

Columns: 351 entries, A to ZTS

PCA is sensitive to outliers, so we winsorize the data at the 2.5 percent and 97.5 percent
quantiles, respectively:

PCA does not permit missing data, so we will remove any stocks that do not have data for
at least 95 percent of the time period. Then, in a second step, we will remove trading days
that do not have observations on at least 95 percent of the remaining stocks:

returns = returns.dropna(thresh=int(returns.shape[0] * .95), axis=1)

returns = returns.dropna(thresh=int(returns.shape[1] * .95))

We are left with 315 equity return series covering a similar period:

returns.info()

DatetimeIndex: 2071 entries, 2010-01-05 to 2018-03-27

Columns: 315 entries, A to LYB

We impute any remaining missing values using the average return for any given trading
day:

daily_avg = returns.mean(1)

returns = returns.apply(lambda x: x.fillna(daily_avg))

Running PCA to identify the key return drivers

Now we are ready to fit the principal components model to the asset returns using default
parameters to compute all of the components using the full SVD algorithm:

pca = PCA(n_components='mle')

pca.fit(returns)

We find that the most important factor explains around 55 percent of the daily return
variation. The dominant factor is usually interpreted as "the market," whereas the
remaining factors can be interpreted as industry or style factors in line with our discussions
in Chapter 5, Portfolio Optimization and Performance Evaluation, and Chapter 7, Linear Models –
From Risk Factors to Return Forecasts, depending on the results of a closer inspection (please
refer to the next example).

Chapter 13

[423]

The plot on the right of Figure 13.8 shows the cumulative explained variance and indicates
that around 10 factors explain 60 percent of the returns of this cross-section of stocks.

Figure 13.8: (Cumulative) explained return variance by PCA-based risk factors

The notebook contains a simulation for a broader cross-section of stocks and the longer
2000-2018 time period. It finds that, on average, the first three components explained 40
percent, 10 percent, and 5 percent of 500 randomly selected stocks, as shown in Figure 13.9:

Figure 13.9: Explained variance of the top 10 principal components—100 trials

The cumulative plot shows a typical "elbow" pattern that can help to identify a suitable
target dimensionality as the number of components beyond which additional components
add less incremental value.

We can select the top two principal components to verify that they are indeed uncorrelated:

risk_factors = pd.DataFrame(pca.transform(returns)[:, :2],

 columns=['Principal Component 1',

 'Principal Component 2'],

 index=returns.index)

(risk_factors['Principal Component 1']

.corr(risk_factors['Principal Component 2']))

7.773256996252084e-15

Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning

[424]

Moreover, we can plot the time series to highlight how each factor captures different
volatility patterns, as shown in the following figure:

Figure 13.10: Return volatility patterns captured by the first two principal components

A risk factor model would employ a subset of the principal components as features to
predict future returns, similar to our approach in Chapter 7, Linear Models – From Risk
Factors to Return Forecasts.

Eigenportfolios
Another application of PCA involves the covariance matrix of the normalized returns.
The principal components of the correlation matrix capture most of the covariation
among assets in descending order and are mutually uncorrelated. Moreover, we can use
standardized principal components as portfolio weights. You can find the code example for
this section in the notebook pca_and_eigen_portfolios.

Let's use the 30 largest stocks with data for the 2010-2018 period to facilitate the exposition:

idx = pd.IndexSlice

with pd.HDFStore('../../data/assets.h5') as store:

 stocks = store['us_equities/stocks'].marketcap.nlargest(30)

 returns = (store['quandl/wiki/prices']

 .loc[idx['2010': '2018', stocks.index], 'adj_close']

 .unstack('ticker')

 .pct_change())

We again winsorize and also normalize the returns:

normed_returns = scale(returns

 .clip(lower=returns.quantile(q=.025),

 upper=returns.quantile(q=.975),

 axis=1)

 .apply(lambda x: x.sub(x.mean()).div(x.std())))

Chapter 13

[425]

After dropping assets and trading days like in the previous example, we are left with 23
assets and over 2,000 trading days. We compute the return covariance and estimate all of
the principal components to find that the two largest explain 55.9 percent and 15.5 percent
of the covariation, respectively:

cov = returns.cov()

pca = PCA()

pca.fit(cov)
pd.Series(pca.explained_variance_ratio_).head()

0 55.91%

1 15.52%

2 5.36%

3 4.85%

4 3.32%

Next, we select and normalize the four largest components so that they sum to 1, and we
can use them as weights for portfolios that we can compare to an EW portfolio formed from
all of the stocks:

top4 = pd.DataFrame(pca.components_[:4], columns=cov.columns)

eigen_portfolios = top4.div(top4.sum(1), axis=0)

eigen_portfolios.index = [f'Portfolio {i}' for i in range(1, 5)]

The weights show distinct emphasis, as you can see in Figure 13.11. For example, Portfolio
3 puts large weights on Mastercard and Visa, the two payment processors in the sample,
whereas Portfolio 2 has more exposure to technology companies:

Figure 13.11: Eigenportfolio weights

Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning

[426]

When comparing the performance of each portfolio over the sample period to "the market"
consisting of our small sample, we find that Portfolio 1 performs very similarly, whereas
the other portfolios capture different return patterns (see Figure 13.12).

Figure 13.12: Cumulative eigenportfolio returns

Clustering
Both clustering and dimensionality reduction summarize the data. As we have just
discussed, dimensionality reduction compresses the data by representing it using new,
fewer features that capture the most relevant information. Clustering algorithms, in
contrast, assign existing observations to subgroups that consist of similar data points.

Clustering can serve to better understand the data through the lens of categories learned
from continuous variables. It also permits you to automatically categorize new objects
according to the learned criteria. Examples of related applications include hierarchical
taxonomies, medical diagnostics, and customer segmentation. Alternatively, clusters can
be used to represent groups as prototypes, using, for example, the midpoint of a cluster
as the best representatives of learned grouping. An example application includes image
compression.

Clustering algorithms differ with respect to their strategy of identifying groupings:

• Combinatorial algorithms select the most coherent of different groupings of
observations.

• Probabilistic modeling estimates distributions that most likely generated the
clusters.

• Hierarchical clustering finds a sequence of nested clusters that optimizes coherence
at any given stage.

Algorithms also differ by the notion of what constitutes a useful collection of objects that
needs to match the data characteristics, domain, and goal of the applications. Types of
groupings include:

Chapter 13

[427]

• Clearly separated groups of various shapes

• Prototype- or center-based, compact clusters

• Density-based clusters of arbitrary shape

• Connectivity- or graph-based clusters

Important additional aspects of a clustering algorithm include whether it:

• Requires exclusive cluster membership

• Makes hard, that is, binary, or soft, probabilistic assignments

• Is complete and assigns all data points to clusters

The following sections introduce key algorithms, including k-means, hierarchical, and
density-based clustering, as well as Gaussian mixture models (GMMs). The notebook
clustering_algos compares the performance of these algorithms on different, labeled
datasets to highlight strengths and weaknesses. It uses mutual information (refer to Chapter

6, The Machine Learning Process) to measure the congruence of cluster assignments and
labels.

k-means clustering
k-means is the most well-known clustering algorithm, and it was first proposed by Stuart
Lloyd at Bell Labs in 1957. It finds k centroids and assigns each data point to exactly one
cluster with the goal of minimizing the within-cluster variance (called inertia). It typically
uses the Euclidean distance, but other metrics can also be used. k-means assumes that
clusters are spherical and of equal size and ignores the covariance among features.

Assigning observations to clusters

The problem is computationally difficult (NP-hard) because there are kN ways to partition
the N observations into k clusters. The standard iterative algorithm delivers a local
optimum for a given k and proceeds as follows:

1. Randomly define k cluster centers and assign points to the nearest centroid

2. Repeat:

1. For each cluster, compute the centroid as the average of the features

2. Assign each observation to the closest centroid

3. Convergence: assignments (or within-cluster variation) don't change

The notebook kmeans_implementation shows you how to code the algorithm using Python.
It visualizes the algorithm's iterative optimization and demonstrates how the resulting
centroids partition the feature space into areas called Voronoi that delineate the clusters.
The result is optimal for the given initialization, but alternative starting positions will
produce different results. Therefore, we compute multiple clusterings from different initial
values and select the solution that minimizes within-cluster variance.

Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning

[428]

k-means requires continuous or one-hot encoded categorical variables. Distance metrics are
typically sensitive to scale, making it necessary to standardize features to ensure they have
equal weight.

The strengths of k-means include its wide range of applicability, fast convergence, and
linear scalability to large data while producing clusters of even size. The weaknesses
include the need to tune the hyperparameter k, no guarantee of finding a global optimum,
the restrictive assumption that clusters are spheres, and features not being correlated. It is
also sensitive to outliers.

Evaluating cluster quality

Cluster quality metrics help select from among alternative clustering results. The notebook
kmeans_evaluation illustrates the following options.

The k-means objective function suggests we compare the evolution of the inertia or within-
cluster variance. Initially, additional centroids decrease the inertia sharply because new
clusters improve the overall fit. Once an appropriate number of clusters has been found
(assuming it exists), new centroids reduce the within-cluster variance by much less, as they
tend to split natural groupings.

Therefore, when k-means finds a good cluster representation of the data, the inertia tends
to follow an elbow-shaped path similar to the explained variance ratio for PCA (take a look
at the notebook for implementation details).

The silhouette coefficient provides a more detailed picture of cluster quality. It answers the
question: how far are the points in the nearest cluster relative to the points in the assigned
cluster? To this end, it compares the mean intra-cluster distance a to the mean distance of
the nearest cluster b and computes the following score s:𝑠𝑠 = 𝑏𝑏 − 𝑎𝑎max(𝑎𝑎, 𝑏𝑏) ∈ [−1 , 1]

The score can vary between -1 and 1, but negative values are unlikely in practice
because they imply that the majority of points are assigned to the wrong cluster. A
useful visualization of the silhouette score compares the values for each data point to the
global average because it highlights the coherence of each cluster relative to the global
configuration. The rule of thumb is to avoid clusters with mean scores below the average
for all samples.

Figure 13.13 shows an excerpt from the silhouette plot for three and four clusters, where the
former highlights the poor fit of cluster 1 by subpar contributions to the global silhouette
score, whereas all of the four clusters have some values that exhibit above-average scores.

Chapter 13

[429]

Figure 13.13: Silhouette plots for three and four clusters

In sum, given the usually unsupervised nature, it is necessary to vary the hyperparameters
of the cluster algorithms and evaluate the different results. It is also important to calibrate
the scale of the features, particularly when some should be given a higher weight and thus
be measured on a larger scale. Finally, to validate the robustness of the results, use subsets
of data to identify whether particular cluster patterns emerge consistently.

Hierarchical clustering
Hierarchical clustering avoids the need to specify a target number of clusters because it
assumes that data can successively be merged into increasingly dissimilar clusters. It does
not pursue a global objective but decides incrementally how to produce a sequence of nested
clusters that range from a single cluster to clusters consisting of the individual data points.

Different strategies and dissimilarity measures
There are two approaches to hierarchical clustering:

1. Agglomerative clustering proceeds bottom-up, sequentially merging two of the
remaining groups based on similarity.

2. Divisive clustering works top-down and sequentially splits the remaining clusters
to produce the most distinct subgroups.

Both groups produce N-1 hierarchical levels and facilitate the selection of clustering at the
level that best partitions data into homogenous groups. We will focus on the more common
agglomerative clustering approach.

The agglomerative clustering algorithm departs from the individual data points and
computes a similarity matrix containing all mutual distances. It then takes N-1 steps
until there are no more distinct clusters and, each time, updates the similarity matrix
to substitute elements that have been merged by the new cluster so that the matrix
progressively shrinks.

Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning

[430]

While hierarchical clustering does not have hyperparameters like k-means, the measure
of dissimilarity between clusters (as opposed to individual data points) has an important
impact on the clustering result. The options differ as follows:

• Single-link: Distance between the nearest neighbors of two clusters

• Complete link: Maximum distance between the respective cluster members

• Ward's method: Minimize within-cluster variance

• Group average: Uses the cluster midpoint as a reference distance

Visualization – dendrograms

Hierarchical clustering provides insight into degrees of similarity among observations as it
continues to merge data. A significant change in the similarity metric from one merge to the
next suggests that a natural clustering existed prior to this point.

The dendrogram visualizes the successive merges as a binary tree, displaying the
individual data points as leaves and the final merge as the root of the tree. It also shows
how the similarity monotonically decreases from the bottom to the top. Therefore,
it is natural to select a clustering by cutting the dendrogram. Refer to the notebook
hierarchical_clustering for implementation details.

Figure 13.14 illustrates the dendrogram for the classic Iris dataset with four classes and three
features using the four different distance metrics introduced in the preceding section. It
evaluates the fit of the hierarchical clustering using the cophenetic correlation coefficient
that compares the pairwise distances among points and the cluster similarity metric at which
a pairwise merge occurred. A coefficient of 1 implies that closer points always merge earlier.

Figure 13.14: Dendrograms and cophenetic correlation for different dissimilarity measures

Chapter 13

[431]

Different linkage methods produce different dendrogram "looks" so that we cannot use
this visualization to compare results across methods. In addition, the Ward method, which
minimizes the within-cluster variance, may not properly reflect the change in variance
from one level to the next. Instead, the dendrogram can reflect the total within-cluster
variance at different levels, which may be misleading. Alternative quality metrics are more
appropriate, such as the cophenetic correlation or measures like inertia if aligned with the
overall goal.

The strengths of hierarchical clustering include:

• The algorithm does not need the specific number of clusters but, instead, provides
insight about potential clustering by means of an intuitive visualization.

• It produces a hierarchy of clusters that can serve as a taxonomy.

• It can be combined with k-means to reduce the number of items at the start of the
agglomerative process.

On the other hand, its weaknesses include:

• The high cost in terms of computation and memory due to the numerous similarity
matrix updates.

• All merges are final so that it does not achieve the global optimum.
• The curse of dimensionality leads to difficulties with noisy, high-dimensional data.

Density-based clustering
Density-based clustering algorithms assign cluster membership based on proximity to other
cluster members. They pursue the goal of identifying dense regions of arbitrary shapes and
sizes. They do not require the specification of a certain number of clusters but instead rely
on parameters that define the size of a neighborhood and a density threshold.

We'll outline the two popular algorithms: DBSCAN and its newer hierarchical refinement.
Refer to the notebook density_based_clustering for the relevant code samples and the link
in this chapter's README on GitHub to a Quantopian example by Jonathan Larking that uses
DBSCAN for a pairs trading strategy.

DBSCAN

Density-based spatial clustering of applications with noise (DBSCAN) was developed in
1996 and awarded the KDD Test of Time award at the 2014 KDD conference because of the
attention it has received in theory and practice.

It aims to identify core and non-core samples, where the former extend a cluster and the
latter are part of a cluster but do not have sufficient nearby neighbors to further grow the
cluster. Other samples are outliers and are not assigned to any cluster.

Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning

[432]

It uses a parameter eps for the radius of the neighborhood and min_samples for the number
of members required for core samples. It is deterministic and exclusive and has difficulties
with clusters of different density and high-dimensional data. It can be challenging to tune
the parameters to the requisite density, especially as it is often not constant.

Hierarchical DBSCAN

Hierarchical DBSCAN (HDBSCAN) is a more recent development that assumes clusters
are islands of potentially differing density to overcome the DBSCAN challenges just
mentioned. It also aims to identify the core and non-core samples. It uses the parameters
min_cluster_size and min_samples to select a neighborhood and extend a cluster. The
algorithm iterates over multiple eps values and chooses the most stable clustering. In
addition to identifying clusters of varying density, it provides insight into the density and
hierarchical structure of the data.

Figure 13.15 shows how DBSCAN and HDBSCAN, respectively, are able to identify clusters
that differ in shape significantly from those discovered by k-means, for example. The
selection of the clustering algorithm is a function of the structure of your data; refer to the
pairs trading strategy that was referenced earlier in this section for a practical example.

Figure 13.15: Comparing the DBSCAN and HDBSCAN clustering algorithms

Gaussian mixture models
GMMs are generative models that assume the data has been generated by a mix of various
multivariate normal distributions. The algorithm aims to estimate the mean and covariance
matrices of these distributions.

A GMM generalizes the k-means algorithm: it adds covariance among features so that
clusters can be ellipsoids rather than spheres, while the centroids are represented by the
means of each distribution. The GMM algorithm performs soft assignments because each
point has a probability of being a member of any cluster.

Chapter 13

[433]

The notebook gaussian_mixture_models demonstrates the implementation and visualizes the
resulting cluster. You are likely to prefer GMM over other clustering algorithms when the
k-means assumption of spherical clusters is too constraining; GMM often needs fewer clusters
to produce a good fit given its greater flexibility. The GMM algorithm is also preferable when
you need a generative model; because GMM estimates the probability distributions that
generated the samples, it is easy to generate new samples based on the result.

Hierarchical clustering for optimal portfolios
In Chapter 5, Portfolio Optimization and Performance Evaluation, we discussed several
methods that aim to choose portfolio weights for a given set of assets to optimize the risk
and return profile of the resulting portfolio. These included the mean-variance optimization
of Markowitz's modern portfolio theory, the Kelly criterion, and risk parity. In this
section, we cover hierarchical risk parity (HRP), a more recent innovation (Prado 2016)
that leverages hierarchical clustering to assign position sizes to assets based on the risk
characteristics of subgroups.

We will first present how HRP works and then compare its performance against
alternatives using a long-only strategy driven by the gradient boosting models we
developed in the last chapter.

How hierarchical risk parity works
The key ideas of hierarchical risk parity are to do the following:

• Use hierarchical clustering of the covariance matrix to group assets with a similar
correlation structure together

• Reduce the number of degrees of freedom by only considering similar assets as
substitutes when constructing the portfolio

Refer to the notebook and Python files in the subfolder hierarchical_risk_parity for
implementation details.

The first step is to compute a distance matrix that represents proximity for correlated assets
and meets distance metric requirements. The resulting matrix becomes an input to the
SciPy hierarchical clustering function that computes the successive clusters using one of
several available methods, as discussed previously in this chapter.

def get_distance_matrix(corr):

 """Compute distance matrix from correlation;

 0 <= d[i,j] <= 1"""

 return np.sqrt((1 - corr) / 2)

distance_matrix = get_distance_matrix(corr)

linkage_matrix = linkage(squareform(distance_matrix), 'single')

Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning

[434]

The linkage_matrix can be used as input to the sns.clustermap function to visualize
the resulting hierarchical clustering. The dendrogram displayed by seaborn shows how
individual assets and clusters of assets merged based on their relative distances (see the left
panel of Figure 13.16).

clustergrid = sns.clustermap(distance_matrix,

 method='single',

 row_linkage=linkage_matrix,

 col_linkage=linkage_matrix,

 cmap=cmap, center=0)

sorted_idx = clustergrid.dendrogram_row.reordered_ind

sorted_tickers = corr.index[sorted_idx].tolist()

Compared to a seaborn.heatmap of the original correlation matrix, there is now significantly
more structure in the sorted data (the right panel) compared to the original correlation
matrix displayed in the central panel.

Figure 13.16: Original and clustered correlation matrix

Using the tickers sorted according to the hierarchy induced by the clustering algorithm,
HRP now proceeds to compute a top-down inverse-variance allocation that successively
adjusts weights depending on the variance of the subclusters further down the tree.

def get_inverse_var_pf(cov):

 """Compute the inverse-variance portfolio"""

 ivp = 1 / np.diag(cov)

 return ivp / ivp.sum()

def get_cluster_var(cov, cluster_items):

 """Compute variance per cluster"""

 cov_ = cov.loc[cluster_items, cluster_items] # matrix slice

 w_ = get_inverse_var_pf(cov_)

 return (w_ @ cov_ @ w_).item()

Chapter 13

[435]

To this end, the algorithm uses a bisectional search to allocate the variance of a cluster to its
elements based on their relative riskiness.

def get_hrp_allocation(cov, tickers):

 """Compute top-down HRP weights"""

 weights = pd.Series(1, index=tickers)

 clusters = [tickers] # initialize one cluster with all assets

 while len(clusters) > 0:

 # run bisectional search:

 clusters = [c[start:stop] for c in clusters

 for start, stop in ((0, int(len(c) / 2)),

 (int(len(c) / 2), len(c)))

 if len(c) > 1]

 for i in range(0, len(clusters), 2): # parse in pairs

 cluster0 = clusters[i]

 cluster1 = clusters[i + 1]

 cluster0_var = get_cluster_var(cov, cluster0)

 cluster1_var = get_cluster_var(cov, cluster1)

 weight_scaler = 1 - cluster0_var / (cluster0_var + cluster1_var)

 weights[cluster0] *= weight_scaler

 weights[cluster1] *= 1 - weight_scaler

 return weights

The resulting portfolio allocation produces weights that sum to 1 and reflect the structure
present in the correlation matrix (refer to the notebook for details).

Backtesting HRP using an ML trading strategy
Now that we know how HRP works, we would like to test how it performs in practice
compared to some alternatives, namely a simple equal-weighted portfolio and a mean-
variance optimized portfolio. You can find the code samples for this section and additional
details and analyses in the notebook pf_optimization_with_hrp_zipline_benchmark.

To this end, we'll build on the gradient boosting models developed in the last chapter. We
will backtest a strategy for 2015-2017 with a universe of the 1,000 most liquid US stocks.
The strategy relies on the model predictions to enter long positions in the 25 stocks with
the highest positive return prediction for the next day. On a daily basis, we rebalance our
holdings so that the weights for our target positions match the values suggested by HRP.

Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning

[436]

Ensembling the gradient boosting model predictions

We begin by averaging the predictions of the 10 models that performed best during the
2015-16 cross-validation period (refer to Chapter 12, Boosting Your Trading Strategy, for
details), as shown in the following code excerpt:

def load_predictions(bundle):

 path = Path('../../12_gradient_boosting_machines/data')

 predictions = (pd.read_hdf(path / 'predictions.h5', 'lgb/train/01')

 .append(pd.read_hdf(path / 'predictions.h5', 'lgb/
test/01').drop('y_test', axis=1)))

 predictions = (predictions.loc[~predictions.index.duplicated()]

 .iloc[:, :10]

 .mean(1)

 .sort_index()

 .dropna()

 .to_frame('prediction'))

On a daily basis, we obtain the model predictions and select the top 25 tickers. If there are
at least 20 tickers with positive forecasts, we enter the long positions and close all of the
other holdings:

def before_trading_start(context, data):

 """

 Called every day before market open.

 """

 output = pipeline_output('signals')['longs'].astype(int)

 context.longs = output[output!=0].index

 if len(context.longs) < MIN_POSITIONS:

 context.divest = set(context.portfolio.positions.keys())

 else:

 context.divest = context.portfolio.positions.keys() - context.longs

Using PyPortfolioOpt to compute HRP weights

PyPortfolioOpt, which we used in Chapter 5, Portfolio Optimization and Performance Evaluation,
to compute mean-variance optimized weights, also implements HRP. We'll run it as part of
the scheduled rebalancing that takes place every morning. It needs the return history for the
target assets and returns a dictionary of ticker-weight pairs that we use to place orders:

def rebalance_hierarchical_risk_parity(context, data):

 """Execute orders according to schedule_function()"""

 for symbol, open_orders in get_open_orders().items():

 for open_order in open_orders:

 cancel_order(open_order)

 for asset in context.divest:

 order_target(asset, target=0)

Chapter 13

[437]

 if len(context.longs) > context.min_positions:

 returns = (data.history(context.longs, fields='price',
 bar_count=252+1, # for 1 year of returns

 frequency='1d')

 .pct_change()

 .dropna(how='all'))

 hrp_weights = HRPOpt(returns=returns).hrp_portfolio()

 for asset, target in hrp_weights.items():

 order_target_percent(asset=asset, target=target)

Markowitz rebalancing follows a similar process, as outlined in Chapter 5, Portfolio
Optimization and Performance Evaluation, and is included in the notebook.

Performance comparison with pyfolio

The following charts show the cumulative returns for the in- and out-of-sample (with
respect to the ML model selection process) of the equal-weighted (EW), the HRP, and the
mean-variance (MV) optimized portfolios.

Figure 13.17: Cumulative returns for the different portfolios

The cumulative returns are 207.3 percent for MV, 133 percent for EW, and 75.1 percent for
HRP. The Sharpe ratios are 1.16, 1.01, and 0.83, respectively. Alpha returns are 0.28 for MV,
0.16 for EW, and 0.16 for HRP, with betas of 1.77, 1.87, and 1.67, respectively.

Therefore, it turns out that, in this particular context, the often-criticized MV approach does
best, while HRP comes up last. However, be aware that the results are quite sensitive to the
number of stocks traded, the time period, and other factors.

Try it out for yourself, and learn which technique performs best under the circumstances
most relevant for you!

Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning

[438]

Summary
In this chapter, we explored unsupervised learning methods that allow us to extract
valuable signals from our data without relying on the help of outcome information
provided by labels.

We learned how to use linear dimensionality reduction methods like PCA and ICA to
extract uncorrelated or independent components from data that can serve as risk factors or
portfolio weights. We also covered advanced nonlinear manifold learning techniques that
produce state-of-the-art visualizations of complex, alternative datasets. In the second part
of the chapter, we covered several clustering methods that produce data-driven groupings
under various assumptions. These groupings can be useful, for example, to construct
portfolios that apply risk-parity principles to assets that have been clustered hierarchically.

In the next three chapters, we will learn about various machine learning techniques for a
key source of alternative data, namely natural language processing for text documents.

[439]

14
Text Data for Trading –

Sentiment Analysis

This is the first of three chapters dedicated to extracting signals for algorithmic trading strategies
from text data using natural language processing (NLP) and machine learning (ML).

Text data is very rich in content but highly unstructured, so it requires more preprocessing
to enable an ML algorithm to extract relevant information. A key challenge consists of
converting text into a numerical format without losing its meaning. We will cover several
techniques capable of capturing the nuances of language so that they can be used as input
for ML algorithms.

In this chapter, we will introduce fundamental feature extraction techniques that focus on
individual semantic units, that is, words or short groups of words called tokens. We will
show how to represent documents as vectors of token counts by creating a document-term
matrix and then proceed to use it as input for news classification and sentiment analysis.
We will also introduce the naive Bayes algorithm, which is popular for this purpose.

In the following two chapters, we build on these techniques and use ML algorithms such
as topic modeling and word-vector embeddings to capture the information contained in a
broader context.

In particular in this chapter, we will cover the following:

• What the fundamental NLP workflow looks like
• How to build a multilingual feature extraction pipeline using spaCy and TextBlob

• Performing NLP tasks such as part-of-speech (POS) tagging or named entity
recognition

• Converting tokens to numbers using the document-term matrix

• Classifying text using the naive Bayes model

• How to perform sentiment analysis

Text Data for Trading – Sentiment Analysis

[440]

ML with text data – from language to features
Text data can be extremely valuable given how much information humans communicate
and store using natural language. The diverse set of data sources relevant to financial
investments range from formal documents like company statements, contracts, and patents,
to news, opinion, and analyst research or commentary, to various types of social media
postings or messages.

Numerous and diverse text data samples are available online to explore the use of NLP
algorithms, many of which are listed among the resources included in this chapter's README
file on GitHub. For a comprehensive introduction, see Jurafsky and Martin (2008).

To realize the potential value of text data, we'll introduce the specialized NLP techniques
and the most effective Python libraries, outline key challenges particular to working
with language data, introduce critical elements of the NLP workflow, and highlight NLP
applications relevant for algorithmic trading.

Key challenges of working with text data
The conversion of unstructured text into a machine-readable format requires careful
preprocessing to preserve the valuable semantic aspects of the data. How humans
comprehend the content of language is not fully understood and improving machines'
ability to understand language remains an area of very active research.

NLP is particularly challenging because the effective use of text data for ML requires an
understanding of the inner workings of language as well as knowledge about the world to
which it refers. Key challenges include the following:

• Ambiguity due to polysemy, that is, a word or phrase having different meanings
depending on context ("Local High School Dropouts Cut in Half")

• The nonstandard and evolving use of language, especially on social media

• The use of idioms like "throw in the towel"

• Tricky entity names like "Where is A Bug's Life playing?"
• Knowledge of the world: "Mary and Sue are sisters" versus "Mary and Sue are

mothers"

You can find the code samples for this chapter and links to additional
resources in the corresponding directory of the GitHub repository. The
notebooks include color versions of the images.

Chapter 14

[441]

The NLP workflow
A key goal for using ML from text data for algorithmic trading is to extract signals from
documents. A document is an individual sample from a relevant text data source, for
example, a company report, a headline, a news article, or a tweet. A corpus, in turn, is a
collection of documents.

Figure 14.1 lays out the key steps to convert documents into a dataset that can be used to
train a supervised ML algorithm capable of making actionable predictions:

Figure 14.1: The NLP workflow

Fundamental techniques extract text features as isolated semantic units called tokens and
use rules and dictionaries to annotate them with linguistic and semantic information. The
bag-of-words model uses token frequency to model documents as token vectors, which
leads to the document-term matrix that is frequently used for text classification, retrieval,
or summarization.

Advanced approaches rely on ML to refine basic features such as tokens and produce
richer document models. These include topic models that reflect the joint usage of tokens
across documents and word-vector models that aim to capture the context of token usage.

We will review key decisions at each step of the workflow and the related tradeoffs in more
detail before illustrating their implementation using the spaCy library in the next section.
The following table summarizes the key tasks of an NLP pipeline:

Feature Description

Tokenization Segment text into words, punctuation marks, and so on.

Part-of-speech tagging Assign word types to tokens, such as a verb or noun.

Dependency parsing Label syntactic token dependencies, like subject <=> object.

Stemming and lemmatization Assign the base forms of words: "was" => "be", "rats" => "rat".

Sentence boundary detection Find and segment individual sentences.

Named entity recognition Label "real-world" objects, such as people, companies, or locations.

Similarity Evaluate the similarity of words, text spans, and documents.

Text Data for Trading – Sentiment Analysis

[442]

Parsing and tokenizing text data – selecting the vocabulary

A token is an instance of a sequence of characters in a given document and is considered a
semantic unit. The vocabulary is the set of tokens contained in a corpus deemed relevant
for further processing; tokens not in the vocabulary will be ignored.

The goal, of course, is to extract tokens that most accurately reflect the document's
meaning. The key tradeoff at this step is the choice of a larger vocabulary to better reflect
the text source at the expense of more features and higher model complexity (discussed as
the curse of dimensionality in Chapter 13, Data-Driven Risk Factors and Asset Allocation with
Unsupervised Learning).

Basic choices in this regard concern the treatment of punctuation and capitalization, the use
of spelling correction, and whether to exclude very frequent so-called "stop words" (such as
"and" or "the") as meaningless noise.

In addition, we need to decide whether to include groupings of n individual tokens called
n-grams as semantic units (an individual token is also called unigram). An example of a
two-gram (or bigram) is "New York", whereas "New York City" is a three-gram (or trigram).
The decision can rely on dictionaries or a comparison of the relative frequencies of the
individual and joint usage. There are more unique combinations of tokens than unigrams,
hence adding n-grams will drive up the number of features and risks adding noise unless
filtered for by frequency.

Linguistic annotation – relationships among tokens

Linguistic annotations include the application of syntactic and grammatical rules to
identify the boundary of a sentence despite ambiguous punctuation, and a token's role and
relationships in a sentence for POS tagging and dependency parsing. It also permits the
identification of common root forms for stemming and lemmatization to group together
related words.

The following are some key concepts related to annotations:

• Stemming uses simple rules to remove common endings such as s, ly, ing, or ed
from a token and reduce it to its stem or root form.

• Lemmatization uses more sophisticated rules to derive the canonical root (lemma)
of a word. It can detect irregular common roots such as "better" and "best" and more
effectively condenses the vocabulary but is slower than stemming. Both approaches
simplify the vocabulary at the expense of semantic nuances.

• POS annotations help disambiguate tokens based on their function (for example,
when a verb and noun have the same form), which increases the vocabulary but
may capture meaningful distinctions.

• Dependency parsing identifies hierarchical relationships among tokens and is
commonly used for translation. It is important for interactive applications that
require more advanced language understanding, such as chatbots.

Chapter 14

[443]

Semantic annotation – from entities to knowledge graphs

Named-entity recognition (NER) aims at identifying tokens that represent objects of
interest, such as persons, countries, or companies. It can be further developed into a
knowledge graph that captures semantic and hierarchical relationships among such
entities. It is a critical ingredient for applications that, for example, aim at predicting the
impact of news events on sentiment.

Labeling – assigning outcomes for predictive modeling

Many NLP applications learn to predict outcomes based on meaningful information
extracted from the text. Supervised learning requires labels to teach the algorithm the true
input-output relationship. With text data, establishing this relationship may be challenging
and require explicit data modeling and collection.

Examples include decisions on how to quantify the sentiment implicit in a text document
such as an email, transcribed interview, or tweet with respect to a new domain, or which
aspects of a research document or news report should be assigned a specific outcome.

Applications
The use of ML with text data for trading relies on extracting meaningful information in
the form of features that help predict future price movements. Applications range from
the exploitation of the short-term market impact of news to the longer-term fundamental
analysis of the drivers of asset valuation. Examples include the following:

• The evaluation of product review sentiment to assess a company's competitive
position or industry trends

• The detection of anomalies in credit contracts to predict the probability or impact of
a default

• The prediction of news impact in terms of direction, magnitude, and affected entities

JP Morgan, for instance, developed a predictive model based on 250,000 analyst reports
that outperformed several benchmark indices and produced uncorrelated signals relative to
sentiment factors formed from consensus EPS and recommendation changes.

From text to tokens – the NLP pipeline
In this section, we will demonstrate how to construct an NLP pipeline using the open-
source Python library spaCy. The textacy library builds on spaCy and provides easy access
to spaCy attributes and additional functionality.

Refer to the notebook nlp_pipeline_with_spaCy for the following code samples, installation
instruction, and additional details.

Text Data for Trading – Sentiment Analysis

[444]

NLP pipeline with spaCy and textacy
spaCy is a widely used Python library with a comprehensive feature set for fast text
processing in multiple languages. The usage of the tokenization and annotation engines
requires the installation of language models. The features we will use in this chapter only
require the small models; the larger models also include word vectors that we will cover in
Chapter 16, Word Embeddings for Earnings Calls and SEC Filings.

With the library installed and linked, we can instantiate a spaCy language model and then
apply it to the document. The result is a Doc object that tokenizes the text and processes it
according to configurable pipeline components that by default consist of a tagger, a parser,
and a named-entity recognizer:

nlp = spacy.load('en')

nlp.pipe_names

['tagger', 'parser', 'ner']

Let's illustrate the pipeline using a simple sentence:

sample_text = 'Apple is looking at buying U.K. startup for $1 billion'
doc = nlp(sample_text)

Parsing, tokenizing, and annotating a sentence

The parsed document content is iterable, and each element has numerous attributes
produced by the processing pipeline. The next sample illustrates how to access the
following attributes:

• .text: The original word text

• .lemma_: The word root

• .pos_: A basic POS tag

• .tag_: The detailed POS tag

• .dep_: The syntactic relationship or dependency between tokens

• .shape_: The shape of the word, in terms of capitalization, punctuation, and digits

• .is alpha: Checks whether the token is alphanumeric

• .is stop: Checks whether the token is on a list of common words for the given
language

We iterate over each token and assign its attributes to a pd.DataFrame:

pd.DataFrame([[t.text, t.lemma_, t.pos_, t.tag_, t.dep_, t.shape_,

 t.is_alpha, t.is_stop]

 for t in doc],

 columns=['text', 'lemma', 'pos', 'tag', 'dep', 'shape',

 'is_alpha', is_stop'])

Chapter 14

[445]

This produces the following result:

text lemma pos tag dep shape is_alpha is_stop

Apple apple PROPN NNP nsubj Xxxxx TRUE FALSE

is be VERB VBZ aux xx TRUE TRUE

looking look VERB VBG ROOT xxxx TRUE FALSE

at at ADP IN prep xx TRUE TRUE

buying buy VERB VBG pcomp xxxx TRUE FALSE

U.K. u.k. PROPN NNP compound X.X. FALSE FALSE

startup startup NOUN NN dobj xxxx TRUE FALSE

for for ADP IN prep xxx TRUE TRUE

$ $ SYM $ quantmod $ FALSE FALSE

1 1 NUM CD compound d FALSE FALSE

billion billion NUM CD pobj xxxx TRUE FALSE

We can visualize the syntactic dependency in a browser or notebook using the following:

displacy.render(doc, style='dep', options=options, jupyter=True)

The preceding code allows us to obtain a dependency tree like the following one:

Figure 14.2: spaCy dependency tree

We can get additional insight into the meaning of attributes using spacy.explain(), such as
the following, for example:

spacy.explain("VBZ")

verb, 3rd person singular present

Batch-processing documents

We will now read a larger set of 2,225 BBC News articles (see GitHub for the data source
details) that belong to five categories and are stored in individual text files. We do the
following:

1. Call the .glob() method of the pathlib module's Path object.

2. Iterate over the resulting list of paths.

3. Read all lines of the news article excluding the heading in the first line.
4. Append the cleaned result to a list:

files = Path('..', 'data', 'bbc').glob('**/*.txt')
bbc_articles = []

Text Data for Trading – Sentiment Analysis

[446]

for i, file in enumerate(sorted(list(files))):
 with file.open(encoding='latin1') as f:
 lines = f.readlines()

 body = ' '.join([l.strip() for l in lines[1:]]).strip()

 bbc_articles.append(body)

len(bbc_articles)

2225

Sentence boundary detection

We will illustrate sentence detection by calling the NLP object on the first of the articles:

doc = nlp(bbc_articles[0])

type(doc)

spacy.tokens.doc.Doc

spaCy computes sentence boundaries from the syntactic parse tree so that punctuation and
capitalization play an important but not decisive role. As a result, boundaries will coincide
with clause boundaries, even for poorly punctuated text.

We can access the parsed sentences using the .sents attribute:

sentences = [s for s in doc.sents]

sentences[:3]

[Quarterly profits at US media giant TimeWarner jumped 76% to $1.13bn (Â£600m)
for the three months to December, from $639m year-earlier. ,
 The firm, which is now one of the biggest investors in Google, benefited from
sales of high-speed internet connections and higher advert sales.,

 TimeWarner said fourth quarter sales rose 2% to $11.1bn from $10.9bn.]

Named entity recognition

spaCy enables named entity recognition using the .ent_type_ attribute:

for t in sentences[0]:

 if t.ent_type_:

 print('{} | {} | {}'.format(t.text, t.ent_type_, spacy.explain(t.
ent_type_)))

Quarterly | DATE | Absolute or relative dates or periods

US | GPE | Countries, cities, states

TimeWarner | ORG | Companies, agencies, institutions, etc.

Textacy makes access to the named entities that appear in the first article easy:

entities = [e.text for e in entities(doc)]

pd.Series(entities).value_counts().head()

TimeWarner 7

AOL 5

Chapter 14

[447]

fourth quarter 3

year-earlier 2

one 2

N-grams

N-grams combine n consecutive tokens. This can be useful for the bag-of-words model
because, depending on the textual context, treating (for example) "data scientist" as a single
token may be more meaningful than the two distinct tokens "data" and "scientist".

Textacy makes it easy to view the ngrams of a given length n occurring at least min_freq
times:

pd.Series([n.text for n in ngrams(doc, n=2, min_freq=2)]).value_counts()

fourth quarter 3

quarter profits 2
Time Warner 2

company said 2

AOL Europe 2

spaCy's streaming API

To pass a larger number of documents through the processing pipeline, we can use spaCy's
streaming API as follows:

iter_texts = (bbc_articles[i] for i in range(len(bbc_articles)))

for i, doc in enumerate(nlp.pipe(iter_texts, batch_size=50, n_threads=8)):

 assert doc.is_parsed

Multi-language NLP

spaCy includes trained language models for English, German, Spanish, Portuguese, French,
Italian, and Dutch, as well as a multi-language model for named-entity recognition. Cross-
language usage is straightforward since the API does not change.

We will illustrate the Spanish language model using a parallel corpus of TED talk subtitles
(see the GitHub repo for data source references). For this purpose, we instantiate both
language models:

model = {}

for language in ['en', 'es']:

 model[language] = spacy.load(language)

We read small corresponding text samples in each model:

text = {}

path = Path('../data/TED')

for language in ['en', 'es']:

Text Data for Trading – Sentiment Analysis

[448]

 file_name = path / 'TED2013_sample.{}'.format(language)
 text[language] = file_name.read_text()

Sentence boundary detection uses the same logic but finds a different breakdown:

parsed, sentences = {}, {}

for language in ['en', 'es']:

 parsed[language] = model[language](text[language])

 sentences[language] = list(parsed[language].sents)

 print('Sentences:', language, len(sentences[language]))

Sentences: en 22

Sentences: es 22

POS tagging also works in the same way:

pos = {}

for language in ['en', 'es']:

 pos[language] = pd.DataFrame([[t.text, t.pos_, spacy.explain(t.pos_)]

 for t in sentences[language][0]],

 columns=['Token', 'POS Tag', 'Meaning'])

pd.concat([pos['en'], pos['es']], axis=1).head()

This produces the following table:

Token POS Tag Meaning Token POS Tag Meaning

There ADV adverb Existe VERB verb

s VERB verb una DET determiner

a DET determiner estrecha ADJ adjective

tight ADJ adjective y CONJ conjunction

and CCONJ
coordinating
conjunction

sorprendente ADJ adjective

The next section illustrates how to use the parsed and annotated tokens to build a
document-term matrix that can be used for text classification.

NLP with TextBlob
TextBlob is a Python library that provides a simple API for common NLP tasks and builds
on the Natural Language Toolkit (NLTK) and the Pattern web mining libraries. TextBlob
facilitates POS tagging, noun phrase extraction, sentiment analysis, classification, and
translation, among others.

To illustrate the use of TextBlob, we sample a BBC Sport article with the headline "Robinson
ready for difficult task". Similar to spaCy and other libraries, the first step is to pass the
document through a pipeline represented by the TextBlob object to assign the annotations
required for various tasks (see the notebook nlp_with_textblob):

Chapter 14

[449]

from textblob import TextBlob

article = docs.sample(1).squeeze()

parsed_body = TextBlob(article.body)

Stemming

To perform stemming, we instantiate the SnowballStemmer from the NTLK library, call its
.stem() method on each token, and display tokens that were modified as a result:

from nltk.stem.snowball import SnowballStemmer

stemmer = SnowballStemmer('english')

[(word, stemmer.stem(word)) for i, word in enumerate(parsed_body.words)

 if word.lower() != stemmer.stem(parsed_body.words[i])]

[('Manchester', 'manchest'),

 ('United', 'unit'),

 ('reduced', 'reduc'),

 ('points', 'point'),

 ('scrappy', 'scrappi')

Sentiment polarity and subjectivity

TextBlob provides polarity and subjectivity estimates for parsed documents using
dictionaries provided by the Pattern library. These dictionaries lexicon-map adjectives
frequently found in product reviews to sentiment polarity scores, ranging from -1 to +1
(negative ↔ positive) and a similar subjectivity score (objective ↔ subjective).

The .sentiment attribute provides the average for each score over the relevant tokens,
whereas the .sentiment_assessments attribute lists the underlying values for each token
(see the notebook):

parsed_body.sentiment

Sentiment(polarity=0.088031914893617, subjectivity=0.46456433637284694)

Counting tokens – the document-term matrix
In this section, we first introduce how the bag-of-words model converts text data into a
numeric vector space representations. The goal is to approximate document similarity by
their distance in that space. We then proceed to illustrate how to create a document-term
matrix using the sklearn library.

Text Data for Trading – Sentiment Analysis

[450]

The bag-of-words model
The bag-of-words model represents a document based on the frequency of the terms or
tokens it contains. Each document becomes a vector with one entry for each token in the
vocabulary that reflects the token's relevance to the document.

Creating the document-term matrix

The document-term matrix is straightforward to compute given the vocabulary. However,
it is also a crude simplification because it abstracts from word order and grammatical
relationships. Nonetheless, it often achieves good results in text classification quickly and,
thus, provides a very useful starting point.

The left panel of Figure 14.3 illustrates how this document model converts text data into a
matrix with numerical entries where each row corresponds to a document and each column
to a token in the vocabulary. The resulting matrix is usually both very high-dimensional
and sparse, that is, it contains many zero entries because most documents only contain a
small fraction of the overall vocabulary.

Figure 14.3: Document-term matrix and cosine similarity

There are several ways to weigh a token's vector entry to capture its relevance to the
document. We will illustrate how to use sklearn to use binary flags that indicate presence
or absence, counts, and weighted counts that account for differences in term frequencies
across all documents in the corpus.

Measuring the similarity of documents

The representation of documents as word vectors assigns to each document a location in
the vector space created by the vocabulary. Interpreting the vector entries as Cartesian
coordinates in this space, we can use the angle between two vectors to measure their
similarity because vectors that point in the same direction contain the same terms with the
same frequency weights.

Chapter 14

[451]

The right panel of the preceding figure illustrates—simplified in two dimensions—the
calculation of the distance between a document represented by a vector d

1
 and a query

vector (either a set of search terms or another document) represented by the vector q.

The cosine similarity equals the cosine of the angle between the two vectors. It translates
the size of the angle into a number in the range [0, 1] since all vector entries are non-negative
token weights. A value of 1 implies that both documents are identical with respect to their
token weights, whereas a value of 0 implies that the two documents only contain distinct
tokens.

As shown in the figure, the cosine of the angle is equal to the dot product of the vectors,
that is, the sum product of their coordinates, divided by the product of the lengths,
measured by the Euclidean norms, of each vector.

Document-term matrix with scikit-learn
The scikit-learn preprocessing module offers two tools to create a document-term matrix.
CountVectorizer uses binary or absolute counts to measure the term frequency (TF) tf(d, t)
for each document d and token t.

TfidfVectorizer, by contrast, weighs the (absolute) term frequency by the inverse document
frequency (IDF). As a result, a term that appears in more documents will receive a lower
weight than a token with the same frequency for a given document but with a lower
frequency across all documents. More specifically, using the default settings, the tf-idf(d, t)
entries for the document-term matrix are computed as tf-idf(d, t) = tf(d, t) x idf(t) with:idf(𝑡𝑡) = log 1 + 𝑛𝑛𝑑𝑑1 + df(𝑑𝑑𝑑 𝑡𝑡) + 1

where n
d
 is the number of documents and df(d, t) the document frequency of term t. The

resulting TF-IDF vectors for each document are normalized with respect to their absolute
or squared totals (see the sklearn documentation for details). The TF-IDF measure was
originally used in information retrieval to rank search engine results and has subsequently
proven useful for text classification and clustering.

Both tools use the same interface and perform tokenization and further optional
preprocessing of a list of documents before vectorizing the text by generating token counts
to populate the document-term matrix.

Key parameters that affect the size of the vocabulary include the following:

• stop_words: Uses a built-in or user-provided list of (frequent) words to exclude

• ngram_range: Includes n-grams in a range of n defined by a tuple of (n
min

, n
max

)

• lowercase: Converts characters accordingly (the default is True)

• min_df/max_df: Ignores words that appear in less/more (int) or are present in a
smaller/larger share of documents (if float [0.0,1.0])

• max_features: Limits the number of tokens in vocabulary accordingly

• binary: Sets non-zero counts to 1 (True)

Text Data for Trading – Sentiment Analysis

[452]

See the notebook document_term_matrix for the following code samples and additional
details. We are again using the 2,225 BBC news articles for illustration.

Using CountVectorizer

The notebook contains an interactive visualization that explores the impact of the min_df
and max_df settings on the size of the vocabulary. We read the articles into a DataFrame,
set CountVectorizer to produce binary flags and use all tokens, and call its .fit_transform()
method to produce a document-term matrix:

binary_vectorizer = CountVectorizer(max_df=1.0,

 min_df=1,

 binary=True)

binary_dtm = binary_vectorizer.fit_transform(docs.body)
<2225x29275 sparse matrix of type '<class 'numpy.int64'>'

 with 445870 stored elements in Compressed Sparse Row format>

The output is a scipy.sparse matrix in row format that efficiently stores a small share (<0.7
percent) of the 445,870 non-zero entries in the 2,225 (document) rows and 29,275 (token)
columns.

Visualizing the vocabulary distribution

The visualization in Figure 14.4 shows that requiring tokens to appear in at least 1 percent
and less than 50 percent of documents restricts the vocabulary to around 10 percent of the
almost 30,000 tokens.

This leaves a mode of slightly over 100 unique tokens per document, as shown in the left
panel of the following plot. The right panel shows the document frequency histogram for
the remaining tokens:

Figure 14.4: The distributions of unique tokens and number of tokens per document

Chapter 14

[453]

Finding the most similar documents

CountVectorizer result lets us find the most similar documents using the pdist() functions
for pairwise distances provided by the scipy.spatial.distance module. It returns a
condensed distance matrix with entries corresponding to the upper triangle of a square
matrix. We use np.triu_indices() to translate the index that minimizes the distance to the
row and column indices that in turn correspond to the closest token vectors:

m = binary_dtm.todense() # pdist does not accept sparse format

pairwise_distances = pdist(m, metric='cosine')

closest = np.argmin(pairwise_distances) # index that minimizes distance

rows, cols = np.triu_indices(n_docs) # get row-col indices

rows[closest], cols[closest]

(6, 245)

Articles 6 and 245 are closest by cosine similarity, due to the fact that they share 38 tokens
out of a combined vocabulary of 303 (see notebook). The following table summarizes these
two articles and demonstrates the limited ability of similarity measures based on word
counts to identify deeper semantic similarity:

Article 6 Article 245

Topic Business Business

Heading Jobs growth still slow in the US Ebbers 'aware' of WorldCom fraud

Body

The US created fewer jobs than expected
in January, but a fall in jobseekers
pushed the unemployment rate to its
lowest level in three years. According
to Labor Department figures, US firms
added only 146,000 jobs in January.

Former WorldCom boss Bernie Ebbers was
directly involved in the $11bn financial
fraud at the firm, his closest associate has
told a US court. Giving evidence in the
criminal trial of Mr Ebbers, ex-finance chief
Scott Sullivan implicated his colleague in
the accounting scandal at the firm.

Both CountVectorizer and TfidfVectorizer can be used with spaCy, for example, to
perform lemmatization and exclude certain characters during tokenization:

nlp = spacy.load('en')

def tokenizer(doc):

 return [w.lemma_ for w in nlp(doc)

 if not w.is_punct | w.is_space]

vectorizer = CountVectorizer(tokenizer=tokenizer, binary=True)

doc_term_matrix = vectorizer.fit_transform(docs.body)

See the notebook for additional detail and more examples.

Text Data for Trading – Sentiment Analysis

[454]

TfidfTransformer and TfidfVectorizer
TfidfTransformer computes the TF-IDF weights from a document-term matrix of token
counts like the one produced by CountVectorizer.

TfidfVectorizer performs both computations in a single step. It adds a few parameters to
the CountVectorizer API that controls the smoothing behavior.

The TFIDF computation works as follows for a small text sample:

sample_docs = ['call you tomorrow',

 'Call me a taxi',

 'please call me... PLEASE!']

We compute the term frequency as before:

vectorizer = CountVectorizer()

tf_dtm = vectorizer.fit_transform(sample_docs).todense()
tokens = vectorizer.get_feature_names()

term_frequency = pd.DataFrame(data=tf_dtm,

 columns=tokens)

 call me please taxi tomorrow you

0 1 0 0 0 1 1

1 1 1 0 1 0 0

2 1 1 2 0 0 0

The document frequency is the number of documents containing the token:

vectorizer = CountVectorizer(binary=True)

df_dtm = vectorizer.fit_transform(sample_docs).todense().sum(axis=0)
document_frequency = pd.DataFrame(data=df_dtm,

 columns=tokens)

 call me please taxi tomorrow you

0 3 2 1 1 1 1

The TF-IDF weights are the ratio of these values:

tfidf = pd.DataFrame(data=tf_dtm/df_dtm, columns=tokens)
 call me please taxi tomorrow you

0 0.33 0.00 0.00 0.00 1.00 1.00

1 0.33 0.50 0.00 1.00 0.00 0.00

2 0.33 0.50 2.00 0.00 0.00 0.00

Chapter 14

[455]

The effect of smoothing
To avoid zero division, TfidfVectorizer uses smoothing for document and term frequencies:

• smooth_idf: Adds one to document frequency, as if an extra document contained
every token in the vocabulary, to prevent zero divisions

• sublinear_tf: Applies sublinear tf scaling, that is, replaces tf with 1 + log(tf)

In combination with normed weights, the results differ slightly:

vect = TfidfVectorizer(smooth_idf=True,
 norm='l2', # squared weights sum to 1 by document

 sublinear_tf=False, # if True, use 1+log(tf)

 binary=False)

pd.DataFrame(vect.fit_transform(sample_docs).todense(),
 columns=vect.get_feature_names())

 call me please taxi tomorrow you

0 0.39 0.00 0.00 0.00 0.65 0.65

1 0.43 0.55 0.00 0.72 0.00 0.00

2 0.27 0.34 0.90 0.00 0.00 0.00

Summarizing news articles using TfidfVectorizer
Due to their ability to assign meaningful token weights, TF-IDF vectors are also used
to summarize text data. For example, Reddit's autotldr function is based on a similar
algorithm. See the notebook for an example using the BBC articles.

Key lessons instead of lessons learned
The large number of techniques and options to process natural language for use in ML
models corresponds to the complex nature of this highly unstructured data source. The
engineering of good language features is both challenging and rewarding, and arguably the
most important step in unlocking the semantic value hidden in text data.

In practice, experience helps to select transformations that remove the noise rather than the
signal, but it will likely remain necessary to cross-validate and compare the performance of
different combinations of preprocessing choices.

NLP for trading
Once text data has been converted into numerical features using the NLP techniques discussed
in the previous sections, text classification works just like any other classification task.

In this section, we will apply these preprocessing techniques to news articles, product
reviews, and Twitter data and teach various classifiers to predict discrete news categories,
review scores, and sentiment polarity.

Text Data for Trading – Sentiment Analysis

[456]

First, we will introduce the naive Bayes model, a probabilistic classification algorithm that
works well with the text features produced by a bag-of-words model.

The code samples for this section are in the notebook news_text_classification.

The naive Bayes classifier
The naive Bayes algorithm is very popular for text classification because its low
computational cost and memory requirements facilitate training on very large, high-
dimensional datasets. Its predictive performance can compete with more complex models,
provides a good baseline, and is best known for successful spam detection.

The model relies on Bayes' theorem and the assumption that the various features are
independent of each other given the outcome class. In other words, for a given outcome,
knowing the value of one feature (for example, the presence of a token in a document) does
not provide any information about the value of another feature.

Bayes' theorem refresher

Bayes' theorem expresses the conditional probability of one event (for example, that an
email is spam as opposed to benign "ham") given another event (for example, that the email
contains certain words) as follows:

𝑃𝑃𝑃is spam | has words)⏟ Posterior = 𝑃𝑃𝑃has words | is spam)⏞ Likelihood 𝑃𝑃𝑃is spam)⏞ Prior𝑃𝑃𝑃has words)⏟ Evidence %0

The posterior probability that an email is in fact spam given that it contains certain words
depends on the interplay of three factors:

• The prior probability that an email is spam

• The likelihood of encountering these words in a spam email

• The evidence, that is, the probability of seeing these words in an email

To compute the posterior, we can ignore the evidence because it is the same for all
outcomes (spam versus ham), and the unconditional prior may be easy to compute.

However, the likelihood poses insurmountable challenges for a reasonably sized
vocabulary and a real-world corpus of emails. The reason is the combinatorial explosion
of the words that did or did not appear jointly in different documents that prevent the
evaluation required to compute a probability table and assign a value to the likelihood.

The conditional independence assumption

The key assumption to make the model both tractable and earn it the name naive is that the
features are independent conditional on the outcome. To illustrate, let's classify an email
with the three words "Send money now" so that Bayes' theorem becomes the following:

Chapter 14

[457]

𝑃𝑃(spam | send money now) = 𝑃𝑃(send money now | spam) × 𝑃𝑃(spam)𝑃𝑃(send money now)

Formally, the assumption that the three words are conditionally independent means that
the probability of observing "send" is not affected by the presence of the other terms given
that the mail is spam, that is, P(send | money, now, spam) = P(send | spam). As a result,
we can simplify the likelihood function:𝑃𝑃(spam | send money now) = 𝑃𝑃(send | spam) × 𝑃𝑃(money | spam) × 𝑃𝑃(now | spam) × 𝑃𝑃(spam)𝑃𝑃(send money now)

Using the "naive" conditional independence assumption, each term in the numerator is
straightforward to compute as relative frequencies from the training data. The denominator
is constant across classes and can be ignored when posterior probabilities need to be
compared rather than calibrated. The prior probability becomes less relevant as the number
of factors, that is, features, increases.

In sum, the advantages of the naive Bayes model are fast training and prediction because
the number of parameters is proportional to the number of features, and their estimation
has a closed-form solution (based on training data frequencies) rather than expensive
iterative optimization. It is also intuitive and somewhat interpretable, does not require
hyperparameter tuning and is relatively robust to irrelevant features given sufficient signal.

However, when the independence assumption does not hold and text classification
depends on combinations of features, or features are correlated, the model will perform
poorly.

Classifying news articles
We start with an illustration of the naive Bayes model for news article classification using
the BBC articles that we read before to obtain a DataFrame with 2,225 articles from five
categories:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 2225 entries, 0 to 2224

Data columns (total 3 columns):

topic 2225 non-null object

heading 2225 non-null object

body 2225 non-null object

To train and evaluate a multinomial naive Bayes classifier, we split the data into the default
75:25 train-test set ratio, ensuring that the test set classes closely mirror the train set:

y = pd.factorize(docs.topic)[0] # create integer class values

X = docs.body

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1,
 stratify=y)

Text Data for Trading – Sentiment Analysis

[458]

We proceed to learn the vocabulary from the training set and transform both datasets using
CountVectorizer with default settings to obtain almost 26,000 features:

vectorizer = CountVectorizer()

X_train_dtm = vectorizer.fit_transform(X_train)
X_test_dtm = vectorizer.transform(X_test)

X_train_dtm.shape, X_test_dtm.shape

((1668, 25919), (557, 25919))

Training and prediction follow the standard sklearn fit/predict interface:

nb = MultinomialNB()

nb.fit(X_train_dtm, y_train)
y_pred_class = nb.predict(X_test_dtm)

We evaluate the multiclass predictions using accuracy to find the default classifier achieved
an accuracy of almost 98 percent:

accuracy_score(y_test, y_pred_class)

0.97666068222621

Sentiment analysis with Twitter and Yelp data
Sentiment analysis is one of the most popular uses of NLP and ML for trading because
positive or negative perspectives on assets or other price drivers are likely to impact
returns.

Generally, modeling approaches to sentiment analysis rely on dictionaries (as does the
TextBlob library) or models trained on outcomes for a specific domain. The latter is often
preferable because it permits more targeted labeling, for example, by tying text features to
subsequent price changes rather than indirect sentiment scores.

We will illustrate ML for sentiment analysis using a Twitter dataset with binary polarity
labels and a large Yelp business review dataset with a five-point outcome scale.

Binary sentiment classification with Twitter data
We use a dataset that contains 1.6 million training and 350 test tweets from 2009 with
algorithmically assigned binary positive and negative sentiment scores that are fairly
evenly split (see the notebook for more detailed data exploration).

Multinomial naive Bayes

We create a document-term matrix with 934 tokens as follows:

vectorizer = CountVectorizer(min_df=.001, max_df=.8, stop_words='english')

train_dtm = vectorizer.fit_transform(train.text)
<1566668x934 sparse matrix of type '<class 'numpy.int64'>'

 with 6332930 stored elements in Compressed Sparse Row format>

Chapter 14

[459]

We then train the MultinomialNB classifier as before and predict the test set:

nb = MultinomialNB()

nb.fit(train_dtm, train.polarity)
predicted_polarity = nb.predict(test_dtm)

The result has over 77.5 percent accuracy:

accuracy_score(test.polarity, predicted_polarity)

0.7768361581920904

Comparison with TextBlob sentiment scores

We also obtain TextBlob sentiment scores for the tweets and note (see the left panel in Figure
14.5) that positive test tweets receive a significantly higher sentiment estimate. We then use
the MultinomialNB model's .predict_proba() method to compute predicted probabilities
and compare both models using the respective area under the curve, or AUC, that we
introduced in Chapter 6, The Machine Learning Process (see the right panel in Figure 14.5).

Figure 14.5: Accuracy of custom versus generic sentiment scores

The custom naive Bayes model outperforms TextBlob in this case, achieving a test AUC of
0.848 compared to 0.825 for TextBlob.

Multiclass sentiment analysis with Yelp business reviews

Finally, we apply sentiment analysis to the significantly larger Yelp business review
dataset with five outcome classes (see the notebook sentiment_analysis_yelp for code and
additional details).

The data consists of several files with information on the business, the user, the review, and
other aspects that Yelp provides to encourage data science innovation.

Text Data for Trading – Sentiment Analysis

[460]

We will use around six million reviews produced over the 2010-2018 period (see the
notebook for details). The following figure shows the number of reviews and the average
number of stars per year, as well as the star distribution across all reviews.

Figure 14.6: Basic exploratory analysis of Yelp reviews

We will train various models on a 10 percent sample of the data through 2017 and use the
2018 reviews as the test set. In addition to the text features resulting from the review texts,
we will also use other information submitted with the review about the given user.

Combining text and numerical features

The dataset contains various numerical features (see notebook for implementation details).

The vectorizers produce scipy.sparse matrices. To combine the vectorized text data with
other features, we need to first convert these to sparse matrices as well; many sklearn
objects and other libraries such as LightGBM can handle these very memory-efficient data
structures. Converting the sparse matrix to a dense NumPy array risks memory overflow.

Most variables are categorical, so we use one-hot encoding since we have a fairly large
dataset to accommodate the increase in features.

We convert the encoded numerical features and combine them with the document-term
matrix:

train_numeric = sparse.csr_matrix(train_dummies.astype(np.uint))

train_dtm_numeric = sparse.hstack((train_dtm, train_numeric))

Benchmark accuracy

Using the most frequent number of stars (=5) to predict the test set achieves an accuracy
close to 52 percent:

test['predicted'] = train.stars.mode().iloc[0]

accuracy_score(test.stars, test.predicted)

0.5196950594793454

Multinomial naive Bayes model

Next, we train a naive Bayes classifier using a document-term matrix produced by
CountVectorizer with default settings.

Chapter 14

[461]

nb = MultinomialNB()

nb.fit(train_dtm,train.stars)
predicted_stars = nb.predict(test_dtm)

The prediction produces 64.7 percent accuracy on the test set, a 24.4 percent improvement
over the benchmark:

accuracy_score(test.stars, predicted_stars)

0.6465164206691094

Training with the combination of text and other features improves the test accuracy to
0.671.

Logistic regression

In Chapter 7, Linear Models – From Risk Factors to Return Forecasts, we introduced binary
logistic regression. sklearn also implements a multiclass model with a multinomial and a
one-versus-all training option, where the latter trains a binary model for each class while
considering all other classes as the negative class. The multinomial option is much faster
and more accurate than the one-versus-all implementation.

We evaluate a range of values for the regularization parameter C to identify the best performing
model, using the lbfgs solver as follows (see the sklearn documentation for details):

def evaluate_model(model, X_train, X_test, name, store=False):

 start = time()

 model.fit(X_train, train.stars)
 runtime[name] = time() – start

 predictions[name] = model.predict(X_test)

 accuracy[result] = accuracy_score(test.stars, predictions[result])

 if store:

 joblib.dump(model, f'results/{result}.joblib')

Cs = np.logspace(-5, 5, 11)

for C in Cs:

 model = LogisticRegression(C=C, multi_class='multinomial',
solver='lbfgs')

 evaluate_model(model, train_dtm, test_dtm, result, store=True)

Figure 14.7 shows the plots of the validation results.

Multiclass gradient boosting with LightGBM

For comparison, we also train a LightGBM gradient boosting tree ensemble with default
settings and a multiclass objective:

param = {'objective':'multiclass', 'num_class': 5}

booster = lgb.train(params=param,

Text Data for Trading – Sentiment Analysis

[462]

 train_set=lgb_train,

 num_boost_round=500,

 early_stopping_rounds=20,

 valid_sets=[lgb_train, lgb_test])

Predictive performance

Figure 14.7 displays the accuracy of each model for the combined data. The right panel plots
the validation performance for the logistic regression models for both datasets and different
levels of regularization.

Multinomial logistic regression performs best with a test accuracy slightly above 74
percent. Naive Bayes performs significantly worse. The default LightGBM settings did
not improve over the linear model with an accuracy of 0.736. However, we could tune
the hyperparameters of the gradient boosting model and may well see performance
improvements that put it at least on par with logistic regression. Either way, the result
serves as a reminder not to discount simple, regularized models as they may deliver not
only good results, but also do so quickly.

Figure 14.7: Test performance on combined data (all models, left) and for logistic regression with varying regularization

Summary
In this chapter, we explored numerous techniques and options to process unstructured
data with the goal of extracting semantically meaningful numerical features for use in ML
models.

We covered the basic tokenization and annotation pipeline and illustrated its
implementation for multiple languages using spaCy and TextBlob. We built on these results
to build a document model based on the bag-of-words model to represent documents as
numerical vectors. We learned how to refine the preprocessing pipeline and then used the
vectorized text data for classification and sentiment analysis.

We have two more chapters on alternative text data. In the next chapter, we will learn how
to summarize texts using unsupervised learning to identify latent topics. Then, in Chapter

16, Word Embeddings for Earnings Calls and SEC Filings, we will learn how to represent
words as vectors that reflect the context of word usage, a technique that has been used very
successfully to provide richer text features for various classification tasks.

[463]

15
Topic Modeling –

Summarizing Financial News

In the last chapter, we used the bag-of-words (BOW) model to convert unstructured
text data into a numerical format. This model abstracts from word order and represents
documents as word vectors, where each entry represents the relevance of a token to the
document. The resulting document-term matrix (DTM)—or transposed as the term-
document matrix—is useful for comparing documents to each other or a query vector for
similarity based on their token content and, therefore, finding the proverbial needle in a
haystack. It provides informative features to classify documents, such as in our sentiment
analysis examples.

However, this document model produces both high-dimensional data and very sparse data,
yet it does little to summarize the content or get closer to understanding what it is about.
In this chapter, we will use unsupervised machine learning to extract hidden themes from
documents using topic modeling. These themes can produce detailed insights into a large
body of documents in an automated way. They are very useful in order to understand the
haystack itself and allow us to tag documents based on their affinity with the various topics.

Topic models generate sophisticated, interpretable text features that can be a first step toward
extracting trading signals from large collections of documents. They speed up the review of
documents, help identify and cluster similar documents, and support predictive modeling.

Applications include the unsupervised discovery of potentially insightful themes
in company disclosures or earnings call transcripts, customer reviews, or contracts.
Furthermore, the document-topic associations facilitate the labeling by assigning, for
example, sentiment metrics or, more directly, subsequent relevant asset returns.

Topic Modeling – Summarizing Financial News

[464]

More specifically, after reading this chapter, you'll understand:

• How topic modeling has evolved, what it achieves, and why it matters

• Reducing the dimensionality of the DTM using latent semantic indexing (LSI)

• Extracting topics with probabilistic latent semantic analysis (pLSA)

• How latent Dirichlet allocation (LDA) improves pLSA to become the most popular
topic model

• Visualizing and evaluating topic modeling results

• Running LDA using sklearn and Gensim

• How to apply topic modeling to collections of earnings calls and financial
news articles

Learning latent topics – Goals and approaches
Topic modeling discovers hidden themes that capture semantic information beyond
individual words in a body of documents. It aims to address a key challenge for a machine
learning algorithm that learns from text data by transcending the lexical level of "what
actually has been written" to the semantic level of "what was intended." The resulting topics
can be used to annotate documents based on their association with various topics.

In practical terms, topic models automatically summarize large collections of documents
to facilitate organization and management as well as search and recommendations. At
the same time, it enables the understanding of documents to the extent that humans can
interpret the descriptions of topics.

Topic models also mitigate the curse of dimensionality that often plagues the BOW
model; representing documents with high-dimensional, sparse vectors can make similarity
measures noisy, lead to inaccurate distance measurements, and result in the overfitting of
text classification models.

Moreover, the BOW model loses context as well as semantic information since it ignores
word order. It is also unable to capture synonymy (where several words have the same
meaning) or polysemy (where one word has several meanings). As a result of the latter,
document retrieval or similarity search may miss the point when the documents are not
indexed by the terms used to search or compare.

These shortcomings of the BOW model prompt the question: how can we learn meaningful
topics from data that facilitate a more productive interaction with documentary data?

You can find the code samples for this chapter and links to additional
resources in the corresponding directory of the GitHub repository.
The notebooks include color versions of the images.

Chapter 15

[465]

Initial attempts by topic models to improve on the vector space model (developed in the
mid-1970s) applied linear algebra to reduce the dimensionality of the DTM. This approach
is similar to the algorithm that we discussed as principal component analysis in Chapter 13,
Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning. While effective, it is
difficult to evaluate the results of these models without a benchmark model. In response,
probabilistic models have emerged that assume an explicit document generation process
and provide algorithms to reverse engineer this process and recover the underlying topics.

The following table highlights key milestones in the model evolution, which we will
address in more detail in the following sections:

Model Year Description

Latent semantic indexing (LSI) 1988
Captures the semantic document-term relationship by
reducing the dimensionality of the word space

Probabilistic latent semantic
analysis (pLSA)

1999
Reverse engineers a generative process that assumes
words generate a topic and documents as a mix of topics

Latent Dirichlet
allocation (LDA)

2003
Adds a generative process for documents: a three-level
hierarchical Bayesian model

Latent semantic indexing
Latent semantic indexing (LSI)—also called latent semantic analysis (LSA)—set out to
improve the results of queries that omitted relevant documents containing synonyms of
query terms (Dumais et al. 1988). Its goal was to model the relationships between documents
and terms so that it could predict that a term should be associated with a document, even
though, because of the variability in word use, no such association was observed.

LSI uses linear algebra to find a given number k of latent topics by decomposing the
DTM. More specifically, it uses the singular value decomposition (SVD) to find the best
lower-rank DTM approximation using k singular values and vectors. In other words, LSI
builds on some of the dimensionality reduction techniques we encountered in Chapter 13,
Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning. The authors also
experimented with hierarchical clustering but found it too restrictive for this purpose.

In this context, SVD identifies a set of uncorrelated indexing variables or factors that
represent each term and document by its vector of factor values. Figure 15.1 illustrates
how SVD decomposes the DTM into three matrices: two matrices that contain orthogonal
singular vectors and a diagonal matrix with singular values that serve as scaling factors.

Assuming some correlation in the input DTM, singular values decay in value. Therefore,
selecting the T-largest singular values yields a lower-dimensional approximation of the
original DTM that loses relatively little information. In the compressed version, the rows or
columns that had N items only have T < N entries.

Topic Modeling – Summarizing Financial News

[466]

The LSI decomposition of the DTM can be interpreted as shown in Figure 15.1:

• The first M× T matrix represents the relationships between documents and topics.

• The diagonal matrix scales the topics by their corpus strength.

• The third matrix models the term-topic relationship.

Figure 15.1: LSI and the SVD

The rows of the matrix produced by multiplying the first two matrices UTΣT correspond to
the locations of the original documents projected into the latent topic space.

How to implement LSI using sklearn
We will illustrate LSI using the BBC articles data that we introduced in the last chapter
because they are small enough for quick training and allow us to compare topic
assignments with category labels. Refer to the notebook latent_semantic_indexing for
additional implementation details.

We begin by loading the documents and creating a train and (stratified) test set with 50
articles. Then, we vectorize the data using TfidfVectorizer to obtain weighted DTM counts
and filter out words that appear in less than 1 percent or more than 25 percent of the
documents, as well as generic stopwords, to obtain a vocabulary of around 2,900 words:

vectorizer = TfidfVectorizer(max_df=.25, min_df=.01,
 stop_words='english',

 binary=False)

train_dtm = vectorizer.fit_transform(train_docs.article)
test_dtm = vectorizer.transform(test_docs.article)

We use scikit-learn's TruncatedSVD class, which only computes the k-largest singular values,
to reduce the dimensionality of the DTM. The deterministic arpack algorithm delivers an
exact solution, but the default "randomized" implementation is more efficient for large
matrices.

Chapter 15

[467]

We compute five topics to match the five categories, which explain only 5.4 percent of the
total DTM variance, so a larger number of topics would be reasonable:

svd = TruncatedSVD(n_components=5, n_iter=5, random_state=42)

svd.fit(train_dtm)
svd.explained_variance_ratio_.sum()

0.05382357286057269

LSI identifies a new orthogonal basis for the DTM that reduces the rank to the number of
desired topics. The .transform() method of the trained svd object projects the documents
into the new topic space. This space results from reducing the dimensionality of the
document vectors and corresponds to the UTΣT transformation illustrated earlier in this
section:

train_doc_topics = svd.transform(train_dtm)

train_doc_topics.shape

(2175, 5)

We can sample an article to view its location in the topic space. We draw a "Politics" article
that is most (positively) associated with topics 1 and 2:

i = randint(0, len(train_docs))

train_docs.iloc[i, :2].append(pd.Series(doc_topics[i], index=topic_labels))

Category Politics

Heading What the election should really be about?

Topic 1 0.33

Topic 2 0.18

Topic 3 0.12

Topic 4 0.02

Topic 5 0.06

The topic assignments for this sample align with the average topic weights for each
category illustrated in Figure 15.2 ("Politics" is the rightmost bar). They illustrate how
LSI expresses the k topics as directions in a k-dimensional space (the notebook includes a
projection of the average topic assignments per category into two-dimensional space).

Each category is clearly defined, and the test assignments match with train assignments.
However, the weights are both positive and negative, making it more difficult to interpret
the topics.

Topic Modeling – Summarizing Financial News

[468]

Figure 15.2: LSI topic weights for train and test data

We can also display the words that are most closely associated with each topic (in absolute
terms). The topics appear to capture some semantic information but are not clearly
differentiated (refer to Figure 15.3).

Figure 15.3: Top 10 words per LSI topic

Strengths and limitations
The strengths of LSI include the removal of noise and the mitigation of the curse of
dimensionality. It also captures some semantic aspects, like synonymy, and clusters
both documents and terms via their topic associations. Furthermore, it does not require
knowledge of the document language, and both information retrieval queries and
document comparisons are easy to do.

Chapter 15

[469]

However, the results of LSI are difficult to interpret because topics are word vectors with
both positive and negative entries. In addition, there is no underlying model that would
permit the evaluation of fit or provide guidance when selecting the number of dimensions
or topics to use.

Probabilistic latent semantic analysis
Probabilistic latent semantic analysis (pLSA) takes a statistical perspective on LSI/LSA
and creates a generative model to address the lack of theoretical underpinnings of LSA
(Hofmann 2001).

pLSA explicitly models the probability word w appearing in document d, as described by
the DTM as a mixture of conditionally independent multinomial distributions that involve
topics t.

There are both symmetric and asymmetric formulations of how word-document co-
occurrences come about. The former assumes that both words and documents are
generated by the latent topic class. In contrast, the asymmetric model assumes that topics
are selected given the document, and words result in a second step given the topic.𝑃𝑃(𝑤𝑤, 𝑑𝑑) =∑ 𝑃𝑃(𝑑𝑑|𝑡𝑡)𝑃𝑃(𝑤𝑤|𝑡𝑡)𝑡𝑡⏟ symmetric = 𝑃𝑃(𝑑𝑑)∑ 𝑃𝑃(𝑡𝑡|𝑑𝑑)𝑃𝑃(𝑤𝑤|𝑡𝑡)𝑡𝑡⏟ asymmetric

The number of topics is a hyperparameter chosen prior to training and is not learned from
the data.

The plate notation in Figure 15.4 describes the statistical dependencies in a probabilistic
model. More specifically, it encodes the relationship just described for the asymmetric
model. Each rectangle represents multiple items: the outer block stands for M documents,
while the inner shaded rectangle symbolizes N words for each document. We only observe
the documents and their content; the model infers the hidden or latent topic distribution:

Figure 15.4: The statistical dependencies modeled by pLSA in plate notation

Let's now take a look at how we can implement this model in practice.

Topic Modeling – Summarizing Financial News

[470]

How to implement pLSA using sklearn
pLSA is equivalent to non-negative matrix factorization (NMF) using a Kullback-Leibler
divergence objective (view the references on GitHub). Therefore, we can use the sklearn.
decomposition.NMF class to implement this model following the LSI example.

Using the same train-test split of the DTM produced by TfidfVectorizer, we fit pLSA like so:

nmf = NMF(n_components=n_components,

 random_state=42,

 solver='mu',

 beta_loss='kullback-leibler',

 max_iter=1000)

nmf.fit(train_dtm)

We get a measure of the reconstruction error that is a substitute for the explained variance
measure from earlier:

nmf.reconstruction_err_

316.2609400385988

Due to its probabilistic nature, pLSA produces only positive topic weights that result in
more straightforward topic-category relationships for the test and training sets, as shown in
Figure 15.5:

Figure 15.5: pLSA weights by topic for train and test data

We also note that the word lists that describe each topic begin to make more sense; for
example, the "Entertainment" category is most directly associated with Topic 4, which
includes the words "film," "star," and so forth, as you can see in Figure 15.6:

Chapter 15

[471]

Figure 15.6: Top words per topic for pLSA

Strengths and limitations
The benefit of using a probability model is that we can now compare the performance of
different models by evaluating the probability they assign to new documents given the
parameters learned during training. It also means that the results have a clear probabilistic
interpretation. In addition, pLSA captures more semantic information, including polysemy.

On the other hand, pLSA increases the computational complexity compared to LSI, and the
algorithm may only yield a local as opposed to a global maximum. Finally, it does not yield
a generative model for new documents because it takes them as given.

Latent Dirichlet allocation
Latent Dirichlet allocation (LDA) extends pLSA by adding a generative process for topics
(Blei, Ng, and Jordan 2003). It is the most popular topic model because it tends to produce
meaningful topics that humans can relate to, can assign topics to new documents, and is
extensible. Variants of LDA models can include metadata, like authors or image data, or
learn hierarchical topics.

How LDA works
LDA is a hierarchical Bayesian model that assumes topics are probability distributions
over words, and documents are distributions over topics. More specifically, the model
assumes that topics follow a sparse Dirichlet distribution, which implies that documents
reflect only a small set of topics, and topics use only a limited number of terms frequently.

Topic Modeling – Summarizing Financial News

[472]

The Dirichlet distribution

The Dirichlet distribution produces probability vectors that can be used as a discrete
probability distribution. That is, it randomly generates a given number of values that
are positive and sum to one. It has a parameter 𝛼𝛼 of positive real value that controls the
concentration of the probabilities. Values closer to zero mean that only a few values will be
positive and receive most of the probability mass. Figure 15.7 illustrates three draws of size
10 for 𝛼𝛼 = 0.1:

Figure 15.7: Three draws from the Dirichlet distribution

The notebook dirichlet_distribution contains a simulation that lets you experiment with
different parameter values.

The generative model

The LDA topic model assumes the following generative process when an author adds an
article to a body of documents:

1. Randomly mix a small subset of topics with proportions defined by the Dirichlet
probabilities.

2. For each word in the text, select one of the topics according to the document-topic
probabilities.

3. Select a word from the topic's word list according to the topic-word probabilities.

As a result, the article content depends on the weight of each topic and the terms that make
up each topic. The Dirichlet distribution governs the selection of topics for documents and
words for topics. It encodes the idea that a document only covers a few topics, while each
topic uses only a small number of words frequently.

The plate notation for the LDA model in Figure 15.8 summarizes these relationships and
highlights the key model parameters:

Chapter 15

[473]

Figure 15.8: The statistical dependencies of the LDA model in plate notation

Reverse engineering the process

The generative process is clearly fictional but turns out to be useful because it permits the
recovery of the various distributions. The LDA algorithm reverse engineers the work of the
imaginary author and arrives at a summary of the document-topic-word relationships that
concisely describes:

• The percentage contribution of each topic to a document

• The probabilistic association of each word with a topic

LDA solves the Bayesian inference problem of recovering the distributions from the
body of documents and the words they contain by reverse engineering the assumed
content generation process. The original paper by Blei et al. (2003) uses variational Bayes
(VB) to approximate the posterior distribution. Alternatives include Gibbs sampling and
expectation propagation. We will illustrate, shortly, the implementations by the sklearn and
Gensim libraries.

How to evaluate LDA topics
Unsupervised topic models do not guarantee that the result will be meaningful or
interpretable, and there is no objective metric to assess the quality of the result as in
supervised learning. Human topic evaluation is considered the gold standard, but it is
potentially expensive and not readily available at scale.

Two options to evaluate results more objectively include perplexity, which evaluates the
model on unseen documents, and topic coherence metrics, which aim to evaluate the
semantic quality of the uncovered patterns.

Topic Modeling – Summarizing Financial News

[474]

Perplexity

Perplexity, when applied to LDA, measures how well the topic-word probability distribution
recovered by the model predicts a sample of unseen text documents. It is based on the
entropy H(p) of this distribution p and is computed with respect to the set of tokens w:2ℎ(𝑝𝑝) = 2−Σ𝑤𝑤 𝑝𝑝(𝑤𝑤) log2 𝑝𝑝(𝑤𝑤)
Measures closer to zero imply the distribution is better at predicting the sample.

Topic coherence

Topic coherence measures the semantic consistency of the topic model results, that is,
whether humans would perceive the words and their probabilities associated with topics
as meaningful.

To this end, it scores each topic by measuring the degree of semantic similarity between the
words most relevant to the topic. More specifically, coherence measures are based on the
probability of observing the set of words W that defines a topic together.

There are two measures of coherence that have been designed for LDA and are shown to
align with human judgments of topic quality, namely the UMass and the UCI metrics.

The UCI metric (Stevens et al. 2012) defines a word pair's score to be the sum of the
pointwise mutual information (PMI) between two distinct pairs of (top) topic words w

i
, w

j
 ∈ w and a smoothing factor 𝜀𝜀 :coherenceUCI = ∑ log 𝑝𝑝(𝑤𝑤𝑖𝑖 , 𝑤𝑤𝑗𝑗) + 𝜖𝜖𝑝𝑝(𝑤𝑤𝑖𝑖)𝑝𝑝(𝑤𝑤𝑗𝑗)(𝑤𝑤𝑖𝑖,𝑤𝑤𝑗𝑗) ∈ 𝑊𝑊

The probabilities are computed from word co-occurrence frequencies in a sliding window
over an external corpus like Wikipedia so that this metric can be thought of as an external
comparison to semantic ground truth.

In contrast, the UMass metric (Mimno et al. 2011) uses the co-occurrences in a number of
documents D from the training corpus to compute a coherence score:coherenceUMass = ∑ log 𝐷𝐷(𝑤𝑤𝑖𝑖 , 𝑤𝑤𝑗𝑗) + 𝜖𝜖𝐷𝐷(𝑤𝑤𝑗𝑗)(𝑤𝑤𝑖𝑖,𝑤𝑤𝑗𝑗) ∈ 𝑊𝑊

Rather than comparing the model result to extrinsic ground truth, this measure reflects
intrinsic coherence. Both measures have been evaluated to align well with human judgment
(Röder, Both, and Hinneburg 2015). In both cases, values closer to zero imply that a topic is
more coherent.

Chapter 15

[475]

How to implement LDA using sklearn
We will use the BBC data as before and train an LDA model using sklearn's decomposition.
LatentDirichletAllocation class with five topics (refer to the sklearn documentation for
details on the parameters and the notebook lda_with_sklearn for implementation details):

lda_opt = LatentDirichletAllocation(n_components=5,

 n_jobs=-1,

 max_iter=500,

 learning_method='batch',

 evaluate_every=5,

 verbose=1,

 random_state=42)

ldat.fit(train_dtm)
LatentDirichletAllocation(batch_size=128, doc_topic_prior=None,

 evaluate_every=5, learning_decay=0.7, learning_method='batch',

 learning_offset=10.0, max_doc_update_iter=100, max_iter=500,
 mean_change_tol=0.001, n_components=5, n_jobs=-1,

 n_topics=None, perp_tol=0.1, random_state=42,

 topic_word_prior=None, total_samples=1000000.0, verbose=1)

The model tracks the in-sample perplexity during training and stops iterating once this
measure stops improving. We can persist and load the result as usual with sklearn objects:

joblib.dump(lda, model_path / 'lda_opt.pkl')

lda_opt = joblib.load(model_path / 'lda_opt.pkl')

How to visualize LDA results using pyLDAvis
Topic visualization facilitates the evaluation of topic quality using human judgment.
pyLDAvis is a Python port of LDAvis, developed in R and D3.js (Sievert and Shirley 2014).
We will introduce the key concepts; each LDA application notebook contains examples.

pyLDAvis displays the global relationships among topics while also facilitating their
semantic evaluation by inspecting the terms most closely associated with each individual
topic and, inversely, the topics associated with each term. It also addresses the challenge
that terms that are frequent in a corpus tend to dominate the distribution over words that
define a topic.

To this end, LDAVis introduces the relevance r of term w to topic t. The relevance produces
a flexible ranking of terms by topic, by computing a weighted average of two metrics:

• The degree of association of topic t with term w, expressed as the conditional
probability p(w | t)

• The saliency, or lift, which measures how the frequency of term w for the topic t,
p(w | t), compares to its overall frequency across all documents, p(w)

Topic Modeling – Summarizing Financial News

[476]

More specifically, we can compute the relevance r for a term w and a topic t given a user-
defined weight 0 ≤ λ ≤ , like the following:𝑟𝑟(𝑤𝑤, 𝑡𝑡 | λ) = λ log(𝑝𝑝(𝑤𝑤|𝑡𝑡)) + (1 − λ) log 𝑝𝑝(𝑤𝑤|𝑡𝑡)𝑝𝑝(𝑤𝑤)

The tool allows the user to interactively change λ to adjust the relevance, which updates the
ranking of terms. User studies have found λ = 0.6 to produce the most plausible results.

How to implement LDA using Gensim
Gensim is a specialized natural language processing (NLP) library with a fast LDA
implementation and many additional features. We will also use it in the next chapter
on word vectors (refer to the notebook lda_with_gensim for details and the installation
directory for related instructions).

We convert the DTM produced by sklearn's CountVectorizer or TfIdfVectorizer into
Gensim data structures as follows:

train_corpus = Sparse2Corpus(train_dtm, documents_columns=False)

test_corpus = Sparse2Corpus(test_dtm, documents_columns=False)

id2word = pd.Series(vectorizer.get_feature_names()).to_dict()

Gensim's LDA algorithm includes numerous settings:

LdaModel(corpus=None,

 num_topics=100,

 id2word=None,

 distributed=False,

 chunksize=2000, # No of doc per training chunk.

 passes=1, # No of passes through corpus during training

 update_every=1, # No of docs to be iterated through per update

 alpha='symmetric',

 eta=None, # a-priori belief on word probability

 decay=0.5, # % of lambda forgotten when new doc is examined

 offset=1.0, # controls slow down of first few iterations.
 eval_every=10, # how often estimate log perplexity (costly)

 iterations=50, # Max. of iterations through the corpus

 gamma_threshold=0.001, # Min. change in gamma to continue

 minimum_probability=0.01, # Filter topics with lower probability

 random_state=None,

 ns_conf=None,

 minimum_phi_value=0.01, # lower bound on term probabilities

 per_word_topics=False, # Compute most word-topic probabilities

 callbacks=None,

 dtype=<class 'numpy.float32'>)

Chapter 15

[477]

Gensim also provides an LdaMulticore model for parallel training that may speed up
training using Python's multiprocessing features for parallel computation.

Model training just requires instantiating LdaModel, as follows:

lda_gensim = LdaModel(corpus=train_corpus,

 num_topics=5,

 id2word=id2word)

Gensim evaluates topic coherence, as introduced in the previous section, and shows the
most important words per topic:

coherence = lda_gensim.top_topics(corpus=train_corpus, coherence='u_mass')

We can display the results as follows:

topic_coherence = []

topic_words = pd.DataFrame()

for t in range(len(coherence)):

 label = topic_labels[t]

 topic_coherence.append(coherence[t][1])

 df = pd.DataFrame(coherence[t][0], columns=[(label, 'prob'),
 (label, 'term')])

 df[(label, 'prob')] = df[(label, 'prob')].apply(
 lambda x: '{:.2%}'.format(x))

 topic_words = pd.concat([topic_words, df], axis=1)

topic_words.columns = pd.MultiIndex.from_tuples(topic_words.columns)

pd.set_option('expand_frame_repr', False)

print(topic_words.head())

This shows the following top words for each topic:

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

Probability Term Probability Term Probability Term Probability Term Probability Term

0.55% online 0.90% best 1.04% mobile 0.64% market 0.94% labour

0.51% site 0.87% game 0.98% phone 0.53% growth 0.72% blair

0.46% game 0.62% play 0.51% music 0.52% sales 0.72% brown

0.45% net 0.61% won 0.48% film 0.49% economy 0.65% election

0.44% used 0.56% win 0.48% use 0.45% prices 0.57% united

Topic Modeling – Summarizing Financial News

[478]

The left panel of Figure 15.9 displays the topic coherence scores, which highlight the decay
of topic quality (at least, in part, due to the relatively small dataset):

Figure 15.9: Topic coherence and test set assignments

The right panel displays the evaluation of our test set of 50 articles with our trained model.
The model makes four mistakes for an accuracy of 92 percent.

Modeling topics discussed in earnings calls
In Chapter 3, Alternative Data for Finance – Categories and Use Cases, we learned how to
scrape earnings call data from the SeekingAlpha site. In this section, we will illustrate
topic modeling using this source. I'm using a sample of some 700 earnings call transcripts
between 2018 and 2019. This is a fairly small dataset; for a practical application, we would
need a larger dataset.

The directory earnings_calls contains several files with the code examples used in this
section. Refer to the notebook lda_earnings_calls for details on loading, exploring, and
preprocessing the data, as well as training and evaluating individual models, and the run_
experiments.py file for the experiments described next.

Data preprocessing
The transcripts consist of individual statements by company representatives, an operator,
and a Q&A session with analysts. We will treat each of these statements as separate
documents, ignoring operator statements, to obtain 32,047 items with mean and median
word counts of 137 and 62, respectively:

documents = []

for transcript in earnings_path.iterdir():

 content = pd.read_csv(transcript / 'content.csv')

 documents.extend(content.loc[(content.speaker!='Operator') & (content.
content.str.len() > 5), 'content'].tolist())

len(documents)

32047

Chapter 15

[479]

We use spaCy to preprocess these documents, as illustrated in Chapter 13, Data-Driven Risk
Factors and Asset Allocation with Unsupervised Learning, (refer to the notebook), and store the
cleaned and lemmatized text as a new text file.

Exploration of the most common tokens, as shown in Figure 15.10, reveals domain-specific
stopwords like "year" and "quarter" that we remove in a second step, where we also filter
out statements with fewer than 10 words so that some 22,582 remain.

Figure 15.10: Most common earnings call tokens

Model training and evaluation
For illustration, we create a DTM containing terms appearing in between 0.5 and 25 percent
of documents that results in 1,529 features. Now we proceed to train a 15-topic model using
25 passes over the corpus. This takes a bit over two minutes on a 4-core i7.

The top 10 words per topic, as shown in Figure 15.11, identify several distinct themes that
range from obvious financial information to clinical trials (Topic 5), China and tariff issues
(Topic 9), and technology issues (Topic 11).

Figure 15.11: Most important words for earnings call topics

Using pyLDAvis' relevance metric with a 0.6 weighting of unconditional frequency relative
to lift, topic definitions become more intuitive, as illustrated in Figure 15.12 for Topic 7
about China and the trade wars:

Topic Modeling – Summarizing Financial News

[480]

Figure 15.12: pyLDAVis' interactive topic explorer

The notebook also illustrates how you can look up documents by their topic association. In
this case, an analyst can review relevant statements for nuances, use sentiment analysis to
further process the topic-specific text data, or assign labels derived from market prices.

Running experiments
To illustrate the impact of different parameter settings, we run a few hundred experiments
for different DTM constraints and model parameters. More specifically, we let the min_df
and max_df parameters range from 50-500 words and 10 to 100 percent of documents,
respectively, using alternatively binary and absolute counts. We then train LDA models
with 3 to 50 topics, using 1 and 25 passes over the corpus.

The chart in Figure 15.13 illustrates the results in terms of topic coherence (higher is
better) and perplexity (lower is better). Coherence drops after 25-30 topics, and perplexity
similarly increases.

Chapter 15

[481]

Figure 15.13: Impact of LDA hyperparameter settings on topic quality

The notebook includes regression results that quantify the relationships between
parameters and outcomes. We generally get better results using absolute counts and a
smaller vocabulary.

Topic modeling for with financial news
The notebook lda_financial_news contains an example of LDA applied to a subset of over
306,000 financial news articles from the first five months of 2018. The datasets have been
posted on Kaggle, and the articles have been sourced from CNBC, Reuters, the Wall Street
Journal, and more. The notebook contains download instructions.

We select the most relevant 120,000 articles based on their section titles with a total of
54 million tokens for an average word count of 429 words per article. To prepare the data
for the LDA model, we rely on spaCy to remove numbers and punctuation and lemmatize
the results.

Figure 15.14 highlights the remaining most frequent tokens and the article length
distribution with a median length of 231 tokens; the 90th percentile is 642 words.

Figure 15.14: Corpus statistics for financial news data

Topic Modeling – Summarizing Financial News

[482]

In Figure 15.15, we show results for one model using a vocabulary of 3,570 tokens based
on min_df=0.005 and max_df=0.1, with a single pass to avoid the length training time for 15
topics. We can use the top_topics attribute of the trained LdaModel to obtain the most likely
words for each topic (refer to the notebook for more details).

Figure 15.15: Top 15 words for financial news topics

The topics outline several issues relevant to the time period, including Brexit (Topic 8),
North Korea (Topic 4), and Tesla (Topic 14).

Gensim provides a LdaMultiCore implementation that allows for parallel training using
Python's multiprocessing module and improves performance by 50 percent when using
four workers. More workers do not further reduce training time, though, due to I/O
bottlenecks.

Summary
In this chapter, we explored the use of topic modeling to gain insights into the content
of a large collection of documents. We covered latent semantic indexing that uses
dimensionality reduction of the DTM to project documents into a latent topic space. While
effective in addressing the curse of dimensionality caused by high-dimensional word
vectors, it does not capture much semantic information. Probabilistic models make explicit
assumptions about the interplay of documents, topics, and words that allow algorithms
to reverse engineer the document generation process and evaluate the model fit on new
documents. We learned that LDA is capable of extracting plausible topics that allow us to
gain a high-level understanding of large amounts of text in an automated way, while also
identifying relevant documents in a targeted way.

In the next chapter, we will learn how to train neural networks that embed individual
words in a high-dimensional vector space that captures important semantic information
and allows us to use the resulting word vectors as high-quality text features.

[483]

16
Word Embeddings for

Earnings Calls and SEC Filings

In the two previous chapters, we converted text data into a numerical format using the
bag-of-words model. The result is sparse, fixed-length vectors that represent documents
in high-dimensional word space. This allows the similarity of documents to be evaluated
and creates features to train a model with a view to classifying a document's content or
rating the sentiment expressed in it. However, these vectors ignore the context in which a
term is used so that two sentences containing the same words in a different order would be
encoded by the same vector, even if their meaning is quite different.

This chapter introduces an alternative class of algorithms that use neural networks to learn
a vector representation of individual semantic units like a word or a paragraph. These
vectors are dense rather than sparse, have a few hundred real-valued entries, and are called
embeddings because they assign each semantic unit a location in a continuous vector space.
They result from training a model to predict tokens from their context so that similar usage
implies a similar embedding vector. Moreover, the embeddings encode semantic aspects like
relationships among words by means of their relative location. As a result, they are powerful
features for deep learning models for solving tasks that require semantic information, such
as machine translation, question answering, or maintaining a dialogue.

To develop a trading strategy based on text data, we are usually interested in the
meaning of documents rather than individual tokens. For example, we might want to
create a dataset that uses features representing a tweet or a news article with sentiment
information (refer to Chapter 14, Text Data for Trading – Sentiment Analysis), or an asset's
return for a given horizon after publication. Although the bag-of-words model loses
plenty of information when encoding text data, it has the advantage of representing an
entire document. However, word embeddings have been further developed to represent
more than individual tokens. Examples include the doc2vec extension, which resorts to
weighting word embeddings. More recently, the attention mechanism emerged to produce
more context-sensitive sentence representations, resulting in transformer architectures such
as the BERT family of models that has dramatically improved performance on numerous
natural language tasks.

Word Embeddings for Earnings Calls and SEC Filings

[484]

More specifically, after working through this chapter and the companion notebooks, you
will know about the following:

• What word embeddings are, how they work, and why they capture semantic
information

• How to obtain and use pretrained word vectors

• Which network architectures are most effective at training word2vec models

• How to train a word2vec model using Keras, Gensim, and TensorFlow

• Visualizing and evaluating the quality of word vectors

• How to train a word2vec model on SEC filings to predict stock price moves
• How doc2vec extends word2vec and can be used for sentiment analysis

• Why the transformer's attention mechanism had such an impact on natural
language processing

• How to fine-tune pretrained BERT models on financial data and extract high-
quality embeddings

You can find the code examples and links to additional resources in the GitHub directory
for this chapter. This chapter uses neural networks and deep learning; if unfamiliar, you
may want to first read Chapter 17, Deep Learning for Trading, which introduces key concepts
and libraries.

How word embeddings encode semantics
The bag-of-words model represents documents as sparse, high-dimensional vectors that
reflect the tokens they contain. Word embeddings represent tokens as dense, lower-
dimensional vectors so that the relative location of words reflects how they are used in
context. They embody the distributional hypothesis from linguistics that claims words are
best defined by the company they keep.

Word vectors are capable of capturing numerous semantic aspects; not only are synonyms
assigned nearby embeddings, but words can have multiple degrees of similarity. For
example, the word "driver" could be similar to "motorist" or to "factor." Furthermore,
embeddings encode relationships among pairs of words like analogies (Tokyo is to Japan what
Paris is to France, or went is to go what saw is to see), as we will illustrate later in this section.

Embeddings result from training a neural network to predict words from their context or
vice versa. In this section, we will introduce how these models work and present successful
approaches, including word2vec, doc2vec, and the more recent transformer family of models.

Chapter 16

[485]

How neural language models learn usage in context
Word embeddings result from training a shallow neural network to predict a word given
its context. Whereas traditional language models define context as the words preceding
the target, word embedding models use the words contained in a symmetric window
surrounding the target. In contrast, the bag-of-words model uses the entire document as
context and relies on (weighted) counts to capture the co-occurrence of words.

Earlier neural language models used included nonlinear hidden layers that increased the
computational complexity. word2vec, introduced by Mikolov, Sutskever, et al. (2013) and
its extensions simplified the architecture to enable training on large datasets. The Wikipedia
corpus, for example, contains over 2 billion tokens. (Refer to Chapter 17, Deep Learning for
Trading, for additional details on feedforward networks.)

word2vec – scalable word and phrase embeddings
A word2vec model is a two-layer neural net that takes a text corpus as input and outputs
a set of embedding vectors for words in that corpus. There are two different architectures,
shown in the following diagram, to efficiently learn word vectors using shallow neural
networks (Mikolov, Chen, et al., 2013):

• The continuous-bag-of-words (CBOW) model predicts the target word using the
average of the context word vectors as input so that their order does not matter.
CBOW trains faster and tends to be slightly more accurate for frequent terms, but
pays less attention to infrequent words.

• The skip-gram (SG) model, in contrast, uses the target word to predict words
sampled from the context. It works well with small datasets and finds good
representations even for rare words or phrases.

Figure 16.1: Continuous-bag-of-words versus skip-gram processing logic

Word Embeddings for Earnings Calls and SEC Filings

[486]

The model receives an embedding vector as input and computes the dot product with
another embedding vector. Note that, assuming normed vectors, the dot product is
maximized (in absolute terms) when vectors are equal, and minimized when they
are orthogonal.

During training, the backpropagation algorithm adjusts the embedding weights in
response to the loss computed by an objective function based on classification errors. We
will see in the next section how word2vec computes the loss.

Training proceeds by sliding the context window over the documents, typically segmented
into sentences. Each complete iteration over the corpus is called an epoch. Depending on
the data, several dozen epochs may be necessary for vector quality to converge.

The skip-gram model implicitly factorizes a word-context matrix that contains the
pointwise mutual information of the respective word and context pairs (Levy and
Goldberg, 2014).

Model objective – simplifying the softmax

Word2vec models aim to predict a single word out of a potentially very large vocabulary.
Neural networks often use the softmax function as an output unit in the final layer to
implement the multiclass objective because it maps an arbitrary number of real values to an
equal number of probabilities. The softmax function is defined as follows, where h refers to
the embedding and v to the input vectors, and c is the context of word w:

𝑝𝑝(𝑤𝑤|𝑐𝑐) = exp(ℎT𝑣𝑣𝑤𝑤′)∑ exp(ℎT𝑣𝑣𝑤𝑤𝑖𝑖′)𝑤𝑤𝑖𝑖∈𝑉𝑉

However, the softmax complexity scales with the number of classes because the
denominator requires computing the dot product for all words in the vocabulary to
standardize the probabilities. Word2vec gains efficiency by using a modified version of the
softmax or sampling-based approximations:

• The hierarchical softmax organizes the vocabulary as a binary tree with words
as leaf nodes. The unique path to each node can be used to compute the word
probability (Morin and Bengio, 2005).

• Noise contrastive estimation (NCE) samples out-of-context "noise words" and
approximates the multiclass task by a binary classification problem. The NCE
derivative approaches the softmax gradient as the number of samples increases, but
as few as 25 samples can yield convergence similar to the softmax 45 times faster
(Mnih and Kavukcuoglu, 2013).

• Negative sampling (NEG) omits the noise word samples to approximate NCE and
directly maximizes the probability of the target word. Hence, NEG optimizes the
semantic quality of embedding vectors (similar vectors for similar usage) rather
than the accuracy on a test set. It may, however, produce poorer representations for
infrequent words than the hierarchical softmax objective (Mikolov et al., 2013).

Chapter 16

[487]

Automating phrase detection

Preprocessing typically involves phrase detection, that is, the identification of tokens
that are commonly used together and should receive a single vector representation (for
example, New York City; refer to the discussion of n-grams in Chapter 13, Data-Driven Risk
Factors and Asset Allocation with Unsupervised Learning).

The original word2vec authors (Mikolov et al., 2013) use a simple lift scoring method that
identifies two words w

i
, wj as a bigram if their joint occurrence exceeds a given threshold

relative to each word's individual appearance, corrected by a discount factor, δ:

score(𝑤𝑤𝑖𝑖, 𝑤𝑤𝑗𝑗) = count(𝑤𝑤𝑖𝑖, 𝑤𝑤𝑗𝑗) − 𝛿𝛿count(𝑤𝑤𝑖𝑖)count(𝑤𝑤𝑗𝑗)
The scorer can be applied repeatedly to identify successively longer phrases.

An alternative is the normalized pointwise mutual information score, which is more
accurate, but also more costly to compute. It uses the relative word frequency P(w) and
varies between +1 and -1:

NPMI = ln(𝑃𝑃(𝑤𝑤𝑖𝑖, 𝑤𝑤𝑗𝑗)/𝑃𝑃(𝑤𝑤𝑖𝑖)𝑃𝑃(𝑤𝑤𝑗𝑗))−ln (𝑃𝑃(𝑤𝑤𝑖𝑖, 𝑤𝑤𝑗𝑗))

Evaluating embeddings using semantic arithmetic
The bag-of-words model creates document vectors that reflect the presence and relevance
of tokens to the document. As discussed in Chapter 15, Topic Modeling – Summarizing
Financial News, latent semantic analysis reduces the dimensionality of these vectors
and identifies what can be interpreted as latent concepts in the process. Latent Dirichlet
allocation represents both documents and terms as vectors that contain the weights of
latent topics.

The word and phrase vectors produced by word2vec do not have an explicit meaning.
However, the embeddings encode similar usage as proximity in the latent space created
by the model. The embeddings also capture semantic relationships so that analogies can be
expressed by adding and subtracting word vectors.

Figure 16.2 shows how the vector that points from "Paris" to "France" (which measures
the difference between their embedding vectors) reflects the "capital of" relationship. The
analogous relationship between London and the UK corresponds to the same vector: the
embedding for the term "UK" is very close to the location obtained by adding the "capital
of" vector to the embedding for the term "London":

Word Embeddings for Earnings Calls and SEC Filings

[488]

Figure 16.2: Embedding vector arithmetic

Just as words can be used in different contexts, they can be related to other words in
different ways, and these relationships correspond to different directions in the latent
space. Accordingly, there are several types of analogies that the embeddings should reflect
if the training data permits.

The word2vec authors provide a list of over 25,000 relationships in 14 categories spanning
aspects of geography, grammar and syntax, and family relationships to evaluate the quality
of embedding vectors. As illustrated in the preceding diagram, the test validates that the
target word "UK" is closest to the result of adding the vector that represents an analogous
relationship "Paris: France" to the target's complement "London".

The following table shows the number of samples and illustrates some of the analogy
categories. The test checks how close the embedding for d is to the location determined by
c + (b-a). Refer to the evaluating_embeddings notebook for implementation details.

Category # Samples a b c d

Capital-Country 506 athens greece baghdad iraq

City-State 4,242 chicago illinois houston texas

Past Tense 1,560 dancing danced decreasing decreased

Plural 1,332 banana bananas bird birds

Comparative 1,332 bad worse big bigger

Opposite 812 acceptable unacceptable aware unaware

Superlative 1,122 bad worst big biggest

Plural (Verbs) 870 decrease decreases describe describes

Currency 866 algeria dinar angola kwanza

Family 506 boy girl brother sister

Chapter 16

[489]

Similar to other unsupervised learning techniques, the goal of learning embedding vectors
is to generate features for other tasks, such as text classification or sentiment analysis. There
are a couple of options to obtain embedding vectors for a given corpus of documents:

• Use pretrained embeddings learned from a generic large corpus like Wikipedia or
Google News

• Train your own model using documents that reflect a domain of interest

The less generic and more specialized the content of the subsequent text modeling task, the
more preferable the second approach. However, quality word embeddings are data-hungry
and require informative documents containing hundreds of millions of words.

We will first look at how you can use pretrained vectors and then demonstrate examples of
how to build your own word2vec models using financial news and SEC filings data.

How to use pretrained word vectors
There are several sources for pretrained word embeddings. Popular options
include Stanford's GloVE and spaCy's built-in vectors (refer to the
using_pretrained_vectors notebook for details). In this section, we will focus on GloVe.

GloVe – Global vectors for word representation
GloVe (Global Vectors for Word Representation, Pennington, Socher, and Manning, 2014)
is an unsupervised algorithm developed at the Stanford NLP lab that learns vector
representations for words from aggregated global word-word co-occurrence statistics (see
resources linked on GitHub). Vectors pretrained on the following web-scale sources are
available:

• Common Crawl with 42 billion or 840 billion tokens and a vocabulary or 1.9 million
or 2.2 million tokens

• Wikipedia 2014 + Gigaword 5 with 6 billion tokens and a vocabulary of 400,000
tokens

• Twitter using 2 billion tweets, 27 billion tokens, and a vocabulary of 1.2 million
tokens

We can use Gensim to convert the vector text files using glove2word2vec and then load
them into the KeyedVector object:

from gensim.models import Word2Vec, KeyedVectors

from gensim.scripts.glove2word2vec import glove2word2vec

glove2word2vec(glove_input_file=glove_file, word2vec_output_file=w2v_file)
model = KeyedVectors.load_word2vec_format(w2v_file, binary=False)

Word Embeddings for Earnings Calls and SEC Filings

[490]

Gensim uses the word2vec analogy tests described in the previous section using text
files made available by the authors to evaluate word vectors. For this purpose, the library
has the wv.accuracy function, which we use to pass the path to the analogy file, indicate
whether the word vectors are in binary format, and whether we want to ignore the case. We
can also restrict the vocabulary to the most frequent to speed up testing:

accuracy = model.wv.accuracy(analogies_path,

 restrict_vocab=300000,

 case_insensitive=True)

The word vectors trained on the Wikipedia corpus cover all analogies and achieve an
overall accuracy of 75.44 percent with some variation across categories:

Category # Samples Accuracy Category # Samples Accuracy

Capital-Country 506 94.86% Comparative 1,332 88.21%

Capitals RoW 8,372 96.46% Opposite 756 28.57%

City-State 4,242 60.00% Superlative 1,056 74.62%

Currency 752 17.42% Present-Participle 1,056 69.98%

Family 506 88.14% Past Tense 1,560 61.15%

Nationality 1,640 92.50% Plural 1,332 78.08%

Adjective-Adverb 992 22.58% Plural Verbs 870 58.51%

Figure 16.3 compares the performance for the three GloVe sources for the 100,000 most
common tokens. It shows that Common Crawl vectors, which cover about 80 percent of the
analogies, achieve slightly higher accuracy at 78 percent. The Twitter vectors cover only 25
percent, with 56.4 percent accuracy:

Figure 16.3: GloVe accuracy on word2vec analogies

Chapter 16

[491]

Figure 16.4 projects the 300-dimensional embeddings of the most closely related analogies
for a word2vec model trained on the Wikipedia corpus with over 2 billion tokens into
two dimensions using PCA. A test of over 24,400 analogies from the following categories
achieved an accuracy of over 73.5 percent:

Figure 16.4: 2D visualization of selected analogy embeddings

Custom embeddings for financial news
Many tasks require embeddings of domain-specific vocabulary that models pretrained on
a generic corpus may not be able to capture. Standard word2vec models are not able to
assign vectors to out-of-vocabulary words and instead use a default vector that reduces
their predictive value.

For example, when working with industry-specific documents, the vocabulary or its
usage may change over time as new technologies or products emerge. As a result, the
embeddings need to evolve as well. In addition, documents like corporate earnings releases
use nuanced language that GloVe vectors pretrained on Wikipedia articles are unlikely to
properly reflect.

In this section, we will train and evaluate domain-specific embeddings using financial
news. We'll first show how to preprocess the data for this task, then demonstrate how the
skip-gram architecture outlined in the first section works, and finally visualize the results.
We also will introduce alternative, faster training methods.

Word Embeddings for Earnings Calls and SEC Filings

[492]

Preprocessing – sentence detection and n-grams
To illustrate the word2vec network architecture, we'll use the financial news dataset
with over 125,000 relevant articles that we introduced in Chapter 15, Topic Modeling –
Summarizing Financial News, on topic modeling. We'll load the data as
outlined in the lda_financial_news.ipynb notebook in that chapter. The
financial_news_preprocessing.ipynb notebook contains the code samples for this section.

We use spaCy's built-in sentence boundary detection to split each article into sentences,
remove less informative items, such as numbers and punctuation, and keep the result if it is
between 6 and 99 tokens long:

def clean_doc(d):

 doc = []

 for sent in d.sents:

 s = [t.text.lower() for t in sent if not

 any([t.is_digit, not t.is_alpha, t.is_punct, t.is_space])]

 if len(s) > 5 or len(sent) < 100:

 doc.append(' '.join(s))

 return doc

nlp = English()

sentencizer = nlp.create_pipe("sentencizer")

nlp.add_pipe(sentencizer)

clean_articles = []

iter_articles = (article for article in articles)

for i, doc in enumerate(nlp.pipe(iter_articles, batch_size=100, n_process=8),
1):

 clean_articles.extend(clean_doc(doc))

We end up with 2.43 million sentences that, on average, contain 15 tokens.

Next, we create n-grams to capture composite terms. Gensim lets us identify n-grams
based on the relative frequency of joint versus individual occurrence of the components.
The Phrases module scores the tokens, and the Phraser class transforms the text
data accordingly.

Chapter 16

[493]

It transforms our list of sentences into a new dataset that we can write to file as follows:

sentences = LineSentence((data_path / f'articles_clean.txt').as_posix())

phrases = Phrases(sentences=sentences,

 min_count=10, # ignore terms with a lower count

 threshold=0.5, # only phrases with higher score

 delimiter=b'_', # how to join ngram tokens

 scoring='npmi') # alternative: default

grams = Phraser(phrases)

sentences = grams[sentences]

with (data_path / f'articles_ngrams.txt').open('w') as f:

 for sentence in sentences:

 f.write(' '.join(sentence) + '\n')

The notebook illustrates how we can repeat this process using the 2-gram file as input to
create 3-grams. We end up with some 25,000 2-grams and 15,000 3- or 4-grams. Inspecting
the result shows that the highest-scoring terms are names of companies or individuals,
suggesting that we might want to tighten our initial cleaning criteria. Refer to the notebook
for additional details on the dataset.

The skip-gram architecture in TensorFlow 2
In this section, we will illustrate how to build a word2vec model using the Keras interface
of TensorFlow 2 that we will introduce in much more detail in the next chapter. The
financial_news_word2vec_tensorflow notebook contains the code samples and additional
implementation details.

We start by tokenizing the documents and assigning a unique ID to each item in the
vocabulary. First, we sample a subset of the sentences created in the previous section to
limit the training time:

SAMPLE_SIZE=.5

sentences = file_path.read_text().split('\n')
words = ' '.join(np.random.choice(sentences, size=int(SAMLE_SIZE* l
en(sentences)), replace=False)).split()

Word Embeddings for Earnings Calls and SEC Filings

[494]

We require at least 10 occurrences in the corpus, keep a vocabulary of 31,300 tokens, and
begin with the following steps:

1. Extract the top n most common words to learn embeddings.

2. Index these n words with unique integers.

3. Create an {index: word} dictionary.

4. Replace the n words with their index, and a dummy value 'UNK' elsewhere:

Get (token, count) tuples for tokens meeting MIN_FREQ

MIN_FREQ = 10

token_counts = [t for t in Counter(words).most_common() if t[1] >=
MIN_FREQ]

tokens, counts = list(zip(*token_counts))

create id-token dicts & reverse dicts
id_to_token = pd.Series(tokens, index=range(1, len(tokens) + 1)).to_
dict()

id_to_token.update({0: 'UNK'})

token_to_id = {t:i for i, t in id_to_token.items()}

data = [token_to_id.get(word, 0) for word in words]

We end up with 17.4 million tokens and a vocabulary of close to 60,000 tokens, including
up to 3-grams. The vocabulary covers around 72.5 percent of the analogies.

Noise-contrastive estimation – creating validation samples

Keras includes a make_sampling_table method that allows us to create a training set as pairs
of context and noise words with corresponding labels, sampled according to their corpus
frequencies. A lower factor increases the probability of selecting less frequent tokens; a
chart in the notebook shows that the value of 0.1 limits sampling to the top 10,000 tokens:

SAMPLING_FACTOR = 1e-4

sampling_table = make_sampling_table(vocab_size,
 sampling_factor=SAMPLING_FACTOR)

Chapter 16

[495]

Generating target-context word pairs

To train our model, we need pairs of tokens where one represents the target and the other
is selected from the surrounding context window, as shown previously in the right panel of
Figure 16.1. We can use Keras' skipgrams() function as follows:

pairs, labels = skipgrams(sequence=data,

 vocabulary_size=vocab_size,

 window_size=WINDOW_SIZE,

 sampling_table=sampling_table,

 negative_samples=1.0,

 shuffle=True)

The result is 120.4 million context-target pairs, evenly split between positive and negative
samples. The negative samples are generated according to the
sampling_table probabilities we created in the previous step. The first five target and
context word IDs with their matching labels appear as follows:

pd.DataFrame({'target': target_word[:5],

 'context': context_word[:5],

 'label': labels[:5]})

 target context label

0 30867 2117 1

1 196 359 1

2 17960 32467 0

3 314 1721 1

4 28387 7811 0

Creating the word2vec model layers

The word2vec model contains the following:

• An input layer that receives the two scalar values representing the target-context
pair

• A shared embedding layer that computes the dot product of the vector for the
target and context word

• A sigmoid output layer

The input layer has two components, one for each element of the target-context pair:

input_target = Input((1,), name='target_input')

input_context = Input((1,), name='context_input')

Word Embeddings for Earnings Calls and SEC Filings

[496]

The shared embedding layer contains one vector for each element of the vocabulary that is
selected according to the index of the target and context tokens, respectively:

embedding = Embedding(input_dim=vocab_size,

 output_dim=EMBEDDING_SIZE,

 input_length=1,

 name='embedding_layer')

target = embedding(input_target)

target = Reshape((EMBEDDING_SIZE, 1), name='target_embedding')(target)

context = embedding(input_context)

context = Reshape((EMBEDDING_SIZE, 1), name='context_embedding')(context)

The output layer measures the similarity of the two embedding vectors by their dot
product and transforms the result using the sigmoid function that we encountered when
discussing logistic regression in Chapter 7, Linear Models – From Risk Factors to Return
Forecasts:

similarity measure

dot_product = Dot(axes=1)([target, context])

dot_product = Reshape((1,), name='similarity')(dot_product)

output = Dense(units=1, activation='sigmoid', name='output')(dot_product)

This skip-gram model contains a 200-dimensional embedding layer that will assume
different values for each vocabulary item. As a result, we end up with 59,617 x 200 trainable
parameters, plus two for the sigmoid output.

In each iteration, the model computes the dot product of the context and the target
embedding vectors, passes the result through the sigmoid to produce a probability, and
adjusts the embedding based on the gradient of the loss.

Visualizing embeddings using TensorBoard
TensorBoard is a visualization tool that permits the projection of the embedding vectors
into two or three dimensions to explore the word and phrase locations. After loading the
embedding metadata file we created (refer to the notebook), you can also search for specific
terms to view and explore its neighbors, projected into two or three dimensions using
UMAP, t-SNE, or PCA (refer to Chapter 13, Data-Driven Risk Factors and Asset Allocation

with Unsupervised Learning). Refer to the notebook for a higher-resolution color version of
the following screenshot:

Chapter 16

[497]

Figure 16.5: 3D embeddings and metadata visualization

How to train embeddings faster with Gensim
The TensorFlow implementation is very transparent in terms of its architecture, but it is
not particularly fast. The natural language processing (NLP) library Gensim, which we
also used for topic modeling in the last chapter, offers better performance and more closely
resembles the C-based word2vec implementation provided by the original authors.

Usage is very straightforward. We first create a sentence generator that just takes the name
of the file we produced in the preprocessing step as input (we'll work with 3-grams again):

sentence_path = data_path / FILE_NAME

sentences = LineSentence(str(sentence_path))

In a second step, we configure the word2vec model with the familiar parameters
concerning the sizes of the embedding vector and the context window, the minimum token
frequency, and the number of negative samples, among others:

model = Word2Vec(sentences,

 sg=1, # set to 1 for skip-gram; CBOW otherwise

 size=300,

 window=5,

 min_count=20,

 negative=15,

 workers=8,

 iter=EPOCHS,

 alpha=0.05)

Word Embeddings for Earnings Calls and SEC Filings

[498]

One epoch of training takes a bit over 2 minutes on a modern 4-core i7 processor.

We can persist both the model and the word vectors, or just the word vectors, as follows:

persist model

model.save(str(gensim_path / 'word2vec.model'))

persist word vectors

model.wv.save(str(gensim_path / 'word_vectors.bin'))

We can validate model performance and continue training until we are satisfied with the
results like so:

model.train(sentences, epochs=1, total_examples=model.corpus_count)

In this case, training for six additional epochs yields the best results with an accuracy of
41.75 percent across all analogies covered by the vocabulary. The left panel of Figure 16.6
shows the correct/incorrect predictions and accuracy breakdown per category.

Gensim also allows us to evaluate custom semantic algebra. We can check the popular
"woman"+"king"-"man" ~ "queen" example as follows:

most_sim = best_model.wv.most_similar(positive=['woman', 'king'],
negative=['man'], topn=10)

The right panel of the figure shows that "queen" is the third token, right after "monarch"
and the less obvious "lewis", followed by several royalties:

Figure 16.6: Analogy accuracy by category and for a specific example

Chapter 16

[499]

We can also evaluate the tokens most similar to a given target to gain a better understanding
of the embedding characteristics. We randomly select based on log corpus frequency:

counter = Counter(sentence_path.read_text().split())

most_common = pd.DataFrame(counter.most_common(), columns=['token', 'count'])

most_common['p'] = np.log(most_common['count'])/np.log(most_common['count']).
sum()similars = pd.DataFrame()

for token in np.random.choice(most_common.token, size=10, p=most_common.p):

 similars[token] = [s[0] for s in best_model.wv.most_similar(token)]

The following table exemplifies the results that include several n-grams:

Target Closest Match

0 1 2 3 4

profiles profile users political_
consultancy_
cambridge_
analytica

sophisticated facebook

divestments divestitures acquisitions takeovers bayer consolidation

readiness training military command air_force preparations

arsenal nuclear_
weapons

russia ballistic_missile weapons hezbollah

supply_
disruptions

disruptions raw_material disruption prices downturn

We will now proceed to develop an application more closely related to real-life trading
using SEC filings.

word2vec for trading with SEC filings
In this section, we will learn word and phrase vectors from annual SEC filings using
Gensim to illustrate the potential value of word embeddings for algorithmic trading. In
the following sections, we will combine these vectors as features with price returns to train
neural networks to predict equity prices from the content of security filings.

In particular, we will use a dataset containing over 22,000 10-K annual reports from the
period 2013-2016 that are filed by over 6,500 listed companies and contain both financial
information and management commentary (see Chapter 2, Market and Fundamental Data –
Sources and Techniques).

For about 3,000 companies corresponding to 11,000 filings, we have stock prices to label
the data for predictive modeling. (See data source details and download instructions and
preprocessing code samples in the sec_preprocessing notebook in the sec-filings folder.)

Word Embeddings for Earnings Calls and SEC Filings

[500]

Preprocessing – sentence detection and n-grams
Each filing is a separate text file, and a master index contains filing metadata. We extract the
most informative sections, namely:

• Item 1 and 1A: Business and Risk Factors

• Item 7: Management's Discussion

• Item 7a: Disclosures about Market Risks

The sec_preprocessing notebook shows how to parse and tokenize the text using spaCy,
similar to the approach in Chapter 14. We do not lemmatize the tokens to preserve nuances
of word usage.

Automatic phrase detection

As in the previous section, we use Gensim to detect phrases that consist of multiple tokens,
or n-grams. The notebook shows that the most frequent bigrams include common_stock,
united_states, cash_flows, real_estate, and interest_rates.

We end up with a vocabulary of slightly over 201,000 tokens with a median frequency of
7, suggesting substantial noise that we can remove by increasing the minimum frequency
when training our word2vec model.

Labeling filings with returns to predict earnings surprises
The dataset comes with a list of tickers and filing dates associated with the 10,000
documents. We can use this information to select stock prices for a certain period
surrounding the filing publication. The goal would be to train a model that uses word
vectors for a given filing as input to predict post-filing returns.

The following code example shows how to label individual filings with the 1-month return
for the period after filing:

with pd.HDFStore(DATA_FOLDER / 'assets.h5') as store:

 prices = store['quandl/wiki/prices'].adj_close

sec = pd.read_csv('sec_path/filing_index.csv').rename(columns=str.lower)
sec.date_filed = pd.to_datetime(sec.date_filed)
sec = sec.loc[sec.ticker.isin(prices.columns), ['ticker', 'date_filed']]
price_data = []

Chapter 16

[501]

for ticker, date in sec.values.tolist():

 target = date + relativedelta(months=1)

 s = prices.loc[date: target, ticker]

 price_data.append(s.iloc[-1] / s.iloc[0] - 1)

df = pd.DataFrame(price_data,

 columns=['returns'],

 index=sec.index)

We will come back to this when we work with deep learning architectures in the
following chapters.

Model training
The gensim.models.word2vec class implements the skip-gram and CBOW architectures
introduced previously. The notebook word2vec contains additional implementation details.

To facilitate memory-efficient text ingestion, the LineSentence class creates a generator
from individual sentences contained in the text file provided:

sentence_path = Path('data', 'ngrams', f'ngrams_2.txt')

sentences = LineSentence(sentence_path)

The Word2Vec class offers the configuration options introduced earlier in this chapter:

model = Word2Vec(sentences,

 sg=1, # 1=skip-gram; otherwise CBOW

 hs=0, # hier. softmax if 1, neg. sampling if 0

 size=300, # Vector dimensionality

 window=3, # Max dist. btw target and context word

 min_count=50, # Ignore words with lower frequency

 negative=10, # noise word count for negative sampling

 workers=8, # no threads

 iter=1, # no epochs = iterations over corpus

 alpha=0.025, # initial learning rate

 min_alpha=0.0001 # final learning rate
)

The notebook shows how to persist and reload models to continue training, or how to store
the embedding vectors separately, for example, for use in machine learning models.

Word Embeddings for Earnings Calls and SEC Filings

[502]

Model evaluation

Basic functionality includes identifying similar words:

sims=model.wv.most_similar(positive=['iphone'], restrict_vocab=15000)

 term similarity

0 ipad 0.795460

1 android 0.694014

2 smartphone 0.665732

We can also validate individual analogies using positive and negative contributions
accordingly:

model.wv.most_similar(positive=['france', 'london'],

 negative=['paris'],

 restrict_vocab=15000)

 term similarity

0 united_kingdom 0.606630

1 germany 0.585644

2 netherlands 0.578868

Performance impact of parameter settings

We can use the analogies to evaluate the impact of different parameter settings. The
following results stand out (refer to the detailed results in the models folder):

• Negative sampling outperforms the hierarchical softmax, while also training faster.

• The skip-gram architecture outperforms CBOW.

• Different min_count settings have a smaller impact; the midpoint of 50 performs
best.

Further experiments with the best-performing skip-gram model using negative sampling
and a min_count of 50 show the following:

• Context windows smaller than 5 reduce performance.

• A higher negative sampling rate improves performance at the expense of
slower training.

• Larger vectors improve performance, with a size of 600 yielding the best accuracy
at 38.5 percent.

Chapter 16

[503]

Sentiment analysis using doc2vec embeddings
Text classification requires combining multiple word embeddings. A common approach is to
average the embedding vectors for each word in the document. This uses information from
all embeddings and effectively uses vector addition to arrive at a different location point in
the embedding space. However, relevant information about the order of words is lost.

In contrast, the document embedding model, doc2vec, developed by the word2vec authors
shortly after publishing their original contribution, produces embeddings for pieces of
text like a paragraph or a product review directly. Similar to word2vec, there are also two
flavors of doc2vec:

• The distributed bag of words (DBOW) model corresponds to the word2vec CBOW
model. The document vectors result from training a network on the synthetic
task of predicting a target word based on both the context word vectors and the
document's doc vector.

• The distributed memory (DM) model corresponds to the word2wec skip-gram
architecture. The doc vectors result from training a neural net to predict a target
word using the full document's doc vector.

Gensim's Doc2Vec class implements this algorithm. We'll illustrate the use of doc2vec by
applying it to the Yelp sentiment dataset that we introduced in Chapter 14. To speed up
training, we limit the data to a stratified random sample of 0.5 million Yelp reviews with
their associated star ratings. The doc2vec_yelp_sentiment notebook contains the code
examples for this section.

Creating doc2vec input from Yelp sentiment data
We load the combined Yelp dataset containing 6 million reviews, as created in Chapter 14,
Text Data for Trading – Sentiment Analysis, and sample 100,000 reviews for each star rating:

df = pd.read_parquet('data_path / 'user_reviews.parquet').loc[:, ['stars',

 'text']]

stars = range(1, 6)

sample = pd.concat([df[df.stars==s].sample(n=100000) for s in stars])

We use nltk's RegexpTokenizer for simple and quick text cleaning:

tokenizer = RegexpTokenizer(r'\w+')

stopword_set = set(stopwords.words('english'))

def clean(review):

 tokens = tokenizer.tokenize(review)

 return ' '.join([t for t in tokens if t not in stopword_set])

sample.text = sample.text.str.lower().apply(clean)

Word Embeddings for Earnings Calls and SEC Filings

[504]

After we filter out reviews shorter than 10 tokens, we are left with 485,825 samples. The left
panel of Figure 16.6 shows the distribution of the number of tokens per review.

The gensim.models.Doc2Vec class processes documents in the TaggedDocument format
that contains the tokenized documents alongside a unique tag that permits the document
vectors to be accessed after training:

sample = pd.read_parquet('yelp_sample.parquet')

sentences = []

for i, (stars, text) in df.iterrows():

 sentences.append(TaggedDocument(words=text.split(), tags=[i]))

Training a doc2vec model
The training interface works in a similar fashion to word2vec and also allows continued
training and persistence:

model = Doc2Vec(documents=sentences,

 dm=1, # 1=distributed memory, 0=dist.BOW

 epochs=5,

 size=300, # vector size

 window=5, # max. distance betw. target and context

 min_count=50, # ignore tokens w. lower frequency

 negative=5, # negative training samples

 dm_concat=0, # 1=concatenate vectors, 0=sum

 dbow_words=0, # 1=train word vectors as well

 workers=4)

model.save((results_path / 'sample.model').as_posix())

We can query the n terms most similar to a given token as a quick way to evaluate the
resulting word vectors as follows:

model.most_similar('good')

The right panel of Figure 16.7 displays the returned tokens and their similarity:

Chapter 16

[505]

Figure 16.7: Histogram of the number of tokens per review (left) and terms most similar to the token 'good'

Training a classifier with document vectors
Now, we can access the document vectors to create features for a sentiment classifier:

y = sample.stars.sub(1)

X = np.zeros(shape=(len(y), size)) # size=300

for i in range(len(sample)):

 X[i] = model.docvecs[i]

X.shape

(485825, 300)

We create training and test sets as usual:

X_train, X_test, y_train, y_test = train_test_split(X, y,

 test_size=0.2,

 random_state=42,

 stratify=y)

Now, we proceed to train a RandomForestClassifier, a LightGBM gradient boosting model,
and a multinomial logistic regression. We use 500 trees for the random forest:

rf = RandomForestClassifier(n_jobs=-1, n_estimators=500)
rf.fit(X_train, y_train)
rf_pred = rf.predict(X_test)

Word Embeddings for Earnings Calls and SEC Filings

[506]

We use early stopping with the LightGBM classifier, but it runs for the full 5,000 rounds
because it continues to improve its validation performance:

train_data = lgb.Dataset(data=X_train, label=y_train)

test_data = train_data.create_valid(X_test, label=y_test)

params = {'objective': 'multiclass',

 'num_classes': 5}

lgb_model = lgb.train(params=params,

 train_set=train_data,

 num_boost_round=5000,

 valid_sets=[train_data, test_data],

 early_stopping_rounds=25,

 verbose_eval=50)

generate multiclass predictions

lgb_pred = np.argmax(lgb_model.predict(X_test), axis=1)

Finally, we build a multinomial logistic regression model as follows:

lr = LogisticRegression(multi_class='multinomial', solver='lbfgs',
 class_weight='balanced')

lr.fit(X_train, y_train)
lr_pred = lr.predict(X_test)

When we compute the accuracy for each model on the validation set, gradient boosting
performs significantly better at 62.24 percent. Figure 16.8 shows the confusion matrix and
accuracy for each model:

Figure 16.8: Confusion matrix and test accuracy for alternative models

The sentiment classification result in Chapter 14, Text Data for Trading – Sentiment Analysis,
produced better accuracy for LightGBM (73.6 percent), but we used the full dataset and
included additional features. You may want to test whether increasing the sample size or
tuning the model parameters makes doc2vec perform equally well.

Chapter 16

[507]

Lessons learned and next steps
This example applied sentiment analysis using doc2vec to product reviews rather than
financial documents. We selected product reviews because it is very difficult to find
financial text data that is large enough for training word embeddings from scratch and also
has useful sentiment labels or sufficient information for us to assign them labels, such as
asset returns, ourselves.

While product reviews allow us to demonstrate the workflow, we need to keep in mind
important structural differences: product reviews are often short, informal, and specific to
one particular object. Many financial documents, in contrast, are longer, more formal, and
the target object may or may not be clearly identified. Financial news articles could concern
multiple targets, and while corporate disclosures may have a clear source, they may also
discuss competitors. An analyst report, for instance, may also discuss both positive and
negative aspects of the same object or topic.

In short, the interpretation of sentiment expressed in financial documents often requires a
more sophisticated, nuanced, and granular approach that builds up an understanding of
the content's meaning from different aspects. Decision makers also often care to understand
how a model arrives at its conclusion.

These challenges have not yet been solved and remain an area of very active research,
complicated not least by the scarcity of suitable data sources. However, recent
breakthroughs that significantly boosted performance on various NLP tasks since 2018
suggest that financial sentiment analysis may also become more robust in the coming years.
We will turn to these innovations next.

New frontiers – pretrained transformer models
Word2vec and GloVe embeddings capture more semantic information than the bag-of-
words approach. However, they allow only a single fixed-length representation of each
token that does not differentiate between context-specific usages. To address unsolved
problems such as multiple meanings for the same word, called polysemy, several new
models have emerged that build on the attention mechanism designed to learn more
contextualized word embeddings (Vaswani et al., 2017). The key characteristics of these
models are as follows:

• The use of bidirectional language models that process text both left-to-right and
right-to-left for a richer context representation

• The use of semi-supervised pretraining on a large generic corpus to learn universal
language aspects in the form of embeddings and network weights that can be used
and fine-tuned for specific tasks (a form of transfer learning that we will discuss in
more detail in Chapter 18, CNNs for Financial Time Series and Satellite Images)

Word Embeddings for Earnings Calls and SEC Filings

[508]

In this section, we briefly describe the attention mechanism, outline how the recent
transformer models—starting with Bidirectional Encoder Representation from
Transformers (BERT)—use it to improve performance on key NLP tasks, reference
several sources for pretrained language models, and explain how to use them for financial
sentiment analysis.

Attention is all you need
The attention mechanism explicitly models the relationships between words in a sentence
to better incorporate the context. It was first applied to machine translation (Bahdanau,
Cho, and Bengio, 2016), but has since become integral to neural language models for a wide
variety of tasks.

Until 2017, recurrent neural networks (RNNs), which sequentially process text left-to-right
or right-to-left, represented the state of the art for NLP tasks like translation. Google, for
example, has employed such a model in production since late 2016. Sequential processing
implies several steps to semantically connect words at distant locations and precludes
parallel processing, which greatly speeds up computation on modern, specialized hardware
like GPUs. (For more information on RNNs, refer to Chapter 19, RNNs for Multivariate Time
Series and Sentiment Analysis.)

In contrast, the Transformer model, introduced in the seminal paper Attention is all you need
(Vaswani et al., 2017), requires only a constant number of steps to identify semantically
related words. It relies on a self-attention mechanism that captures links between all words
in a sentence, regardless of their relative position. The model learns the representation of a
word by assigning an attention score to every other word in the sentence that determines
how much each of the other words should contribute to the representation. These scores
then inform a weighted average of all words' representations, which is fed into a fully
connected network to generate a new representation for the target word.

The Transformer model uses an encoder-decoder architecture with several layers, each
of which uses several attention mechanisms (called heads) in parallel. It yielded large
performance improvements on various translation tasks and, more importantly, inspired
a wave of new research into neural language models addressing a broader range of tasks.
The resources linked on GitHub contain various excellent visual explanations of how the
attention mechanism works, so we won't go into more detail here.

Chapter 16

[509]

BERT – towards a more universal language model
In 2018, Google released the BERT model, which stands for Bidirectional Encoder
Representations from Transformers (Devlin et al., 2019). In a major breakthrough for NLP
research, it achieved groundbreaking results on eleven natural language understanding
tasks, ranging from question answering and named entity recognition to paraphrasing
and sentiment analysis, as measured by the General Language Understanding Evaluation
(GLUE) benchmark (see GitHub for links to task descriptions and a leaderboard).

The new ideas introduced by BERT unleashed a flurry of new research that produced
dozens of improvements that soon surpassed non-expert humans on the GLUE tasks and
led to the more challenging SuperGLUE benchmark designed by DeepMind (Wang et al.,
2019). As a result, 2018 is now considered a turning point for NLP research; both Google
Search and Microsoft's Bing are now using variations of BERT to interpret user queries and
provide more accurate results.

We will briefly outline BERT's key innovations and provide indications on how to get
started using it and its subsequent enhancements with one of several open source libraries
providing pretrained models.

Key innovations – deeper attention and pretraining

The BERT model builds on two key ideas, namely, the transformer architecture described
in the previous section and unsupervised pretraining so that it doesn't need to be trained
from scratch for each new task; rather, its weights are fine-tuned:

• BERT takes the attention mechanism to a new (deeper) level by using 12 or 24
layers, depending on the architecture, each with 12 or 16 attention heads. This
results in up to 24 × 16 = 384 attention mechanisms to learn context-specific
embeddings.

• BERT uses unsupervised, bidirectional pretraining to learn its weights in advance
on two tasks: masked language modeling (predicting a missing word given the left
and right context) and next sentence prediction (predicting whether one sentence
follows another).

Context-free models such as word2vec or GloVe generate a single embedding for each
word in the vocabulary: the word "bank" would have the same context-free representation
in "bank account" and "bank of the river." In contrast, BERT learns to represent each
word based on the other words in the sentence. As a bidirectional model, BERT is able to
represent the word "bank" in the sentence "I accessed the bank account," not only based on
"I accessed the" as a unidirectional contextual model, but also based on "account."

Word Embeddings for Earnings Calls and SEC Filings

[510]

BERT and its successors can be pretrained on a generic corpus like Wikipedia before
adapting its final layers to a specific task and fine-tuning its weights. As a result, you can
use large-scale, state-of-the-art models with billions of parameters, while only incurring
a few hours rather than days or weeks of training costs. Several libraries offer such
pretrained models that you can build on to develop a custom sentiment classifier for your
dataset of choice.

Using pretrained state-of-the-art models

The recent NLP breakthroughs described in this section have shown how to acquire
linguistic knowledge from unlabeled text with networks large enough to represent the
long tail of rare usage phenomena. The resulting Transformer architectures make fewer
assumptions about word order and context; instead, they learn a much more subtle
understanding of language from very large amounts of data, using hundreds of millions or
even billions of parameters.

We will highlight several libraries that make pretrained networks, as well as excellent
Python tutorials available.

The Hugging Face Transformers library

Hugging Face is a US start-up developing chatbot applications designed to offer
personalized AI-powered communication. It raised $15 million in late 2019 to further
develop its very successful open source NLP library, Transformers.

The library provides general-purpose architectures for natural language understanding
and generation with more than 32 pretrained models in more than 100 languages and deep
interoperability between TensorFlow 2 and PyTorch. It has excellent documentation.

The spacy-transformers library includes wrappers to facilitate the inclusion of the
pretrained transformer models in a spaCy pipeline. Refer to the reference links on GitHub
for more information.

AllenNLP

AllenNLP is built and maintained by the Allen Institute for AI, started by Microsoft
cofounder Paul Allen, in close collaboration with researchers at the University of
Washington. It has been designed as a research library for developing state-of-the-art deep
learning models on a wide variety of linguistic tasks, built on PyTorch.

It offers solutions for key tasks from question answering to sentence annotation, including
reading comprehension, named entity recognition, and sentiment analysis. A pretrained
RoBERTa model (a more robust version of BERT; Liu et al., 2019) achieves over 95 percent
accuracy on the Stanford sentiment treebank and can be used with just a few lines of code
(see links to the documentation on GitHub).

Chapter 16

[511]

Trading on text data – lessons learned and next steps
As highlighted at the end of the section Sentiment analysis using doc2vec embeddings, there
are important structural characteristics of financial documents that often complicate their
interpretation and undermine simple dictionary-based methods.

In a recent survey of financial sentiment analysis, Man, Luo, and Lin (2019) found that
most existing approaches only identify high-level polarities, such as positive, negative, or
neutral. However, practical applications that lead to real decisions typically require a more
nuanced and transparent analysis. In addition, the lack of large financial text datasets with
relevant labels limits the potential for using traditional machine learning methods or neural
networks for sentiment analysis.

The pretraining approach just described, which, in principle, yields a deeper understanding
of textual information, thus offers substantial promise. However, most applied research
using transformers has focused on NLP tasks such as translation, question answering, logic,
or dialog systems. Applications in relation to financial data are still in their infancy (see,
for example, Araci 2019). This is likely to change soon given the availability of pretrained
models and their potential to extract more valuable information from financial text data.

Summary
In this chapter, we discussed a new way of generating text features that use shallow neural
networks for unsupervised machine learning. We saw how the resulting word embeddings
capture interesting semantic aspects beyond the meaning of individual tokens by capturing
some of the context in which they are used. We also covered how to evaluate the quality of
word vectors using analogies and linear algebra.

We used Keras to build the network architecture that produces these features and applied
the more performant Gensim implementation to financial news and SEC filings. Despite the
relatively small datasets, the word2vec embeddings did capture meaningful relationships.
We also demonstrated how appropriate labeling with stock price data can form the basis
for supervised learning.

We applied the doc2vec algorithm, which produces a document rather than token vectors,
to build a sentiment classifier based on Yelp business reviews. While this is unlikely to yield
tradeable signals, it illustrates the process of how to extract features from relevant text data
and train a model to predict an outcome that may be informative for a trading strategy.

Finally, we outlined recent research breakthroughs that promise to yield more powerful
natural language models due to the availability of pretrained architectures that only require
fine-tuning. Applications to financial data, however, are still at the research frontier.

In the next chapter, we will dive into the final part of this book, which covers how various
deep learning architectures can be useful for algorithmic trading.

[513]

17
Deep Learning for Trading

This chapter kicks off Part 4, which covers how several deep learning (DL) modeling
techniques can be useful for investment and trading. DL has achieved numerous
breakthroughs in many domains, ranging from image and speech recognition to
robotics and intelligent agents that have drawn widespread attention and revived large-
scale research into artificial intelligence (AI). The expectations are high that the rapid
development will continue and many more solutions to difficult practical problems will
emerge.

In this chapter, we will present feedforward neural networks to introduce key elements
of working with neural networks relevant to the various DL architectures covered in the
following chapters. More specifically, we will demonstrate how to train large models
efficiently using the backpropagation algorithm and manage the risks of overfitting. We
will also show how to use the popular TensorFlow 2 and PyTorch frameworks, which we
will leverage throughout Part 4.

Finally, we will develop, backtest, and evaluate a trading strategy based on signals
generated by a deep feedforward neural network. We will design and tune the neural
network and analyze how key hyperparameter choices affect its performance.

In summary, after reading this chapter and reviewing the accompanying notebooks, you
will know about:

• How DL solves AI challenges in complex domains

• Key innovations that have propelled DL to its current popularity

• How feedforward networks learn representations from data

• Designing and training deep neural networks (NNs) in Python

• Implementing deep NNs using Keras, TensorFlow, and PyTorch

• Building and tuning a deep NN to predict asset returns

• Designing and backtesting a trading strategy based on deep NN signals

Deep Learning for Trading

[514]

In the following chapters, we will build on this foundation to design various architectures
suitable for different investment applications with a particular focus on alternative text and
image data.

These include recurrent neural networks (RNNs) tailored to sequential data such as
time series or natural language, and convolutional neural networks (CNNs), which are
particularly well suited to image data but can also be used with time-series data. We will
also cover deep unsupervised learning, including autoencoders and generative adversarial
networks (GANs) as well as reinforcement learning to train agents that interactively learn
from their environment.

Deep learning – what's new and why it matters
The machine learning (ML) algorithms covered in Part 2 work well on a wide variety of
important problems, including on text data, as demonstrated in Part 3. They have been
less successful, however, in solving central AI problems such as recognizing speech or
classifying objects in images. These limitations have motivated the development of DL,
and the recent DL breakthroughs have greatly contributed to a resurgence of interest in AI.
For a comprehensive introduction that includes and expands on many of the points in this
section, see Goodfellow, Bengio, and Courville (2016), or for a much shorter version, see
LeCun, Bengio, and Hinton (2015).

In this section, we outline how DL overcomes many of the limitations of other ML
algorithms. These limitations particularly constrain performance on high-dimensional and
unstructured data that requires sophisticated efforts to extract informative features.

The ML techniques we covered in Parts 2 and 3 are best suited for processing structured
data with well-defined features. We saw, for example, how to convert text data into tabular
data using the document-text matrix in Chapter 14, Text Data for Trading – Sentiment
Analysis. DL overcomes the challenge of designing informative features, possibly by hand,
by learning a representation of the data that better captures its characteristics with respect
to the outcome.

More specifically, we'll see how DL learns a hierarchical representation of the data, and
why this approach works well for high-dimensional, unstructured data. We will describe
how NNs employ a multilayered, deep architecture to compose a set of nested functions
and discover a hierarchical structure. These functions compute successive and increasingly
abstract representations of the data in each layer based on the learning of the previous
layer. We will also look at how the backpropagation algorithm adjusts the network
parameters so that these representations best meet the model's objective.

You can find the code samples for this chapter and links to
additional resources in the corresponding directory of the GitHub
repository. The notebooks include color versions of the images.

Chapter 17

[515]

We will also briefly outline how DL fits into the evolution of AI and the diverse set of
approaches that aim to achieve the current goals of AI.

Hierarchical features tame high-dimensional data
As discussed throughout Part 2, the key challenge of supervised learning is to generalize
from training data to new samples. Generalization becomes exponentially more difficult
as the dimensionality of the data increases. We encountered the root causes of these
difficulties as the curse of dimensionality in Chapter 13, Data-Driven Risk Factors and Asset
Allocation with Unsupervised Learning.

One aspect of this curse is that volume grows exponentially with the number of
dimensions: for a hypercube with edge length 10, volume increases from 103 to 104 as
its dimensionality increases from three to four. Conversely, the data density for a given
sample size drops exponentially. In other words, the number of observations required to
maintain a certain density grows exponentially.

Another aspect is that functional relationships between the features and the output
can become more complex when they are allowed to vary across a growing number of
dimensions. As discussed in Chapter 6, The Machine Learning Process, ML algorithms
struggle to learn arbitrary functions in a high-dimensional space because the number
of candidates grows exponentially while the density of the data available to infer the
relationship drops simultaneously. To mitigate this problem, algorithms hypothesize that
the target function belongs to a certain class and impose constraints on the search for the
optimal solution within that class for the problem at hand.

Furthermore, algorithms typically assume that the output at a new point should be
similar to the output at nearby training points. This prior assumption of smoothness or
local constancy posits that the learned function will not change much in a small region,
as illustrated by the k-nearest neighbor algorithm (see Chapter 6, The Machine Learning
Process). However, as data density drops exponentially with a growing number of
dimensions, the distance between training samples naturally rises. The notion of nearby
training examples thus becomes less meaningful as the potential complexity of the target
function increases.

For traditional ML algorithms, the number of parameters and required training samples
is generally proportional to the number of regions in the input space that the algorithm is
able to distinguish. DL is designed to overcome the challenges of learning an exponential
number of regions from a limited number of training points by assuming that a hierarchy of
features generates the data.

Deep Learning for Trading

[516]

DL as representation learning
Many AI tasks like image or speech recognition require knowledge about the world. One of
the key challenges is to encode this knowledge so a computer can utilize it. For decades, the
development of ML systems required considerable domain expertise to transform the raw
data (such as image pixels) into an internal representation that a learning algorithm could
use to detect or classify patterns.

Similarly, how much value an ML algorithm adds to a trading strategy depends greatly
on our ability to engineer features that represent the predictive information in the data so
that the algorithm can process it. Ideally, the features capture independent drivers of the
outcome, as discussed in Chapter 4, Financial Feature Engineering – How to Research Alpha
Factors, and throughout Parts 2 and 3 when designing and evaluating factors that capture
trading signals.

Rather than relying on hand-designed features, representation learning allows an ML
algorithm to automatically discover the representation of the data most useful for detecting
or classifying patterns. DL combines this technique with specific assumptions about the
nature of the features. See Bengio, Courville, and Vincent (2013) for additional information.

How DL extracts hierarchical features from data

The core idea behind DL is that a multi-level hierarchy of features has generated the data.
Consequently, a DL model encodes the prior belief that the target function is composed of a
nested set of simpler functions. This assumption permits an exponential gain in the number
of regions that can be distinguished for a given number of training samples.

In other words, DL is a representation learning method that extracts a hierarchy of concepts
from the data. It learns this hierarchical representation by composing simple but non-
linear functions that successively transform the representation of one level (starting with
the input data) into a new representation at a higher, slightly more abstract level. By
combining enough of these transformations, DL is able to learn very complex functions.

Applied to a classification task, for example, higher levels of representation tend to amplify
the aspects of the data most helpful for discriminating objects while suppressing irrelevant
sources of variation. As we will see in more detail in Chapter 18, CNNs for Financial Time
Series and Satellite Images, raw image data is just a two- or three-dimensional array of pixel
values. The first layer of representation typically learns features that focus on the presence
or absence of edges at particular orientations and locations. The second layer often learns
motifs that depend on particular edge arrangements, regardless of small variations in their
positions. The following layer may assemble motifs to represent parts of relevant objects,
and subsequent layers would detect objects as combinations of these parts.

Chapter 17

[517]

The key breakthrough of DL is that a general-purpose learning algorithm can extract
hierarchical features suitable for modeling high-dimensional, unstructured data in a way
that is infinitely more scalable than human engineering. It is thus no surprise that the rise
of DL parallels the large-scale availability of unstructured image or text data. To the extent
that these data sources also figure prominently among alternative data, DL has become
highly relevant for algorithmic trading.

Good and bad news – the universal approximation theorem

The universal approximation theorem formalizes the ability of NNs to capture arbitrary
relationships between input and output data. George Cybenko (1989) demonstrated that
single-layer NNs using sigmoid activation functions can represent any continuous function
on a closed and bounded subset of Rn. Kurt Hornik (1991) further showed that it is not
the specific shape of the activation function but rather the multilayered architecture that
enables the hierarchical feature representation, which in turn allows NNs to approximate
universal functions.

However, the theorem does not help us identify the network architecture required to
represent a specific target function. We will see in the last section of this chapter that
there are numerous parameters to optimize, including the network's width and depth, the
number of connections between neurons, and the type of activation functions.

Furthermore, the ability to represent arbitrary functions does not imply that a network
can actually learn the parameters for a given function. It took over two decades for
backpropagation, the most popular learning algorithm for NNs to become effective at scale.
Unfortunately, given the highly nonlinear nature of the optimization problem, there is no
guarantee that it will find the absolute best rather than just a relatively good solution.

How DL relates to ML and AI
AI has a long history, going back at least to the 1950s as an academic field and much
longer as a subject of human inquiry, but has experienced several waves of ebbing and
flowing enthusiasm since (see Nilsson, 2009, for an in-depth survey). ML is an important
subfield with a long history in related disciplines such as statistics and became prominent
in the 1980s. As we have just discussed, and as depicted in Figure 17.1, DL is a form of
representation learning and is itself a subfield of ML.

The initial goal of AI was to achieve general AI, conceived as the ability to solve problems
considered to require human-level intelligence, and to reason and draw logical conclusions
about the world and automatically improve itself. AI applications that do not involve
ML include knowledge bases that encode information about the world, combined with
languages for logical operations.

Deep Learning for Trading

[518]

Historically, much AI effort went into developing rule-based systems that aimed to capture
expert knowledge and decision-making rules, but hard-coding these rules frequently failed
due to excessive complexity. In contrast, ML implies a probabilistic approach that learns
rules from data and aims at circumventing the limitations of human-designed rule-based
systems. It also involves a shift to narrower, task-specific objectives.

The following figure sketches the relationship between the various AI subfields, outlines
their goals, and highlights their relevance on a timeline.

Figure 17.1: AI timeline and subfields

In the next section, we will see how to actually build a neural network.

Designing an NN
DL relies on NNs, which consist of a few key building blocks, which in turn can be
configured in a multitude of ways. In this section, we introduce how NNs work and
illustrate their most important components used to design different architectures.

(Artificial) NNs were originally inspired by biological models of learning like the human
brain, either in an attempt to mimic how it works and achieve similar success, or to gain a
better understanding through simulation. Current NN research draws less on neuroscience,
not least since our understanding of the brain has not yet reached a sufficient level of
granularity. Another constraint is overall size: even if the number of neurons used in NNs
continued to double every year since their inception in the 1950s, they would only reach the
scale of the human brain around 2050.

We will also explain how backpropagation, often simply called backprop, uses gradient
information (the value of the partial derivative of the cost function with respect to
a parameter) to adjust all neural network parameters based on training errors. The
composition of various nonlinear modules implies that the optimization of the objective
function can be quite challenging. We also introduce refinements of backpropagation that
aim to accelerate the learning process.

Chapter 17

[519]

A simple feedforward neural network architecture
In this section, we introduce feedforward NNs, which are based on the multilayer
perceptron (MLP) and consist of one or more hidden layers that connect the input to the
output layer. In feedforward NNs, information only flows from input to output, such that
they can be represented as directed acyclic graphs, as in the following figure. In contrast,
recurrent neural networks (RNNs; see Chapter 19, RNNs for Multivariate Time Series and
Sentiment Analysis) include loops from the output back to the input to track or memorize
past patterns and events.

We will first describe the feedforward NN architecture and how to implement it using
NumPy. Then we will explain how backpropagation learns the NN weights and implement
it in Python to train a binary classification network that produces perfect results even
though the classes are not linearly separable. See the notebook build_and_train_
feedforward_nn for implementation details.

A feedforward NN consists of several layers, each of which receives a sample of input data
and produces an output. The chain of transformations starts with the input layer, which
passes the source data to one of several internal or hidden layers, and ends with the output
layer, which computes a result for comparison with the sample's output value.

The hidden and output layers consist of nodes or neurons. Nodes of a fully connected or
dense layer connect to some or all nodes of the previous layer. The network architecture
can be summarized by its depth, measured by the number of hidden layers, or the width
and the number of nodes of each layer.

Each connection has a weight used to compute a linear combination of the input values.
A layer may also have a bias node that always outputs a 1 and is used by the nodes in the
subsequent layer, like a constant in linear regression. The goal of the training phase is to
learn values for these weights that optimize the network's predictive performance.

Each node of the hidden layers computes the dot product of the weights and the output
of the previous layer. An activation function transforms the result, which becomes the
input to the subsequent layer. This transformation is typically nonlinear (like the sigmoid
function used for logistic regression; see Chapter 7, Linear Models – From Risk Factors to
Return Forecasts, on linear models) so that the network can learn nonlinear relationships;
we'll discuss common activation functions in the next section. The output layer computes
the linear combination of the output of the last hidden layer with its weights and uses an
activation function that matches the type of ML problem.

The computation of the network output from the inputs thus flows through a chain of
nested functions and is called forward propagation. Figure 17.2 illustrates a single-layer
feedforward NN with a two-dimensional input vector, a hidden layer of width three, and
two nodes in the output layer. This architecture is simple enough, so we can still easily
graph it yet illustrate the key concepts.

Deep Learning for Trading

[520]

Figure 17.2: A feedforward architecture with one hidden layer

The network graph shows that each of the three hidden layer nodes (not counting the
bias) has three weights, one for the input layer bias and two for each of the two input
variables. Similarly, each output layer node has four weights to compute the product sum
or dot product of the hidden layer bias and activations. In total, there are 17 parameters to
be learned.

The forward propagation panel on the right of the figure lists the computations for an
example node at the hidden and output layers, h and o, respectively. The first node in the
hidden layer applies the sigmoid function to the linear combination z of its weights and
inputs akin to logistic regression. The hidden layer thus runs three logistic regressions in
parallel, while the backpropagation algorithm ensures that their parameters will most likely
differ to best inform subsequent layers.

The output layer uses a softmax activation function (see Chapter 6, The Machine Learning
Process) that generalizes the logistic sigmoid function to multiple classes. It adjusts the dot
product of the hidden layer output with its weight to represent probabilities for the classes
(only two in this case to simplify the presentation).

The forward propagation can also be expressed as nested functions, where h again
represents the hidden layer and o the output layer to produce the NN estimate of the
output: �̂�𝑦 = 𝑜𝑜(ℎ(𝑥𝑥)) .
Key design choices
Some NN design choices resemble those for other supervised learning models. For
example, the output is dictated by the type of the ML problem such as regression,
classification, or ranking. Given the output, we need to select a cost function to measure
prediction success and failure, and an algorithm that optimizes the network parameters to
minimize the cost.

NN-specific choices include the numbers of layers and nodes per layer, the connections
between nodes of different layers, and the type of activation functions.

Chapter 17

[521]

A key concern is training efficiency: the functional form of activations can facilitate or
hinder the flow of the gradient information available to the backpropagation algorithm that
adjusts the weights in response to training errors. Functions with flat regions for large input
value ranges have a very low gradient and can impede training progress when parameter
values get stuck in such a range.

Some architectures add skip connections that establish direct links beyond neighboring
layers to facilitate the flow of gradient information. On the other hand, the deliberate
omission of connections can reduce the number of parameters to limit the network's capacity
and possibly lower the generalization error, while also cutting the computational cost.

Hidden units and activation functions

Several nonlinear activation functions besides the sigmoid function have been used
successfully. Their design remains an area of research because they are the key element
that allows the NN to learn nonlinear relationships. They also have a critical impact on
the training process because their derivatives determine how errors translate into weight
adjustments.

A very popular activation function is the rectified linear unit (ReLU). The activation is
computed as g(z) = max(0, z) for a given activation z, resulting in a functional form similar
to the payoff for a call option. The derivative is constant whenever the unit is active. ReLUs
are usually combined with an affine input transformation that requires the presence of a
bias node. Their discovery has greatly improved the performance of feedforward networks
compared to sigmoid units, and they are often recommended as the default. There are
several ReLU extensions that aim to address the limitations of ReLU to learn via gradient
descent when they are not active and their gradient is zero (Goodfellow, Bengio, and
Courville, 2016).

Another alternative to the logistic function σ is the hyperbolic tangent function tanh,
which produces output values in the ranges [-1, 1]. They are closely related because tanh(𝑧𝑧) = 2𝜎𝜎(2𝑧𝑧) − 1 . Both functions suffer from saturation because their gradient becomes very
small for very low and high input values. However, tanh often performs better because it
more closely resembles the identity function so that for small activation values, the network
behaves more like a linear model, which in turn facilitates training.

Output units and cost functions
The choice of NN output format and cost function depends on the type of supervised
learning problem:

• Regression problems use a linear output unit that computes the dot product of its
weights with the final hidden layer activations, typically in conjunction with mean
squared error cost

• Binary classification uses sigmoid output units to model a Bernoulli distribution
just like logistic regression with hidden activations as input

• Multiclass problems rely on softmax units that generalize the logistic sigmoid and
model a discrete distribution over more than two classes, as demonstrated earlier

Deep Learning for Trading

[522]

Binary and multiclass problems typically use cross-entropy loss, which significantly
improves training efficacy compared to mean squared error (see Chapter 6, The Machine
Learning Process, for additional information on loss functions).

How to regularize deep NNs
The downside of the capacity of NNs to approximate arbitrary functions is the greatly
increased risk of overfitting. The best protection against overfitting is to train the model on
a larger dataset. Data augmentation, such as creating slightly modified versions of images,
is a powerful alternative approach. The generation of synthetic financial training data for
this purpose is an active research area that we will address in Chapter 20, Autoencoders for
Conditional Risk Factors and Asset Pricing (see, for example, Fu et al. 2019).

As an alternative or complement to obtaining more data, regularization can help mitigate
the risk of overfitting. For all models discussed so far in this book, there is some form
of regularization that modifies the learning algorithm to reduce its generalization error
without negatively affecting its training error. Examples include the penalties added to the
ridge and lasso regression objectives and the split or depth constraints used with decision
trees and tree-based ensemble models.

Frequently, regularization takes the form of a soft constraint on the parameter values
that trades off some additional bias for lower variance. A common practical finding is
that the model with the lowest generalization error is not the model with the exact right
size of parameters, but rather a larger model that has been well regularized. Popular
NN regularization techniques that can be used in combination include parameter norm
penalties, early stopping, and dropout.

Parameter norm penalties

We encountered parameter norm penalties for lasso and ridge regression as L1 and

L2 regularization, respectively, in Chapter 7, Linear Models – From Risk Factors to Return
Forecasts. In the NN context, parameter norm penalties similarly modify the objective
function by adding a term that represents the L1 or L2 norm of the parameters, weighted
by a hyperparameter that requires tuning. For NN, the bias parameters are usually not
constrained, only the weights.

L1 regularization can produce sparse parameter estimates by reducing weights all the way
to zero. L2 regularization, in contrast, preserves directions along which the parameters
significantly reduce the cost function. Penalties or hyperparameter values can vary across
layers, but the added tuning complexity quickly becomes prohibitive.

Early stopping

We encountered early stopping as a regularization technique in Chapter 12, Boosting Your
Trading Strategy. It is perhaps the most common NN regularization method because it
is both effective and simple to use: it monitors the model's performance on a validation
set and stops training when the performance ceases to improve for a certain number of
observations to prevent overfitting.

Chapter 17

[523]

Early stopping can be viewed as efficient hyperparameter selection that automatically
determines the correct amount of regularization, whereas parameter penalties require
hyperparameter tuning to identify the ideal weight decay. Just be careful to avoid
lookahead bias: backtest results will be exceedingly positive when early stopping uses out-
of-sample data that would not be available during a real-life implementation of the strategy.

Dropout

Dropout refers to the randomized omission of individual units with a given probability
during forward or backward propagation. As a result, these omitted units do not contribute
to the training error or receive updates.

The technique is computationally inexpensive and does not constrain the choice of model
or training procedure. While more iterations are necessary to achieve the same amount of
learning, each iteration is faster due to the lower computational cost. Dropout reduces the
risk of overfitting by preventing units from compensating for mistakes made by other units
during the training process.

Training faster – optimizations for deep learning
Backprop refers to the computation of the gradient of the cost function with respect to
the internal parameter we wish to update and the use of this information to update the
parameter values. The gradient is useful because it indicates the direction of parameter
change that causes the maximal increase in the cost function. Hence, adjusting the
parameters according to the negative gradient produces an optimal cost reduction, at least
for a region very close to the observed samples. See Ruder (2017) for an excellent overview
of key gradient descent optimization algorithms.

Training deep NNs can be time-consuming due to the nonconvex objective function and
the potentially large number of parameters. Several challenges can significantly delay
convergence, find a poor optimum, or cause oscillations or divergence from the target:

• Local minima can prevent convergence to a global optimum and cause poor
performance

• Flat regions with low gradients that are not a local minimum can also prevent
convergence while most likely being distant from the global optimum

• Steep regions with high gradients resulting from multiplying several large weights
can cause excessive adjustments

• Deep architectures or long-term dependencies in an RNN require the multiplication
of many weights during backpropagation, leading to vanishing gradients so that at
least parts of the NN receive few or no updates

Several algorithms have been developed to address some of these challenges, namely
variations of stochastic gradient descent and approaches that use adaptive learning rates.
There is no single best algorithm, although adaptive learning rates have shown some
promise.

Deep Learning for Trading

[524]

Stochastic gradient descent

Gradient descent iteratively adjusts these parameters using the gradient information.
For a given parameter 𝜃𝜃 , the basic gradient descent rule adjusts the value by the negative
gradient of the loss function with respect to this parameter, multiplied by a learning rate 𝜂𝜂 :𝜃𝜃 = 𝜃𝜃 − 𝜂𝜂⏟Learning Rate . ∇𝜃𝜃𝐽𝐽(𝜃𝜃)⏟ Gradient
The gradient can be evaluated for all training data, a randomized batch of data, or
individual observations (called online learning). Random samples give rise to stochastic
gradient descent (SGD), which often leads to faster convergence if random samples are an
unbiased estimate of the gradient direction throughout the training process.

However, there are numerous challenges: it can be difficult to define a learning rate or a
rate schedule that facilitates efficient convergence ex ante—too low a rate prolongs the
process, and too high a rate can lead to repeated overshooting and oscillation around
or even divergence from a minimum. Furthermore, the same learning rate may not be
adequate for all parameters, that is, in all directions of change.

Momentum

A popular refinement of basic gradient descent adds momentum to accelerate the
convergence to a local minimum. Illustrations of momentum often use the example of a
local optimum at the center of an elongated ravine (while in practice the dimensionality
would be much higher than three). It implies a minimum inside a deep and narrow canyon
with very steep walls that have a large gradient on one side and a much gentler slope
towards a local minimum at the bottom of this region on the other side. Gradient descent
naturally follows the steep gradient and will make repeated adjustments up and down the
walls of the canyons with much slower movements towards the minimum.

Momentum aims to address such a situation by tracking recent directions and adjusting
the parameters by a weighted average of the most recent gradient and the currently
computed value. It uses a momentum term γ to weigh the contribution of the latest
adjustment to this iteration's update v

t
:𝜐𝜐𝑡𝑡 = 𝛾𝛾𝜐𝜐𝑡𝑡−1 + 𝜂𝜂∇𝜃𝜃𝐽𝐽(𝜃𝜃)

Nesterov momentum is a simple change to normal momentum. Here, the gradient term is

not computed at the current parameter space position but instead from an intermediate
position. The goal is to correct for the momentum term overshooting or pointing in the
wrong direction (Sutskever et al. 2013).

Adaptive learning rates

The choice of the appropriate learning rate is very challenging as highlighted in the
previous subsection on stochastic gradient descent. At the same time, it is one of the most
important parameters that strongly impacts training time and generalization performance.

Chapter 17

[525]

While momentum addresses some of the issues with learning rates, it does so at the expense
of introducing another hyperparameter, the momentum rate. Several algorithms aim to
adapt the learning rate throughout the training process based on gradient information.

AdaGrad

AdaGrad accumulates all historical, parameter-specific gradient information and continues
to rescale the learning rate inversely proportional to the squared cumulative gradient for
a given parameter. The goal is to slow down changes for parameters that have already
changed a lot and to encourage adjustments for those that haven't.

AdaGrad is designed to perform well on convex functions and has had a mixed
performance in a DL context because it can reduce the learning rate too quickly based on
early gradient information.

RMSProp

RMSProp modifies AdaGrad to use an exponentially weighted average of the cumulative
gradient information. The goal is to put more emphasis on recent gradients. It also
introduces a new hyperparameter that controls the length of the moving average.

RMSProp is a popular algorithm that often performs well, provided by the various libraries
that we will introduce later and routinely used in practice.

Adam

Adam stands for adaptive moment derivation and combines aspects of RMSProp with
Momentum. It is considered fairly robust and often used as the default optimization
algorithm (Kingma and Ba, 2014).

Adam has several hyperparameters with recommended default values that may benefit
from some tuning:

• alpha: The learning rate or step size determines how much weights are updated
so that larger (smaller) values speed up (slow down) learning before the rate is
updated; many libraries use the 0.001 default

• beta
1
: The exponential decay rate for the first moment estimates; typically set to 0.9

• beta
2
. The exponential decay rate for the second-moment estimates; usually set to

0.999

• epsilon: A very small number to prevent division by zero; often set to 1e-8

Summary – how to tune key hyperparameters
Hyperparameter optimization aims at tuning the capacity of the model so that it matches
the complexity of the relationship between the input of the data. Excess capacity makes
overfitting likely and requires either more data that introduces additional information into
the learning process, reducing the size of the model, or more aggressive use of the various
regularization tools just described.

Deep Learning for Trading

[526]

The principal diagnostic tool is the behavior of training and validation error described in
Chapter 6, The Machine Learning Process: if the validation error worsens while the training
error continues to drop, the model is overfitting because its capacity is too high. On the
other hand, if performance falls short of expectations, increasing the size of the model may
be called for.

The most important aspect of parameter optimization is the architecture itself as it largely
determines the number of parameters: other things being equal, more or wider hidden
layers increase the capacity. As mentioned before, the best performance is often associated
with models that have excess capacity but are well regularized using mechanisms like
dropout or L1/L2 penalties.

In addition to balancing model size and regularization, it is important to tune the learning
rate because it can undermine the optimization process and reduce the effective model
capacity. The adaptive optimization algorithms offer a good starting point as described for
Adam, the most popular option.

A neural network from scratch in Python
To gain a better understanding of how NNs work, we will formulate the single-layer
architecture and forward propagation computations displayed in Figure 17.2 using matrix
algebra and implement it using NumPy. You can find the code samples in the notebook
build_and_train_feedforward_nn.

The input layer
The architecture shown in Figure 17.2 is designed for two-dimensional input data X that
represents two different classes Y. In matrix form, both X and Y are of shape 𝑁𝑁 × 2 :

𝑋𝑋 = [𝑥𝑥11 𝑥𝑥12⋮ ⋮𝑥𝑥𝑁𝑁1 𝑥𝑥𝑁𝑁2] 𝑌𝑌 = [𝑦𝑦11 𝑦𝑦12⋮ ⋮𝑦𝑦𝑁𝑁1 𝑦𝑦𝑁𝑁2]

We will generate 50,000 random binary samples in the form of two concentric circles with
different radius using scikit-learn's make_circles function so that the classes are not linearly
separable:

N = 50000

factor = 0.1

noise = 0.1

X, y = make_circles(n_samples=N, shuffle=True,
 factor=factor, noise=noise)

Chapter 17

[527]

We then convert the one-dimensional output into a two-dimensional array:

Y = np.zeros((N, 2))

for c in [0, 1]:

 Y[y == c, c] = 1

'Shape of: X: (50000, 2) | Y: (50000, 2) | y: (50000,)'

Figure 17.3 shows a scatterplot of the data that is clearly not linearly separable:

Figure 17.3: Synthetic data for binary classification

The hidden layer
The hidden layer h projects the two-dimensional input into a three-dimensional space
using the weights Wh and translates the result by the bias vector bh. To perform this affine
transformation, the hidden layer weights are represented by a 2 × 3 matrix Wh, and the
hidden layer bias vector by a three-dimensional vector:𝐖𝐖ℎ2 × 3 = [𝑤𝑤ℎ11 𝑤𝑤ℎ12 𝑤𝑤ℎ13𝑤𝑤ℎ21 𝑤𝑤ℎ22 𝑤𝑤ℎ23] 𝐛𝐛ℎ1 × 3[𝑏𝑏ℎ1 𝑏𝑏ℎ2 𝑏𝑏ℎ3]

The hidden layer activations H result from the application of the sigmoid function to the
dot product of the input data and the weights after adding the bias vector:𝐇𝐇𝑁𝑁 𝑁 𝑁 = 𝜎𝜎(X ∙ Wℎ + 𝑏𝑏ℎ) = 11 + 𝑒𝑒−(X∙Wℎ+𝑏𝑏ℎ) = [ℎ11 ℎ12 ℎ13⋮ ⋮ ⋮ℎ𝑁𝑁1 ℎ𝑁𝑁2 ℎ𝑁𝑁3]

To implement the hidden layer using NumPy, we first define the logistic sigmoid
function:

def logistic(z):

 """Logistic function."""

 return 1 / (1 + np.exp(-z))

Deep Learning for Trading

[528]

We then define a function that computes the hidden layer activations as a function of the
relevant inputs, weights, and bias values:

def hidden_layer(input_data, weights, bias):

 """Compute hidden activations"""

 return logistic(input_data @ weights + bias)

The output layer
The output layer compresses the three-dimensional hidden layer activations H back to two
dimensions using a 3 × 2 weight matrix Wo and a two-dimensional bias vector bo:𝐖𝐖𝑜𝑜3 × 2 = [w𝑜𝑜11 w𝑜𝑜12w𝑜𝑜21 w𝑜𝑜22w𝑜𝑜31 w𝑜𝑜32] 𝐛𝐛𝑜𝑜1 × 2 = [b𝑜𝑜1 b𝑜𝑜2]
The linear combination of the hidden layer outputs results in an 𝑁𝑁 × 2 matrix Zo:𝐙𝐙𝑜𝑜𝑁𝑁 𝑁 𝑁 = 𝐇𝐇𝑁𝑁 𝑁 𝑁 ∙ 𝐖𝐖𝑜𝑜𝑁 𝑁 𝑁 + 𝐛𝐛𝑜𝑜1 𝑁 𝑁

The output layer activations are computed by the softmax function 𝜍𝜍 that normalizes the Zo
to conform to the conventions used for discrete probability distributions:𝐘𝐘𝑁𝑁 𝑁 𝑁 = 𝜍𝜍(𝐇𝐇 𝐇 𝐇𝐇𝑜𝑜 + 𝐛𝐛𝑜𝑜) = [𝑦𝑦11 𝑦𝑦12⋮ ⋮𝑦𝑦𝑛𝑛1 𝑦𝑦𝑛𝑛2]

We create a softmax function in Python as follows:

def softmax(z):

 """Softmax function"""

 return np.exp(z) / np.sum(np.exp(z), axis=1, keepdims=True)

As defined here, the output layer activations depend on the hidden layer activations and
the output layer weights and biases:

def output_layer(hidden_activations, weights, bias):

 """Compute the output y_hat"""

 return softmax(hidden_activations @ weights + bias)

Now we have all the components we need to integrate the layers and compute the NN
output directly from the input.

Chapter 17

[529]

Forward propagation
The forward_prop function combines the previous operations to yield the output activations
from the input data as a function of weights and biases:

def forward_prop(data, hidden_weights, hidden_bias, output_weights, output_
bias):

 """Neural network as function."""

 hidden_activations = hidden_layer(data, hidden_weights, hidden_bias)

 return output_layer(hidden_activations, output_weights, output_bias)

The predict function produces the binary class predictions given weights, biases, and input
data:

def predict(data, hidden_weights, hidden_bias, output_weights, output_bias):

 """Predicts class 0 or 1"""

 y_pred_proba = forward_prop(data,

 hidden_weights,

 hidden_bias,

 output_weights,

 output_bias)

 return np.around(y_pred_proba)

The cross-entropy cost function
The final piece is the cost function to evaluate the NN output based on the given label. The
cost function J uses the cross-entropy loss 𝜉𝜉 , which sums the deviations of the predictions
for each class c from the actual outcome:

𝐽𝐽(𝐘𝐘𝐘 𝐘𝐘) = ∑ 𝜉𝜉(𝑦𝑦𝑖𝑖 𝐘 𝑦𝑦𝑦𝑖𝑖)𝑛𝑛
𝑖𝑖𝑖𝑖 = − ∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦𝑦𝑖𝑖𝑖𝑖)𝐶𝐶

𝑖𝑖𝑖𝑖𝑖
𝑁𝑁

𝑖𝑖𝑖𝑖

It takes the following form in Python:

def loss(y_hat, y_true):

 """Cross-entropy"""

 return - (y_true * np.log(y_hat)).sum()

How to implement backprop using Python
To update the NN weights and bias values using backprop, we need to compute the
gradient of the cost function. The gradient represents the partial derivative of the cost
function with respect to the target parameter.

Deep Learning for Trading

[530]

How to compute the gradient

The NN composes a set of nested functions as highlighted earlier. Hence, the gradient of
the loss function with respect to internal, hidden parameters is computed using the chain
rule of calculus.

For scalar values, given the functions z = h(x) and y = o(h(x)) = o (z), we compute the
derivative of y with respect to x using the chain rule as follows:𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

For vectors, with 𝑧𝑧 𝑧 𝑧𝑚𝑚 and 𝑥𝑥 𝑥 𝑥𝑛𝑛 so that the hidden layer h maps from Rn to Rm and z =
h(x) and y = o (z), we get: 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖 =∑ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑗𝑗 𝜕𝜕𝜕𝜕𝑗𝑗𝜕𝜕𝜕𝜕𝑖𝑖𝑗𝑗

We can express this more concisely using matrix notation using the 𝑚𝑚 × 𝑛𝑛 Jacobian matrix
of h: 𝑚𝑚 𝑚 𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

which contains the partial derivatives for each of the m components of z with respect to
each of the n inputs x. The gradient ∇ of y with respect to x contains all partial derivatives
and can thus be written as: ∇𝐱𝐱𝑦𝑦 𝑦 𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)𝑇𝑇 ∇𝐳𝐳𝑦𝑦

The loss function gradient

The derivative of the cross-entropy loss function J with respect to each output layer
activation i = 1, ..., N is a very simple expression (see the notebook for details), shown below
on the left for scalar values and on the right in matrix notation:𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖0 = 𝑦𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖 ∇𝐳𝐳0𝜕𝜕 = 𝐽𝐽 − 𝐽𝐽 = 𝐘𝐘0

We define loss_gradient function accordingly:

def loss_gradient(y_hat, y_true):

 """output layer gradient"""

 return y_hat - y_true

The output layer gradients

To propagate the update back to the output layer weights, we use the gradient of the loss
function J with respect to the weight matrix:

Chapter 17

[531]

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕0 = 𝐻𝐻𝑇𝑇 ∙ (𝐘𝐘 − 𝐘𝐘) = 𝐻𝐻𝑇𝑇 ∙ 𝛿𝛿0

and for the bias: 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕0 = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕0 𝜕𝜕𝜕𝜕0𝜕𝜕𝜕𝜕0 = ∑ 1 ∙ 𝑁𝑁
𝑖𝑖𝑖𝑖 (�̂�𝒚𝑖𝑖 − 𝒚𝒚𝑖𝑖) = ∑ 𝛿𝛿𝑖𝑖0𝑁𝑁

𝑖𝑖𝑖𝑖

We can now define output_weight_gradient and output_bias_gradient accordingly, both
taking the loss gradient 𝛿𝛿0 as input:

def output_weight_gradient(H, loss_grad):

 """Gradients for the output layer weights"""

 return H.T @ loss_grad

def output_bias_gradient(loss_grad):

 """Gradients for the output layer bias"""

 return np.sum(loss_grad, axis=0, keepdims=True)

The hidden layer gradients

The gradient of the loss function with respect to the hidden layer values computes as
follows, where ∘ refers to the element-wise matrix product:∇𝐙𝐙ℎ𝐽𝐽 𝐽 𝐽𝐽 𝐽 (1 − 𝐽𝐽) 𝐽 [𝛿𝛿0 ∙ (𝐖𝐖0)𝑇𝑇] 𝐽 δℎ

We define a hidden_layer_gradient function to encode this result:

def hidden_layer_gradient(H, out_weights, loss_grad):

 """Error at the hidden layer.

 H * (1-H) * (E . Wo^T)"""

 return H * (1 - H) * (loss_grad @ out_weights.T)

The gradients for hidden layer weights and biases are:

∇𝐖𝐖ℎ𝐽𝐽 𝐽 𝐽 𝐽𝐽𝑇𝑇 ∙ 𝛿𝛿ℎ𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽∇𝐛𝐛ℎ𝐽𝐽 𝐽 𝐽 𝐽 𝛿𝛿ℎ𝑗𝑗𝑁𝑁
𝑗𝑗𝑗𝑗

The corresponding functions are:

def hidden_weight_gradient(X, hidden_layer_grad):

 """Gradient for the weight parameters at the hidden layer"""

 return X.T @ hidden_layer_grad

def hidden_bias_gradient(hidden_layer_grad):

 """Gradient for the bias parameters at the output layer"""

 return np.sum(hidden_layer_grad, axis=0, keepdims=True)

Deep Learning for Trading

[532]

Putting it all together

To prepare for the training of our network, we create a function that combines the previous
gradient definition and computes the relevant weight and bias updates from the training
data and labels, and the current weight and bias values:

def compute_gradients(X, y_true, w_h, b_h, w_o, b_o):

 """Evaluate gradients for parameter updates"""

 # Compute hidden and output layer activations

 hidden_activations = hidden_layer(X, w_h, b_h)

 y_hat = output_layer(hidden_activations, w_o, b_o)

 # Compute the output layer gradients

 loss_grad = loss_gradient(y_hat, y_true)

 out_weight_grad = output_weight_gradient(hidden_activations, loss_grad)

 out_bias_grad = output_bias_gradient(loss_grad)

 # Compute the hidden layer gradients

 hidden_layer_grad = hidden_layer_gradient(hidden_activations,
 w_o, loss_grad)

 hidden_weight_grad = hidden_weight_gradient(X, hidden_layer_grad)

 hidden_bias_grad = hidden_bias_gradient(hidden_layer_grad)

 return [hidden_weight_grad, hidden_bias_grad, out_weight_grad, out_bias_grad]

Testing the gradients

The notebook contains a test function that compares the gradient derived previously
analytically using multivariate calculus to a numerical estimate that we obtain by slightly
perturbing individual parameters. The test function validates that the resulting change in
output value is similar to the change estimated by the analytical gradient.

Implementing momentum updates using Python

To incorporate momentum into the parameter updates, define an update_momentum function
that combines the results of the compute_gradients function we just used with the most
recent momentum updates for each parameter matrix:

def update_momentum(X, y_true, param_list, Ms, momentum_term, learning_rate):

 """Compute updates with momentum."""

 gradients = compute_gradients(X, y_true, *param_list)

 return [momentum_term * momentum - learning_rate * grads

 for momentum, grads in zip(Ms, gradients)]

The update_params function performs the actual updates:

def update_params(param_list, Ms):

 """Update the parameters."""

 return [P + M for P, M in zip(param_list, Ms)]

Chapter 17

[533]

Training the network

To train the network, we first randomly initialize all network parameters using a standard
normal distribution (see the notebook). For a given number of iterations or epochs, we run
momentum updates and compute the training loss as follows:

def train_network(iterations=1000, lr=.01, mf=.1):

 # Initialize weights and biases

 param_list = list(initialize_weights())

 # Momentum Matrices = [MWh, Mbh, MWo, Mbo]

 Ms = [np.zeros_like(M) for M in param_list]

 train_loss = [loss(forward_prop(X, *param_list), Y)]

 for i in range(iterations):

 # Update the moments and the parameters

 Ms = update_momentum(X, Y, param_list, Ms, mf, lr)

 param_list = update_params(param_list, Ms)

 train_loss.append(loss(forward_prop(X, *param_list), Y))

 return param_list, train_loss

Figure 17.4 plots the training loss over 50,000 iterations for 50,000 training samples with
a momentum term of 0.5 and a learning rate of 1e-4. It shows that it takes over 5,000
iterations for the loss to start to decline but then does so very fast. We have not used SGD,
which would have likely accelerated convergence significantly.

Figure 17.4: Training loss per iteration

The plots in Figure 17.5 show the function learned by the neural network with a three-
dimensional hidden layer from two-dimensional data with two classes that are not
linearly separable. The left panel displays the source data and the decision boundary that
misclassifies very few data points and would further improve with continued training.

The center panel shows the representation of the input data learned by the hidden layer.
The network learns weights so that the projection of the input from two to three dimensions
enables the linear separation of the two classes. The right plot shows how the output layer
implements the linear separation in the form of a cutoff value of 0.5 in the output dimension:

Deep Learning for Trading

[534]

Figure 17.5: Visualizing the function learned by the neural network

To sum up: we have seen how a very simple network with a single hidden layer with three
nodes and a total of 17 parameters is able to learn how to solve a nonlinear classification
problem using backprop and gradient descent with momentum.

We will next review how to use popular DL libraries that facilitate the design and
fast training of complex architectures while using sophisticated techniques to prevent
overfitting and evaluate the results.

Popular deep learning libraries
Currently, the most popular DL libraries are TensorFlow (supported by Google), Keras (led
by Francois Chollet, now at Google), and PyTorch (supported by Facebook). Development
is very active with PyTorch at version 1.4 and TensorFlow at 2.2 as of March 2020.
TensorFlow 2.0 adopted Keras as its main interface, effectively combining both libraries
into one.

All libraries provide the design choices, regularization methods, and backprop
optimizations we discussed previously in this chapter. They also facilitate fast training
on one or several graphics processing units (GPUs). The libraries differ slightly in their
focus with TensorFlow originally designed for deployment in production and prevalent in
the industry, while PyTorch has been popular among academic researchers; however, the
interfaces are gradually converging.

We will illustrate the use of TensorFlow and PyTorch using the same network architecture
and dataset as in the previous section.

Leveraging GPU acceleration
DL is very computationally intensive, and good results often require large datasets. As a
result, model training and evaluation can become rather time-consuming. GPUs are highly
optimized for the matrix operations required by deep learning models and tend to have
more processing power, rendering speedups of 10x or more not uncommon.

Chapter 17

[535]

All popular deep learning libraries support the use of a GPU, and some also allow for
parallel training on multiple GPUs. The most common types of GPU are produced by
NVIDIA, and configuration requires installation and setup of the CUDA environment.
The process continues to evolve and can be somewhat challenging depending on your
computational environment.

A more straightforward way to leverage GPU is via the Docker virtualization platform. There
are numerous images available that you can run in a local container managed by Docker
that circumvents many of the driver and version conflicts that you may otherwise encounter.
TensorFlow provides Docker images on its website that can also be used with Keras.

See GitHub for references and related instructions in the DL notebooks and the installation
directory.

How to use TensorFlow 2
TensorFlow became the leading deep learning library shortly after its release in September
2015, one year before PyTorch. TensorFlow 2 simplified the API that had grown
increasingly complex over time by making the Keras API its principal interface.

Keras was designed as a high-level API to accelerate the iterative workflow of designing
and training deep neural networks with computational backends like TensorFlow, Theano,
or CNTK. It has been integrated into TensorFlow in 2017. You can also combine code from
both libraries to leverage Keras' high-level abstractions as well as customized TensorFlow
graph operations.

In addition, TensorFlow adopts eager execution. Previously, you needed to define a
complete computational graph for compilation into optimized operations. Running the
compiled graph required the configuration of a session and the provision of the requisite
data. Under eager execution, you can run TensorFlow operations on a line-by-line basis just
like common Python code.

Keras supports both a slightly simpler Sequential API and a more flexible Functional API.
We will introduce the former at this point and use the Functional API in more complex
examples in the following chapters.

To create a model, we just need to instantiate a Sequential object and provide a list with the
sequence of standard layers and their configurations, including the number of units, type of
activation function, or name.

The first hidden layer needs information about the number of features in the matrix it
receives from the input layer via the input_shape argument. In our simple case, there are
just two. Keras infers the number of rows it needs to process during training, through the
batch_size argument that we will pass to the fit method later in this section. TensorFlow
infers the sizes of the inputs received by other layers from the previous layer's units
argument:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation

Deep Learning for Trading

[536]

model = Sequential([

 Dense(units=3, input_shape=(2,), name='hidden'),

 Activation('sigmoid', name='logistic'),

 Dense(2, name='output'),

 Activation('softmax', name='softmax'),

])

The Keras API provides numerous standard building blocks, including recurrent and
convolutional layers, various options for regularization, a range of loss functions and
optimizers, and also preprocessing, visualization, and logging (see the link to the
TensorFlow documentation on GitHub for reference). It is also extensible.

The model's summary method produces a concise description of the network architecture,
including a list of the layer types and shapes and the number of parameters:

model.summary()

Layer (type) Output Shape Param #

===

hidden (Dense) (None, 3) 9

logistic (Activation) (None, 3) 0

output (Dense) (None, 2) 8

softmax (Activation) (None, 2) 0

===

Total params: 17

Trainable params: 17

Non-trainable params: 0

Next, we compile the Sequential model to configure the learning process. To this end, we
define the optimizer, the loss function, and one or several performance metrics to monitor
during training:

model.compile(optimizer='rmsprop',

 loss='binary_crossentropy',

 metrics=['accuracy'])

Keras uses callbacks to enable certain functionality during training, such as logging
information for interactive display in TensorBoard (see the next section):

tb_callback = TensorBoard(log_dir='./tensorboard',

 histogram_freq=1,

 write_graph=True,

 write_images=True)

Chapter 17

[537]

To train the model, we call its fit method and pass several parameters in addition to the
training data:

model.fit(X, Y,
 epochs=25,

 validation_split=.2,

 batch_size=128,

 verbose=1,

 callbacks=[tb_callback])

See the notebook for a visualization of the decision boundary that resembles the result from
our earlier manual network implementation. The training with TensorFlow runs orders of
magnitude faster, though.

How to use TensorBoard
TensorBoard is a great suite of visualization tools that comes with TensorFlow. It includes
visualization tools to simplify the understanding, debugging, and optimization of NNs.

You can use it to visualize the computational graph, plot various execution and
performance metrics, and even visualize image data processed by the network. It also
permits comparisons of different training runs.

When you run the how_to_use_tensorflow notebook, with TensorFlow installed, you can
launch TensorBoard from the command line:

tensorboard --logdir=/full_path_to_your_logs ## e.g. ./tensorboard

Alternatively, you can use it within your notebook by first loading the extension and then
starting TensorBoard similarly by referencing the log directory:

%load_ext tensorboard

%tensorboard --logdir tensorboard/

For starters, the visualizations include train and validation metrics (see the left panel of
Figure 17.6).

In addition, you can view histograms of the weights and biases over various epochs (right
panel of Figure 17.6; epochs evolve from back to front). This is useful because it allows
you to monitor whether backpropagation succeeds in adjusting the weights as learning
progresses and whether they are converging.

Deep Learning for Trading

[538]

The values of weights should change from their initialization values over the course of
several epochs and eventually stabilize:

Figure 17.6: TensorBoard learning process visualization

TensorBoard also lets you display and interactively explore the computational graph of
your network, drilling down from the high-level structure to the underlying operations by
clicking on the various nodes. The visualization for our simple example architecture (see
the notebook) already includes numerous components but is very useful when debugging.
For further reference, see the links on GitHub to more detailed tutorials.

How to use PyTorch 1.4
PyTorch was developed at the Facebook AI Research (FAIR) group led by Yann LeCunn,
and the first alpha version released in September 2016. It provides deep integration with
Python libraries like NumPy that can be used to extend its functionality, strong GPU
acceleration, and automatic differentiation using its autograd system. It provides more
granular control than Keras through a lower-level API and is mainly used as a deep
learning research platform but can also replace NumPy while enabling GPU computation.

It employs eager execution, in contrast to the static computation graphs used by, for
example, Theano or TensorFlow. Rather than initially defining and compiling a network
for fast but static execution, it relies on its autograd package for automatic differentiation
of tensor operations; that is, it computes gradients "on the fly" so that network structures
can be partially modified more easily. This is called define-by-run, meaning that
backpropagation is defined by how your code runs, which in turn implies that every single
iteration can be different. The PyTorch documentation provides a detailed tutorial on this.

The resulting flexibility combined with an intuitive Python-first interface and speed of
execution has contributed to its rapid rise in popularity and led to the development of
numerous supporting libraries that extend its functionality.

Let's see how PyTorch and autograd work by implementing our simple network
architecture (see the how_to_use_pytorch notebook for details).

Chapter 17

[539]

How to create a PyTorch DataLoader

We begin by converting the NumPy or pandas input data to torch tensors. Conversion
from and to NumPy is very straightforward:

import torch

X_tensor = torch.from_numpy(X)

y_tensor = torch.from_numpy(y)

X_tensor.shape, y_tensor.shape

(torch.Size([50000, 2]), torch.Size([50000]))

We can use these PyTorch tensors to instantiate first a TensorDataset and, in a second step,
a DataLoader that includes information about batch_size:

import torch.utils.data as utils

dataset = utils.TensorDataset(X_tensor,y_tensor)

dataloader = utils.DataLoader(dataset,

 batch_size=batch_size,

 shuffle=True)

How to define the neural network architecture
PyTorch defines an NN architecture using the Net() class. The central element is the
forward function. autograd automatically defines the corresponding backward function that
computes the gradients.

Any legal tensor operation is fair game for the forward function, providing a log of design
flexibility. In our simple case, we just link the tensor through functional input-output
relations after initializing their attributes:

import torch.nn as nn

class Net(nn.Module):

 def __init__(self, input_size, hidden_size, num_classes):

 super(Net, self).__init__() # Inherited from nn.Module

 self.fc1 = nn.Linear(input_size, hidden_size)

 self.logistic = nn.LogSigmoid()

 self.fc2 = nn.Linear(hidden_size, num_classes)

 self.softmax = nn.Softmax(dim=1)

 def forward(self, x):

 """Forward pass: stacking each layer together"""

 out = self.fc1(x)

 out = self.logistic(out)

 out = self.fc2(out)

 out = self.softmax(out)

 return out

Deep Learning for Trading

[540]

We then instantiate a Net() object and can inspect the architecture as follows:

net = Net(input_size, hidden_size, num_classes)

net

Net(

 (fc1): Linear(in_features=2, out_features=3, bias=True)

 (logistic): LogSigmoid()

 (fc2): Linear(in_features=3, out_features=2, bias=True)

 (softmax): Softmax()

)

To illustrate eager execution, we can also inspect the initialized parameters in the first
tensor:

list(net.parameters())[0]

Parameter containing:

tensor([[0.3008, -0.2117],

 [-0.5846, -0.1690],

 [-0.6639, 0.1887]], requires_grad=True)

To enable GPU processing, you can use net.cuda(). See the PyTorch documentation for
placing tensors on CPU and/or one or more GPU units.

We also need to define a loss function and the optimizer, using some of the built-in options:

criterion = nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate)

How to train the model

Model training consists of an outer loop for each epoch, that is, each pass over the training
data, and an inner loop over the batches produced by the DataLoader. That executes the
forward and backward passes of the learning algorithm. Some care needs to be taken to
adjust data types to the requirements of the various objects and functions; for example,
labels need to be integers and the features should be of type float:

for epoch in range(num_epochs):

 print(epoch)

 for i, (features, label) in enumerate(dataloader):

 features = Variable(features.float())
 label = Variable(label.long())

 # Initialize the hidden weights

 optimizer.zero_grad()

 # Forward pass: compute output given features

 outputs = net(features)

Chapter 17

[541]

 # Compute the loss

 loss = criterion(outputs, label)

 # Backward pass: compute the gradients

 loss.backward()

 # Update the weights

 optimizer.step()

The notebook also contains an example that uses the livelossplot package to plot losses
throughout the training process as provided by Keras out of the box.

How to evaluate the model predictions

To obtain predictions from our trained model, we pass it feature data and convert the
prediction to a NumPy array. We get softmax probabilities for each of the two classes:

test_value = Variable(torch.from_numpy(X)).float()
prediction = net(test_value).data.numpy()

Prediction.shape

(50000, 2)

From here on, we can proceed as before to compute loss metrics or visualize the result that
again reproduces a version of the decision boundary we found earlier.

Alternative options
The huge interest in DL has led to the development of several competing libraries that
facilitate the design and training of NNs. The most prominent include the following
examples (also see references on GitHub).

Apache MXNet

MXNet, incubated at the Apache Foundation, is an open source DL software framework
used to train and deploy deep NNs. It focuses on scalability and fast model training. They
included the Gluon high-level interface to make it easy to prototype, train, and deploy DL
models. MXNet has been picked by Amazon for deep learning on AWS.

Microsoft Cognitive Toolkit (CNTK)

The Cognitive Toolkit, previously known as CNTK, is Microsoft's contribution to the
deep learning library collection. It describes an NN as a series of computational steps via
a directed graph, similar to TensorFlow. In this directed graph, leaf nodes represent input
values or network parameters, while other nodes represent matrix operations upon their
inputs. CNTK allows users to build and combine popular model architectures ranging from
deep feedforward NNs, convolutional networks, and recurrent networks (RNNs/LSTMs).

Deep Learning for Trading

[542]

Fastai

The fastai library aims to simplify training NNs that are fast and accurate using modern
best practices. These practices have emerged from research into DL at the company that
makes both the software and accompanying courses available for free. Fastai includes
support for models that process image, text, tabular, and collaborative filtering data.

Optimizing an NN for a long-short strategy
In practice, we need to explore variations for the design options for the NN architecture
and how we train it from those we outlined previously because we can never be sure from
the outset which configuration best suits the data. In this section, we will explore various
architectures for a simple feedforward NN to predict daily stock returns using the dataset
developed in Chapter 12 (see the notebook preparing_the_model_data in the GitHub
directory for that chapter).

To this end, we will define a function that returns a TensorFlow model based on
several architectural input parameters and cross-validate alternative designs using the
MultipleTimeSeriesCV we introduced in Chapter 7, Linear Models – From Risk Factors to
Return Forecasts. To assess the signal quality of the model predictions, we build a simple
ranking-based long-short strategy based on an ensemble of the models that perform best
during the in-sample cross-validation period. To limit the risk of false discoveries, we then
evaluate the performance of this strategy for an out-of-sample test period.

See the optimizing_a_NN_architecture_for_trading notebook for details.

Engineering features to predict daily stock returns
To develop our trading strategy, we use the daily stock returns for 995 US stocks for the
eight-year period from 2010 to 2017. We will use the features developed in Chapter 12,

Boosting Your Trading Strategy that include volatility and momentum factors, as well as
lagged returns with cross-sectional and sectoral rankings. We load the data as follows:

data = pd.read_hdf('../12_gradient_boosting_machines/data/data.h5',

 'model_data').dropna()

outcomes = data.filter(like='fwd').columns.tolist()
lookahead = 1

outcome= f'r{lookahead:02}_fwd'

X = data.loc[idx[:, :'2017'], :].drop(outcomes, axis=1)

y = data.loc[idx[:, :'2017'], outcome]

Defining an NN architecture framework
To automate the generation of our TensorFlow model, we create a function that constructs
and compiles the model based on arguments that can later be passed during cross-validation
iterations.

Chapter 17

[543]

The following make_model function illustrates how to flexibly define various architectural
elements for the search process. The dense_layers argument defines both the depth and
width of the network as a list of integers. We also use dropout for regularization, expressed
as a float in the range [0, 1] to define the probability that a given unit will be excluded from
a training iteration:

def make_model(dense_layers, activation, dropout):

 '''Creates a multi-layer perceptron model

 dense_layers: List of layer sizes; one number per layer

 '''

 model = Sequential()

 for i, layer_size in enumerate(dense_layers, 1):

 if i == 1:

 model.add(Dense(layer_size, input_dim=X_cv.shape[1]))

 model.add(Activation(activation))

 else:

 model.add(Dense(layer_size))

 model.add(Activation(activation))

 model.add(Dropout(dropout))

 model.add(Dense(1))

 model.compile(loss='mean_squared_error',

 optimizer='Adam')

 return model

Now we can turn to the cross-validation process to evaluate various NN architectures.

Cross-validating design options to tune the NN
We use the MultipleTimeSeriesCV to split the data into rolling training and validation sets
comprising of 24 * 12 months of data, while keeping the final 12 * 21 days of data (starting
November 30, 2016) as a holdout test. We train each model for 48 21-day periods and
evaluate its results over 3 21-day periods, implying 12 splits for cross-validation and test
periods combined:

n_splits = 12

train_period_length=21 * 12 * 4

test_period_length=21 * 3

cv = MultipleTimeSeriesCV(n_splits=n_splits,

 train_period_length=train_period_length,

 test_period_length=test_period_length,

 lookahead=lookahead)

Deep Learning for Trading

[544]

Next, we define a set of configurations for cross-validation. These include several options
for two hidden layers and dropout probabilities; we'll only use tanh activations because
a trial run did not suggest significant differences compared to ReLU. (We could also try
out different optimizers. but I recommend you do not run this experiment, to limit what is
already a computationally intensive effort):

dense_layer_opts = [(16, 8), (32, 16), (32, 32), (64, 32)]

dropout_opts = [0, .1, .2]

param_grid = list(product(dense_layer_opts, activation_opts, dropout_opts))

np.random.shuffle(param_grid)
len(param_grid)

12

To run the cross-validation, we define a function that produces the train and validation
data based on the integer indices produced by the MultipleTimeSeriesCV as follows:

def get_train_valid_data(X, y, train_idx, test_idx):

 x_train, y_train = X.iloc[train_idx, :], y.iloc[train_idx]

 x_val, y_val = X.iloc[test_idx, :], y.iloc[test_idx]

 return x_train, y_train, x_val, y_val

During cross-validation, we train a model using one set of parameters from the previously
defined grid for 20 epochs. After each epoch, we store a checkpoint that contains
the learned weights that we can reload to quickly generate predictions for the best
configuration without retraining.

After each epoch, we compute and store the information coefficient (IC) for the validation
set by day:

ic = []

scaler = StandardScaler()

for params in param_grid:

 dense_layers, activation, dropout = params

 for batch_size in [64, 256]:

 checkpoint_path = checkpoint_dir / str(dense_layers) / activation /

 str(dropout) / str(batch_size)

 for fold, (train_idx, test_idx) in enumerate(cv.split(X_cv)):

 x_train, y_train, x_val, y_val = get_train_valid_data(X_cv, y_cv,

 train_idx, test_idx)

 x_train = scaler.fit_transform(x_train)
 x_val = scaler.transform(x_val)

 preds = y_val.to_frame('actual')

 r = pd.DataFrame(index=y_val.groupby(level='date').size().index)

 model = make_model(dense_layers, activation, dropout)

 for epoch in range(20):

 model.fit(x_train, y_train,

Chapter 17

[545]

 batch_size=batch_size,

 epochs=1, validation_data=(x_val, y_val))

 model.save_weights(
 (checkpoint_path / f'ckpt_{fold}_{epoch}').as_posix())

 preds[epoch] = model.predict(x_val).squeeze()

 r[epoch] = preds.groupby(level='date').apply(lambda x:
spearmanr(x.actual, x[epoch])[0]).to_frame(epoch)

 ic.append(r.assign(dense_layers=str(dense_layers),

 activation=activation,

 dropout=dropout,

 batch_size=batch_size,

 fold=fold))

With an NVIDIA GTX 1080 GPU, 20 epochs takes a bit over one hour with batches of 64
samples, and around 20 minutes with 256 samples.

Evaluating the predictive performance
Let's first take a look at the five models that achieved the highest median daily IC during
the cross-validation period. The following code computes these values:

dates = sorted(ic.index.unique())

cv_period = 24 * 21

cv_dates = dates[:cv_period]

ic_cv = ic.loc[cv_dates]

(ic_cv.drop('fold', axis=1).groupby(params).median().stack()

 .to_frame('ic').reset_index().rename(columns={'level_3': 'epoch'})

 .nlargest(n=5, columns='ic'))

The resulting table shows that the architectures using 32 units in both layers and 16/8 in
the first/second layer, respectively, performed best. These models also use dropout and
were trained with batch sizes of 64 samples with the given number of epochs for all folds.
The median IC values vary between 0.0236 and 0.0246:

Dense Layers Dropout Batch Size Epoch IC

(32, 32) 0.1 64 7 0.0246

(16, 8) 0.2 64 14 0.0241

(16, 8) 0.1 64 3 0.0238

(32, 32) 0.1 64 10 0.0237

(16, 8) 0.2 256 3 0.0236

Next, we'll take a look at how the parameter choices impact the predictive performance.

Deep Learning for Trading

[546]

First, we visualize the daily information coefficient (averaged per fold) for different
configurations by epoch to understand how the duration of training affects the predictive
accuracy. The plots in Figure 17.7, however, highlight few conclusive patterns; the IC varies
little across models and not particularly systematically across epochs:

Figure 17.7: Information coefficients for various model configurations

For more statistically robust insights, we run a linear regression using ordinary least

squares (OLS) (see Chapter 7, Linear Models – From Risk Factors to Return Forecasts) using
dummy variables for the layer, dropout, and batch size choices as well as for each epoch:

data = pd.melt(ic, id_vars=params, var_name='epoch', value_name='ic')

data = pd.get_dummies(data, columns=['epoch'] + params, drop_first=True)
model = sm.OLS(endog=data.ic, exog=sm.add_constant(data.drop('ic', axis=1)))

The chart in Figure 17.8 plots the confidence interval for each regression coefficient; if
it does not include zero, then the coefficient is significant at the five percent level. The
IC values on the y-axis reflect the differential from the constant (0.0027, p-value: 0.017)
that represents the sample average over the configuration excluded while dropping one
category of each dummy variable.

Across all configurations, batch size 256 and a dropout of 0.2 made significant (but small)
positive contributions to performance. Similarly, training for seven epochs yielded slightly
superior results. The regression is overall significant according to the F statistic but has a
very low R2 value close to zero, underlining the high degree of noise in the data relative to
the signal conveyed by the parameter choices.

Chapter 17

[547]

Figure 17.8: OLS coefficients and confidence intervals

Backtesting a strategy based on ensembled signals
To translate our NN model into a trading strategy, we generate predictions, evaluate their
signal quality, create rules that define how to trade on these predictions, and backtest the
performance of a strategy that implements these rules. See the notebook backtesting_with_
zipline for the code examples in this section.

Ensembling predictions to produce tradeable signals

To reduce the variance of the predictions and hedge against in-sample overfitting, we
combine the predictions of the best three models listed in the table in the previous section
and average the result.

To this end, we define the following generate_predictions() function, which receives
the model parameters as inputs, loads the weights for the models for the desired epoch,
and creates forecasts for the cross-validation and out-of-sample periods (showing only the
essentials here to save some space):

def generate_predictions(dense_layers, activation, dropout,
 batch_size, epoch):

 checkpoint_dir = Path('logs')

 checkpoint_path = checkpoint_dir / dense_layers / activation /

 str(dropout) / str(batch_size)

 for fold, (train_idx, test_idx) in enumerate(cv.split(X_cv)):

 x_train, y_train, x_val, y_val = get_train_valid_data(X_cv, y_cv,

 train_idx,

 test_idx)

 x_val = scaler.fit(x_train).transform(x_val)
 model = make_model(dense_layers, activation, dropout, input_dim)

Deep Learning for Trading

[548]

 status = model.load_weights(
 (checkpoint_path / f'ckpt_{fold}_{epoch}').as_posix())

 status.expect_partial()

 predictions.append(pd.Series(model.predict(x_val).squeeze(),

 index=y_val.index))

 return pd.concat(predictions)

We store the results for evaluation with Alphalens and a Zipline backtest.

Evaluating signal quality using Alphalens

To gain some insight into the signal content of the ensembled model predictions, we use
Alphalens to compute the return differences for investments into five equal-weighted
portfolios differentiated by the forecast quantiles (see Figure 17.9). The spread between
the top and the bottom quintile equals around 8 bps for a one-day holding period, which
implies an alpha of 0.094 and a beta of 0.107:

Figure 17.9: Signal quality evaluation

Backtesting the strategy using Zipline

Based on the Alphalens analysis, our strategy will enter long and short positions for the 50
stocks with the highest positive and lowest negative predicted returns, respectively, as long
as there are at least 10 options on either side. The strategy trades every day.

The charts in Figure 17.10 show that the strategy performs well in- and out-of-sample
(before transaction costs):

Chapter 17

[549]

Figure 17.10: In- and out-of-sample backtest performance

It produces annualized returns of 22.8 percent over the 36-month period, 16.5 percent for
the 24 in-sample months, and 35.7 percent for the 12 out-of-sample months. The Sharpe
ratio is 0.72 in-sample and 2.15 out-of-sample, delivering an alpha of 0.18 (0.29) and a beta
of 0.24 (0.16) in/out of sample.

How to further improve the results
The relatively simple architecture yields some promising results. To further improve
performance, you can first and foremost add new features and more data to the model.

Alternatively, you can use more sophisticated architectures, including RNNs and CNNs,
which are well suited to sequential data, whereas vanilla feedforward NNs are not
designed to capture the ordered nature of the features.

We will turn to these specialized architectures in the following chapter.

Summary
In this chapter, we introduced DL as a form of representation learning that extracts
hierarchical features from high-dimensional, unstructured data. We saw how to design,
train, and regularize feedforward neural networks using NumPy. We demonstrated how to
use the popular DL libraries PyTorch and TensorFlow that are suitable for use cases from
rapid prototyping to production deployments.

Most importantly, we designed and tuned an NN using TensorFlow and were able to
generate tradeable signals that delivered attractive returns during both the in-sample and
out-of-sample periods.

In the next chapter, we will explore CNNs, which are particularly well suited for image
data but are also well-suited for sequential data.

[551]

18
CNNs for Financial Time

Series and Satellite Images

In this chapter, we introduce the first of several specialized deep learning architectures
that we will cover in Part 4. Deep convolutional neural networks (CNNs) have enabled
superhuman performance in various computer vision tasks such as classifying images
and video and detecting and recognizing objects in images. CNNs can also extract signals
from time-series data that shares certain characteristics with image data and have been
successfully applied to speech recognition (Abdel-Hamid et al. 2014). Moreover, they
have been shown to deliver state-of-the-art performance on time-series classification
across various domains (Ismail Fawaz et al. 2019).

CNNs are named after a linear algebra operation called a convolution that replaces the
general matrix multiplication typical of feedforward networks (discussed in the last
chapter) in at least one of their layers. We will show how convolutions work and why
they are particularly well suited to data with a certain regular structure typically found
in images but also present in time series.

Research into CNN architectures has proceeded very rapidly, and new architectures that
improve benchmark performance continue to emerge. We will describe a set of building
blocks consistently used by successful applications. We will also demonstrate how transfer
learning can speed up learning by using pretrained weights for CNN layers closer to the
input while fine-tuning the final layers to a specific task. We will also illustrate how to use
CNNs for the specific computer vision task of object detection.

CNNs can help build a trading strategy by generating signals from images or (multiple)
time-series data:

• Satellite data may signal future commodity trends, including the supply of certain
crops or raw materials via aerial images of agricultural areas, mines, or transport
networks like oil tankers. Surveillance camera footage, for example, from shopping
malls, could be used to track and predict consumer activity.

CNNs for Financial Time Series and Satellite Images

[552]

• Time-series data encompasses a very broad range of data sources and CNNs
have been shown to deliver high-quality classification results by exploiting their
structural similarity with images.

We will create a trading strategy based on predictions of a CNN that uses time-series data
that's been deliberately formatted like images and demonstrate how to build a CNN to
classify satellite images.

More specifically, in this chapter, you will learn about the following:

• How CNNs employ several building blocks to efficiently model grid-like data
• Training, tuning, and regularizing CNNs for images and time-series data using

TensorFlow

• Using transfer learning to streamline CNNs, even with less data

• Designing a trading strategy using return predictions by a CNN trained
on time-series data formatted like images

• How to classify satellite images

How CNNs learn to model grid-like data
CNNs are conceptually similar to feedforward neural networks (NNs): they consist of
units with parameters called weights and biases, and the training process adjusts these
parameters to optimize the network's output for a given input according to a loss function.
They are most commonly used for classification. Each unit uses its parameters to apply
a linear operation to the input data or activations received from other units, typically
followed by a nonlinear transformation.

The overall network models a differentiable function that maps raw data, such as image
pixels, to class probabilities using an output activation function like softmax. CNNs use
an objective function such as cross-entropy loss to measure the quality of the output with
a single metric. They also rely on the gradients of the loss with respect to the network
parameter to learn via backpropagation.

Feedforward NNs with fully connected layers do not scale well to high-dimensional image
data with a large number of pixel values. Even the low-resolution images included in the
CIFAR-10 dataset that we'll use in the next section contain 32×32 pixels with up to 256
different color values represented by 8 bits each. With three channels, for example, for the
red, green, and blue channels of the RGB color model, a single unit in a fully connected
input layer implies 32 × 32 × 3=3,072 weights. A more standard resolution of 640×480 pixels
already yields closer to 1 million weights for a single input unit. Deep architectures with
several layers of meaningful width quickly lead to an exploding number of parameters that
make overfitting during training all but certain.

You can find the code samples for this chapter and links to
additional resources in the corresponding directory of the GitHub
repository. The notebooks include color versions of the images.

Chapter 18

[553]

A fully connected feedforward NN makes no assumptions about the local structure of the
input data so that arbitrarily reordering the features has no impact on the training result. By
contrast, CNNs make the key assumption that the data has a grid-like topology and that
the local structure matters. In other words, they encode the assumption that the input has
a structure typically found in image data: pixels form a two-dimensional grid, possibly with
several channels to represent the components of the color signal. Furthermore, the values of
nearby pixels are likely more relevant to detect key features such as edges and corners than
faraway data points. Naturally, initial CNN applications such as handwriting recognition
focused on image data.

Over time, however, researchers recognized similar characteristics in time-series data,
broadening the scope for the productive use of CNNs. Time-series data consists of
measurements at regular intervals that create a one-dimensional grid along the time axis,
such as the lagged returns for a given ticker. There can also be a second dimension with
additional features for this ticker and the same time periods. Finally, we could represent
additional tickers using the third dimension.

A common CNN use case beyond images includes audio data, either in a one-dimensional
waveform in the time domain or, after a Fourier transform, as a two-dimensional spectrum
in the frequency domain. CNNs also play a key role in AlphaGo, the first algorithm to win a
game of Go against humans, where they evaluated different positions on the grid-like board.

The most important element to encode the assumption of a grid-like topology is the
convolution operation that gives CNNs their name, combined with pooling. We will see
that the specific assumptions about the functional relationship between input and output
data imply that CNNs need far fewer parameters and compute more efficiently.

In this section, we will explain how convolution and pooling layers learn filters that extract
local features and why these operations are particularly suitable for data with the structure
just described. State-of-the-art CNNs combine many of these basic building blocks to
achieve the layered representation learning described in the previous chapter. We conclude
by describing key architectural innovations over the last decade that saw enormous
performance improvements.

From hand-coding to learning filters from data
For image data, this local structure has traditionally motivated the development of
hand-coded filters that extract such patterns for the use as features in machine learning
(ML) models.

Figure 18.1 displays the effect of simple filters designed to detect certain edges. The
notebook filter_example.ipynb illustrates how to use hand-coded filters in a convolutional
network and visualizes the resulting transformation of the image. The filters are simple
[-1, 1] patterns arranged in a 2 × 2 matrix, shown in the upper right of the figure. Below
each filter, its effects are shown; they are a bit subtle and will be easier to spot in the
accompanying notebook.

CNNs for Financial Time Series and Satellite Images

[554]

Figure 18.1: The result of basic edge filters applied to an image

Convolutional layers, by contrast, are designed to learn such local feature representations
from the data. A key insight is to restrict their input, called the receptive field, to a small
area of the input so it captures basic pixel constellations that reflect common patterns like
edges or corners. Such patterns may occur anywhere in an image, though, so CNNs also
need to recognize similar patterns in different locations and possibly with small variations.

Subsequent layers then learn to synthesize these local features to detect higher-order
features. The linked resources on GitHub include examples of how to visualize the filters
learned by a deep CNN using some of the deep architectures that we present in the next
section on reference architectures.

How the elements of a convolutional layer operate
Convolutional layers integrate three architectural ideas that enable the learning of feature
representations that are to some degree invariant to shifts, changes in scale, and distortion:

• Sparse rather than dense connectivity

• Weight sharing

• Spatial or temporal downsampling

Moreover, convolutional layers allow for inputs of variable size. We will walk through a
typical convolutional layer and describe each of these ideas in turn.

Figure 18.2 outlines the set of operations that typically takes place in a three-dimensional
convolutional layer, assuming image data is input with the three dimensions of height,
width, and depth, or the number of channels. The range of pixel values depends on the bit
representation, for example, [0, 255] for 8 bits. Alternatively, the width axis could represent
time, the height different features, and the channels could capture observations on distinct
objects such as tickers.

Chapter 18

[555]

Figure 18.2: Typical operations in a two-dimensional convolutional layer

Successive computations process the input through the convolutional, detector, and
pooling stages that we describe in the next three sections. In the example depicted in Figure
18.2, the convolutional layer receives three-dimensional input and produces an output of
the same dimensionality.

State-of-the-art CNNs are composed of several such layers of varying sizes that are either
stacked on top of each other or operate in parallel on different branches. With each layer,
the network can detect higher-level, more abstract features.

The convolution stage – extracting local features

The first stage applies a filter, also called the kernel, to overlapping patches of the input
image. The filter is a matrix of a much smaller size than the input so that its receptive
field is limited to a few contiguous values such as pixels or time-series values. As a result,
it focuses on local patterns and dramatically reduces the number of parameters and
computations relative to a fully connected layer.

A complete convolutional layer has several feature maps organized as depth slices
(depicted in Figure 18.2) so that each layer can extract multiple features.

From filters to feature maps
While scanning the input, the kernel is convolved with each input segment covered by
its receptive field. The convolution operation is simply the dot product between the filter
weights and the values of the matching input area after both have been reshaped to vectors.
Each convolution thus produces a single number, and the entire scan yields a feature map.
Since the dot product is maximized for identical vectors, the feature map indicates the
degree of activation for each input region.

CNNs for Financial Time Series and Satellite Images

[556]

Figure 18.3 illustrates the result of the scan of a 5 × 5 input using a 3 × 3 filter with given
values, and how the activation in the upper-right corner of the feature map results from the
dot product of the flattened input region and the kernel:

Figure 18.3: From convolutions to a feature map

The most important aspect is that the filter values are the parameters of the convolutional
layers, learned from the data during training to minimize the chosen loss function. In other
words, CNNs learn useful feature representations by finding kernel values that activate
input patterns that are most useful for the task at hand.

How to scan the input – strides and padding

The stride defines the step size used for scanning the input, that is, the number of pixels
to shift horizontally and vertically. Smaller strides scan more (overlapping) areas but are
computationally more expensive. Four options are commonly used when the filter does not
fit the input perfectly and partially crosses the image boundary during the scan:

• Valid convolution: Discards scans where the image and filter do not perfectly
match

• Same convolution: Zero-pads the input to produce a feature map of equal size

• Full convolution: Zero-pads the input so that each pixel is scanned an equal
number of times, including pixels at the border (to avoid oversampling pixels
closer to the center)

• Causal: Zero-pads the input only on the left so that the output does not depend
on an input from a later period; maintains the temporal order for time-series data

The choices depend on the nature of the data and where useful features are most likely
located. In combination with the number of depth slices, they determine the output size
of the convolution stage. The Stanford lecture notes by Andrew Karpathy (see GitHub)
contain helpful examples using NumPy.

Chapter 18

[557]

Parameter sharing for robust features and fast computation

The location of salient features may vary due to distortion or shifts. Furthermore,
elementary feature detectors are likely useful across the entire image. CNNs encode
these assumptions by sharing or tying the weights for the filter in a given depth slice.

As a result, each depth slice specializes in a certain pattern and the number of parameters
is further reduced. Weight sharing works less well, however, when images are spatially
centered and key patterns are less likely to be uniformly distributed across the input area.

The detector stage – adding nonlinearity

The feature maps are usually passed through a nonlinear transformation. The rectified
linear unit (ReLU) that we encountered in the last chapter is a common function for this
purpose. ReLUs replace negative activations element-wise by zero and mitigate the risk of
vanishing gradients found in other activation functions such as tanh (see Chapter 17, Deep
Learning for Trading).

A popular alternative is the softplus function: 𝑓𝑓(𝑥𝑥) = ln(1 + 𝑒𝑒𝑥𝑥)

In contrast to ReLU, it has a derivative everywhere, namely the sigmoid function that
we used for logistic regression (see Chapter 7, Linear Models – From Risk Factors to Return
Forecasts).

The pooling stage – downsampling the feature maps

The last stage of the convolutional layer may downsample the feature map's input
representation to do the following:

• Reduce its dimensionality and prevent overfitting
• Lower the computational cost

• Enable basic translation invariance

This assumes that the precise location of the features is not only less important for
identifying a pattern but can even be harmful because it will likely vary for different
instances of the target. Pooling lowers the spatial resolution of the feature map as a simple
way to render the location information less precise. However, this step is optional and
many architectures use pooling only for some layers or not at all.

A common pooling operation is max pooling, which uses only the maximum activation
value from (typically) non-overlapping subregions. For a small 4 × 4 feature map, for
instance, 2 × 2 max pooling outputs the maximum for each of the four non-overlapping 2 × 2 areas. Less common pooling operators use the average or the median. Pooling does
not add or learn new parameters but the size of the input window and possibly the stride
are additional hyperparameters.

CNNs for Financial Time Series and Satellite Images

[558]

The evolution of CNN architectures – key innovations
Several CNN architectures have pushed performance boundaries over the past two
decades by introducing important innovations. Predictive performance growth accelerated
dramatically with the arrival of big data in the form of ImageNet (Fei-Fei 2015) with 14
million images assigned to 20,000 classes by humans via Amazon's Mechanical Turk. The
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) became the focal point of
CNN progress around a slightly smaller set of 1.2 million images from 1,000 classes.

It is useful to be familiar with the reference architectures dominating these competitions
for practical reasons. As we will see in the next section on working with CNNs for image
data, they offer a good starting point for standard tasks. Moreover, transfer learning allows
us to address many computer vision tasks by building on a successful architecture with
pretrained weights. Transfer learning not only speeds up architecture selection and training
but also enables successful applications on much smaller datasets.

In addition, many publications refer to these architectures, and they often serve as a basis
for networks tailored to segmentation or localization tasks. We will further describe some
landmark architectures in the section on image classification and transfer learning.

Performance breakthroughs and network size

The left side of Figure 18.4 plots the top-1 accuracy against the computational cost of a
variety of network architectures. It suggests a positive relationship between the number of
parameters and performance, but also shows that the marginal benefit of more parameters
declines and that architectural design and innovation also matter.

The right side plots the top-1 accuracy per parameter for all networks. Several new
architectures target use cases on less powerful devices such as mobile phones. While
they do not achieve state-of-the-art performance, they have found much more efficient
implementations. See the resources on GitHub for more details on these architectures and
the analysis behind these charts.

Figure 18.4: Predictive performance and computational complexity

Chapter 18

[559]

Lessons learned

Some of the lessons learned from 20 years of CNN architecture developments, especially
since 2012, include the following:

• Smaller convolutional filters perform better (possibly except at the first
layer) because several small filters can substitute for a larger filter at a lower
computational cost.

• 1 × 1 convolutions reduce the dimensionality of feature maps so that the network
can learn a larger number overall.

• Skip connections are able to create multiple paths through the network and enable
the training of much higher-capacity CNNs.

CNNs for satellite images and object detection
In this section, we demonstrate how to solve key computer vision tasks such as image
classification and object detection. As mentioned in the introduction and in Chapter 3,
Alternative Data for Finance – Categories and Use Cases, image data can inform a trading
strategy by providing clues about future trends, changing fundamentals, or specific events
relevant to a target asset class or investment universe. Popular examples include exploiting
satellite images for clues about the supply of agricultural commodities, consumer and
economic activity, or the status of manufacturing or raw material supply chains. Specific
tasks might include the following, for example:

• Image classification: Identifying whether cultivated land for certain crops is
expanding, or predicting harvest quality and quantities

• Object detection: Counting the number of oil tankers on a certain transport route
or the number of cars in a parking lot, or identifying the locations of shoppers
in a mall

In this section, we'll demonstrate how to design CNNs to automate the extraction of such
information, both from scratch using popular architectures and via transfer learning that
fine-tunes pretrained weights to a given task. We'll also demonstrate how to detect objects
in a given scene.

We will introduce key CNN architectures for these tasks, explain why they work well,
and show how to train them using TensorFlow 2. We will also demonstrate how to source
pretrained weights and fine-tune time. Unfortunately, satellite images with information
directly relevant for a trading strategy are very costly to obtain and are not readily
available. We will, however, demonstrate how to work with the EuroSat dataset to build
a classifier that identifies different land uses. This brief introduction to CNNs for computer
vision aims to demonstrate how to approach common tasks that you will likely need to
tackle when aiming to design a trading strategy based on images relevant to the investment
universe of your choice.

CNNs for Financial Time Series and Satellite Images

[560]

All the libraries we introduced in the last chapter provide support for convolutional layers;
we'll focus on the Keras interface of TensorFlow 2. We are first going to illustrate the
LeNet5 architecture using the MNIST handwritten digit dataset. Next, we'll demonstrate
the use of data augmentation with AlexNet on CIFAR-10, a simplified version of the
original ImageNet. Then we'll continue with transfer learning based on state-of-the-art
architectures before we apply what we've learned to actual satellite images. We conclude
with an example of object detection in real-life scenes.

LeNet5 – The first CNN with industrial applications
Yann LeCun, now the Director of AI Research at Facebook, was a leading pioneer in CNN
development. In 1998, after several iterations starting in the 1980s, LeNet5 became the
first modern CNN used in real-world applications that introduced several architectural
elements still relevant today.

LeNet5 was published in a very instructive paper, Gradient-Based Learning Applied to
Document Recognition (LeCun et al. 1989), that laid out many of the central concepts. Most
importantly, it promoted the insight that convolutions with learnable filters are effective
at extracting related features at multiple locations with few parameters. Given the limited
computational resources at the time, efficiency was of paramount importance.

LeNet5 was designed to recognize the handwriting on checks and was used by several banks.
It established a new benchmark for classification accuracy, with a result of 99.2 percent on the
MNIST handwritten digit dataset. It consists of three convolutional layers, each containing
a nonlinear tanh transformation, a pooling operation, and a fully connected output layer.
Throughout the convolutional layers, the number of feature maps increases while their
dimensions decrease. It has a total of 60,850 trainable parameters (Lecun et al. 1998).

"Hello World" for CNNs – handwritten digit classification
In this section, we'll implement a slightly simplified version of LeNet5 to demonstrate how
to build a CNN using a TensorFlow implementation. The original MNIST dataset contains
60,000 grayscale images in 28 × 28 pixel resolution, each containing a single handwritten
digit from 0 to 9. A good alternative is the more challenging but structurally similar Fashion
MNIST dataset that we encountered in Chapter 13, Data-Driven Risk Factors and Asset
Allocation with Unsupervised Learning. See the digit_classification_with_lenet5 notebook
for implementation details.

We can load it in Keras out of the box:

from tensorflow.keras.datasets import mnist
(X_train, y_train), (X_test, y_test) = mnist.load_data()

X_train.shape, X_test.shape

((60000, 28, 28), (10000, 28, 28))

Figure 18.5 shows the first ten images in the dataset and highlights significant variation
among instances of the same digit. On the right, it shows how the pixel values for an
individual image range from 0 to 255:

Chapter 18

[561]

Figure 18.5: MNIST sample images

We rescale the pixel values to the range [0, 1] to normalize the training data and facilitate
the backpropagation process and convert the data to 32-bit floats, which reduce memory
requirements and computational cost while providing sufficient precision for our use case:

X_train = X_train.astype('float32')/255
X_test = X_test.astype('float32')/255

Defining the LeNet5 architecture
We can define a simplified version of LeNet5 that omits the original final layer containing
radial basis functions as follows, using the default "valid" padding and single-step strides
unless defined otherwise:

lenet5 = Sequential([

 Conv2D(filters=6, kernel_size=5, activation='relu',
 input_shape=(28, 28, 1), name='CONV1'),

 AveragePooling2D(pool_size=(2, 2), strides=(1, 1),

 padding='valid', name='POOL1'),

 Conv2D(filters=16, kernel_size=(5, 5), activation='tanh', name='CONV2'),
 AveragePooling2D(pool_size=(2, 2), strides=(2, 2), name='POOL2'),

 Conv2D(filters=120, kernel_size=(5, 5), activation='tanh', name='CONV3'),
 Flatten(name='FLAT'),

 Dense(units=84, activation='tanh', name='FC6'),

 Dense(units=10, activation='softmax', name='FC7')

])

The summary indicates that the model thus defined has over 300,000 parameters:

Layer (type) Output Shape Param #

CONV1 (Conv2D) (None, 24, 24, 6) 156

POOL1 (AveragePooling2D) (None, 23, 23, 6) 0

CONV2 (Conv2D) (None, 19, 19, 16) 2416

POOL2 (AveragePooling2D) (None, 9, 9, 16) 0

CONV3 (Conv2D) (None, 5, 5, 120) 48120

CNNs for Financial Time Series and Satellite Images

[562]

FLAT (Flatten) (None, 3000) 0

FC6 (Dense) (None, 84) 252084
__
FC7 (Dense) (None, 10) 850
===
Total params: 303,626
Trainable params: 303,626

We compile with sparse_crossentropy_loss, which accepts integers rather than one-hot-
encoded labels and the original stochastic gradient optimizer:

lenet5.compile(loss='sparse_categorical_crossentropy',

 optimizer='SGD',

 metrics=['accuracy'])

Training and evaluating the model

Now we are ready to train the model. The model expects four-dimensional input, so we
reshape accordingly. We use the standard batch size of 32 and an 80:20 train-validation
split. Furthermore, we leverage checkpointing to store the model weights if the validation
error improves, and make sure the dataset is randomly shuffled. We also define an early_
stopping callback to interrupt training once the validation accuracy no longer improves for
20 iterations:

lenet_history = lenet5.fit(X_train.reshape(-1, 28, 28, 1),
 y_train,

 batch_size=32,

 epochs=100,

 validation_split=0.2, # use 0 to train on all data

 callbacks=[checkpointer, early_stopping],

 verbose=1,

 shuffle=True)

The training history records the last improvement after 81 epochs that take around 4
minutes on a single GPU. The test accuracy of this sample run is 99.09 percent, almost
exactly the same result as for the original LeNet5:

accuracy = lenet5.evaluate(X_test.reshape(-1, 28, 28, 1), y_test, verbose=0)
[1]

print('Test accuracy: {:.2%}'.format(accuracy))

Test accuracy: 99.09%

For comparison, a simple two-layer feedforward network achieves "only" 97.04 percent
test accuracy (see the notebook). The LeNet5 improvement on MNIST is, in fact, modest.
Non-neural methods have also achieved classification accuracies greater than or equal to
99 percent, including K-nearest neighbors and support vector machines. CNNs really shine
with more challenging datasets as we will see next.

Chapter 18

[563]

AlexNet – reigniting deep learning research
AlexNet, developed by Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton at the University
of Toronto, dramatically reduced the error rate and significantly outperformed the runner-
up at the 2012 ILSVRC, achieving a top-5 error of 16 percent versus 26 percent (Krizhevsky,
Sutskever, and Hinton 2012). This breakthrough triggered a renaissance in ML research and
put deep learning for computer vision firmly on the global technology map.

The AlexNet architecture is similar to LeNet, but much deeper and wider. It is often
credited with discovering the importance of depth with around 60 million parameters,
exceeding LeNet5 by a factor of 1,000, a testament to increased computing power, especially
the use of GPUs, and much larger datasets.

It included convolutions stacked on top of each other rather than combining each convolution
with a pooling stage, and successfully used dropout for regularization and ReLU for efficient
nonlinear transformations. It also employed data augmentation to increase the number
of training samples, added weight decay, and used a more efficient implementation of
convolutions. It also accelerated training by distributing the network over two GPUs.

The notebook image_classification_with_alexnet.ipynb has a slightly simplified version
of AlexNet tailored to the CIFAR-10 dataset that contains 60,000 images from 10 of the
original 1,000 classes. It has been compressed to a 32 × 32 pixel resolution from the original 224 × 224 , but still has three color channels.

See the notebook image_classification_with_alexnet for implementation details; we will
skip over some repetitive steps here.

Preprocessing CIFAR-10 data using image augmentation

CIFAR-10 can also be downloaded using TensorFlow's Keras interface, and we rescale the
pixel values and one-hot encode the ten class labels as we did with MNIST in the previous
section.

We first train a two-layer feedforward network on 50,000 training samples for 45 epochs
to achieve a test accuracy of 45.78 percent. We also experiment with a three-layer
convolutional net with over 528,000 parameters that achieves 74.51 percent test accuracy
(see the notebook).

A common trick to enhance performance is to artificially increase the size of the training
set by creating synthetic data. This involves randomly shifting or horizontally flipping the
image or introducing noise into the image. TensorFlow includes an ImageDataGenerator
class for this purpose. We can configure it and fit the training data as follows:

from tensorflow.keras.preprocessing.image import ImageDataGenerator
datagen = ImageDataGenerator(
 width_shift_range=0.1, # randomly horizontal shift
 height_shift_range=0.1, # randomly vertical shift
 horizontal_flip=True) # randomly horizontal flip
datagen.fit(X_train)

CNNs for Financial Time Series and Satellite Images

[564]

The result shows how the augmented images (in low 32×32 resolution) have been altered in
various ways as expected:

Figure 18.6: Original and augmented samples

The test accuracy for the three-layer CNN improves modestly to 76.71 percent after training
on the larger, augmented data.

Defining the model architecture
We need to adapt the AlexNet architecture to the lower dimensionality of CIFAR-10 images
relative to the ImageNet samples used in the competition. To this end, we use the original
number of filters but make them smaller (see the notebook for implementation details).

The summary (see the notebook) shows the five convolutional layers followed by two
fully connected layers with frequent use of batch normalization, for a total of 21.5 million
parameters.

Comparing AlexNet performance

In addition to AlexNet, we trained a 2-layer feedforward NN and a 3-layer CNN, the
latter with and without image augmentation. After 100 epochs (with early stopping if
the validation accuracy does not improve for 20 rounds), we obtain the cross-validation
trajectories and test accuracy for the four models, as displayed in Figure 18.7:

Figure 18.7: Validation performance and test accuracy on CIFAR-10

Chapter 18

[565]

AlexNet achieves the highest test accuracy with 79.33 percent after some 35 epochs, closely
followed by the shallower CNN with augmented images at 78.29 percent that trains for
longer due to the larger dataset. The feedforward NN performs much worse than on
MNIST on this more complex dataset, with a test accuracy of 43.05 percent.

Transfer learning – faster training with less data
In practice, sometimes we do not have enough data to train a CNN from scratch with
random initialization. Transfer learning is an ML technique that repurposes a model
trained on one set of data for another task. Naturally, it works if the learning from the first
task carries over to the task of interest. If successful, it can lead to better performance and
faster training that requires less labeled data than training a neural network from scratch
on the target task.

Alternative approaches to transfer learning

The transfer learning approach to CNN relies on pretraining on a very large dataset like
ImageNet. The goal is for the convolutional filters to extract a feature representation that
generalizes to new images. In a second step, it leverages the result to either initialize and
retrain a new CNN or use it as input to a new network that tackles the task of interest.

As discussed, CNN architectures typically use a sequence of convolutional layers to detect
hierarchical patterns, adding one or more fully connected layers to map the convolutional
activations to the outcome classes or values. The output of the last convolutional layer
that feeds into the fully connected part is called the bottleneck features. We can use the
bottleneck features of a pretrained network as inputs into a new fully connected network,
usually after applying a ReLU activation function.

In other words, we freeze the convolutional layers and replace the dense part of the
network. An additional benefit is that we can then use inputs of different sizes because it is
the dense layers that constrain the input size.

Alternatively, we can use the bottleneck features as inputs into a different machine
learning algorithm. In the AlexNet architecture, for instance, the bottleneck layer computes
a vector with 4,096 entries for each 224 × 224 input image. We then use this vector as
features for a new model.

We also can go a step further and not only replace and retrain the final layers using new
data but also fine-tune the weights of the pretrained CNN. To achieve this, we continue
training, either only for later layers while freezing the weights of some earlier layers, or for
all layers. The motivation is presumably to preserve more generic patterns learned by lower
layers, such as edge or color blob detectors, while allowing later layers of the CNN to adapt
to the details of a new task. ImageNet, for example, contains a wide variety of dog breeds,
which may lead to feature representations specifically useful for differentiating between
these classes.

CNNs for Financial Time Series and Satellite Images

[566]

Building on state-of-the-art architectures

Transfer learning permits us to leverage top-performing architectures without incurring
the potentially fairly GPU- and data-intensive training. We briefly outline the key
characteristics of a few additional popular architectures that are popular starting points.

VGGNet – more depth and smaller filters
The runner-up in ILSVRC 2014 was developed by Oxford University's Visual Geometry
Group (VGG, Simonyan 2015). It demonstrated the effectiveness of much smaller 3 × 3
convolutional filters combined in sequence and reinforced the importance of depth for
strong performance. VGG16 contains 16 convolutional and fully connected layers that only
perform 3 × 3 convolutions and 2 × 2 pooling (see Figure 18.5).

VGG16 has 140 million parameters that increase the computational costs of training and
inference as well as the memory requirements. However, most parameters are in the fully
connected layers that were since discovered not to be essential so that removing them
greatly reduces the number of parameters without negatively impacting performance.

GoogLeNet – fewer parameters through Inception

Christian Szegedy at Google reduced the computational costs using more efficient CNN
implementations to facilitate practical applications at scale. The resulting GoogLeNet
(Szegedy et al. 2015) won the ILSVRC 2014 with only 4 million parameters due to the
Inception module, compared to AlexNet's 60 million and VGG16's 140 million.

The Inception module builds on the network-in-network concept that uses 1 × 1
convolutions to compress a deep stack of convolutional filters and thus reduce the cost
of computation. The module uses parallel 1 × 1 , 3 × 3 , and 5 × 5 filters, combining the
latter two with 1 × 1 convolutions to reduce the dimensionality of the filters passed in by
the previous layer.

In addition, it uses average pooling instead of fully connected layers on top of the
convolutional layers to eliminate many of the less impactful parameters. There have been
several enhanced versions, most recently Inception-v4.

ResNet – shortcut connections beyond human performance

The residual network (ResNet) architecture was developed at Microsoft and won
the ILSVRC 2015. It pushed the top-5 error to 3.7 percent, below the level of human
performance on this task of around 5 percent (He et al. 2015).

It introduces identity shortcut connections that skip several layers and overcome some
of the challenges of training deep networks, enabling the use of hundreds or even over a
thousand layers. It also heavily uses batch normalization, which was shown to allow higher
learning rates and be more forgiving about weight initialization. The architecture also omits
the fully connected final layers.

Chapter 18

[567]

As mentioned in the last chapter, the training of deep networks faces the notorious
vanishing gradient challenge: as the gradient propagates to earlier layers, repeated
multiplication of small weights risks shrinking the gradient toward zero. Hence,
increasing depth may limit learning.

The shortcut connection that skips two or more layers has become one of the most popular
developments in CNN architectures and triggered numerous research efforts to refine and
explain its performance. See the references on GitHub for additional information.

Transfer learning with VGG16 in practice

Modern CNNs can take weeks to train on multiple GPUs on ImageNet, but fortunately,
many researchers share their final weights. TensorFlow 2, for example, contains pretrained
models for several of the reference architectures discussed previously, namely VGG16
and its larger version, VGG19, ResNet50, InceptionV3, and InceptionResNetV2, as well
as MobileNet, DenseNet, NASNet, and MobileNetV2.

How to extract bottleneck features

The notebook bottleneck_features.ipynb illustrates how to download the pretrained
VGG16 model, either with the final layers to generate predictions or without the final
layers, as illustrated in Figure 18.8, to extract the outputs produced by the bottleneck
features:

Figure 18.8: The VGG16 architecture

TensorFlow 2 makes it very straightforward to download and use pretrained models:

from tensorflow.keras.applications.vgg16 import VGG16
vgg16 = VGG16()
vgg16.summary()
Layer (type) Output Shape Param #
input_1 (InputLayer) (None, 224, 224, 3) 0
… several layers omitted...

CNNs for Financial Time Series and Satellite Images

[568]

block5_conv4 (Conv2D) (None, 14, 14, 512) 2359808

block5_pool (MaxPooling2D) (None, 7, 7, 512) 0

flatten (Flatten) (None, 25088) 0
fc1 (Dense) (None, 4096) 102764544

fc2 (Dense) (None, 4096) 16781312

predictions (Dense) (None, 1000) 4097000

Total params: 138,357,544

Trainable params: 138,357,544

You can use this model for predictions like any other Keras model: we pass in seven sample
images and obtain class probabilities for each of the 1,000 ImageNet categories:

y_pred = vgg16.predict(img_input)

Y_pred.shape

(7, 1000)

To exclude the fully connected layers, just add the keyword include_top=False. Predictions
are now output by the final convolutional layer block5_pool and match this layer's shape:

vgg16 = VGG16(include_top=False)

vgg16.predict(img_input).shape

(7, 7, 7, 512)

By omitting the fully connected layers and keeping only the convolutional modules, we
are no longer forced to use a fixed input size for the model such as the original 224 × 224
ImageNet format. Instead, we can adapt the model to arbitrary input sizes.

How to fine-tune a pretrained model
We will demonstrate how to freeze some or all of the layers of a pretrained model and
continue training using a new fully-connected set of layers and data with a different format
(see the notebook transfer_learning.ipynb for code examples, adapted from a TensorFlow
2 tutorial).

We use the VGG16 weights, pretrained on ImageNet with TensorFlow's built-in cats versus
dogs images (see the notebook on how to source the dataset).

Preprocessing resizes all images to 160 × 160 pixels. We indicate the new input size as we
instantiate the pretrained VGG16 instance and then freeze all weights:

vgg16 = VGG16(input_shape=IMG_SHAPE, include_top=False, weights='imagenet')

vgg16.trainable = False

vgg16.summary()

Layer (type) Output Shape Param #

... omitted layers...

block5_conv3 (Conv2D) (None, 10, 10, 512) 2359808

block5_pool (MaxPooling2D) (None, 5, 5, 512) 0

Chapter 18

[569]

Total params: 14,714,688

Trainable params: 0

Non-trainable params: 14,714,688

The shape of the model output for 32 sample images now matches that of the last
convolutional layer in the headless model:

feature_batch = vgg16(image_batch)

Feature_batch.shape

TensorShape([32, 5, 5, 512])

We can append new layers to the headless model using either the Sequential or the
Functional API. For the Sequential API, adding GlobalAveragePooling2D, Dense, and
Dropout layers works as follows:

global_average_layer = GlobalAveragePooling2D()

dense_layer = Dense(64, activation='relu')

dropout = Dropout(0.5)

prediction_layer = Dense(1, activation='sigmoid')

seq_model = tf.keras.Sequential([vgg16,

 global_average_layer,

 dense_layer,

 dropout,

 prediction_layer])

seq_model.compile(loss = tf.keras.losses.BinaryCrossentropy(from logits=True),

 optimizer = 'Adam',

 metrics=["accuracy"])

We set from_logits=True for the BinaryCrossentropy loss because the model provides a
linear output. The summary shows how the new model combines the pretrained VGG16
convolutional layers and the new final layers:

seq_model.summary()

Layer (type) Output Shape Param #

vgg16 (Model) (None, 5, 5, 512) 14714688

global_average_pooling2d (Gl (None, 512) 0

dense_7 (Dense) (None, 64) 32832

dropout_3 (Dropout) (None, 64) 0

dense_8 (Dense) (None, 1) 65

Total params: 14,747,585

Trainable params: 11,831,937

Non-trainable params: 2,915,648

See the notebook for the Functional API version.

CNNs for Financial Time Series and Satellite Images

[570]

Prior to training the new final layer, the pretrained VGG16 delivers a validation accuracy of
48.75 percent. Now we proceed to train the model for 10 epochs as follows, adjusting only
the final layer weights:

history = transfer_model.fit(train_batches,
 epochs=initial_epochs,

 validation_data=validation_batches)

10 epochs boost validation accuracy above 94 percent. To fine-tune the model, we can
unfreeze the VGG16 models and continue training. Note that you should only do so after
training the new final layers: randomly initialized classification layers will likely produce
large gradient updates that can eliminate the pretraining results.

To unfreeze parts of the model, we select a layer, after which we set the weights to
trainable; in this case, layer 12 of the total 19 layers in the VGG16 architecture:

vgg16.trainable = True

len(vgg16.layers)

19

Fine-tune from this layer onward

start_fine_tuning_at = 12
Freeze all the layers before the 'fine_tune_at' layer
for layer in vgg16.layers[:start_fine_tuning_at]:
 layer.trainable = False

Now just recompile the model and continue training for up to 50 epochs using early
stopping, starting in epoch 10 as follows:

fine_tune_epochs = 50
total_epochs = initial_epochs + fine_tune_epochs
history_fine_tune = transfer_model.fit(train_batches,
 epochs=total_epochs,

 initial_epoch=history.epoch[-1],

 validation_data=validation_batches,

 callbacks=[early_stopping])

Figure 18.9 shows how the validation accuracy increases substantially, reaching 97.89
percent after another 22 epochs:

Figure 18.9: Cross-validation performance: accuracy and cross-entropy loss

Chapter 18

[571]

Transfer learning is an important technique when training data is limited as is very often
the case in practice. While cats and dogs are unlikely to produce tradeable signals, transfer
learning could certainly help improve the accuracy of predictions on a relevant alternative
dataset, such as the satellite images that we'll tackle next.

Classifying satellite images with transfer learning

Satellite images figure prominently among alternative data (see Chapter 3, Alternative Data
for Finance – Categories and Use Cases). For instance, commodity traders may rely on satellite
images to predict the supply of certain crops or resources by monitoring, activity on farms,
at mining sites, or oil tanker traffic.

The EuroSat dataset

To illustrate working with this type of data, we load the EuroSat dataset included in the
TensorFlow 2 datasets (Helber et al. 2019). The EuroSat dataset includes around 27,000
images in 64 × 64 format that represent 10 different types of land uses. Figure 18.10 displays
an example for each label:

Figure 18.10: Ten types of land use contained in the dataset

A time series of similar data could be used to track the relative sizes of cultivated,
industrial, and residential areas or the status of specific crops to predict harvest quantities
or quality, for example, for wine.

Fine-tuning a very deep CNN – DenseNet201

Huang et al. (2018) developed a new architecture dubbed densely connected based on the
insight that CNNs can be deeper, more accurate, and more efficient to train if they contain
shorter connections between layers close to the input and those close to the output.

CNNs for Financial Time Series and Satellite Images

[572]

One architecture, labeled DenseNet201, connects each layer to every other layer in
a feedforward fashion. It uses the feature maps of all preceding layers as inputs, while
each layer's own feature maps become inputs into all subsequent layers.

We download the DenseNet201 architecture from tensorflow.keras.applications
and replace its final layers with the following dense layers interspersed with batch
normalization to mitigate exploding or vanishing gradients in this very deep network
with over 700 layers:

Layer (type) Output Shape Param #

densenet201 (Model) (None, 1920) 18321984

batch_normalization (BatchNo (None, 1920) 7680

dense (Dense) (None, 2048) 3934208

batch_normalization_1 (Batch (None, 2048) 8192

dense_1 (Dense) (None, 2048) 4196352

batch_normalization_2 (Batch (None, 2048) 8192

dense_2 (Dense) (None, 2048) 4196352

batch_normalization_3 (Batch (None, 2048) 8192

dense_3 (Dense) (None, 2048) 4196352

batch_normalization_4 (Batch (None, 2048) 8192

dense_4 (Dense) (None, 10) 20490

Total params: 34,906,186

Trainable params: 34,656,906

Non-trainable params: 249,280

Model training and results evaluation

We use 10 percent of the training images for validation purposes and achieve the best
out-of-sample classification accuracy of 97.96 percent after 10 epochs. This exceeds the
performance cited in the original paper for the best-performing ResNet-50 architecture with
a 90-10 split.

Figure 18.11: Cross-validation performance

There would likely be additional performance gains from augmenting the relatively small
training set.

Chapter 18

[573]

Object detection and segmentation
Image classification is a fundamental computer vision task that requires labeling an image
based on certain objects it contains. Many practical applications, including investment and
trading strategies, require additional information:

• The object detection task requires not only the identification but also the spatial
location of all objects of interest, typically using bounding boxes. Several algorithms
have been developed to overcome the inefficiency of brute-force sliding-window
approaches, including region proposal methods (R-CNN; see for example Ren et al.
2015) and the You Only Look Once (YOLO) real-time object detection algorithm
(Redmon 2016).

• The object segmentation task goes a step further and requires a class label and an
outline of every object in the input image. This may be useful to count objects such
as oil tankers, individuals, or cars in an image and evaluate a level of activity.

• Semantic segmentation, also called scene parsing, makes dense predictions to
assign a class label to each pixel in the image. As a result, the image is divided
into semantic regions and each pixel is assigned to its enclosing object or region.

Object detection requires the ability to distinguish between several classes of objects and to
decide how many and which of these objects are present in an image.

Object detection in practice
A prominent example is Ian Goodfellow's identification of house numbers from Google's
Street View House Numbers (SVHN) dataset (Goodfellow 2014). It requires the model to
identify the following:

• How many of up to five digits make up the house number
• The correct digit for each component

• The proper order of the constituent digits

We will show how to preprocess the irregularly shaped source images, adapt the VGG16
architecture to produce multiple outputs, and train the final layer, before fine-tuning the
pretrained weights to address the task.

Preprocessing the source images

The notebook svhn_preprocessing.ipynb contains code to produce a simplified, cropped
dataset that uses bounding box information to create regularly shaped 32 × 32 images
containing the digits; the original images are of arbitrary shape (Netzer 2011).

CNNs for Financial Time Series and Satellite Images

[574]

Figure 18.12: Cropped sample images of the SVHN dataset

The SVHN dataset contains house numbers with up to five digits and uses the class 10 if a
digit is not present. However, since there are very few examples with five digits, we limit
the images to those including up to four digits only.

Transfer learning with a custom final layer
The notebook svhn_object_detection.ipynb illustrates how to apply transfer learning
to a deep CNN based on the VGG16 architecture, as outlined in the previous section. We
will describe how to create new final layers that produce several outputs to meet the three
SVHN task objectives, including one prediction of how many digits are present, and one for
the value of each digit in the order they appear.

The best-performing architecture on the original dataset has eight convolutional layers and
two final fully connected layers. We will use transfer learning, departing from the VGG16
architecture. As before, we import the VGG16 network pretrained on ImageNet weights,
remove the layers after the convolutional blocks, freeze the weights, and create new dense
and predictive layers as follows using the Functional API:

vgg16 = VGG16(input_shape=IMG_SHAPE, include_top=False, weights='imagenet')

vgg16.trainable = False

x = vgg16.output

x = Flatten()(x)

x = BatchNormalization()(x)

x = Dense(256)(x)

x = BatchNormalization()(x)

x = Activation('relu')(x)

x = Dense(128)(x)

x = BatchNormalization()(x)

x = Activation('relu')(x)

n_digits = Dense(SEQ_LENGTH, activation='softmax', name='n_digits')(x)

digit1 = Dense(N_CLASSES-1, activation='softmax', name='d1')(x)

digit2 = Dense(N_CLASSES, activation='softmax', name='d2')(x)

digit3 = Dense(N_CLASSES, activation='softmax', name='d3')(x)

digit4 = Dense(N_CLASSES, activation='softmax', name='d4')(x)

predictions = Concatenate()([n_digits, digit1, digit2, digit3, digit4])

Chapter 18

[575]

The prediction layer combines the four-class output for the number of digits n_digits with
four outputs that predict which digit is present at that position.

Creating a custom loss function and evaluation metrics

The custom output requires us to define a loss function that captures how well the model
is meeting its objective. We would also like to measure accuracy in a way that reflects
predictive accuracy tailored to the specific labels.

For the custom loss, we average the cross-entropy over the five categorical outputs, namely
the number of digits and their respective values:

def weighted_entropy(y_true, y_pred):

 cce = tf.keras.losses.SparseCategoricalCrossentropy()

 n_digits = y_pred[:, :SEQ_LENGTH]

 digits = {}

 for digit, (start, end) in digit_pos.items():

 digits[digit] = y_pred[:, start:end]

 return (cce(y_true[:, 0], n_digits) +

 cce(y_true[:, 1], digits[1]) +

 cce(y_true[:, 2], digits[2]) +

 cce(y_true[:, 3], digits[3]) +

 cce(y_true[:, 4], digits[4])) / 5

To measure predictive accuracy, we compare the five predictions with the corresponding
label values and average the share of correct matches over the batch of samples:

def weighted_accuracy(y_true, y_pred):

 n_digits_pred = K.argmax(y_pred[:, :SEQ_LENGTH], axis=1)

 digit_preds = {}

 for digit, (start, end) in digit_pos.items():

 digit_preds[digit] = K.argmax(y_pred[:, start:end], axis=1)

 preds = tf.dtypes.cast(tf.stack((n_digits_pred,

 digit_preds[1],

 digit_preds[2],

 digit_preds[3],

 digit_preds[4]), axis=1), tf.float32)

 return K.mean(K.sum(tf.dtypes.cast(K.equal(y_true, preds), tf.int64),
axis=1) / 5)

CNNs for Financial Time Series and Satellite Images

[576]

Finally, we integrate the base and final layers and compile the model with the custom loss
and accuracy metric as follows:

model = Model(inputs=vgg16.input, outputs=predictions)

model.compile(optimizer='adam',

 loss=weighted_entropy,

 metrics=[weighted_accuracy])

Fine-tuning the VGG16 weights and final layer
We train the new final layers for 14 periods and continue fine-tuning all VGG16 weights, as
in the previous section, for another 23 epochs (using early stopping in both cases).

The following charts show the training and validation accuracy and the loss over the entire
training period. As we unfreeze the VGG16 weights after the initial training period, the
accuracy drops and then improves, achieving a validation performance of 94.52 percent:

Figure 18.13: Cross-validation performance

See the notebook for additional implementation details and an evaluation of the results.

Lessons learned

We can achieve decent levels of accuracy using only the small training set. However, state-
of-the-art performance achieves an error rate of only 1.02 percent (https://benchmarks.ai/
svhn). To get closer, the most important step is to increase the amount of training data.

There are two easy ways to accomplish this: we can include the larger number of samples
included in the extra dataset, and we can use image augmentation (see the AlexNet:
reigniting deep learning research section). The currently best-performing approach relies
heavily on augmentation learned from data (Cubuk 2019).

https://benchmarks.ai/svhn
https://benchmarks.ai/svhn

Chapter 18

[577]

CNNs for time-series data – predicting returns
CNNs were originally developed to process image data and have achieved superhuman
performance on various computer vision tasks. As discussed in the first section, time-series
data has a grid-like structure similar to that of images, and CNNs have been successfully
applied to one-, two- and three-dimensional representations of temporal data.

The application of CNNs to time series will most likely bear fruit if the data meets the
model's key assumption that local patterns or relationships help predict the outcome.
In the time-series context, local patterns could be autocorrelation or similar non-linear
relationships at relevant intervals. Along the second and third dimensions, local patterns
imply systematic relationships among different components of a multivariate series or
among these series for different tickers. Since locality matters, it is important that the data is
organized accordingly, in contrast to feed-forward networks where shuffling the elements
of any dimension does not negatively affect the learning process.

In this section, we provide a relatively simple example using a one-dimensional
convolution to model an autoregressive process (see Chapter 9, Time-Series Models for
Volatility Forecasts and Statistical Arbitrage) that predicts future returns based on lagged
returns. Then we replicate a recent research paper that achieved good results by formatting
multivariate time-series data like images to predict returns. We will also develop and test a
trading strategy based on the signals contained in the predictions.

An autoregressive CNN with 1D convolutions
We will introduce the time series use case for CNN using a univariate autoregressive asset
return model. More specifically, the model receives the most recent 12 months of returns
and uses a single layer of one-dimensional convolutions to predict the subsequent month.

The requisite steps are as follows:

1. Creating the rolling 12 months of lagged returns and corresponding outcomes

2. Defining the model architecture
3. Training the model and evaluating the results

In the following sections, we'll describe each step in turn; the notebook time_series_
prediction contains the code samples for this section.

CNNs for Financial Time Series and Satellite Images

[578]

Preprocessing the data

First, we'll select the adjusted close price for all Quandl Wiki stocks since 2000 as follows:

prices = (pd.read_hdf('../data/assets.h5', 'quandl/wiki/prices')

 .adj_close

 .unstack().loc['2000':])

prices.info()

DatetimeIndex: 2896 entries, 2007-01-01 to 2018-03-27

Columns: 3199 entries, A to ZUMZ

Next, we resample the price data to month-end frequency, compute returns, and set
monthly returns over 100 percent to missing as they likely represent data errors. Then we
drop tickers with missing observations, retaining 1,511 stocks with 215 observations each:

returns = (prices

 .resample('M')

 .last()

 .pct_change()

 .dropna(how='all')

 .loc['2000': '2017']

 .dropna(axis=1)

 .sort_index(ascending=False))

remove outliers likely representing data errors

returns = returns.where(returns<1).dropna(axis=1)

returns.info()

DatetimeIndex: 215 entries, 2017-12-31 to 2000-02-29

Columns: 1511 entries, A to ZQK

To create the rolling series of 12 lagged monthly returns with their corresponding outcome,
we iterate over rolling 13-month slices and append the transpose of each slice to a list after
assigning the outcome date to the index. After completing the loop, we concatenate the
DataFrames in the list as follows:

n = len(returns)

nlags = 12

lags = list(range(1, nlags + 1))

cnn_data = []

for i in range(n-nlags-1):

 df = returns.iloc[i:i+nlags+1] # select outcome and lags

 date = df.index.max() # use outcome date

 cnn_data.append(df.reset_index(drop=True) # append transposed series

 .transpose()

 .assign(date=date)

 .set_index('date', append=True)

 .sort_index(1, ascending=True))

Chapter 18

[579]

cnn_data = (pd.concat(cnn_data)

 .rename(columns={0: 'label'})

 .sort_index())

We end up with over 305,000 pairs of outcomes and lagged returns for the 2001-2017
period:

cnn_data.info(null_counts=True)

MultiIndex: 305222 entries, ('A', Timestamp('2001-03-31 00:00:00')) to

 ('ZQK', Timestamp('2017-12-31 00:00:00'))

Data columns (total 13 columns):

...

When we compute the information coefficient for each lagged return and the outcome, we
find that only lag 5 is not statistically significant:

Figure 18.14: Information coefficient with respect to forward return by lag

Defining the model architecture
Now we'll define the model architecture using TensorFlow's Keras interface. We combine a
one-dimensional convolutional layer with max pooling and batch normalization to produce
a real-valued scalar output:

model = Sequential([Conv1D(filters=32,
 kernel_size=4,

 activation='relu',

 padding='causal',

 input_shape=(12, 1),

 use_bias=True,

 kernel_regularizer=regularizers.l1_l2(l1=1e-5,

 l2=1e-5)),

 MaxPooling1D(pool_size=4),

 Flatten(),

 BatchNormalization(),

 Dense(1, activation='linear')])

CNNs for Financial Time Series and Satellite Images

[580]

The one-dimensional convolution computes the sliding dot product of a (regularized)
vector of length 4 with each input sequence of length 12, using causal padding to maintain
the temporal order (see the How to scan the input: strides and padding section). The resulting
32 feature maps have the same length, 12, as the input that max pooling in groups of size 4
reduces to 32 vectors of length 3.

The model outputs the weighted average plus the bias of the flattened and normalized
single vector of length 96, and has 449 trainable parameters:

Layer (type) Output Shape Param #

conv1d (Conv1D) (None, 12, 32) 160

max_pooling1d (MaxPooling1D) (None, 3, 32) 0

flatten (Flatten) (None, 96) 0
batch_normalization (BatchNo (None, 96) 384

dense (Dense) (None, 1) 97

Total params: 641

Trainable params: 449

Non-trainable params: 192

The notebook wraps the model generation and subsequent compilation into a get_model()
function that parametrizes the model configuration to facilitate experimentation.

Model training and performance evaluation

We train the model on five years of data for each ticker to predict the first month after this
period and repeat this procedure 36 times using the MultipleTimeSeriesCV we developed
in Chapter 7, Linear Models – From Risk Factors to Return Forecasts. See the notebook for the
training loop that follows the pattern demonstrated in the previous chapter.

We use early stopping after five epochs to simplify the exposition, resulting in a positive
bias so that the results have only illustrative character. Training length varies from 1 to 27
epochs, with a median of 5 epochs, which demonstrates that the model can often only learn
very limited amounts of systematic information from the past returns. Thus cherry-picking
the results yields a cumulative average information coefficient of around 4, as shown in
Figure 18.15:

Figure 18.15: (Biased) out-of-sample information coefficients for best epochs

Chapter 18

[581]

We'll now proceed to a more complex example of using CNNs for multiple time-series data.

CNN-TA – clustering time series in 2D format
To exploit the grid-like structure of time-series data, we can use CNN architectures for
univariate and multivariate time series. In the latter case, we consider different time series
as channels, similar to the different color signals.

An alternative approach converts a time series of alpha factors into a two-dimensional
format to leverage the ability of CNNs to detect local patterns. Sezer and Ozbayoglu (2018)
propose CNN-TA, which computes 15 technical indicators for different intervals and uses
hierarchical clustering (see Chapter 13, Data-Driven Risk Factors and Asset Allocation with
Unsupervised Learning) to locate indicators that behave similarly close to each other in a two-
dimensional grid.

The authors train a CNN similar to the CIFAR-10 example we used earlier to predict
whether to buy, hold, or sell an asset on a given day. They compare the CNN performance
to "buy-and-hold" and other models and find that it outperforms all alternatives using daily
price series for Dow 30 stocks and the nine most-traded ETFs over the 2007-2017 time period.

In this section, we experiment with this approach using daily US equity price data and
demonstrate how to compute and convert a similar set of indicators into image format.
Then we train a CNN to predict daily returns and evaluate a simple long-short strategy
based on the resulting signals.

Creating technical indicators at different intervals
We first select a universe of the 500 most-traded US stocks from the Quandl Wiki dataset by
dollar volume for rolling five-year periods for 2007-2017. See the notebook engineer_cnn_
features.ipynb for the code examples in this section and some additional implementation
details.

Our features consist of 15 technical indicators and risk factors that we compute for 15
different intervals and then arrange them in a 15 × 15 grid. The following table lists some
of the technical indicators; in addition, we follow the authors in using the following metrics
(see the Appendix for additional information):

• Weighted and exponential moving averages (WMA and EMA) of the close price

• Rate of change (ROC) of the close price

• Chande Momentum Oscillator (CMO)

• Chaikin A/D Oscillators (ADOSC)

• Average Directional Movement Index (ADX)

CNNs for Financial Time Series and Satellite Images

[582]

Figure 8.16: Technical indicators

For each indicator, we vary the time period from 6 to 20 to obtain 15 distinct measurements.
For example, the following code example computes the relative strength index (RSI):

T = list(range(6, 21))

for t in T:

 universe[f'{t:02}_RSI'] = universe.groupby(level='symbol').close.
apply(RSI, timeperiod=t)

For the Normalized Average True Range (NATR) that requires several inputs, the
computation works as follows:

for t in T:

 universe[f'{t:02}_NATR'] = universe.groupby(

 level='symbol', group_keys=False).apply(

 lambda x: NATR(x.high, x.low, x.close, timeperiod=t))

See the TA-Lib documentation for further details.

Computing rolling factor betas for different horizons
We also use five Fama-French risk factors (Fama and French, 2015; see Chapter 4, Financial
Feature Engineering – How to Research Alpha Factors). They reflect the sensitivity of a stock's
returns to factors consistently demonstrated to impact equity returns. We capture these
factors by computing the coefficients of a rolling OLS regression of a stock's daily returns
on the returns of portfolios designed to reflect the underlying drivers:

• Equity risk premium: Value-weighted returns of US stocks minus the 1-month US
Treasury bill rate

• Size (SMB): Returns of stocks categorized as Small (by market cap) Minus those of
Big equities

Chapter 18

[583]

• Value (HML): Returns of stocks with High book-to-market value Minus those with
a Low value

• Investment (CMA): Returns differences for companies with Conservative
investment expenditures Minus those with Aggressive spending

• Profitability (RMW): Similarly, return differences for stocks with Robust
profitability Minus that with a Weak metric.

We source the data from Kenneth French's data library using pandas_datareader (see
Chapter 4, Financial Feature Engineering – How to Research Alpha Factors):

import pandas_datareader.data as web

factor_data = (web.DataReader('F-F_Research_Data_5_Factors_2x3_daily',

 'famafrench', start=START)[0])

Next, we apply statsmodels' RollingOLS() to run regressions over windowed periods of
different lengths, ranging from 15 to 90 days. We set the params_only parameter on the
.fit() method to speed up computation and capture the coefficients using the .params
attribute of the fitted factor_model:

factors = [Mkt-RF, 'SMB', 'HML', 'RMW', 'CMA']

windows = list(range(15, 90, 5))

for window in windows:

 betas = []

 for symbol, data in universe.groupby(level='symbol'):

 model_data = data[[ret]].merge(factor_data, on='date').dropna()

 model_data[ret] -= model_data.RF

 rolling_ols = RollingOLS(endog=model_data[ret],

 exog=sm.add_constant(model_data[factors]),

 window=window)

 factor_model = rolling_ols.fit(params_only=True).params.drop('const',
 axis=1)

 result = factor_model.assign(symbol=symbol).set_index('symbol',

 append=True)

 betas.append(result)

 betas = pd.concat(betas).rename(columns=lambda x: f'{window:02}_{x}')

 universe = universe.join(betas)

Features selecting based on mutual information

The next step is to select the 15 most relevant features from the 20 candidates to fill the
15×15 input grid. The code examples for the following steps are in the notebook convert_
cnn_features_to_image_format.

CNNs for Financial Time Series and Satellite Images

[584]

To this end, we estimate the mutual information for each indicator and the 15 intervals
with respect to our target, the one-day forward returns. As discussed in Chapter 4, Financial
Feature Engineering – How to Research Alpha Factors, scikit-learn provides the mutual_
info_regression() function that makes this straightforward, albeit time-consuming and
memory-intensive. To accelerate the process, we randomly sample 100,000 observations:

df = features.join(targets[target]).dropna().sample(n=100000)

X = df.drop(target, axis=1)

y = df[target]

mi[t] = pd.Series(mutual_info_regression(X=X, y=y), index=X.columns)

The left panel in Figure 18.16 shows the mutual information, averaged across the 15
intervals for each indicator. NATR, PPO, and Bollinger Bands are most important from this
metric's perspective:

Figure 18.17: Mutual information and two-dimensional grid layout for time series

Hierarchical feature clustering

The right panel in Figure 18.16 sketches the 15 X 15 two-dimensional feature grid that we
will feed into our CNN. As discussed in the first section of this chapter, CNNs rely on
the locality of relevant patterns that is typically found in images where nearby pixels are
closely related and changes from one pixel to the next are often gradual.

To organize our indicators in a similar fashion, we will follow Sezer and Ozbayoglu's
approach of applying hierarchical clustering. The goal is to identify features that behave
similarly and order the columns and the rows of the grid accordingly.

We can build on SciPy's pairwise_distance(), linkage(), and dendrogram() functions that
we introduced in Chapter 13, Data-Driven Risk Factors and Asset Allocation with Unsupervised
Learning alongside other forms of clustering. We create a helper function that standardizes
the input column-wise to avoid distorting distances among features due to differences in
scale, and use the Ward criterion that merges clusters to minimize variance. The function
returns the order of the leaf nodes in the dendrogram that in turn displays the successive
formation of larger clusters:

Chapter 18

[585]

def cluster_features(data, labels, ax, title):

 data = StandardScaler().fit_transform(data)
 pairwise_distance = pdist(data)

 Z = linkage(data, 'ward')

 dend = dendrogram(Z,

 labels=labels,

 orientation='top',

 leaf_rotation=0.,

 leaf_font_size=8.,

 ax=ax)

 return dend['ivl']

To obtain the optimized order of technical indicators in the columns and the different
intervals in the rows, we use NumPy's .reshape() method to ensure that the dimension
we would like to cluster appears in the columns of the two-dimensional array we pass to
cluster_features():

labels = sorted(best_features)

col_order = cluster_features(features.dropna().values.reshape(-1, 15).T,

 labels)

labels = list(range(1, 16))

row_order = cluster_features(

 features.dropna().values.reshape(-1, 15, 15).transpose((0, 2, 1)).
reshape(-1, 15).T, labels)

Figure 18.18 shows the dendrograms for both the row and column features:

Figure 18.18: Dendrograms for row and column features

We reorder the features accordingly and store the result as inputs for the CNN that we will
create in the next step.

Creating and training a convolutional neural network

Now we are ready to design, train, and evaluate a CNN following the steps outlined in the
previous section. The notebook cnn_for_trading.ipynb contains the relevant code examples.

CNNs for Financial Time Series and Satellite Images

[586]

We again closely follow the authors in creating a CNN with 2 convolutional layers with
kernel size 3 and 16 and 32 filters, respectively, followed by a max pooling layer of size 2.
We flatten the output of the last stack of filters and connect the resulting 1,568 outputs to a
dense layer of size 32, applying 25 and 50 percent dropout probability to the incoming and
outcoming connections to mitigate overfitting. The following table summarizes the CNN
structure that contains 55,041 trainable parameters:

Layer (type) Output Shape Param #

CONV1 (Conv2D) (None, 15, 15, 16) 160

CONV2 (Conv2D) (None, 15, 15, 32) 4640

POOL1 (MaxPooling2D) (None, 7, 7, 32) 0

DROP1 (Dropout) (None, 7, 7, 32) 0

FLAT1 (Flatten) (None, 1568) 0

FC1 (Dense) (None, 32) 50208

DROP2 (Dropout) (None, 32) 0

FC2 (Dense) (None, 1) 33

Total params: 55,041

Trainable params: 55,041

Non-trainable params: 0

We cross-validate the model with the MutipleTimeSeriesCV train and validation set index
generator introduced in Chapter 7, Linear Models – From Risk Factors to Return Forecasts. We
provide 5 years of trading days during the training period in batches of 64 random samples
and validate using the subsequent 3 months, covering the years 2014-2017.

We scale the features to the range [-1, 1] and again use NumPy's .reshape() method to
create the requisite format:

def get_train_valid_data(X, y, train_idx, test_idx):

 x_train, y_train = X.iloc[train_idx, :], y.iloc[train_idx]

 x_val, y_val = X.iloc[test_idx, :], y.iloc[test_idx]

 scaler = MinMaxScaler(feature_range=(-1, 1))

 x_train = scaler.fit_transform(x_train)
 x_val = scaler.transform(x_val)

 return (x_train.reshape(-1, size, size, 1), y_train,

 x_val.reshape(-1, size, size, 1), y_val)

Training and validation follow the process laid out in Chapter 17, Deep Learning for Trading,
relying on checkpointing to store weights after each epoch and generate predictions for the
best-performing iterations without the need for costly retraining.

To evaluate the model's predictive accuracy, we compute the daily information coefficient
(IC) for the validation set like so:

checkpoint_path = Path('models', 'cnn_ts')

for fold, (train_idx, test_idx) in enumerate(cv.split(features)):

 X_train, y_train, X_val, y_val = get_train_valid_data(features, target,
train_idx, test_idx)

Chapter 18

[587]

 preds = y_val.to_frame('actual')

 r = pd.DataFrame(index=y_val.index.unique(level='date')).sort_index()

 model = make_model(filter1=16, act1='relu', filter2=32,
 act2='relu', do1=.25, do2=.5, dense=32)

 for epoch in range(n_epochs):

 model.fit(X_train, y_train,
 batch_size=batch_size,

 validation_data=(X_val, y_val),

 epochs=1, verbose=0, shuffle=True)
 model.save_weights(

 (checkpoint_path / f'ckpt_{fold}_{epoch}').as_posix())

 preds[epoch] = model.predict(X_val).squeeze()

 r[epoch] = preds.groupby(level='date').apply(

 lambda x: spearmanr(x.actual, x[epoch])[0]).to_frame(epoch)

We train the model for up to 10 epochs using stochastic gradient descent with Nesterov
momentum (see Chapter 17, Deep Learning for Trading) and find that the best performing
epochs, 8 and 9, achieve a (low) daily average IC of around 0.009.

Assembling the best models to generate tradeable signals
To reduce the variance of the test-period forecasts, we generate and average the predictions
for the 3 models that perform best during cross-validation, which here correspond to
training for 4, 8, and 9 epochs. As in the previous time-series example, the relatively short
training period underscores that the amount of signals in financial time series is low
compared to the systematic information contained in, for example, image data.

The generate_predictions() function reloads the model weights and returns the forecasts
for the target period:

def generate_predictions(epoch):

 predictions = []

 for fold, (train_idx, test_idx) in enumerate(cv.split(features)):

 X_train, y_train, X_val, y_val = get_train_valid_data(

 features, target, train_idx, test_idx)

 preds = y_val.to_frame('actual')

 model = make_model(filter1=16, act1='relu', filter2=32,
 act2='relu', do1=.25, do2=.5, dense=32)

 status = model.load_weights(

 (checkpoint_path / f'ckpt_{fold}_{epoch}').as_posix())

 status.expect_partial()

 predictions.append(pd.Series(model.predict(X_val).squeeze(),

 index=y_val.index))

 return pd.concat(predictions)

preds = {}

for i, epoch in enumerate(ic.drop('fold', axis=1).mean().nlargest(3).index):

 preds[i] = generate_predictions(epoch)

CNNs for Financial Time Series and Satellite Images

[588]

We store the predictions and proceed to backtest a trading strategy based on these daily
return forecasts.

Backtesting a long-short trading strategy

To get a sense of the signal quality, we compute the spread between equally weighted
portfolios invested in stocks selected according to the signal quintiles using Alphalens (see
Chapter 4, Financial Feature Engineering – How to Research Alpha Factors).

Figure 18.19 shows that for a one-day investment horizon, this naive strategy would have
earned a bit over four basis points per day during the 2013-2017 period:

Figure 18.19: Alphalens signal quality evaluation

We translate this slightly encouraging result into a simple strategy that enters long (short)
positions for the 25 stocks with the highest (lowest) return forecasts, trading on a daily
basis. Figure 18.20 shows that this strategy is competitive with the S&P 500 benchmark over
much of the backtesting period (left panel), resulting in a 35.6 percent cumulative return
and a Sharpe ratio of 0.53 (before transaction costs; right panel)

Figure 18.20: Backtest performance in- and out-of-sample

Chapter 18

[589]

Summary and lessons learned

It appears that the CNN is able to extract meaningful information from the time series
of alpha factors converted into a two-dimensional grid. Experimentation with different
architectures and training parameters shows that the result is not very robust and slight
modifications can yield significantly worse performance.

Tuning attempts also surface the notorious difficulties in successfully training a deep
NN, especially when the signal-to-noise ratio is low: too complex a network or the wrong
optimizer can lead the CNN to a local optimum where it always predicts a constant value.

The most important step to improve the results and obtain a performance closer to that
achieved by the authors (using different outcomes) would be to revisit the features. There
are many alternatives to different intervals of a limited set of technical indicators. Any
appropriate number of time-series features could be arranged in a rectangular n×m format
and benefit from the CNN's ability to learn local patterns. The choice of n indicators and m
intervals just makes it easier to organize the rows and the columns of the two-dimensional
grid. Give it a shot!

Furthermore, the authors take a classification approach to the algorithmically labeled buy,
hold, and sell outcomes (see the paper for an outline of the computation), whereas our
experiment applied regression to the daily returns. The Alphalens chart in Figure 18.18
suggests that longer holding periods (especially 10 days) might work better, so there is also
scope for adjusting the strategy accordingly or switching to a classification approach.

Summary
In this chapter, we introduced CNNs, a specialized NN architecture that has taken cues
from our (limited) understanding of human vision and performs particularly well on grid-
like data. We covered the central operation of convolution or cross-correlation that drives
the discovery of filters that in turn detect features useful to solve the task at hand.

We reviewed several state-of-the-art architectures that are good starting points, especially
because transfer learning enables us to reuse pretrained weights and reduce the otherwise
rather computationally and data-intensive training effort. We also saw that Keras makes it
relatively straightforward to implement and train a diverse set of deep CNN architectures.

In the next chapter, we turn our attention to recurrent neural networks that are designed
specifically for sequential data, such as time-series data, which is central to investment
and trading.

[591]

19
RNNs for Multivariate Time

Series and Sentiment Analysis

The previous chapter showed how convolutional neural networks (CNNs) are designed
to learn features that represent the spatial structure of grid-like data, especially images, but
also time series. This chapter introduces recurrent neural networks (RNNs) that specialize
in sequential data where patterns evolve over time and learning typically requires memory
of preceding data points.

Feedforward neural networks (FFNNs) treat the feature vectors for each sample
as independent and identically distributed. Consequently, they do not take prior data
points into account when evaluating the current observation. In other words, they have
no memory.

The one- and two-dimensional convolutional filters used by CNNs can extract features
that are a function of what is typically a small number of neighboring data points.
However, they only allow shallow parameter-sharing: each output results from
applying the same filter to the relevant time steps and features.

The major innovation of the RNN model is that each output is a function of both the
previous output and new information. RNNs can thus incorporate information on prior
observations into the computation they perform using the current feature vector. This
recurrent formulation enables parameter-sharing across a much deeper computational
graph (Goodfellow, Bengio, and Courville, 2016). In this chapter, you will encounter
long short-term memory (LSTM) units and gated recurrent units (GRUs), which aim
to overcome the challenge of vanishing gradients associated with learning long-range
dependencies, where errors need to be propagated over many connections.

RNNs for Multivariate Time Series and Sentiment Analysis

[592]

Successful RNN use cases include various tasks that require mapping one or more input
sequences to one or more output sequences and prominently feature natural language
applications. We will explore how RNNs can be applied to univariate and multivariate
time series to predict asset prices using market or fundamental data. We will also cover
how RNNs can leverage alternative text data using word embeddings, which we covered
in Chapter 16, Word Embeddings for Earnings Calls and SEC Filings, to classify the sentiment
expressed in documents. Finally, we will use the most informative sections of SEC filings to
learn word embeddings and predict returns around filing dates.

More specifically, in this chapter, you will learn about the following:

• How recurrent connections allow RNNs to memorize patterns and model a
hidden state

• Unrolling and analyzing the computational graph of RNNs

• How gated units learn to regulate RNN memory from data to enable long-range
dependencies

• Designing and training RNNs for univariate and multivariate time series in Python

• How to learn word embeddings or use pretrained word vectors for sentiment
analysis with RNNs

• Building a bidirectional RNN to predict stock returns using custom word
embeddings

You can find the code examples and additional resources in the GitHub repository's
directory for this chapter.

How recurrent neural nets work
RNNs assume that the input data has been generated as a sequence such that previous
data points impact the current observation and are relevant for predicting subsequent
values. Thus, they allow more complex input-output relationships than FFNNs and CNNs,
which are designed to map one input vector to one output vector using a given number
of computational steps. RNNs, in contrast, can model data for tasks where the input, the
output, or both, are best represented as a sequence of vectors. For a good overview, refer to
Chapter 10 in Goodfellow, Bengio, and Courville (2016).

The diagram in Figure 19.1, inspired by Andrew Karpathy's 2015 blog post The Unreasonable
Effectiveness of Recurrent Neural Networks (see GitHub for a link), illustrates mappings from
input to output vectors using nonlinear transformations carried out by one or more neural
network layers:

Chapter 19

[593]

Figure 19.1: Various types of sequence-to-sequence models

The left panel shows a one-to-one mapping between vectors of fixed sizes, typical for
FFNs and CNNs covered in the last two chapters. The other three panels show various
RNN applications that map input vectors to output vectors by applying a recurrent
transformation to the new input and the state produced by the previous iteration. The x
input vectors to an RNN are also called context.

The vectors are time-indexed, as usually required by trading-related applications, but they
could also be labeled by a different set of sequential values. Generic sequence-to-sequence
mapping tasks and sample applications include:

• One-to-many: Image captioning, for example, takes a single vector of pixels (as in
the previous chapter) and maps it to a sequence of words.

• Many-to-one: Sentiment analysis takes a sequence of words or tokens (see Chapter

14, Text Data for Trading – Sentiment Analysis) and maps it to an output scalar or
vector.

• Many-to-many: Machine translation or labeling of video frame map sequences of
input vectors to sequences of output vectors, either in a synchronized (as shown) or
asynchronous fashion. Multistep prediction of multivariate time series also maps
several input vectors to several output vectors.

Note that input and output sequences can be of arbitrary lengths because the recurrent
transformation that is fixed but learned from the data can be applied as many times as
needed.

Just as CNNs easily scale to large images and some CNNs can process images of variable
size, RNNs scale to much longer sequences than networks not tailored to sequence-based
tasks. Most RNNs can also process sequences of variable length.

RNNs for Multivariate Time Series and Sentiment Analysis

[594]

Unfolding a computational graph with cycles
RNNs are called recurrent because they apply the same transformations to every element
of a sequence in a way that the RNN's output depends on the outcomes of prior iterations.
As a result, RNNs maintain an internal state that captures information about previous
elements in the sequence, just like memory.

Figure 19.2 shows the computational graph implied by a single hidden RNN unit that
learns two weight matrices during training:

• W
hh

: applied to the previous hidden state, ht-1

• Whx: applied to the current input, x
t

The RNN's output, y
t
, is a nonlinear transformation of the sum of the two matrix

multiplications using, for example, the tanh or ReLU activation functions:𝑦𝑦𝑡𝑡 = 𝑔𝑔𝑔𝑔𝑔ℎℎℎ𝑡𝑡𝑡𝑡 +𝑔𝑔𝑥𝑥ℎ𝑥𝑥𝑡𝑡)

Figure 19.2: Recurrent and unrolled view of the computational graph of an RNN with a single hidden unit

The right side of the equation shows the effect of unrolling the recurrent relationship
depicted in the right panel of the figure. It highlights the repeated linear algebra
transformations and the resulting hidden state that combines information from past
sequence elements with the current input, or context. An alternative formulation connects
the context vector to the first hidden state only; we will outline additional options to
modify this baseline architecture in the subsequent section.

Backpropagation through time
The unrolled computational graph in the preceding figure highlights that the learning
process necessarily encompasses all time steps of the given input sequence. The
backpropagation algorithm that updates the weights during training involves a forward
pass from left to right along with the unrolled computational graph, followed by a
backward pass in the opposite direction.

Chapter 19

[595]

As discussed in Chapter 17, Deep Learning for Trading, the backpropagation algorithm
evaluates a loss function and computes its gradient with respect to the parameters to
update the weights accordingly. In the RNN context, backpropagation runs from right to
left in the computational graph, updating the parameters from the final time step all the
way to the initial time step. Therefore, the algorithm is called backpropagation through
time (Werbos 1990).

It highlights both the power of an RNN to model long-range dependencies by sharing
parameters across an arbitrary number of sequence elements while maintaining a
corresponding state. On the other hand, it is computationally quite expensive, and the
computations for each time step cannot be parallelized due to its inherently sequential nature.

Alternative RNN architectures
Just like the FFNN and CNN architectures we covered in the previous two chapters, RNNs
can be optimized in a variety of ways to capture the dynamic relationship between input
and output data.

In addition to modifying the recurrent connections between the hidden states, alternative
approaches include recurrent output relationships, bidirectional RNNs, and encoder-
decoder architectures. Refer to GitHub for background references to complement this brief
summary.

Output recurrence and teacher forcing

One way to reduce the computational complexity of hidden state recurrences is to connect a
unit's hidden state to the prior unit's output rather than its hidden state. The resulting RNN
has a lower capacity than the architecture discussed previously, but different time steps are
now decoupled and can be trained in parallel.

However, to successfully learn relevant past information, the training output samples
need to reflect this information so that backpropagation can adjust the network parameters
accordingly. To the extent that asset returns are independent of their lagged values,
financial data may not meet this requirement. The use of previous outcome values
alongside the input vectors is called teacher forcing (Williams and Zipser, 1989).

Connections from the output to the subsequent hidden state can also be used
in combination with hidden recurrence. However, training requires backpropagation
through time and cannot be run in parallel.

Bidirectional RNNs

For some tasks, it can be realistic and beneficial for the output to depend not only on past
sequence elements, but also on future elements (Schuster and Paliwal, 1997). Machine
translation or speech and handwriting recognition are examples where subsequent
sequence elements are both informative and realistically available to disambiguate
competing outputs.

RNNs for Multivariate Time Series and Sentiment Analysis

[596]

For a one-dimensional sequence, bidirectional RNNs combine an RNN that moves forward
with another RNN that scans the sequence in the opposite direction. As a result, the output
comes to depend on both the future and the past of the sequence. Applications in the
natural language and music domains (Sigtia et al., 2014) have been very successful (see
Chapter 16, Word Embeddings for Earnings Calls and SEC Filings, and the last example in this
chapter using SEC filings).

Bidirectional RNNs can also be used with two-dimensional image data. In this case, one
pair of RNNs performs the forward and backward processing of the sequence in each
dimension.

Encoder-decoder architectures, attention, and transformers

The architectures discussed so far assumed that the input and output sequences have
equal length. Encoder-decoder architectures, also called sequence-to-sequence (seq2seq)
architectures, relax this assumption and have become very popular for machine translation
and other applications with this characteristic (Prabhavalkar et al., 2017).

The encoder is an RNN that maps the input space to a different space, also called latent
space, whereas the decoder function is a complementary RNN that maps the encoded input
to the target space (Cho et al., 2014). In the next chapter, we will cover autoencoders that
learn a feature representation in an unsupervised setting using a variety of deep learning
architectures.

Encoder and decoder RNNs are trained jointly so that the input of the final encoder hidden
state becomes the input to the decoder, which, in turn, learns to match the training samples.

The attention mechanism addresses a limitation of using fixed-size encoder inputs when
input sequences themselves vary in size. The mechanism converts raw text data into a
distributed representation (see Chapter 16, Word Embeddings for Earnings Calls and SEC
Filings), stores the result, and uses a weighted average of these feature vectors as context.
The weights are learned by the model and alternate between putting more weight or
attention to different elements of the input.

A recent transformer architecture dispenses with recurrence and convolutions and
exclusively relies on this attention mechanism to learn input-output mappings. It has
achieved superior quality on machine translation tasks while requiring much less time
for training, not least because it can be parallelized (Vaswani et al., 2017).

How to design deep RNNs
The unrolled computational graph in Figure 19.2 shows that each transformation involves
a linear matrix operation followed by a nonlinear transformation that could be jointly
represented by a single network layer.

In the two preceding chapters, we saw how adding depth allows FFNNs, and CNNs
in particular, to learn more useful hierarchical representations. RNNs also benefit from
decomposing the input-output mapping into multiple layers. For RNNs, this mapping
typically transforms:

Chapter 19

[597]

• The input and the prior hidden state into the current hidden state

• The hidden state into the output

A common approach is to stack recurrent layers on top of each other so that they learn
a hierarchical temporal representation of the input data. This means that a lower layer
may capture higher-frequency patterns, synthesized by a higher layer into lower-
frequency characteristics that prove useful for the classification or regression task.
We will demonstrate this approach in the next section.

Less popular alternatives include adding layers to the connections from input to the hidden
state, between hidden states, or from the hidden state to the output. These designs employ
skip connections to avoid a situation where the shortest path between time steps increases
and training becomes more difficult.

The challenge of learning long-range dependencies
In theory, RNNs can make use of information in arbitrarily long sequences. However, in
practice, they are limited to looking back only a few steps. More specifically, RNNs struggle
to derive useful context information from time steps far apart from the current observation
(Hochreiter et al., 2001).

The fundamental problem is the impact of repeated multiplication on gradients during
backpropagation over many time steps. As a result, the gradients tend to either vanish and
decrease toward zero (the typical case), or explode and grow toward infinity (less frequent,
but rendering optimization very difficult).

Even if parameters allow stability and the network is able to store memories, long-term
interactions will receive exponentially smaller weights due to the multiplication of many
Jacobians, the matrices containing the gradient information. Experiments have shown that
stochastic gradient descent faces serious challenges in training RNNs for sequences with
only 10 or 20 elements.

Several RNN design techniques have been introduced to address this challenge, including
echo state networks (Jaeger, 2001) and leaky units (Hihi and Bengio, 1996). The latter
operate at different time scales, focusing part of the model on higher-frequency and other
parts on lower-frequency representations to deliberately learn and combine different
aspects from the data. Other strategies include connections that skip time steps or units
that integrate signals from different frequencies.

The most successful approaches use gated units that are trained to regulate how much past
information a unit maintains in its current state and when to reset or forget this information.
As a result, they are able to learn dependencies over hundreds of time steps. The most
popular examples include long short-term memory (LSTM) units and gated recurrent units
(GRUs). An empirical comparison by Chung et al. (2014) finds both units superior to simpler
recurrent units such as tanh units, while performing equally well on various speech and
music modeling tasks.

RNNs for Multivariate Time Series and Sentiment Analysis

[598]

Long short-term memory – learning how much to forget

RNNs with an LSTM architecture have more complex units that maintain an internal state.
They contain gates to keep track of dependencies between elements of the input sequence
and regulate the cell's state accordingly. These gates recurrently connect to each other
instead of the hidden units we encountered earlier. They aim to address the problem of
vanishing and exploding gradients due to the repeated multiplication of possibly very
small or very large values by letting gradients pass through unchanged (Hochreiter and
Schmidhuber, 1996).

The diagram in Figure 19.3 shows the information flow for an unrolled LSTM unit and
outlines its typical gating mechanism:

Figure 19.3: Information flow through an unrolled LSTM cell

A typical LSTM unit combines four parameterized layers that interact with each other
and the cell state by transforming and passing along vectors. These layers usually involve
an input gate, an output gate, and a forget gate, but there are variations that may have
additional gates or lack some of these mechanisms. The white nodes in Figure 19.4 identify
element-wise operations, and the gray elements represent layers with weight and bias
parameters learned during training:

Figure 19.4: The logic of, and math behind, an LSTM cell

Chapter 19

[599]

The cell state, c, passes along the horizontal connection at the top of the cell. The cell state's
interaction with the various gates leads to a series of recurrent decisions:

1. The forget gate controls how much of the cell's state should be voided to regulate
the network's memory. It receives the prior hidden state, ht-1, and the current input,
x

t
, as inputs, computes a sigmoid activation, and multiplies the resulting value, f

t
,

which has been normalized to the [0, 1] range, by the cell state, reducing or keeping
it accordingly.

2. The input gate also computes a sigmoid activation from ht-1 and x
t
 that produces

update candidates. A tan
h
 activation in the range from [-1, 1] multiplies the update

candidates, u
t
, and, depending on the resulting sign, adds or subtracts the result

from the cell state.

3. The output gate filters the updated cell state using a sigmoid activation, o
t
, and

multiplies it by the cell state normalized to the range [-1, 1] using a tan
h
 activation.

Gated recurrent units
GRUs simplify LSTM units by omitting the output gate. They have been shown to achieve
similar performance on certain language modeling tasks, but do better on smaller datasets.

GRUs aim for each recurrent unit to adaptively capture dependencies of different time
scales. Similar to the LSTM unit, the GRU has gating units that modulate the flow of
information inside the unit but discard separate memory cells (see references on GitHub for
additional details).

RNNs for time series with TensorFlow 2
In this section, we illustrate how to build recurrent neural nets using the TensorFlow
2 library for various scenarios. The first set of models includes the regression and
classification of univariate and multivariate time series. The second set of tasks focuses on
text data for sentiment analysis using text data converted to word embeddings (see Chapter

16, Word Embeddings for Earnings Calls and SEC Filings).

More specifically, we'll first demonstrate how to prepare time-series data to predict the next
value for univariate time series with a single LSTM layer to predict stock index values.

Next, we'll build a deep RNN with three distinct inputs to classify asset price movements.
To this end, we'll combine a two-layer, stacked LSTM with learned embeddings and one-
hot encoded categorical data. Finally, we will demonstrate how to model multivariate time
series using an RNN.

RNNs for Multivariate Time Series and Sentiment Analysis

[600]

Univariate regression – predicting the S&P 500
In this subsection, we will forecast the S&P 500 index values (refer to the
univariate_time_series_regression notebook for implementation details).

We'll obtain data for 2010-2019 from the Federal Reserve Bank's Data Service (FRED; see
Chapter 2, Market and Fundamental Data – Sources and Techniques):

sp500 = web.DataReader('SP500', 'fred', start='2010', end='2020').dropna()

sp500.info()

DatetimeIndex: 2463 entries, 2010-03-22 to 2019-12-31

Data columns (total 1 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 SP500 2463 non-null float64

We preprocess the data by scaling it to the [0, 1] interval using scikit-learn's MinMaxScaler()
class:

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

sp500_scaled = pd.Series(scaler.fit_transform(sp500).squeeze(),
 index=sp500.index)

How to get time series data into shape for an RNN
We generate sequences of 63 consecutive trading days, approximately three months, and
use a single LSTM layer with 20 hidden units to predict the scaled index value one time
step ahead.

The input to every LSTM layer must have three dimensions, namely:

• Batch size: One sequence is one sample. A batch contains one or more samples.

• Time steps: One time step is a single observation in the sample.

• Features: One feature is one observation at a time step.

The following figure visualizes the shape of the input tensor:

Chapter 19

[601]

Figure 19.5: The three dimensions of an RNN input tensor

Our S&P 500 sample has 2,463 observations or time steps. We will create overlapping
sequences using a window of 63 observations each. Using a simpler window of size T = 5
to illustrate this autoregressive sequence pattern, we obtain input-output pairs where each
output is associated with its first five lags, as shown in the following table:

Figure 19.6: Input-output pairs with a T=5 size window

We can use the create_univariate_rnn_data() function to stack the overlapping sequences
that we select using a rolling window:

def create_univariate_rnn_data(data, window_size):

 y = data[window_size:]

 data = data.values.reshape(-1, 1) # make 2D

 n = data.shape[0]

 X = np.hstack(tuple([data[i: n-j, :] for i, j in enumerate(range(

 window_size, 0, -1))]))

 return pd.DataFrame(X, index=y.index), y

RNNs for Multivariate Time Series and Sentiment Analysis

[602]

We apply this function to the rescaled stock index using window_size=63 to obtain a two-
dimensional dataset with a shape of the number of samples x the number of time steps:

X, y = create_univariate_rnn_data(sp500_scaled, window_size=63)

X.shape

(2356, 63)

We will use data from 2019 as our test set and reshape the features to add a requisite third
dimension:

X_train = X[:'2018'].values.reshape(-1, window_size, 1)

y_train = y[:'2018']

keep the last year for testing

X_test = X['2019'].values.reshape(-1, window_size, 1)

y_test = y['2019']

How to define a two-layer RNN with a single LSTM layer
Now that we have created autoregressive input/output pairs from our time series and
split the pairs into training and test sets, we can define our RNN architecture. The Keras
interface of TensorFlow 2 makes it very straightforward to build an RNN with two hidden
layers with the following specifications:

• Layer 1: An LSTM module with 10 hidden units (with input_shape = (window_
size,1); we will define batch_size in the omitted first dimension during training)

• Layer 2: A fully connected module with a single unit and linear activation

• Loss: mean_squared_error to match the regression objective

Just a few lines of code create the computational graph:

rnn = Sequential([

 LSTM(units=10,

 input_shape=(window_size, n_features), name='LSTM'),

 Dense(1, name='Output')

])

The summary shows that the model has 491 parameters:

rnn.summary()

Layer (type) Output Shape Param #

LSTM (LSTM) (None, 10) 480

Output (Dense) (None, 1) 11

Total params: 491

Trainable params: 491

Chapter 19

[603]

Training and evaluating the model

We train the model using the RMSProp optimizer recommended for RNN with default
settings and compile the model with mean_squared_error for this regression problem:

optimizer = keras.optimizers.RMSprop(lr=0.001,

 rho=0.9,

 epsilon=1e-08,

 decay=0.0)

rnn.compile(loss='mean_squared_error', optimizer=optimizer)

We define an EarlyStopping callback and train the model for 500 episodes:

early_stopping = EarlyStopping(monitor='val_loss',

 patience=50,

 restore_best_weights=True)

lstm_training = rnn.fit(X_train,
 y_train,

 epochs=500,

 batch_size=20,

 validation_data=(X_test, y_test),

 callbacks=[checkpointer, early_stopping],

 verbose=1)

Training stops after 138 epochs. The loss history in Figure 19.7 shows the 5-epoch rolling
average of the training and validation RMSE, highlights the best epoch, and shows that the
loss is 0.998 percent:

loss_history = pd.DataFrame(lstm_training.history).pow(.5)

loss_history.index += 1

best_rmse = loss_history.val_loss.min()

best_epoch = loss_history.val_loss.idxmin()

loss_history.columns=['Training RMSE', 'Validation RMSE']

title = f'Best Validation RMSE: {best_rmse:.4%}'

loss_history.rolling(5).mean().plot(logy=True, lw=2, title=title, ax=ax)

RNNs for Multivariate Time Series and Sentiment Analysis

[604]

Figure 19.7: Cross-validation performance

Re-scaling the predictions

We use the inverse_transform() method of MinMaxScaler() to rescale the model
predictions to the original S&P 500 range of values:

test_predict_scaled = rnn.predict(X_test)

test_predict = (pd.Series(scaler.inverse_transform(test_predict_scaled)

 .squeeze(),

 index=y_test.index))

The four plots in Figure 19.8 illustrate the forecast performance based on the rescaled
predictions that track the 2019 out-of-sample S&P 500 data with a test information
coefficient (IC) of 0.9889:

Figure 19.8: RNN performance on S&P 500 predictions

Chapter 19

[605]

Stacked LSTM – predicting price moves and returns
We'll now build a deeper model by stacking two LSTM layers using the Quandl stock price
data (see the stacked_lstm_with_feature_embeddings.ipynb notebook for implementation
details). Furthermore, we will include features that are not sequential in nature, namely,
indicator variables identifying the equity and the month.

Figure 19.9 outlines the architecture that illustrates how to combine different data sources
in a single deep neural network. For example, instead of, or in addition to, one-hot encoded
months, you could add technical or fundamental features:

Figure 19.9: Stacked LSTM architecture with additional features

Preparing the data – how to create weekly stock returns

We load the Quandl adjusted stock price data (see instructions on GitHub on how to obtain
the source data) as follows (refer to the build_dataset.ipynb notebook):

prices = (pd.read_hdf('../data/assets.h5', 'quandl/wiki/prices')

 .adj_close

 .unstack().loc['2007':])

prices.info()

DatetimeIndex: 2896 entries, 2007-01-01 to 2018-03-27

Columns: 3199 entries, A to ZUMZ

We start by generating weekly returns for close to 2,500 stocks with complete data for the
2008-17 period:

returns = (prices

 .resample('W')

 .last()

 .pct_change()

 .loc['2008': '2017']

 .dropna(axis=1)

 .sort_index(ascending=False))

RNNs for Multivariate Time Series and Sentiment Analysis

[606]

returns.info()

DatetimeIndex: 2576 entries, 2017-12-29 to 2008-01-01

Columns: 2489 entries, A to ZUMZ

We create and stack rolling sequences of 52 weekly returns for each ticker and week as
follows:

n = len(returns)

T = 52

tcols = list(range(T))

tickers = returns.columns

data = pd.DataFrame()

for i in range(n-T-1):

 df = returns.iloc[i:i+T+1]

 date = df.index.max()

 data = pd.concat([data, (df.reset_index(drop=True).T

 .assign(date=date, ticker=tickers)

 .set_index(['ticker', 'date']))])

We winsorize outliers at the 1 and 99 percentile level and create a binary label that indicates
whether the weekly return was positive:

data[tcols] = (data[tcols].apply(lambda x: x.clip(lower=x.quantile(.01),

 upper=x.quantile(.99))))

data['label'] = (data['fwd_returns'] > 0).astype(int)

As a result, we obtain 1.16 million observations on over 2,400 stocks with 52 weeks of
lagged returns each (plus the label):

data.shape

(1167341, 53)

Now we are ready to create the additional features, split the data into training and test sets,
and bring them into the three-dimensional format required for the LSTM.

How to create multiple inputs in RNN format

This example illustrates how to combine several input data sources, namely:

• Rolling sequences of 52 weeks of lagged returns

• One-hot encoded indicator variables for each of the 12 months

• Integer-encoded values for the tickers

Chapter 19

[607]

The following code generates the two additional features:

data['month'] = data.index.get_level_values('date').month

data = pd.get_dummies(data, columns=['month'], prefix='month')
data['ticker'] = pd.factorize(data.index.get_level_values('ticker'))[0]

Next, we create a training set covering the 2009-2016 period and a separate test set with
data for 2017, the last full year with data:

train_data = data[:'2016']

test_data = data['2017']

For training and test datasets, we generate a list containing the three input arrays as shown
in Figure 19.9:

• The lagged return series (using the format described in Figure 19.5)

• The integer-encoded stock ticker as a one-dimensional array

• The month dummies as a two-dimensional array with one column per month

window_size=52

sequence = list(range(1, window_size+1))

X_train = [

 train_data.loc[:, sequence].values.reshape(-1, window_size , 1),

 train_data.ticker,

 train_data.filter(like='month')
]

y_train = train_data.label

[x.shape for x in X_train], y_train.shape

[(1035424, 52, 1), (1035424,), (1035424, 12)], (1035424,)

How to define the architecture using Keras' Functional API
Keras' Functional API makes it easy to design an architecture like the one outlined at the
beginning of this section with multiple inputs (or several outputs, as in the SVHN example
in Chapter 18, CNNs for Financial Time Series and Satellite Images). This example illustrates a
network with three inputs:

1. Two stacked LSTM layers with 25 and 10 units, respectively

2. An embedding layer that learns a 10-dimensional real-valued representation of the
equities

3. A one-hot encoded representation of the month

RNNs for Multivariate Time Series and Sentiment Analysis

[608]

We begin by defining the three inputs with their respective shapes:

n_features = 1

returns = Input(shape=(window_size, n_features), name='Returns')

tickers = Input(shape=(1,), name='Tickers')

months = Input(shape=(12,), name='Months')

To define stacked LSTM layers, we set the return_sequences keyword for the first layer to
True. This ensures that the first layer produces an output in the expected three-dimensional
input format. Note that we also use dropout regularization and how the Functional API
passes the tensor outputs from one layer to the subsequent layer's input:

lstm1 = LSTM(units=lstm1_units,

 input_shape=(window_size, n_features),

 name='LSTM1',

 dropout=.2,

 return_sequences=True)(returns)

lstm_model = LSTM(units=lstm2_units,

 dropout=.2,

 name='LSTM2')(lstm1)

The TensorFlow 2 guide for RNNs highlights the fact that GPU support is only available
when using the default values for most LSTM settings (https://www.tensorflow.org/guide/
keras/rnn).

The embedding layer requires:

• The input_dim keyword, which defines how many embeddings the layer will learn
• The output_dim keyword, which defines the size of the embedding
• The input_length parameter, which sets the number of elements passed to the layer

(here, only one ticker per sample)

The goal of the embedding layer is to learn vector representations that capture the relative
locations of the feature values to one another with respect to the outcome. We'll choose a
five-dimensional embedding for the roughly 2,500 ticker values to combine the embedding
layer with the LSTM layer and the month dummies we need to reshape (or flatten) it:

ticker_embedding = Embedding(input_dim=n_tickers,

 output_dim=5,

 input_length=1)(tickers)

ticker_embedding = Reshape(target_shape=(5,))(ticker_embedding)

Now we can concatenate the three tensors, followed by BatchNormalization:

merged = concatenate([lstm_model, ticker_embedding, months], name='Merged')

bn = BatchNormalization()(merged)

https://www.tensorflow.org/guide/keras/rnn
https://www.tensorflow.org/guide/keras/rnn

Chapter 19

[609]

The fully connected final layers learn a mapping from these stacked LSTM layers, ticker
embeddings, and month indicators to the binary outcome that reflects a positive or negative
return over the following week. We formulate the complete RNN by defining its inputs and
outputs with the implicit data flow we just defined:

hidden_dense = Dense(10, name='FC1')(bn)

output = Dense(1, name='Output', activation='sigmoid')(hidden_dense)

rnn = Model(inputs=[returns, tickers, months], outputs=output)

The summary lays out this slightly more sophisticated architecture with 16,984 parameters:

Layer (type) Output Shape Param # Connected to

Returns (InputLayer) [(None, 52, 1)] 0

Tickers (InputLayer) [(None, 1)] 0

LSTM1 (LSTM) (None, 52, 25) 2700 Returns[0]
[0]

embedding (Embedding) (None, 1, 5) 12445 Tickers[0]
[0]

LSTM2 (LSTM) (None, 10) 1440 LSTM1[0][0]

reshape (Reshape) (None, 5) 0 embedding[0]
[0]

Months (InputLayer) [(None, 12)] 0

Merged (Concatenate) (None, 27) 0 LSTM2[0][0]

 reshape[0]
[0]

 Months[0][0]

batch_normalization (BatchNorma (None, 27) 108 Merged[0][0]

FC1 (Dense) (None, 10) 280

atch_normalization[0][0]

Output (Dense) (None, 1) 11 FC1[0][0]

Total params: 16,984

Trainable params: 16,930

Non-trainable params: 54

We compile the model using the recommended RMSProp optimizer with default settings
and compute the AUC metric that we'll use for early stopping:

optimizer = tf.keras.optimizers.RMSprop(lr=0.001,

 rho=0.9,

 epsilon=1e-08,

 decay=0.0)

rnn.compile(loss='binary_crossentropy',

 optimizer=optimizer,

 metrics=['accuracy',

 tf.keras.metrics.AUC(name='AUC')])

RNNs for Multivariate Time Series and Sentiment Analysis

[610]

We train the model for 50 epochs by using early stopping:

result = rnn.fit(X_train,
 y_train,

 epochs=50,

 batch_size=32,

 validation_data=(X_test, y_test),

 callbacks=[early_stopping])

The following plots show that training stops after 8 epochs, each of which takes around
three minutes on a single GPU. It results in a test AUC of 0.6816 and a test accuracy of
0.6193 for the best model:

Figure 19.10: Stacked LSTM classification—cross-validation performance

The IC for the test prediction and actual weekly returns is 0.32.

Predicting returns instead of directional price moves

The stacked_lstm_with_feature_embeddings_regression.ipynb notebook illustrates how
to adapt the model to the regression task of predicting returns rather than binary price
changes.

The required changes are minor; just do the following:

1. Select the fwd_returns outcome instead of the binary label.

2. Convert the model output to linear (the default) instead of sigmoid.

3. Update the loss to mean squared error (and early stopping references).

4. Remove or update optional metrics to match the regression task.

Using otherwise the same training parameters (except that the Adam optimizer with
default settings yields a better result in this case), the validation loss improves for nine
epochs. The average weekly IC is 3.32, and 6.68 for the entire period while significant at the
1 percent level. The average weekly return differential between the equities in the top and
bottom quintiles of predicted returns is slightly above 20 basis points:

Chapter 19

[611]

Figure 19.11: Stacked LSTM regression—out-of-sample performance

Multivariate time-series regression for macro data
So far, we have limited our modeling efforts to a single time series. RNNs are well-
suited to multivariate time series and represent a nonlinear alternative to the vector

autoregressive (VAR) models we covered in Chapter 9, Time-Series Models for Volatility
Forecasts and Statistical Arbitrage. Refer to the multivariate_timeseries notebook for
implementation details.

Loading sentiment and industrial production data

We'll show how to model and forecast multiple time series using RNNs with the same
dataset we used for the VAR example. It has monthly observations over 40 years on
consumer sentiment and industrial production from the Federal Reserve's FRED service:

df = web.DataReader(['UMCSENT', 'IPGMFN'], 'fred', '1980', '2019-12').
dropna()

df.columns = ['sentiment', 'ip']

df.info()

DatetimeIndex: 480 entries, 1980-01-01 to 2019-12-01

Data columns (total 2 columns):

sentiment 480 non-null float64
ip 480 non-null float64

Making the data stationary and adjusting the scale

We apply the same transformation—annual difference for both series, prior log-transform
for industrial production—to achieve stationarity (see Chapter 9, Time-Series Models for
Volatility Forecasts and Statistical Arbitrage for details). We also rescale it to the [0, 1] range to
ensure that the network gives both series equal weight during training:

df_transformed = (pd.DataFrame({'ip': np.log(df.ip).diff(12),
 'sentiment': df.sentiment.diff(12)}).dropna())
df_transformed = df_transformed.apply(minmax_scale)

RNNs for Multivariate Time Series and Sentiment Analysis

[612]

Figure 19.12 displays the original and transformed macro time series:

Figure 19.12: Original and transformed time series

Creating multivariate RNN inputs

The create_multivariate_rnn_data() function transforms a dataset of several time series
into the three-dimensional shape required by TensorFlow's RNN layers, formed as n_
samples × window_size × n_series:

def create_multivariate_rnn_data(data, window_size):

 y = data[window_size:]

 n = data.shape[0]

 X = np.stack([data[i: j] for i, j in enumerate(range(window_size, n))],

 axis=0)

 return X, y

A window_size value of 18 ensures that the entries in the second dimension are the lagged
18 months of the respective output variable. We thus obtain the RNN model inputs for each
of the two features as follows:

X, y = create_multivariate_rnn_data(df_transformed, window_size=window_size)

X.shape, y.shape

((450, 18, 2), (450, 2))

Finally, we split our data into a training and a test set, using the last 24 months to test the
out-of-sample performance:

test_size = 24

train_size = X.shape[0]-test_size

X_train, y_train = X[:train_size], y[:train_size]

X_test, y_test = X[train_size:], y[train_size:]

X_train.shape, X_test.shape

((426, 18, 2), (24, 18, 2))

Chapter 19

[613]

Defining and training the model
Given the relatively small dataset, we use a simpler RNN architecture than in the previous
example. It has a single LSTM layer with 12 units, followed by a fully connected layer with
6 units. The output layer has two units, one for each time series.

We compile using mean absolute loss and the recommended RMSProp optimizer:

n_features = output_size = 2

lstm_units = 12

dense_units = 6

rnn = Sequential([

 LSTM(units=lstm_units,

 dropout=.1,

 recurrent_dropout=.1,

 input_shape=(window_size, n_features), name='LSTM',

 return_sequences=False),

 Dense(dense_units, name='FC'),

 Dense(output_size, name='Output')

])

rnn.compile(loss='mae', optimizer='RMSProp')

The model still has 812 parameters, compared to 10 for the VAR(1, 1) model from Chapter

9, Time-Series Models for Volatility Forecasts and Statistical Arbitrage:

Layer (type) Output Shape Param #

LSTM (LSTM) (None, 12) 720

FC (Dense) (None, 6) 78

Output (Dense) (None, 2) 14

Total params: 812

Trainable params: 812

We train for 100 epochs with a batch_size of 20 using early stopping:

result = rnn.fit(X_train,
 y_train,

 epochs=100,

 batch_size=20,

 shuffle=False,
 validation_data=(X_test, y_test),

 callbacks=[checkpointer, early_stopping],

 verbose=1)

Training stops early after 62 epochs, yielding a test MAE of 0.034, an almost 25 percent
improvement over the test MAE for the VAR model of 0.043 on the same task.

RNNs for Multivariate Time Series and Sentiment Analysis

[614]

However, the two results are not fully comparable because the RNN produces 18 1-step-
ahead forecasts whereas the VAR model uses its own predictions as input for its out-of-
sample forecast. You may want to tweak the VAR setup to obtain comparable forecasts and
compare the performance.

Figure 19.13 highlights training and validation errors, and the out-of-sample predictions for
both series:

Figure 19.13: Cross-validation and test results for RNNs with multiple macro series

RNNs for text data
RNNs are commonly applied to various natural language processing tasks, from machine
translation to sentiment analysis, that we already encountered in Part 3 of this book. In this
section, we will illustrate how to apply an RNN to text data to detect positive or negative
sentiment (easily extensible to a finer-grained sentiment scale) and to predict stock returns.

More specifically, we'll use word embeddings to represent the tokens in the documents.
We covered word embeddings in Chapter 16, Word Embeddings for Earnings Calls and SEC
Filings. They are an excellent technique for converting a token into a dense, real-value
vector because the relative location of words in the embedding space encodes useful
semantic aspects of how they are used in the training documents.

We saw in the previous stacked RNN example that TensorFlow has a built-in embedding
layer that allows us to train vector representations specific to the task at hand.
Alternatively, we can use pretrained vectors. We'll demonstrate both approaches in the
following three sections.

LSTM with embeddings for sentiment classification
This example shows how to learn custom embedding vectors while training an RNN on
the classification task. This differs from the word2vec model that learns vectors while
optimizing predictions of neighboring tokens, resulting in their ability to capture certain
semantic relationships among words (see Chapter 16, Word Embeddings for Earnings Calls
and SEC Filings). Learning word vectors with the goal of predicting sentiment implies that
embeddings will reflect how a token relates to the outcomes it is associated with.

Chapter 19

[615]

Loading the IMDB movie review data

To keep the data manageable, we will illustrate this use case with the IMDB reviews
dataset, which contains 50,000 positive and negative movie reviews, evenly split into a
training set and a test set, with balanced labels in each dataset. The vocabulary consists
of 88,586 tokens. Alternatively, you could use the much larger Yelp review data (after
converting the text into numerical sequences; see the next section on using pretrained
embeddings or TensorFlow 2 docs).

The dataset is bundled into TensorFlow and can be loaded so that each review is
represented as an integer-encoded sequence. We can limit the vocabulary to
num_words while filtering out frequent and likely less informative words using skip_top
as well as sentences longer than maxlen. We can also choose the oov_char value, which
represents tokens we chose to exclude from the vocabulary on frequency grounds:

from tensorflow.keras.datasets import imdb
vocab_size = 20000
(X_train, y_train), (X_test, y_test) = imdb.load_data(seed=42,
 skip_top=0,
 maxlen=None,
 oov_char=2,
 index_from=3,
 num_words=vocab_size)

In the second step, convert the lists of integers into fixed-size arrays that we can stack
and provide as an input to our RNN. The pad_sequence function produces arrays of equal
length, truncated and padded to conform to maxlen:

maxlen = 100
X_train_padded = pad_sequences(X_train,
 truncating='pre',
 padding='pre',
 maxlen=maxlen)

Defining embedding and the RNN architecture
Now we can set up our RNN architecture. The first layer learns the word embeddings. We
define the embedding dimensions as before, using the following:

• The input_dim keyword, which sets the number of tokens that we need to embed

• The output_dim keyword, which defines the size of each embedding
• The input_len parameter, which specifies how long each input sequence is going

to be

Note that we are using GRU units this time that train faster and perform better on smaller
amounts of data. We are also using recurrent dropout for regularization:

embedding_size = 100

rnn = Sequential([

RNNs for Multivariate Time Series and Sentiment Analysis

[616]

 Embedding(input_dim=vocab_size,

 output_dim= embedding_size,

 input_length=maxlen),

 GRU(units=32,

 dropout=0.2, # comment out to use optimized GPU implementation

 recurrent_dropout=0.2),

 Dense(1, activation='sigmoid')

])

The resulting model has over 2 million trainable parameters:

Layer (type) Output Shape Param #

embedding (Embedding) (None, 100, 100) 2000000

gru (GRU) (None, 32) 12864

dense (Dense) (None, 1) 33

Total params: 2,012,897

Trainable params: 2,012,897

We compile the model to use the AUC metric and train with early stopping:

rnn.fit(X_train_padded,
 y_train,

 batch_size=32,

 epochs=25,

 validation_data=(X_test_padded, y_test),

 callbacks=[early_stopping],

 verbose=1)

Training stops after 12 epochs, and we recover the weights for the best models to find a
high test AUC of 0.9393:

y_score = rnn.predict(X_test_padded)

roc_auc_score(y_score=y_score.squeeze(), y_true=y_test)

0.9393289376

Figure 19.14 displays the cross-validation performance in terms of accuracy and AUC:

Figure 19.14: Cross-validation for RNN using IMDB data with custom embeddings

Chapter 19

[617]

Sentiment analysis with pretrained word vectors
In Chapter 16, Word Embeddings for Earnings Calls and SEC Filings, we discussed how to
learn domain-specific word embeddings. Word2vec and related learning algorithms
produce high-quality word vectors but require large datasets. Hence, it is common that
research groups share word vectors trained on large datasets, similar to the weights for
pretrained deep learning models that we encountered in the section on transfer learning
in the previous chapter.

We are now going to illustrate how to use pretrained global vectors for word
representation (GloVe) provided by the Stanford NLP group with the
IMDB review dataset (refer to GitHub for references and the
sentiment_analysis_pretrained_embeddings notebook for implementation details).

Preprocessing the text data

We are going to load the IMDB dataset from the source to manually preprocess it (see the
notebook). TensorFlow provides a Tokenizer, which we'll use to convert the text documents
to integer-encoded sequences:

num_words = 10000

t = Tokenizer(num_words=num_words,

 lower=True,

 oov_token=2)

t.fit_on_texts(train_data.review)
vocab_size = len(t.word_index) + 1

train_data_encoded = t.texts_to_sequences(train_data.review)

test_data_encoded = t.texts_to_sequences(test_data.review)

We also use the pad_sequences function to convert the list of lists (of unequal length) to
stacked sets of padded and truncated arrays for both the training and test data:

max_length = 100

X_train_padded = pad_sequences(train_data_encoded,

 maxlen=max_length,

 padding='post',

 truncating='post')

y_train = train_data['label']

X_train_padded.shape

(25000, 100)

Loading the pretrained GloVe embeddings

We downloaded and unzipped the GloVe data to the location indicated in the code and will
now create a dictionary that maps GloVe tokens to 100-dimensional, real-valued vectors:

glove_path = Path('data/glove/glove.6B.100d.txt')

embeddings_index = dict()

RNNs for Multivariate Time Series and Sentiment Analysis

[618]

for line in glove_path.open(encoding='latin1'):

 values = line.split()

 word = values[0]

 coefs = np.asarray(values[1:], dtype='float32')
 embeddings_index[word] = coefs

There are around 340,000 word vectors that we use to create an embedding matrix that
matches the vocabulary so that the RNN can access embeddings by the token index:

embedding_matrix = np.zeros((vocab_size, 100))

for word, i in t.word_index.items():

 embedding_vector = embeddings_index.get(word)

 if embedding_vector is not None:

 embedding_matrix[i] = embedding_vector

Defining the architecture with frozen weights
The difference with the RNN setup in the previous example is that we are going to pass
the embedding matrix to the embedding layer and set it to not trainable so that the weights
remain fixed during training:

rnn = Sequential([

 Embedding(input_dim=vocab_size,

 output_dim=embedding_size,

 input_length=max_length,

 weights=[embedding_matrix],

 trainable=False),

 GRU(units=32, dropout=0.2, recurrent_dropout=0.2),

 Dense(1, activation='sigmoid')])

From here on, we proceed as before. Training continues for 32 epochs, as shown in Figure
19.15, and we obtain a test AUC score of 0.9106. This is slightly worse than our result in the
previous sections where we learned custom embedding for this domain, underscoring the
value of training your own word embeddings:

Figure 19.15: Cross-validation and test results for RNNs with multiple macro series

Chapter 19

[619]

You may want to apply these techniques to the larger financial text datasets that we used in
Part 3.

Predicting returns from SEC filing embeddings
In Chapter 16, Word Embeddings for Earnings Calls and SEC Filings, we discussed important
differences between product reviews and financial text data. While the former was useful
to illustrate important workflows, in this section, we will tackle more challenging but also
more relevant financial documents. More specifically, we will use the SEC filings data
introduced in Chapter 16, Word Embeddings for Earnings Calls and SEC Filings, to learn word
embeddings tailored to predicting the return of the ticker associated with the disclosures
from before publication to one week after.

The sec_filings_return_prediction notebook contains the code examples for this section.
See the sec_preprocessing notebook in Chapter 16, Word Embeddings for Earnings Calls and
SEC Filings, and instructions in the data folder on GitHub on how to obtain the data.

Source stock price data using yfinance
There are 22,631 filings for the period 2013-16. We use yfinance to obtain stock price data
for the related 6,630 tickers because it achieves higher coverage than Quandl's WIKI
Data. We use the ticker symbol and filing date from the filing index (see Chapter 16, Word
Embeddings for Earnings Calls and SEC Filings) to download daily adjusted stock prices for
three months before and one month after the filing data as follows, capturing both the price
data and unsuccessful tickers in the process:

yf_data, missing = [], []

for i, (symbol, dates) in enumerate(filing_index.groupby('ticker').date_filed,
 1):

 ticker = yf.Ticker(symbol)

 for idx, date in dates.to_dict().items():

 start = date - timedelta(days=93)

 end = date + timedelta(days=31)

 df = ticker.history(start=start, end=end)

 if df.empty:

 missing.append(symbol)

 else:

 yf_data.append(df.assign(ticker=symbol, filing=idx))

We obtain data on 3,954 tickers and source prices for a few hundred missing tickers using
the Quandl Wiki data (see the notebook) and end up with 16,758 filings for 4,762 symbols.

RNNs for Multivariate Time Series and Sentiment Analysis

[620]

Preprocessing SEC filing data
Compared to product reviews, financial text documents tend to be longer and have a
more formal structure. In addition, in this case, we rely on data sourced from EDGAR that
requires parsing of the XBRL source (see Chapter 2, Market and Fundamental Data – Sources
and Techniques) and may have errors such as including material other than the desired
sections. We take several steps during preprocessing to address outliers and format the text
data as integer sequences of equal length, as required by the model that we will build in the
next section:

1. Remove all sentences that contain fewer than 5 or more than 50 tokens; this affects
approximately. 5 percent of sentences.

2. Create 28,599 bigrams, 10,032 trigrams, and 2,372 n-grams with 4 elements.

3. Convert filings to a sequence of integers that represent the token frequency rank,
removing filings with fewer than 100 tokens and truncating sequences at 20,000
elements.

Figure 19.16 highlights some corpus statistics for the remaining 16,538 filings with
179,214,369 tokens, around 204,206 of which are unique. The left panel shows the token
frequency distribution on a log-log scale; the most frequent terms, "million," "business,"
"company," and "products" occur more than 1 million times each. As usual, there is a very
long tail, with 60 percent of tokens occurring fewer than 25 times.

The central panel shows the distribution of the sentence lengths with a mode of around
10 tokens. Finally, the right panel shows the distribution of the filing length with a peak
at 20,000 due to truncation:

Figure 19.16: Cross-validation and test results for RNNs with multiple macro series

Preparing data for the RNN model

Now we need an outcome for our model to predict. We'll compute (somewhat arbitrarily)
five-day forward returns for the day of filing (or the day before if there are no prices for
that date), assuming that filing occurred after market hours. Clearly, this assumption could
be wrong, underscoring the need for point-in-time data emphasized in Chapter 2, Market
and Fundamental Data – Sources and Techniques, and Chapter 3, Alternative Data for Finance –
Categories and Use Cases. We'll ignore this issue as the hidden cost of using free data.

Chapter 19

[621]

We compute the forward returns as follows, removing outliers with weekly returns below
50 or above 100 percent:

fwd_return = {}

for filing in filings:
 date_filed = filing_index.at[filing, 'date_filed']
 price_data = prices[prices.filing==filing].close.sort_index()

 try:

 r = (price_data

 .pct_change(periods=5)

 .shift(-5)

 .loc[:date_filed]
 .iloc[-1])

 except:

 continue

 if not np.isnan(r) and -.5 < r < 1:

 fwd_return[filing] = r

This leaves us with 16,355 data points. Now we combine these outcomes with their
matching filing sequences and convert the list of returns to a NumPy array:

y, X = [], []

for filing_id, fwd_ret in fwd_return.items():
 X.append(np.load(vector_path / f'{filing_id}.npy') + 2)
 y.append(fwd_ret)

y = np.array(y)

Finally, we create a 90:10 training/test split and use the pad_sequences function introduced
in the first example in this section to generate fixed-length sequences of 20,000 elements
each:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.1)

X_train = pad_sequences(X_train,

 truncating='pre',

 padding='pre',

 maxlen=maxlen)

X_test = pad_sequences(X_test,

 truncating='pre',

 padding='pre',

 maxlen=maxlen)

X_train.shape, X_test.shape

((14719, 20000), (1636, 20000))

RNNs for Multivariate Time Series and Sentiment Analysis

[622]

Building, training, and evaluating the RNN model

Now we can define our RNN architecture. The first layer learns the word embeddings.
We define the embedding dimensions as previously, setting the following:

• The input_dim keyword to the size of the vocabulary

• The output_dim keyword to the size of each embedding

• The input_length parameter to how long each input sequence is going to be

For the recurrent layer, we use a bidirectional GRU unit that scans the text both forward
and backward and concatenates the resulting output. We also add batch normalization
and dropout for regularization with a five-unit dense layer before the linear output:

embedding_size = 100

input_dim = X_train.max() + 1

rnn = Sequential([

 Embedding(input_dim=input_dim,

 output_dim=embedding_size,

 input_length=maxlen,

 name='EMB'),

 BatchNormalization(name='BN1'),

 Bidirectional(GRU(32), name='BD1'),

 BatchNormalization(name='BN2'),

 Dropout(.1, name='DO1'),

 Dense(5, name='D'),

 Dense(1, activation='linear', name='OUT')])

The resulting model has over 2.5 million trainable parameters:

rnn.summary()

Layer (type) Output Shape Param #

EMB (Embedding) (None, 20000, 100) 2500000

BN1 (BatchNormalization) (None, 20000, 100) 400

BD1 (Bidirectional) (None, 64) 25728

BN2 (BatchNormalization) (None, 64) 256

DO1 (Dropout) (None, 64) 0

D (Dense) (None, 5) 325

OUT (Dense) (None, 1) 6

Total params: 2,526,715

Trainable params: 2,526,387

Non-trainable params: 328

We compile using the Adam optimizer, targeting the mean squared loss for this regression
task while also tracking the square root of the loss and the mean absolute error as optional
metrics:

rnn.compile(loss='mse',

Chapter 19

[623]

 optimizer='Adam',

 metrics=[RootMeanSquaredError(name='RMSE'),

 MeanAbsoluteError(name='MAE')])

With early stopping, we train for up to 100 epochs on batches of 32 observations each:

early_stopping = EarlyStopping(monitor='val_MAE',

 patience=5,

 restore_best_weights=True)

training = rnn.fit(X_train,
 y_train,

 batch_size=32,

 epochs=100,

 validation_data=(X_test, y_test),

 callbacks=[early_stopping],

 verbose=1)

The mean absolute error improves for only 4 epochs, as shown in the left panel of Figure
19.17:

Figure 19.17: Cross-validation test results for RNNs using SEC filings to predict weekly returns

On the test set, the best model achieves a highly significant IC of 6.02:

y_score = rnn.predict(X_test)

rho, p = spearmanr(y_score.squeeze(), y_test)

print(f'{rho*100:.2f} ({p:.2%})')

6.02 (1.48%)

Lessons learned and next steps

The model is capable of generating return predictions that are significantly better than
chance using only text data. There are both caveats that suggest taking the results with
a grain of salt and reasons to believe we could improve on the result of this experiment.

On the one hand, the quality of both the stock price data and the parsed SEC filings is far
from perfect. It's unclear whether price data issues bias the results positively or negatively,
but they certainly increase the margin of error. More careful parsing and cleaning of the
SEC filings would most likely improve the results by removing noise.

RNNs for Multivariate Time Series and Sentiment Analysis

[624]

On the other hand, there are numerous optimizations that may well improve the result.
Starting with the text input, we did not attempt to parse the filing content beyond selecting
certain sections; there may be value in removing boilerplate language or otherwise trying to
pick the most meaningful statements. We also made somewhat arbitrary choices about the
maximum length of filings and the size of the vocabulary that we could revisit. We could
also shorten or lengthen the weekly prediction horizon. Furthermore, there are multiple
aspects of the model architecture that we could refine, from the size of the embeddings to
the number and size of layers and the degree of regularization.

Most fundamentally, we could combine the text input with a richer set of complementary
features, as demonstrated in the previous section, using stacked LSTM with multiple
inputs. Finally, we would certainly want a larger set of filings.

Summary
In this chapter, we presented the specialized RNN architecture that is tailored to sequential
data. We covered how RNNs work, analyzed the computational graph, and saw how RNNs
enable parameter-sharing over numerous steps to capture long-range dependencies that
FFNNs and CNNs are not well suited for.

We also reviewed the challenges of vanishing and exploding gradients and saw how gated
units like long short-term memory cells enable RNNs to learn dependencies over hundreds
of time steps. Finally, we applied RNNs to challenges common in algorithmic trading,
such as predicting univariate and multivariate time series and sentiment analysis using
SEC filings.

In the next chapter, we will introduce unsupervised deep learning techniques like
autoencoders and generative adversarial networks and their applications to investment
and trading strategies.

[625]

20
Autoencoders for Conditional Risk

Factors and Asset Pricing

This chapter shows how unsupervised learning can leverage deep learning for trading.
More specifically, we'll discuss autoencoders that have been around for decades but
have recently attracted fresh interest.

Unsupervised learning addresses practical ML challenges such as the limited availability
of labeled data and the curse of dimensionality, which requires exponentially more samples
for successful learning from complex, real-life data with many features. At a conceptual
level, unsupervised learning resembles human learning and the development of common
sense much more closely than supervised and reinforcement learning, which we'll cover
in the next chapter. It is also called predictive learning because it aims to discover structure
and regularities from data so that it can predict missing inputs, that is, fill in the blanks
from the observed parts.

An autoencoder is a neural network (NN) trained to reproduce the input while
learning a new representation of the data, encoded by the parameters of a hidden layer.
Autoencoders have long been used for nonlinear dimensionality reduction and manifold
learning (see Chapter 13, Data-Driven Risk Factors and Asset Allocation with Unsupervised
Learning). A variety of designs leverage the feedforward, convolutional, and recurrent
network architectures we covered in the last three chapters. We will see how autoencoders
can underpin a trading strategy: we will build a deep neural network that uses an
autoencoder to extract risk factors and predict equity returns, conditioned on a range
of equity attributes (Gu, Kelly, and Xiu 2020).

More specifically, in this chapter you will learn about:

• Which types of autoencoders are of practical use and how they work

• Building and training autoencoders using Python

• Using autoencoders to extract data-driven risk factors that take into account asset
characteristics to predict returns

Autoencoders for Conditional Risk Factors and Asset Pricing

[626]

Autoencoders for nonlinear feature extraction
In Chapter 17, Deep Learning for Trading, we saw how neural networks succeed at
supervised learning by extracting a hierarchical feature representation useful for the
given task. Convolutional neural networks (CNNs), for example, learn and synthesize
increasingly complex patterns from grid-like data, for example, to identify or detect objects
in an image or to classify time series.

An autoencoder, in contrast, is a neural network designed exclusively to learn a new
representation that encodes the input in a way that helps solve another task. To this end,
the training forces the network to reproduce the input. Since autoencoders typically use
the same data as input and output, they are also considered an instance of self-supervised
learning. In the process, the parameters of a hidden layer h become the code that represents
the input, similar to the word2vec model covered in Chapter 16, Word Embeddings for
Earnings Calls and SEC Filings.

More specifically, the network can be viewed as consisting of an encoder function h=f(x)
that learns the hidden layer's parameters from input x, and a decoder function g that learns
to reconstruct the input from the encoding h. Rather than learning the identity function:𝑥𝑥 𝑥 𝑥𝑥(𝑓𝑓(𝑥𝑥))
which simply copies the input, autoencoders use constraints that force the hidden layer
to prioritize which aspects of the data to encode. The goal is to obtain a representation of
practical value.

Autoencoders can also be viewed as a special case of a feedforward neural network (see
Chapter 17, Deep Learning for Trading) and can be trained using the same techniques. Just
as with other models, excess capacity will lead to overfitting, preventing the autoencoder
from producing an informative encoding that generalizes beyond the training samples. See
Chapters 14 and 15 of Goodfellow, Bengio, and Courville (2016) for additional background.

Generalizing linear dimensionality reduction
A traditional use case includes dimensionality reduction, achieved by limiting the size of
the hidden layer and thus creating a "bottleneck" so that it performs lossy compression.
Such an autoencoder is called undercomplete, and the purpose is to learn the most salient
properties of the data by minimizing a loss function L of the form:𝐿𝐿(𝑥𝑥𝑥 𝑥𝑥(𝑓𝑓(𝑥𝑥𝑓𝑓)

You can find the code samples for this chapter and links to
additional resources in the corresponding directory of the GitHub
repository. The notebooks include color versions of the images.

Chapter 20

[627]

An example loss function that we will explore in the next section is simply the mean
squared error evaluated on the pixel values of the input images and their reconstruction.
We will also use this loss function to extract risk factors from time series of financial
features when we build a conditional autoencoder for trading.

Undercomplete autoencoders differ from linear dimensionality reduction methods like
principal component analysis (PCA; see Chapter 13, Data-Driven Risk Factors and Asset
Allocation with Unsupervised Learning) when they use nonlinear activation functions;
otherwise, they learn the same subspace as PCA. They can thus be viewed as a nonlinear
generalization of PCA capable of learning a wider range of encodings.

Figure 20.1 illustrates the encoder-decoder logic of an undercomplete feedforward
autoencoder with three hidden layers: the encoder and decoder have one hidden layer
each plus a shared encoder output/decoder input layer containing the encoding. The three
hidden layers use nonlinear activation functions, like rectified linear units (ReLU), sigmoid,
or tanh (see Chapter 17, Deep Learning for Trading) and have fewer units than the input that
the network aims to reconstruct.

Figure 20.1: Undercomplete encoder-decoder architecture

Depending on the task, a simple autoencoder with a single encoder and decoder layer
may be adequate. However, deeper autoencoders with additional layers can have several
advantages, just as for other neural networks. These advantages include the ability to learn
more complex encodings, achieve better compression, and do so with less computational
effort and fewer training samples, subject to the perennial risk of overfitting.

Convolutional autoencoders for image compression
As discussed in Chapter 18, CNNs for Financial Time Series and Satellite Images, fully
connected feedforward architectures are not well suited to capture local correlations
typical to data with a grid-like structure. Instead, autoencoders can also use convolutional
layers to learn a hierarchical feature representation. Convolutional autoencoders leverage
convolutions and parameter sharing to learn hierarchical patterns and features irrespective
of their location, translation, or changes in size.

Autoencoders for Conditional Risk Factors and Asset Pricing

[628]

We will illustrate different implementations of convolutional autoencoders for image data
below. Alternatively, convolutional autoencoders could be applied to multivariate time
series data arranged in a grid-like format as illustrated in Chapter 18, CNNs for Financial
Time Series and Satellite Images.

Managing overfitting with regularized autoencoders
The powerful capabilities of neural networks to represent complex functions require tight
controls of the capacity of encoders and decoders to extract signals rather than noise so that
the encoding is more useful for a downstream task. In other words, when it is too easy for the
network to recreate the input, it fails to learn only the most interesting aspects of the data and
improve the performance of a machine learning model that uses the encoding as inputs.

Just as for other models with excessive capacity for the given task, regularization can help
to address the overfitting challenge by constraining the autoencoder's learning process
and forcing it to produce a useful representation (see, for instance, Chapter 7, Linear Models
– From Risk Factors to Return Forecasts, on regularization for linear models, and Chapter

17, Deep Learning for Trading, for neural networks). Ideally, we could precisely match the
model's capacity to the complexity of the distribution of the data. In practice, the optimal
model often combines (limited) excess capacity with appropriate regularization. To this
end, we add a sparsity penalty Ω(ℎ) that depends on the weights of the encoding layer
h to the training objective: 𝐿𝐿 𝐿𝐿𝐿𝐿 𝐿𝐿(𝑓𝑓(𝐿𝐿))) + Ω(ℎ)
A common approach that we explore later in this chapter is the use of L1 regularization,
which adds a penalty to the loss function in the form of the sum of the absolute values of the
weights. The L1 norm results in sparse encodings because it forces the values of parameters
to zero if they do not capture independent variation in the data (see Chapter 7, Linear Models
– From Risk Factors to Return Forecasts). As a result, even overcomplete autoencoders with
hidden layers of a higher dimension than the input may be able to learn signal content.

Fixing corrupted data with denoising autoencoders
The autoencoders we have discussed so far are designed to reproduce the input despite
capacity constraints. An alternative approach trains autoencoders with corrupted inputs 𝑥𝑥𝑥
to output the desired, original data points. In this case, the autoencoder minimizes a loss L: 𝐿𝐿 𝐿𝐿𝐿𝐿 𝐿𝐿(𝑓𝑓(𝐿𝐿𝑥)))

Corrupted inputs are a different way of preventing the network from learning the identity
function and rather extracting the signal or salient features from the data. Denoising
autoencoders have been shown to learn the data generating process of the original data and
have become popular in generative modeling where the goal is to learn the probability
distribution that gives rise to the input (Vincent et al., 2008).

Chapter 20

[629]

Seq2seq autoencoders for time series features
Recurrent neural networks (RNNs) have been developed for sequential data characterized
by longitudinal dependencies between data points, potentially over long ranges
(Chapter 19, RNNs for Multivariate Time Series and Sentiment Analysis). Similarly, sequence-
to-sequence (seq2seq) autoencoders aim to learn representations attuned to the nature of
data generated in sequence (Srivastava, Mansimov, and Salakhutdinov, 2016).

Seq2seq autoencoders are based on RNN components like long short-term memory
(LSTM) or gated recurrent unit. They learn a representation of sequential data and have
been successfully applied to video, text, audio, and time series data.

As mentioned in the last chapter, encoder-decoder architectures allow RNNs to process input
and output sequences with variable length. These architectures underpin many advances in
complex sequence prediction tasks, like speech recognition and text translation, and are being
increasingly applied to (financial) time series. At a high level, they work as follows:

1. The LSTM encoder processes the input sequence step by step to learn a hidden state.

2. This state becomes a learned representation of the sequence in the form of
a fixed-length vector.

3. The LSTM decoder receives this state as input and uses it to generate the output
sequence.

See references linked on GitHub for examples on building sequence-to-sequence
autoencoders to compress time series data and detect anomalies in time series to allow, for
example, regulators to uncover potentially illegal trading activity.

Generative modeling with variational autoencoders
Variational autoencoders (VAE) were developed more recently (Kingma and Welling,
2014) and focus on generative modeling. In contrast to a discriminative model that learns
a predictor given data, a generative model aims to solve the more general problem of
learning a joint probability distribution over all variables. If successful, it could simulate
how the data is produced in the first place. Learning the data-generating process is very
valuable: it reveals underlying causal relationships and supports semi-supervised learning
to effectively generalize from a small labeled dataset to a large unlabeled one.

More specifically, VAEs are designed to learn the latent (meaning unobserved) variables
of the model responsible for the input data. Note that we encountered latent variables in
Chapter 15, Topic Modeling – Summarizing Financial News, and Chapter 16, Word Embeddings
for Earnings Calls and SEC Filings.

Just like the autoencoders discussed so far, VAEs do not let the network learn arbitrary
functions as long as it faithfully reproduces the input. Instead, they aim to learn the
parameters of a probability distribution that generates the input data.

Autoencoders for Conditional Risk Factors and Asset Pricing

[630]

In other words, VAEs are generative models because, if successful, you can generate new
data points by sampling from the distribution learned by the VAE.

The operation of a VAE is more complex than the autoencoders discussed so far because it
involves stochastic backpropagation, that is, taking derivatives of stochastic variables, and
the details are beyond the scope of this book. They are able to learn high-capacity input
encodings without regularization that are useful because the models aim to maximize
the probability of the training data rather than to reproduce the input. For a detailed
introduction, see Kingma and Welling (2019).

The variational_autoencoder.ipynb notebook includes a sample VAE implementation
applied to the Fashion MNIST data, adapted from a Keras tutorial by Francois Chollet to
work with TensorFlow 2. The resources linked on GitHub contain a VAE tutorial with
references to PyTorch and TensorFlow 2 implementations and many additional references.
See Wang et al. (2019) for an application that combines a VAE with an RNN using LSTM
and outperforms various benchmark models in futures markets.

Implementing autoencoders with TensorFlow 2
In this section, we'll illustrate how to implement several of the autoencoder models
introduced in the previous section using the Keras interface of TensorFlow 2. We'll first
load and prepare an image dataset that we'll use throughout this section. We will use
images instead of financial time series because it makes it easier to visualize the results of
the encoding process. The next section shows how to use an autoencoder with financial
data as part of a more complex architecture that can serve as the basis for a trading strategy.

After preparing the data, we'll proceed to build autoencoders using deep feedforward nets,
sparsity constraints, and convolutions and apply the latter to denoise images.

How to prepare the data
For illustration, we'll use the Fashion MNIST dataset, a modern drop-in replacement for the
classic MNIST handwritten digit dataset popularized by Lecun et al. (1998) with LeNet. We
also relied on this dataset in Chapter 13, Data-Driven Risk Factors and Asset Allocation with
Unsupervised Learning, on unsupervised learning.

Keras makes it easy to access the 60,000 training and 10,000 test grayscale samples with a
resolution of 28 × 28 pixels:

from tensorflow.keras.datasets import fashion_mnist
(X_train, y_train), (X_test, y_test) = fashion_mnist.load_data()
X_train.shape, X_test.shape
((60000, 28, 28), (10000, 28, 28))

The data contains clothing items from 10 classes. Figure 20.2 plots a sample image for
each class:

Chapter 20

[631]

Figure 20.2: Fashion MNIST sample images

We reshape the data so that each image is represented by a flat one-dimensional pixel
vector with 28 × 28 = 784 elements normalized to the range [0, 1]:

image_size = 28 # pixels per side

input_size = image_size ** 2 # 784

def data_prep(x, size=input_size):

 return x.reshape(-1, size).astype('float32')/255

X_train_scaled = data_prep(X_train)

X_test_scaled = data_prep(X_test)

X_train_scaled.shape, X_test_scaled.shape

((60000, 784), (10000, 784))

One-layer feedforward autoencoder
We start with a vanilla feedforward autoencoder with a single hidden layer to illustrate
the general design approach using the Functional Keras API and establish a performance
baseline.

The first step is a placeholder for the flattened image vectors with 784 elements:

input_ = Input(shape=(input_size,), name='Input')

The encoder part of the model consists of a fully connected layer that learns the new,
compressed representation of the input. We use 32 units for a compression ratio of 24.5:

encoding_size = 32 # compression factor: 784 / 32 = 24.5

encoding = Dense(units=encoding_size,

 activation='relu',

 name='Encoder')(input_)

Autoencoders for Conditional Risk Factors and Asset Pricing

[632]

The decoding part reconstructs the compressed data to its original size in a single step:

decoding = Dense(units=input_size,

 activation='sigmoid',

 name='Decoder')(encoding)

We instantiate the Model class with the chained input and output elements that implicitly
define the computational graph as follows:

autoencoder = Model(inputs=input_,

 outputs=decoding,

 name='Autoencoder')

The encoder-decoder computation thus defined uses almost 51,000 parameters:

Layer (type) Output Shape Param #

Input (InputLayer) (None, 784) 0

Encoder (Dense) (None, 32) 25120

Decoder (Dense) (None, 784) 25872

Total params: 50,992

Trainable params: 50,992

Non-trainable params: 0

The Functional API allows us to use parts of the model's chain as separate encoder and
decoder models that use the autoencoder's parameters learned during training.

Defining the encoder
The encoder just uses the input and hidden layer with about half the total parameters:

encoder = Model(inputs=input_, outputs=encoding, name='Encoder')

encoder.summary()

Layer (type) Output Shape Param #

Input (InputLayer) (None, 784) 0

Encoder (Dense) (None, 32) 25120

Total params: 25,120

Trainable params: 25,120

Non-trainable params: 0

We will see shortly that, once we train the autoencoder, we can use the encoder to compress
the data.

Chapter 20

[633]

Defining the decoder
The decoder consists of the last autoencoder layer, fed by a placeholder for the
encoded data:

encoded_input = Input(shape=(encoding_size,), name='Decoder_Input')

decoder_layer = autoencoder.layers[-1](encoded_input)

decoder = Model(inputs=encoded_input, outputs=decoder_layer)

decoder.summary()

Layer (type) Output Shape Param #

Decoder_Input (InputLayer) (None, 32) 0

Decoder (Dense) (None, 784) 25872

Total params: 25,872

Trainable params: 25,872

Non-trainable params: 0

Training the model

We compile the model to use the Adam optimizer (see Chapter 17, Deep Learning for
Trading) to minimize the mean squared error between the input data and the reproduction
achieved by the autoencoder. To ensure that the autoencoder learns to reproduce the input,
we train the model using the same input and output data:

autoencoder.compile(optimizer='adam', loss='mse')

autoencoder.fit(x=X_train_scaled, y=X_train_scaled,
 epochs=100, batch_size=32,

 shuffle=True, validation_split=.1,
 callbacks=[tb_callback, early_stopping, checkpointer])

Evaluating the results

Training stops after some 20 epochs with a test RMSE of 0.1121:

mse = autoencoder.evaluate(x=X_test_scaled, y=X_test_scaled)

f'MSE: {mse:.4f} | RMSE {mse**.5:.4f}'

'MSE: 0.0126 | RMSE 0.1121'

To encode data, we use the encoder we just defined like so:

encoded_test_img = encoder.predict(X_test_scaled)

Encoded_test_img.shape

(10000, 32)

Autoencoders for Conditional Risk Factors and Asset Pricing

[634]

The decoder takes the compressed data and reproduces the output according to the
autoencoder training results:

decoded_test_img = decoder.predict(encoded_test_img)

decoded_test_img.shape

(10000, 784)

Figure 20.3 shows 10 original images and their reconstruction by the autoencoder and
illustrates the loss after compression:

Figure 20.3: Sample Fashion MNIST images, original and reconstructed

Feedforward autoencoder with sparsity constraints
The addition of regularization is fairly straightforward. We can apply it to the dense
encoder layer using Keras' activity_regularizer as follows:

encoding_l1 = Dense(units=encoding_size,

 activation='relu',

 activity_regularizer=regularizers.l1(10e-5),

 name='Encoder_L1')(input_)

The input and decoding layers remain unchanged. In this example with compression of
factor 24.5, regularization negatively affects performance with a test RMSE of 0.1229.

Deep feedforward autoencoder
To illustrate the benefit of adding depth to the autoencoder, we will build a three-layer
feedforward model that successively compresses the input from 784 to 128, 64, and 32 units,
respectively:

input_ = Input(shape=(input_size,))

x = Dense(128, activation='relu', name='Encoding1')(input_)

x = Dense(64, activation='relu', name='Encoding2')(x)

encoding_deep = Dense(32, activation='relu', name='Encoding3')(x)

x = Dense(64, activation='relu', name='Decoding1')(encoding_deep)

x = Dense(128, activation='relu', name='Decoding2')(x)

decoding_deep = Dense(input_size, activation='sigmoid', name='Decoding3')(x)

autoencoder_deep = Model(input_, decoding_deep)

Chapter 20

[635]

The resulting model has over 222,000 parameters, more than four times the capacity of the
previous single-layer model:

Layer (type) Output Shape Param #

===

input_1 (InputLayer) (None, 784) 0

Encoding1 (Dense) (None, 128) 100480

Encoding2 (Dense) (None, 64) 8256

Encoding3 (Dense) (None, 32) 2080

Decoding1 (Dense) (None, 64) 2112

Decoding2 (Dense) (None, 128) 8320

Decoding3 (Dense) (None, 784) 101136

===

Total params: 222,384

Trainable params: 222,384

Non-trainable params: 0

Training stops after 45 epochs and results in a 14 percent reduction of the test RMSE to
0.097. Due to the low resolution, it is difficult to visually note the better reconstruction.

Visualizing the encoding

We can use the manifold learning technique t-distributed Stochastic Neighbor Embedding
(t-SNE; see Chapter 13, Data-Driven Risk Factors and Asset Allocation with Unsupervised
Learning) to visualize and assess the quality of the encoding learned by the autoencoder's
hidden layer.

If the encoding is successful in capturing the salient features of the data, then the
compressed representation of the data should still reveal a structure aligned with the 10
classes that differentiate the observations. We use the output of the deep encoder we just
trained to obtain the 32-dimensional representation of the test set:

tsne = TSNE(perplexity=25, n_iter=5000)

train_embed = tsne.fit_transform(encoder_deep.predict(X_train_scaled))

Autoencoders for Conditional Risk Factors and Asset Pricing

[636]

Figure 20.4 shows that the 10 classes are well separated, suggesting that the encoding is
useful as a lower-dimensional representation that preserves the key characteristics of the
data (see the variational_autoencoder.ipynb notebook for a color version):

Figure 20.4: t-SNE visualization of the Fashion MNIST autoencoder embedding

Convolutional autoencoders
The insights from Chapter 18, CNNs for Financial Time Series and Satellite Images, on CNNs
suggest we incorporate convolutional layers into the autoencoder to extract information
characteristic of the grid-like structure of image data.

We define a three-layer encoder that uses 2D convolutions with 32, 16, and 8 filters,
respectively, ReLU activations, and 'same' padding to maintain the input size. The
resulting encoding size at the third layer is 4 × 4 × 8 = 128 , higher than for the previous
examples:

x = Conv2D(filters=32,
 kernel_size=(3, 3),

 activation='relu',

 padding='same',

 name='Encoding_Conv_1')(input_)

Chapter 20

[637]

x = MaxPooling2D(pool_size=(2, 2), padding='same', name='Encoding_Max_1')(x)

x = Conv2D(filters=16,
 kernel_size=(3, 3),

 activation='relu',

 padding='same',

 name='Encoding_Conv_2')(x)

x = MaxPooling2D(pool_size=(2, 2), padding='same', name='Encoding_Max_2')(x)

x = Conv2D(filters=8,
 kernel_size=(3, 3),

 activation='relu',

 padding='same',

 name='Encoding_Conv_3')(x)

encoded_conv = MaxPooling2D(pool_size=(2, 2),

 padding='same',

 name='Encoding_Max_3')(x)

We also define a matching decoder that reverses the number of filters and uses 2D
upsampling instead of max pooling to reverse the reduction of the filter sizes. The three-
layer autoencoder has 12,785 parameters, a little more than 5 percent of the capacity of the
deep autoencoder.

Training stops after 67 epochs and results in a further 9 percent reduction in the test RMSE,
due to a combination of the ability of convolutional filters to learn more efficiently from
image data and the larger encoding size.

Denoising autoencoders
The application of an autoencoder to a denoising task only affects the training stage. In this
example, we add noise from a standard normal distribution to the Fashion MNIST data
while maintaining the pixel values in the range [0, 1] as follows:

def add_noise(x, noise_factor=.3):

 return np.clip(x + noise_factor * np.random.normal(size=x.shape), 0, 1)

X_train_noisy = add_noise(X_train_scaled)

X_test_noisy = add_noise(X_test_scaled)

We then proceed to train the convolutional autoencoder on noisy inputs, the objective being
to learn how to generate the uncorrupted originals:

autoencoder_denoise.fit(x=X_train_noisy,
 y=X_train_scaled,

 ...)

Autoencoders for Conditional Risk Factors and Asset Pricing

[638]

The test RMSE after 60 epochs is 0.0931, unsurprisingly higher than before. Figure 20.5
shows, from top to bottom, the original images as well as the noisy and denoised versions.
It illustrates that the autoencoder is successful in producing compressed encodings from
the noisy images that are quite similar to those produced from the original images:

Figure 20.5: Denoising input and output examples

A conditional autoencoder for trading
Recent research by Gu, Kelly, and Xiu (GKX, 2019) developed an asset pricing model based
on the exposure of securities to risk factors. It builds on the concept of data-driven risk

factors that we discussed in Chapter 13, Data-Driven Risk Factors and Asset Allocation with
Unsupervised Learning, when introducing PCA as well as the risk factor models covered in
Chapter 4, Financial Feature Engineering – How to Research Alpha Factors. They aim to show
that the asset characteristics used by factor models to capture the systematic drivers of
"anomalies" are just proxies for the time-varying exposure to risk factors that cannot be
directly measured. In this context, anomalies are returns in excess of those explained by the
exposure to aggregate market risk (see the discussion of the capital asset pricing model in
Chapter 5, Portfolio Optimization and Performance Evaluation).

The Fama-French factor models discussed in Chapter 4 and Chapter 7 explain returns by
specifying risk factors like firm size based on empirical observations of differences in average
stock returns beyond those due to aggregate market risk. Given such specific risk factors,
these models are able to measure the reward an investor receives for taking on factor risk using
portfolios designed accordingly: sort stocks by size, buy the smallest quintile, sell the largest
quintile, and compute the return. The observed risk factor return then allows linear regression
to estimate the sensitivity of assets to these factors (called factor loadings), which in turn helps
to predict the returns of (many) assets based on forecasts of (far fewer) factor returns.

In contrast, GKX treat risk factors as latent, or non-observable, drivers of covariance
among a number of assets large enough to prevent investors from avoiding exposure
through diversification. Therefore, investors require a reward that adjusts like any price
to achieve equilibrium, providing in turn an economic rationale for return differences that
are no longer anomalous. In this view, risk factors are purely statistical in nature while the
underlying economic forces can be of arbitrary and varying origin.

Chapter 20

[639]

In another recent paper (Kelly, Pruitt, and Su, 2019), Kelly—who teaches finance at Yale,
works with AQR, and is one of the pioneers in applying ML to trading—and his coauthors
developed a linear model dubbed Instrumented Principal Component Analysis (IPCA) to
estimate latent risk factors and the assets' factor loadings from data. IPCA extends PCA
to include asset characteristics as covariates and produce time-varying factor loadings.
(See Chapter 13, Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning,
for coverage of PCA.) By conditioning asset exposure to factors on observable asset
characteristics, IPCA aims to answer whether there is a set of common latent risk factors
that explain an observed anomaly rather than whether there is a specific observable factor
that can do so.

GKX creates a conditional autoencoder architecture to reflect the nonlinear nature of
return dynamics ignored by the linear Fama-French models and the IPCA approach. The
result is a deep neural network that simultaneously learns the premia on a given number
of unobservable factors using an autoencoder, and the factor loadings for a large universe
of equities based on a broad range of time-varying asset characteristics using a feedforward
network. The model succeeds in explaining and predicting asset returns. It demonstrates
a relationship that is both statistically and economically significant, yielding an attractive
Sharpe ratio when translated into a long-short decile spread strategy similar to the
examples we have used throughout this book.

In this section, we'll create a simplified version of this model to demonstrate how you can
leverage autoencoders to generate tradeable signals. To this end, we'll build a new dataset
of close to 4,000 US stocks over the 1990-2019 period using yfinance, because it provides
some additional information that facilitates the computation of the asset characteristics. We'll
take a few shortcuts, such as using fewer assets and only the most important characteristics.
We'll also omit some implementation details to simplify the exposition. We'll highlight the
most important differences so that you can enhance the model accordingly.

We'll first show how to prepare the data before we explain, build, and train the model
and evaluate its predictive performance. Please see the above references for additional
background on the theory and implementation.

Sourcing stock prices and metadata information
The GKX reference implementation uses stock price and firm characteristic data for over
30,000 US equities from the Center for Research in Security Prices (CRSP) from 1957-2016 at
a monthly frequency. It computes 94 metrics that include a broad range of asset attributes
suggested as predictive of returns in previous academic research and listed in Green, Hand,
and Zhang (2017), who set out to verify these claims.

Since we do not have access to the high-quality but costly CRSP data, we leverage yfinance
(see Chapter 2, Market and Fundamental Data – Sources and Techniques) to download price and
metadata from Yahoo Finance. There are downsides to choosing free data, including:

Autoencoders for Conditional Risk Factors and Asset Pricing

[640]

• The lack of quality control regarding adjustments

• Survivorship bias because we cannot get data for stocks that are no longer listed

• A smaller scope in terms of both the number of equities and the length of their history

The build_us_stock_dataset.ipynb notebook contains the relevant code examples for this
section.

To obtain the data, we get a list of the 8,882 currently traded symbols from NASDAQ using
pandas-datareader (see Chapter 2, Market and Fundamental Data – Sources and Techniques):

from pandas_datareader.nasdaq_trader import get_nasdaq_symbols

traded_symbols = get_nasdaq_symbols()

We remove ETFs and create yfinance Ticker() objects for the remainder:

import yfinance as yf
tickers = yf.Tickers(traded_symbols[~traded_symbols.ETF].index.to_list())

Each ticker's .info attribute contains data points scraped from Yahoo Finance, ranging
from the outstanding number of shares and other fundamentals to the latest market
capitalization; coverage varies by security:

info = []

for ticker in tickers.tickers:

 info.append(pd.Series(ticker.info).to_frame(ticker.ticker))

info = pd.concat(info, axis=1).dropna(how='all').T

info = info.apply(pd.to_numeric, errors='ignore')

For the tickers with metadata, we download both adjusted and unadjusted prices, the latter
including corporate actions like stock splits and dividend payments that we could use to
create a Zipline bundle for strategy backtesting (see Chapter 8, The ML4T Workflow – From
Model to Strategy Backtesting).

We get adjusted OHLCV data on 4,314 stocks as follows:

prices_adj = []

with pd.HDFStore('chunks.h5') as store:

 for i, chunk in enumerate(chunks(tickers, 100)):

 print(i, end=' ', flush=True)
 prices_adj.append(yf.download(chunk,

 period='max',

 auto_adjust=True).stack(-1))

prices_adj = (pd.concat(prices_adj)

 .dropna(how='all', axis=1)

 .rename(columns=str.lower)

 .swaplevel())

prices_adj.index.names = ['ticker', 'date']

Chapter 20

[641]

Absent any quality control regarding the underlying price data and the adjustments for
stock splits, we remove equities with suspicious values such as daily returns above 100
percent or below -100 percent:

df = prices_adj.close.unstack('ticker')

pmax = df.pct_change().max()

pmin = df.pct_change().min()

to_drop = pmax[pmax > 1].index.union(pmin[pmin<-1].index)

This removes around 10 percent of the tickers, leaving us with close to 3,900 assets for the
1990-2019 period.

Computing predictive asset characteristics
GKX tested 94 asset attributes based on Green et al. (2017) and identified the 20 most
influential metrics while asserting that feature importance drops off quickly thereafter. The
top 20 stock characteristics fall into three categories, namely:

• Price trend, including (industry) momentum, short- and long-term reversal, or the
recent maximum return

• Liquidity, such as turnover, dollar volume, or market capitalization

• Risk measures, for instance, total and idiosyncratic return volatility or market beta

Of these 20, we limit the analysis to 16 for which we have or can approximate the relevant
inputs. The conditional_autoencoder_for_trading_data.ipynb notebook demonstrates
how to calculate the relevant metrics. We highlight a few examples in this section; see also
the Appendix, Alpha Factor Library.

Some metrics require information like sector, market cap, and outstanding shares, so we
limit our stock price dataset to the securities with relevant metadata:

tickers_with_metadata = (metadata[metadata.sector.isin(sectors) &

 metadata.marketcap.notnull() &

 metadata.sharesoutstanding.notnull() &

 (metadata.sharesoutstanding > 0)]

 .index.drop(tickers_with_errors))

We run our analysis at a weekly instead of monthly return frequency to compensate for the
50 percent shorter time period and around 80 percent lower number of stocks. We obtain
weekly returns as follows:

returns = (prices.close

 .unstack('ticker')

 .resample('W-FRI').last()

 .sort_index().pct_change().iloc[1:])

Autoencoders for Conditional Risk Factors and Asset Pricing

[642]

Most metrics are fairly straightforward to compute. Stock momentum, the 11-month
cumulative stock returns ending 1 month before the current date, can be derived as follows:

MONTH = 21

mom12m = (close

 .pct_change(periods=11 * MONTH)

 .shift(MONTH)

 .resample('W-FRI')

 .last()

 .stack()

 .to_frame('mom12m'))

The Amihud Illiquidity measure is the ratio of a stock's absolute returns relative to its
dollar volume, measured as a rolling 21-day average:

dv = close.mul(volume)

ill = (close.pct_change().abs()

 .div(dv)

 .rolling(21)

 .mean()

 .resample('W-FRI').last()

 .stack()

 .to_frame('ill'))

Idiosyncratic volatility is measured as the standard deviation of a regression of residuals of
weekly returns on the returns of equally weighted market index returns for the prior three
years. We compute this computationally intensive metric using statsmodels:

index = close.resample('W-FRI').last().pct_change().mean(1).to_frame('x')

def get_ols_residuals(y, x=index):

 df = x.join(y.to_frame('y')).dropna()

 model = sm.OLS(endog=df.y, exog=sm.add_constant(df[['x']]))

 result = model.fit()
 return result.resid.std()

idiovol = (returns.apply(lambda x: x.rolling(3 * 52)

 .apply(get_ols_residuals)))

For the market beta, we can use statsmodels' RollingOLS class with the weekly asset returns
as outcome and the equal-weighted index as input:

def get_market_beta(y, x=index):

 df = x.join(y.to_frame('y')).dropna()

 model = RollingOLS(endog=df.y,

 exog=sm.add_constant(df[['x']]),

 window=3*52)

 return model.fit(params_only=True).params['x']

Chapter 20

[643]

beta = (returns.dropna(thresh=3*52, axis=1)

 .apply(get_market_beta).stack().to_frame('beta'))

We end up with around 3 million observations on 16 metrics for some 3,800 securities over
the 1990-2019 period. Figure 20.6 displays a histogram of the number of stock returns per
week (the left panel) and boxplots outlining the distribution of the number of observations
for each characteristic:

Figure 20.6: Number of tickers over time and per - stock characteristic

To limit the influence of outliers, we follow GKX and rank-normalize the characteristics to
the [-1, 1] interval:

data.loc[:, characteristics] = (data.loc[:, characteristics]

 .groupby(level='date')

 .apply(lambda x:

 pd.DataFrame(quantile_transform(

 x,

 copy=True,

 n_quantiles=x.shape[0]),

 columns=characteristics,

 index=x.index.get_level_values('ticker'))

)

 .mul(2).sub(1))

Since the neural network cannot handle missing data, we set missing values to -2, which
lies outside the range for both weekly returns and the characteristics.

The authors apply additional methods to avoid overweighting microcap stocks like market-
value-weighted least-squares regression. They also adjust for data-snooping biases by
factoring in conservative reporting lags for the characteristics.

Creating the conditional autoencoder architecture
The conditional autoencoder proposed by GKX allows for time-varying return distributions
that take into account changing asset characteristics. To this end, the authors extend
standard autoencoder architectures that we discussed in the first section of this chapter to
allow for features to shape the encoding.

Autoencoders for Conditional Risk Factors and Asset Pricing

[644]

Figure 20.7 illustrates the architecture that models the outcome (asset returns, top) as a
function of both asset characteristics (left input) and, again, individual asset returns (right
input). The authors allow for asset returns to be individual stock returns or portfolios that
are formed from the stocks in the sample based on the asset characteristics, similar to the
Fama-French factor portfolios we discussed in Chapter 4, Financial Feature Engineering –
How to Research Alpha Factors, and summarized in the introduction to this section (hence the
dotted lines from stocks to portfolios in the lower-right box). We will use individual stock
returns; see GKX for details on how and why to use portfolios instead.

Figure 20.7: Conditional autoencoder architecture designed by GKX

The feedforward neural network on the left side of the conditional autoencoder models the
K factor loadings (beta output) of N individual stocks as a function of their P characteristics
(input). In our case, N is around 3,800 and P equals 16. The authors experiment with up to
three hidden layers with 32, 16, and 8 units, respectively, and find two layers to perform
best. Due to the smaller number of characteristics, we only use a similar layer and find 8
units most effective.

The right side of this architecture is a traditional autoencoder when used with individual
asset returns as inputs because it maps N asset returns onto themselves. The authors use it
in this way to measure how well the derived factors explain contemporaneous returns. In
addition, they use the autoencoder to predict future returns by using input returns from
period t-1 with output returns from period t. We will focus on the use of the architecture
for prediction, underlining that autoencoders are a special case of a feedforward neural
network as mentioned in the first section of this chapter.

Chapter 20

[645]

The model output is the dot product of the 𝑁𝑁 𝑁𝑁𝑁 factor loadings on the left with the 𝐾𝐾 𝐾 𝐾
factor premia on the right. The authors experiment with values of K in the range 2-6, similar
to established factor models.

To create this architecture using TensorFlow 2, we use the Functional Keras API and define
a make_model() function that automates the model compilation process as follows:

def make_model(hidden_units=8, n_factors=3):
 input_beta = Input((n_tickers, n_characteristics), name='input_beta')
 input_factor = Input((n_tickers,), name='input_factor')

 hidden_layer = Dense(units=hidden_units,
 activation='relu',
 name='hidden_layer')(input_beta)
 batch_norm = BatchNormalization(name='batch_norm')(hidden_layer)

 output_beta = Dense(units=n_factors, name='output_beta')(batch_norm)

 output_factor = Dense(units=n_factors,
 name='output_factor')(input_factor)

 output = Dot(axes=(2,1),
 name='output_layer')([output_beta, output_factor])

 model = Model(inputs=[input_beta, input_factor], outputs=output)
 model.compile(loss='mse', optimizer='adam')

 return model

We follow the authors in using batch normalization and compile the model to use mean
squared error for this regression task and the Adam optimizer. This model has 12,418
parameters (see the notebook).

The authors use additional regularization techniques such as L1 penalties on network
weights and combine the results of various networks with the same architecture but using
different random seeds. They also use early stopping.

We cross-validate using 20 years for training and predict the following year of weekly
returns with five folds corresponding to the years 2015-2019. We evaluate combinations
of numbers of factors K from 2 to 6 and 8, 16, or 32 hidden layer units by computing the
information coefficient (IC) for the validation set as follows:

factor_opts = [2, 3, 4, 5, 6]
unit_opts = [8, 16, 32]
param_grid = list(product(unit_opts, factor_opts))

for units, n_factors in param_grid:
 scores = []
 model = make_model(hidden_units=units, n_factors=n_factors)
 for fold, (train_idx, val_idx) in enumerate(cv.split(data)):
 X1_train, X2_train, y_train, X1_val, X2_val, y_val = \
 get_train_valid_data(data, train_idx, val_idx)

Autoencoders for Conditional Risk Factors and Asset Pricing

[646]

 for epoch in range(250):
 model.fit([X1_train, X2_train], y_train,
 batch_size=batch_size,

 validation_data=([X1_val, X2_val], y_val),

 epochs=epoch + 1,

 initial_epoch=epoch,

 verbose=0, shuffle=True)
 result = (pd.DataFrame({'y_pred': model.predict([X1_val,

 X2_val])

 .reshape(-1),

 'y_true': y_val.stack().values},

 index=y_val.stack().index)

 .replace(-2, np.nan).dropna())

 r0 = spearmanr(result.y_true, result.y_pred)[0]

 r1 = result.groupby(level='date').apply(lambda x:

 spearmanr(x.y_pred,

 x.y_true)[0])

 scores.append([units, n_factors, fold, epoch, r0, r1.mean(),

 r1.std(), r1.median()])

Figure 20.8 plots the validation IC averaged over the five annual folds by epoch for the
five-factor count and three hidden-layer size combinations. The upper panel shows the IC
across the 52 weeks and the lower panel shows the average weekly IC (see the notebook for
the color version):

Figure 20.8: Cross-validation performance for all factor and hidden-layer size combinations

The results suggest that more factors and fewer hidden layer units work better; in
particular, four and six factors with eight units perform best with overall IC values in the
range of 0.02-0.03.

Chapter 20

[647]

To evaluate the economic significance of the model's predictive performance, we generate
predictions for a four-factor model with eight units trained for 15 epochs. Then we use
Alphalens to compute the spreads between equal-weighted portfolios invested by a
quintile of the predictions for each point in time, while ignoring transaction costs (see the
alphalens_analysis.ipynb notebook).

Figure 20.9 shows the mean spread for holding periods from 5 to 21 days. For the shorter
end that also reflects the prediction horizon, the spread between the bottom and the top
decile is around 10 basis points:

Figure 20.9: Mean period-wise spread by prediction quintile

To evaluate how the predictive performance might translate into returns over time, we lot
the cumulative returns of similarly invested portfolios, as well as the cumulative return for
a long-short portfolio invested in the top and bottom half, respectively:

Figure 20.10: Cumulative returns of quintile-based and long-short portfolios

The results show significant spreads between quintile portfolios and positive cumulative
returns for the broader-based long-short portfolio over time. This supports the hypothesis
that the conditional autoencoder model could contribute to a profitable trading strategy.

Autoencoders for Conditional Risk Factors and Asset Pricing

[648]

Lessons learned and next steps
The conditional autoencoder combines a nonlinear version of the data-driven risk factors
we explored using PCA in Chapter 13, Data-Driven Risk Factors and Asset Allocation with
Unsupervised Learning, with the risk factor approach to modeling returns discussed in
Chapter 4 and Chapter 7. It illustrates how deep neural network architectures can be
flexibly adapted to various tasks as well as the fluid boundary between autoencoders and
feedforward neural networks.

The numerous simplifications from the data source to the architecture point to several
avenues for improvements. Besides sourcing more data of better quality that also allows the
computation of additional characteristics, the following modifications are a starting point—
there are certainly many more:

• Experiment with data frequencies other than weekly and forecast horizons other
than annual, where shorter periods will also increase the amount of training data

• Modify the model architecture, especially if using more data, which might reverse
the finding that an even smaller hidden layer would estimate better factor loadings

Summary
In this chapter, we introduced how unsupervised learning leverages deep learning.
Autoencoders learn sophisticated, nonlinear feature representations that are capable of
significantly compressing complex data while losing little information. As a result, they
are very useful to counter the curse of dimensionality associated with rich datasets that
have many features, especially common datasets with alternative data. We also saw how to
implement various types of autoencoders using TensorFlow 2.

Most importantly, we implemented recent academic research that extracts data-driven risk
factors from data to predict returns. Different from our linear approach to this challenge
in Chapter 13, Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning,
autoencoders capture nonlinear relationships. Moreover, the flexibility of deep learning
allowed us to incorporate numerous key asset characteristics to model more sensitive
factors that helped predict returns.

In the next chapter, we focus on generative adversarial networks, which have often been
called one of the most exciting recent developments in artificial intelligence, and see how
they are capable of creating synthetic training data.

[649]

21
Generative Adversarial Networks

for Synthetic Time-Series Data

Following the coverage of autoencoders in the previous chapter, this chapter introduces
a second unsupervised deep learning technique: generative adversarial networks (GANs).
As with autoencoders, GANs complement the methods for dimensionality reduction
and clustering introduced in Chapter 13, Data-Driven Risk Factors and Asset Allocation
with Unsupervised Learning.

GANs were invented by Goodfellow et al. in 2014. Yann LeCun has called GANs the
"most exciting idea in AI in the last ten years." A GAN trains two neural networks, called
the generator and discriminator, in a competitive setting. The generator aims to produce
samples that the discriminator is unable to distinguish from a given class of training data.
The result is a generative model capable of producing synthetic samples representative
of a certain target distribution but artificially and, thus, inexpensively created.

GANs have produced an avalanche of research and successful applications in many
domains. While originally applied to images, Esteban, Hyland, and Rätsch (2017) applied
GANs to the medical domain to generate synthetic time-series data. Experiments with
financial data ensued (Koshiyama, Firoozye, and Treleaven 2019; Wiese et al. 2019; Zhou
et al. 2018; Fu et al. 2019) to explore whether GANs can generate data that simulates
alternative asset price trajectories to train supervised or reinforcement algorithms, or
to backtest trading strategies. We will replicate the Time-Series GAN presented at the
2019 NeurIPS by Yoon, Jarrett, and van der Schaar (2019) to illustrate the approach and
demonstrate the results.

Generative Adversarial Networks for Synthetic Time-Series Data

[650]

More specifically, in this chapter you will learn about the following:

• How GANs work, why they are useful, and how they can be applied to trading

• Designing and training GANs using TensorFlow 2

• Generating synthetic financial data to expand the inputs available for training ML
models and backtesting

Creating synthetic data with GANs
This book mostly focuses on supervised learning algorithms that receive input data
and predict an outcome, which we can compare to the ground truth to evaluate their
performance. Such algorithms are also called discriminative models because they learn to
differentiate between different output values.

GANs are an instance of generative models like the variational autoencoder we
encountered in the previous chapter. As described there, a generative model takes a
training set with samples drawn from some distribution p

data
 and learns to represent an

estimate p
model

 of that data-generating distribution.

As mentioned in the introduction, GANs are considered one of the most exciting recent
machine learning innovations because they appear capable of generating high-quality
samples that faithfully mimic a range of input data. This is very attractive given the absence
or high cost of labeled data required for supervised learning.

GANs have triggered a wave of research that initially focused on the generation of
surprisingly realistic images. More recently, GAN instances have emerged that produce
synthetic time series with significant potential for trading since the limited availability of
historical market data is a key driver of the risk of backtest overfitting.

In this section, we explain in more detail how generative models and adversarial training
work and review various GAN architectures. In the next section, we will demonstrate how
to design and train a GAN using TensorFlow 2. In the last section, we will describe how to
adapt a GAN so that it creates synthetic time-series data.

You can find the code samples for this chapter and links to
additional resources in the corresponding directory of the GitHub
repository. The notebooks include color versions of the images.

Chapter 21

[651]

Comparing generative and discriminative models
Discriminative models learn how to differentiate among outcomes y, given input data X. In
other words, they learn the probability of the outcome given the data: p(y | X). Generative
models, on the other hand, learn the joint distribution of inputs and outcome p(y, X). While
generative models can be used as discriminative models using Bayes' rule to compute
which class is most likely (see Chapter 10, Bayesian ML – Dynamic Sharpe Ratios and Pairs
Trading), it often seems preferable to solve the prediction problem directly rather than by
solving the more general generative challenge first (Ng and Jordan 2002).

GANs have a generative objective: they produce complex outputs, such as realistic images,
given simple inputs that can even be random numbers. They achieve this by modeling a
probability distribution over the possible outputs. This probability distribution can have
many dimensions, for example, one for each pixel in an image, each character or token in a
document, or each value in a time series. As a result, the model can generate outputs that
are very likely representative of the class of outputs.

Richard Feynman's quote "What I cannot create, I do not understand" emphasizes that
modeling generative distributions is an important step towards more general AI and
resembles human learning, which succeeds using much fewer samples.

Generative models have several use cases beyond their ability to generate additional
samples from a given distribution. For example, they can be incorporated into model-based
reinforcement learning (RL) algorithms (see the next chapter). Generative models can also
be applied to time-series data to simulate alternative past or possible future trajectories
that can be used for planning in RL or supervised learning more generally, including
for the design of trading algorithms. Other use cases include semi-supervised learning
where GANs facilitate feature matching to assign missing labels with much fewer training
samples than current approaches.

Adversarial training – a zero-sum game of trickery
The key innovation of GANs is a new way of learning the data-generating probability
distribution. The algorithm sets up a competitive, or adversarial game between two neural
networks called the generator and the discriminator.

The generator's goal is to convert random noise input into fake instances of a specific class
of objects, such as images of faces or stock price time series. The discriminator, in turn, aims
to differentiate the generator's deceptive output from a set of training data containing true
samples of the target objects. The overall GAN objective is for both networks to get better at
their respective tasks so that the generator produces outputs that a machine can no longer
distinguish from the originals (at which point we don't need the discriminator, which is no
longer necessary, and can discard it).

Generative Adversarial Networks for Synthetic Time-Series Data

[652]

Figure 21.1 illustrates adversarial training using a generic GAN architecture designed to
generate images. We assume the generator uses a deep CNN architecture (such as the
VGG16 example from Chapter 18, CNNs for Financial Time Series and Satellite Images) that
is reversed just like the decoder part of the convolutional autoencoder we discussed in
the previous chapter. The generator receives an input image with random pixel values
and produces a fake output image that is passed on to the discriminator network, which
uses a mirrored CNN architecture. The discriminator network also receives real samples
that represent the target distribution and predicts the probability that the input is real, as
opposed to fake. Learning takes place by backpropagating the gradients of the discriminator
and generator losses to the respective network's parameters:

Figure 21.1: GAN architecture

The recent GAN Lab is a great interactive tool inspired by TensorFlow Playground, which
allows the user to design GANs and visualize various aspects of the learning process and
performance over time (see resource links on GitHub).

The rapid evolution of the GAN architecture zoo
Since the publication of the paper by Goodfellow et al. in 2014, GANs have attracted an
enormous amount of interest and triggered a corresponding flurry of research.

The bulk of this work has refined the original architecture to adapt it to different domains
and tasks, as well as expanding it to include additional information and create conditional
GANs. Additional research has focused on improving methods for the challenging training
process, which requires achieving a stable game-theoretic equilibrium between two
networks, each of which can be tricky to train on its own.

The GAN landscape has become more diverse than we can cover here; see Creswell et al.
(2018) and Pan et al. (2019) for recent surveys, and Odena (2019) for a list of open questions.

Chapter 21

[653]

Deep convolutional GANs for representation learning

Deep convolutional GANs (DCGANs) were motivated by the successful application of
CNNs to supervised learning for grid-like data (Radford, Metz, and Chintala 2016). The
architecture pioneered the use of GANs for unsupervised learning by developing a feature
extractor based on adversarial training. It is also easier to train and generates higher-quality
images. It is now considered a baseline implementation, with numerous open source
examples available (see references on GitHub).

A DCGAN network takes uniformly distributed random numbers as input and outputs
a color image with a resolution of 64×64 pixels. As the input changes incrementally,
so do the generated images. The network consists of standard CNN components,
including deconvolutional layers that reverse convolutional layers as in the convolutional
autoencoder example in the previous chapter, or fully connected layers.

The authors experimented exhaustively and made several recommendations, such as the
use of batch normalization and ReLU activations in both networks. We will explore a
TensorFlow implementation later in this chapter.

Conditional GANs for image-to-image translation

Conditional GANs (cGANs) introduce additional label information into the training
process, resulting in better quality and some control over the output.

cGANs alter the baseline architecture displayed previously in Figure 21.1 by adding a third
input to the discriminator that contains class labels. These labels, for example, could convey
gender or hair color information when generating images.

Extensions include the generative adversarial what-where network (GAWWN; Reed et al.
2016), which uses bounding box information not only to generate synthetic images but also
to place objects at a given location.

GAN applications to images and time-series data
Alongside a large variety of extensions and modifications of the original architecture,
numerous applications to images, as well as sequential data like speech and music, have
emerged. Image applications are particularly diverse, ranging from image blending and
super-resolution to video generation and human pose identification. Furthermore, GANs
have been used to improve supervised learning performance.

We will look at a few salient examples and then take a closer look at applications to time-
series data that may become particularly relevant to algorithmic trading and investment.
See Alqahtani, Kavakli-Thorne, and Kumar (2019) for a recent survey and GitHub
references for additional resources.

Generative Adversarial Networks for Synthetic Time-Series Data

[654]

CycleGAN – unpaired image-to-image translation

Supervised image-to-image translation aims to learn a mapping between aligned input
and output images. CycleGAN solves this task when paired images are not available and
transforms images from one domain to match another.

Popular examples include the synthetic "painting" of horses as zebras and vice versa. It also
includes the transfer of styles, by generating a realistic sample of an impressionistic print
from an arbitrary landscape photo (Zhu et al. 2018).

StackGAN – text-to-photo image synthesis

One of the earlier applications of GANs to domain-transfer is the generation of images
based on text. Stacked GAN, often shortened to StackGAN, uses a sentence as input and
generates multiple images that match the description.

The architecture operates in two stages, where the first stage yields a low-resolution sketch
of shape and colors, and the second stage enhances the result to a high-resolution image
with photorealistic details (Zhang et al. 2017).

SRGAN – photorealistic single image super-resolution

Super-resolution aims at producing higher-resolution photorealistic images from low-
resolution input. GANs applied to this task have deep CNN architectures that use batch
normalization, ReLU, and skip connection as encountered in ResNet (see Chapter 18, CNNs
for Financial Time Series and Satellite Images) to produce impressive results that are already
finding commercial applications (Ledig et al. 2017).

Synthetic time series with recurrent conditional GANs

Recurrent GANs (RGANs) and recurrent conditional GANs (RCGANs) are two model
architectures that aim to synthesize realistic real-valued multivariate time series (Esteban,
Hyland, and Rätsch 2017). The authors target applications in the medical domain, but the
approach could be highly valuable to overcome the limitations of historical market data.

RGANs rely on recurrent neural networks (RNNs) for the generator and the discriminator.
RCGANs add auxiliary information in the spirit of cGANs (see the previous Conditional
GANs for image-to-image translation section).

The authors succeed in generating visually and quantitatively compelling realistic samples.
Furthermore, they evaluate the quality of the synthetic data, including synthetic labels, by
using it to train a model with only minor degradation of the predictive performance on
a real test set. The authors also demonstrate the successful application of RCGANs to an
early warning system using a medical dataset of 17,000 patients from an intensive care unit.
Hence, the authors illustrate that RCGANs are capable of generating time-series data useful
for supervised training. We will apply this approach to financial market data this chapter in
the TimeGAN – adversarial training for synthetic financial data section.

Chapter 21

[655]

How to build a GAN using TensorFlow 2
To illustrate the implementation of a GAN using Python, we will use the DCGAN example
discussed earlier in this section to synthesize images from the Fashion-MNIST dataset
that we first encountered in Chapter 13, Data-Driven Risk Factors and Asset Allocation with
Unsupervised Learning.

See the notebook deep_convolutional_generative_adversarial_network for
implementation details and references.

Building the generator network
Both generator and discriminator use a deep CNN architecture along the lines illustrated
in Figure 20.1, but with fewer layers. The generator uses a fully connected input layer,
followed by three convolutional layers, as defined in the following build_generator()
function, which returns a Keras model instance:

def build_generator():

 return Sequential([Dense(7 * 7 * 256,

 use_bias=False,

 input_shape=(100,),

 name='IN'),

 BatchNormalization(name='BN1'),

 LeakyReLU(name='RELU1'),

 Reshape((7, 7, 256), name='SHAPE1'),

 Conv2DTranspose(128, (5, 5),

 strides=(1, 1),

 padding='same',

 use_bias=False,

 name='CONV1'),

 BatchNormalization(name='BN2'),

 LeakyReLU(name='RELU2'),

 Conv2DTranspose(64, (5, 5),

 strides=(2, 2),

 padding='same',

 use_bias=False,

 name='CONV2'),

 BatchNormalization(name='BN3'),

 LeakyReLU(name='RELU3'),

 Conv2DTranspose(1, (5, 5),

 strides=(2, 2),

 padding='same',

 use_bias=False,

 activation='tanh',

 name='CONV3')],

 name='Generator')

Generative Adversarial Networks for Synthetic Time-Series Data

[656]

The generator accepts 100 one-dimensional random values as input, and it produces images
that are 28 pixels wide and high and, thus, contain 784 data points.

A call to the .summary() method of the model returned by this function shows that
this network has over 2.3 million parameters (see the notebook for details, including a
visualization of the generator output prior to training).

Creating the discriminator network
The discriminator network uses two convolutional layers that translate the input received
from the generator into a single output value. The model has around 212,000 parameters:

def build_discriminator():

 return Sequential([Conv2D(64, (5, 5),

 strides=(2, 2),

 padding='same',

 input_shape=[28, 28, 1],

 name='CONV1'),

 LeakyReLU(name='RELU1'),

 Dropout(0.3, name='DO1'),

 Conv2D(128, (5, 5),

 strides=(2, 2),

 padding='same',

 name='CONV2'),

 LeakyReLU(name='RELU2'),

 Dropout(0.3, name='DO2'),

 Flatten(name='FLAT'),

 Dense(1, name='OUT')],

 name='Discriminator')

Figure 21.2 depicts how the random input flows from the generator to the discriminator, as
well as the input and output shapes of the various network components:

Chapter 21

[657]

Figure 21.2: DCGAN TensorFlow 2 model architecture

Setting up the adversarial training process
Now that we have built the generator and the discriminator models, we will design and
execute the adversarial training process. To this end, we will define the following:

• The loss functions for both models that reflect their competitive interaction
• A single training step that runs the backpropagation algorithm

• The training loop that repeats the training step until the model performance meets
our expectations

Generative Adversarial Networks for Synthetic Time-Series Data

[658]

Defining the generator and discriminator loss functions
The generator loss reflects the discriminator's decision regarding the fake input. It will be
low if the discriminator mistakes an image produced by the generator for a real image, and
high otherwise; we will define the interaction between both models when we create the
training step.

The generator loss is measured by the binary cross-entropy loss function as follows:

cross_entropy = BinaryCrossentropy(from_logits=True)
def generator_loss(fake_output):
 return cross_entropy(tf.ones_like(fake_output), fake_output)

The discriminator receives both real and fake images as input. It computes a loss for each and
attempts to minimize the sum with the goal of accurately recognizing both types of inputs:

def discriminator_loss(true_output, fake_output):
 true_loss = cross_entropy(tf.ones_like(true_output), true_output)
 fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
 return true_loss + fake_loss

To train both models, we assign each an Adam optimizer with a learning rate lower than
the default:

gen_optimizer = Adam(1e-4)
dis_optimizer = Adam(1e-4)

The core – designing the training step

Each training step implements one round of stochastic gradient descent using the Adam
optimizer. It consists of five steps:

1. Providing the minibatch inputs to each model

2. Getting the models' outputs for the current weights

3. Computing the loss given the models' objective and output

4. Obtaining the gradients for the loss with respect to each model's weights

5. Applying the gradients according to the optimizer's algorithm

The function train_step() carries out these five steps. We use the @tf.function decorator
to speed up execution by compiling it to a TensorFlow operation rather than relying on
eager execution (see the TensorFlow documentation for details):

@tf.function
def train_step(images):
 # generate the random input for the generator
 noise = tf.random.normal([BATCH_SIZE, noise_dim])
 with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
 # get the generator output

 generated_img = generator(noise, training=True)

Chapter 21

[659]

 # collect discriminator decisions regarding real and fake input

 true_output = discriminator(images, training=True)

 fake_output = discriminator(generated_img, training=True)

 # compute the loss for each model

 gen_loss = generator_loss(fake_output)

 disc_loss = discriminator_loss(true_output, fake_output)

 # compute the gradients for each loss with respect to the model variables

 grad_generator = gen_tape.gradient(gen_loss,

 generator.trainable_variables)

 grad_discriminator = disc_tape.gradient(disc_loss,

 discriminator.trainable_variables)

 # apply the gradient to complete the backpropagation step

 gen_optimizer.apply_gradients(zip(grad_generator,

 generator.trainable_variables))

 dis_optimizer.apply_gradients(zip(grad_discriminator,
 discriminator.trainable_variables))

Putting it together – the training loop

The training loop is very straightforward to implement once we have the training step
properly defined. It consists of a simple for loop, and during each iteration, we pass a new
batch of real images to the training step. We also will sample some synthetic images and
occasionally save the model weights.

Note that we track progress using the tqdm package, which shows the percentage complete
during training:

def train(dataset, epochs, save_every=10):

 for epoch in tqdm(range(epochs)):

 for img_batch in dataset:

 train_step(img_batch)

 # produce images for the GIF as we go

 display.clear_output(wait=True)

 generate_and_save_images(generator, epoch + 1, seed)

 # Save the model every 10 EPOCHS

 if (epoch + 1) % save_every == 0:

 checkpoint.save(file_prefix=checkpoint_prefix)
 # Generator after final epoch
 display.clear_output(wait=True)

 generate_and_save_images(generator, epochs, seed)

train(train_set, EPOCHS)

Generative Adversarial Networks for Synthetic Time-Series Data

[660]

Evaluating the results
After 100 epochs that only take a few minutes, the synthetic images created from random
noise clearly begin to resemble the originals, as you can see in Figure 21.3 (see the notebook
for the best visual quality):

Figure 21.3: A sample of synthetic Fashion-MNIST images

The notebook also creates a dynamic GIF image that visualizes how the quality of the
synthetic images improves during training.

Now that we understand how to build and train a GAN using TensorFlow 2, we will move
on to a more complex example that produces synthetic time series from stock price data.

TimeGAN for synthetic financial data
Generating synthetic time-series data poses specific challenges above and beyond those
encountered when designing GANs for images. In addition to the distribution over
variables at any given point, such as pixel values or the prices of numerous stocks, a
generative model for time-series data should also learn the temporal dynamics that shape
how one sequence of observations follows another. (Refer also to the discussion in Chapter

9, Time-Series Models for Volatility Forecasts and Statistical Arbitrage).

Very recent and promising research by Yoon, Jarrett, and van der Schaar, presented at
NeurIPS in December 2019, introduces a novel time-series generative adversarial network
(TimeGAN) framework that aims to account for temporal correlations by combining
supervised and unsupervised training. The model learns a time-series embedding space
while optimizing both supervised and adversarial objectives, which encourage it to adhere
to the dynamics observed while sampling from historical data during training. The authors
test the model on various time series, including historical stock prices, and find that the
quality of the synthetic data significantly outperforms that of available alternatives.

In this section, we will outline how this sophisticated model works, highlight key
implementation steps that build on the previous DCGAN example, and show how to evaluate
the quality of the resulting time series. Please see the paper for additional information.

Chapter 21

[661]

Learning to generate data across features and time
A successful generative model for time-series data needs to capture both the cross-sectional
distribution of features at each point in time and the longitudinal relationships among these
features over time. Expressed in the image context we just discussed, the model needs to
learn not only what a realistic image looks like, but also how one image evolves from the
previous as in a video.

Combining adversarial and supervised training

As mentioned in the first section, prior attempts at generating time-series data, like
RGANs and RCGANs, relied on RNNs (see Chapter 19, RNNs for Multivariate Time Series
and Sentiment Analysis) in the roles of generator and discriminator. TimeGAN explicitly
incorporates the autoregressive nature of time series by combining the unsupervised
adversarial loss on both real and synthetic sequences familiar from the DCGAN example
with a stepwise supervised loss with respect to the original data. The goal is to reward the
model for learning the distribution over transitions from one point in time to the next that
are present in the historical data.

Furthermore, TimeGAN includes an embedding network that maps the time-series
features to a lower-dimensional latent space to reduce the complexity of the adversarial
space. The motivation is to capture the drivers of temporal dynamics that often have
lower dimensionality. (Refer also to the discussions of manifold learning in Chapter 13,
Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning and nonlinear
dimensionality reduction in Chapter 20, Autoencoders for Conditional Risk Factors and
Asset Pricing).

A key element of the TimeGAN architecture is that both the generator and the embedding
(or autoencoder) network are responsible for minimizing the supervised loss that measures
how well the model learns the dynamic relationship. As a result, the model learns a latent
space conditioned on facilitating the generator's task to faithfully reproduce the temporal
relationships observed in the historical data. In addition to time-series data, the model can
also process static data that does not change or changes less frequently over time.

The four components of the TimeGAN architecture

The TimeGAN architecture combines an adversarial network with an autoencoder and thus
has four network components, as depicted in Figure 21.4:

1. Autoencoder: embedding and recovery networks

2. Adversarial network: sequence generator and sequence discriminator components

Generative Adversarial Networks for Synthetic Time-Series Data

[662]

The authors emphasize the joint training of the autoencoder and the adversarial
networks by means of three different loss functions. The reconstruction loss optimizes
the autoencoder, the unsupervised loss trains the adversarial net, and the supervised
loss enforces the temporal dynamics. As a result of this key insight, the TimeGAN
simultaneously learns to encode features, generate representations, and iterate across time.
More specifically, the embedding network creates the latent space, the adversarial network
operates within this space, and supervised loss synchronizes the latent dynamics of both
real and synthetic data.

Figure 21.4: The components of the TimeGAN architecture

The embedding and recovery components of the autoencoder map the feature space into
the latent space and vice versa. This facilitates the learning of the temporal dynamics by the
adversarial network, which learns in a lower-dimensional space. The authors implement
the embedding and recovery network using a stacked RNN and a feedforward network.
However, these choices can be flexibly adapted to the task at hand as long as they are
autoregressive and respect the temporal order of the data.

The generator and the discriminator elements of the adversarial network differ from the
DCGAN not only because they operate on sequential data but also because the synthetic
features are generated in the latent space that the model learns simultaneously. The authors
chose an RNN as the generator and a bidirectional RNN with a feedforward output layer
for the discriminator.

Joint training of an autoencoder and adversarial network

The three loss functions displayed in Figure 21.4 drive the joint optimization of the network
elements just described while training on real and randomly generated time series. In more
detail, they aim to accomplish the following:

Chapter 21

[663]

• The reconstruction loss is familiar from our discussion of autoencoders in Chapter

20, Autoencoders for Conditional Risk Factors and Asset Pricing; it compares how well
the reconstruction of the encoded data resembles the original.

• The unsupervised loss reflects the competitive interaction between the generator
and the discriminator described in the DCGAN example; while the generator aims
to minimize the probability that the discriminator classifies its output as fake, the
discriminator aims to optimize the correct classification or real and fake inputs.

• The supervised loss captures how well the generator approximates the actual next
time step in latent space when receiving encoded real data for the prior sequence.

Training takes place in three phases:

1. Training the autoencoder on real time series to optimize reconstruction

2. Optimizing the supervised loss using real time series to capture the temporal
dynamics of the historical data

3. Jointly training the four components while minimizing all three loss functions

TimeGAN includes several hyperparameters used to weigh the components of composite
loss functions; however, the authors find the network to be less sensitive to these settings
than one might expect given the notorious difficulties of GAN training. In fact, they do
not discover significant challenges during training and suggest that the embedding task
serves to regularize adversarial learning because it reduces its dimensionality while the
supervised loss constrains the stepwise dynamics of the generator.

We now turn to the TimeGAN implementation using TensorFlow 2; see the paper for
an in-depth explanation of the math and methodology of the approach.

Implementing TimeGAN using TensorFlow 2
In this section, we will implement the TimeGAN architecture just described. The authors
provide sample code using TensorFlow 1 that we will port to TensorFlow 2. Building and
training TimeGAN requires several steps:

1. Selecting and preparing real and random time series inputs

2. Creating the key TimeGAN model components

3. Defining the various loss functions and training steps used during the three training
phases

4. Running the training loops and logging the results

5. Generating synthetic time series and evaluating the results

We'll walk through the key items for each of these steps; please refer to the notebook
TimeGAN_TF2 for the code examples in this section (unless otherwise noted), as well
as additional implementation details.

Generative Adversarial Networks for Synthetic Time-Series Data

[664]

Preparing the real and random input series

The authors demonstrate the applicability of TimeGAN to financial data using 15 years of
daily Google stock prices downloaded from Yahoo Finance with six features, namely open,
high, low, close and adjusted close price, and volume. We'll instead use close to 20 years
of adjusted close prices for six different tickers because it introduces somewhat higher
variability. We will follow the original paper in targeting synthetic series with 24 time steps.

Among the stocks with the longest history in the Quandl Wiki dataset are those displayed
in normalized format, that is, starting at 1.0, in Figure 21.5. We retrieve the adjusted close
from 2000-2017 and obtain over 4,000 observations. The correlation coefficient among the
series ranges from 0.01 for GE and CAT to 0.94 for DIS and KO.

Figure 21.5: The TimeGAN input—six real stock prices series

We scale each series to the range [0, 1] using scikit-learn's MinMaxScaler class, which we will
later use to rescale the synthetic data:

df = pd.read_hdf(hdf_store, 'data/real')

scaler = MinMaxScaler()

scaled_data = scaler.fit_transform(df).astype(np.float32)

In the next step, we create rolling windows containing overlapping sequences of 24
consecutive data points for the six series:

data = []

for i in range(len(df) - seq_len):

 data.append(scaled_data[i:i + seq_len])

n_series = len(data)

Chapter 21

[665]

We then create a tf.data.Dataset instance from the list of NumPy arrays, ensure the data
gets shuffled while training, and set a batch size of 128:

real_series = (tf.data.Dataset

 .from_tensor_slices(data)

 .shuffle(buffer_size=n_windows)
 .batch(batch_size))

real_series_iter = iter(real_series.repeat())

We also need a random time-series generator that produces simulated data with 24
observations on the six series for as long as the training continues.

To this end, we will create a generator that draws the requisite data uniform at random
and feeds the result into a second tf.data.Dataset instance. We set this dataset to produce
batches of the desired size and to repeat the process for as long as necessary:

def make_random_data():

 while True:

 yield np.random.uniform(low=0, high=1, size=(seq_len, n_seq))

random_series = iter(tf.data.Dataset

 .from_generator(make_random_data,

 output_types=tf.float32)
 .batch(batch_size)

 .repeat())

We'll now proceed to define and instantiate the TimeGAN model components.

Creating the TimeGAN model components

We'll now create the two autoencoder components and the two adversarial network
elements, as well as the supervisor that encourages the generator to learn the temporal
dynamic of the historical price series.

We will follow the authors' sample code in creating RNNs with three hidden layers, each
with 24 GRU units, except for the supervisor, which uses only two hidden layers. The
following make_rnn function automates the network creation:

def make_rnn(n_layers, hidden_units, output_units, name):

 return Sequential([GRU(units=hidden_units,

 return_sequences=True,

 name=f'GRU_{i + 1}') for i in range(n_layers)] +

 [Dense(units=output_units,

 activation='sigmoid',

 name='OUT')], name=name)

Generative Adversarial Networks for Synthetic Time-Series Data

[666]

The autoencoder consists of the embedder and the recovery networks that we
instantiate here:

embedder = make_rnn(n_layers=3,

 hidden_units=hidden_dim,

 output_units=hidden_dim,

 name='Embedder')

recovery = make_rnn(n_layers=3,

 hidden_units=hidden_dim,

 output_units=n_seq,

 name='Recovery')

We then create the generator, the discriminator, and the supervisor like so:

generator = make_rnn(n_layers=3,

 hidden_units=hidden_dim,

 output_units=hidden_dim,

 name='Generator')

discriminator = make_rnn(n_layers=3,

 hidden_units=hidden_dim,

 output_units=1,

 name='Discriminator')

supervisor = make_rnn(n_layers=2,

 hidden_units=hidden_dim,

 output_units=hidden_dim,

 name='Supervisor')

We also define two generic loss functions, namely MeanSquaredError and
BinaryCrossEntropy, which we will use later to create the various specific loss functions
during the three phases:

mse = MeanSquaredError()

bce = BinaryCrossentropy()

Now it's time to start the training process.

Training phase 1 – autoencoder with real data

The autoencoder integrates the embedder and the recovery functions, as we saw in the
previous chapter:

H = embedder(X)

X_tilde = recovery(H)

autoencoder = Model(inputs=X,

 outputs=X_tilde,

Chapter 21

[667]

 name='Autoencoder')

autoencoder.summary()

Model: "Autoencoder"

Layer (type) Output Shape Param #

===

RealData (InputLayer) [(None, 24, 6)] 0

Embedder (Sequential) (None, 24, 24) 10104

Recovery (Sequential) (None, 24, 6) 10950

===

Trainable params: 21,054

It has 21,054 parameters. We will now instantiate the optimizer for this training phase and
define the training step. It follows the pattern introduced with the DCGAN example, using
tf.GradientTape to record the operations that generate the reconstruction loss. This allows
us to rely on the automatic differentiation engine to obtain the gradients with respect to the
trainable embedder and recovery network weights that drive backpropagation:

autoencoder_optimizer = Adam()

@tf.function

def train_autoencoder_init(x):

 with tf.GradientTape() as tape:

 x_tilde = autoencoder(x)

 embedding_loss_t0 = mse(x, x_tilde)

 e_loss_0 = 10 * tf.sqrt(embedding_loss_t0)

 var_list = embedder.trainable_variables + recovery.trainable_variables

 gradients = tape.gradient(e_loss_0, var_list)

 autoencoder_optimizer.apply_gradients(zip(gradients, var_list))

 return tf.sqrt(embedding_loss_t0)

The reconstruction loss simply compares the autoencoder outputs with its inputs. We train
for 10,000 steps in a little over one minute using this training loop that records the step loss
for monitoring with TensorBoard:

for step in tqdm(range(train_steps)):

 X_ = next(real_series_iter)

 step_e_loss_t0 = train_autoencoder_init(X_)

 with writer.as_default():

 tf.summary.scalar('Loss Autoencoder Init', step_e_loss_t0, step=step)

Generative Adversarial Networks for Synthetic Time-Series Data

[668]

Training phase 2 – supervised learning with real data

We already created the supervisor model so we just need to instantiate the optimizer and
define the train step as follows:

supervisor_optimizer = Adam()

@tf.function

def train_supervisor(x):

 with tf.GradientTape() as tape:

 h = embedder(x)

 h_hat_supervised = supervisor(h)

 g_loss_s = mse(h[:, 1:, :], h_hat_supervised[:, 1:, :])

 var_list = supervisor.trainable_variables

 gradients = tape.gradient(g_loss_s, var_list)

 supervisor_optimizer.apply_gradients(zip(gradients, var_list))

 return g_loss_s

In this case, the loss compares the output of the supervisor with the next timestep for
the embedded sequence so that it learns the temporal dynamics of the historical price
sequences; the training loop works similarly to the autoencoder example in the previous
chapter.

Training phase 3 – joint training with real and random data

The joint training involves all four network components, as well as the supervisor. It
uses multiple loss functions and combinations of the base components to achieve the
simultaneous learning of latent space embeddings, transition dynamics, and synthetic data
generation.

We will highlight a few salient examples; please see the notebook for the full
implementation that includes some repetitive steps that we will omit here.

To ensure that the generator faithfully reproduces the time series, TimeGAN includes a
moment loss that penalizes when the mean and variance of the synthetic data deviate from
the real version:

def get_generator_moment_loss(y_true, y_pred):

 y_true_mean, y_true_var = tf.nn.moments(x=y_true, axes=[0])

 y_pred_mean, y_pred_var = tf.nn.moments(x=y_pred, axes=[0])

 g_loss_mean = tf.reduce_mean(tf.abs(y_true_mean - y_pred_mean))

 g_loss_var = tf.reduce_mean(tf.abs(tf.sqrt(y_true_var + 1e-6) -

 tf.sqrt(y_pred_var + 1e-6)))

 return g_loss_mean + g_loss_var

The end-to-end model that produces synthetic data involves the generator, supervisor, and
recovery components. It is defined as follows and has close to 30,000 trainable parameters:

Chapter 21

[669]

E_hat = generator(Z)

H_hat = supervisor(E_hat)

X_hat = recovery(H_hat)

synthetic_data = Model(inputs=Z,

 outputs=X_hat,

 name='SyntheticData')

Model: "SyntheticData"

Layer (type) Output Shape Param #

===

RandomData (InputLayer) [(None, 24, 6)] 0

Generator (Sequential) (None, 24, 24) 10104

Supervisor (Sequential) (None, 24, 24) 7800

Recovery (Sequential) (None, 24, 6) 10950

===

Trainable params: 28,854

The joint training involves three optimizers for the autoencoder, the generator, and the
discriminator:

generator_optimizer = Adam()

discriminator_optimizer = Adam()

embedding_optimizer = Adam()

The train step for the generator illustrates the use of four loss functions and corresponding
combinations of network components to achieve the desired learning outlined at the
beginning of this section:

@tf.function

def train_generator(x, z):

 with tf.GradientTape() as tape:

 y_fake = adversarial_supervised(z)

 generator_loss_unsupervised = bce(y_true=tf.ones_like(y_fake),

 y_pred=y_fake)

 y_fake_e = adversarial_emb(z)

 generator_loss_unsupervised_e = bce(y_true=tf.ones_like(y_fake_e),

 y_pred=y_fake_e)

 h = embedder(x)

 h_hat_supervised = supervisor(h)

 generator_loss_supervised = mse(h[:, 1:, :],

 h_hat_supervised[:, 1:, :])

Generative Adversarial Networks for Synthetic Time-Series Data

[670]

 x_hat = synthetic_data(z)

 generator_moment_loss = get_generator_moment_loss(x, x_hat)

 generator_loss = (generator_loss_unsupervised +

 generator_loss_unsupervised_e +

 100 * tf.sqrt(generator_loss_supervised) +

 100 * generator_moment_loss)

 var_list = generator.trainable_variables + supervisor.trainable_variables

 gradients = tape.gradient(generator_loss, var_list)

 generator_optimizer.apply_gradients(zip(gradients, var_list))

 return (generator_loss_unsupervised, generator_loss_supervised,

 generator_moment_loss)

Finally, the joint training loop pulls the various training steps together and builds on the
learning from phase 1 and 2 to train the TimeGAN components on both real and random
data. We run the loop for 10,000 iterations in under 40 minutes:

for step in range(train_steps):

 # Train generator (twice as often as discriminator)

 for kk in range(2):

 X_ = next(real_series_iter)

 Z_ = next(random_series)

 # Train generator

 step_g_loss_u, step_g_loss_s, step_g_loss_v = train_generator(X_, Z_)

 # Train embedder

 step_e_loss_t0 = train_embedder(X_)

 X_ = next(real_series_iter)

 Z_ = next(random_series)

 step_d_loss = get_discriminator_loss(X_, Z_)

 if step_d_loss > 0.15:

 step_d_loss = train_discriminator(X_, Z_)

 if step % 1000 == 0:

 print(f'{step:6,.0f} | d_loss: {step_d_loss:6.4f} | '

 f'g_loss_u: {step_g_loss_u:6.4f} | '

 f'g_loss_s: {step_g_loss_s:6.4f} | '

 f'g_loss_v: {step_g_loss_v:6.4f} | '

 f'e_loss_t0: {step_e_loss_t0:6.4f}')

Chapter 21

[671]

 with writer.as_default():

 tf.summary.scalar('G Loss S', step_g_loss_s, step=step)

 tf.summary.scalar('G Loss U', step_g_loss_u, step=step)

 tf.summary.scalar('G Loss V', step_g_loss_v, step=step)

 tf.summary.scalar('E Loss T0', step_e_loss_t0, step=step)

 tf.summary.scalar('D Loss', step_d_loss, step=step)

Now we can finally generate synthetic time series!

Generating synthetic time series

To evaluate the TimeGAN results, we will generate synthetic time series by drawing random
inputs and feeding them to the synthetic_data network just described in the preceding
section. More specifically, we'll create roughly as many artificial series with 24 observations
on the six tickers as there are overlapping windows in the real dataset:

generated_data = []

for i in range(int(n_windows / batch_size)):

 Z_ = next(random_series)

 d = synthetic_data(Z_)

 generated_data.append(d)

len(generated_data)

35

The result is 35 batches containing 128 samples, each with the dimensions 24×6, that we
stack like so:

generated_data = np.array(np.vstack(generated_data))

generated_data.shape

(4480, 24, 6)

We can use the trained MinMaxScaler to revert the synthetic output to the scale of the input
series:

generated_data = (scaler.inverse_transform(generated_data

 .reshape(-1, n_seq))

 .reshape(-1, seq_len, n_seq))

Figure 21.6 displays samples of the six synthetic series and the corresponding real series.
The synthetic data generally reflects a variation of behavior not unlike its real counterparts
and, after rescaling, roughly (due to the random input) matches its range:

Generative Adversarial Networks for Synthetic Time-Series Data

[672]

Figure 21.6: TimeGAN output—six synthetic prices series and their real counterparts

Now it's time to take a closer look at how to more thoroughly evaluate the quality of the
synthetic data.

Evaluating the quality of synthetic time-series data
The TimeGAN authors assess the quality of the generated data with respect to three
practical criteria:

• Diversity: The distribution of the synthetic samples should roughly match that of
the real data.

• Fidelity: The sample series should be indistinguishable from the real data.

• Usefulness: The synthetic data should be as useful as its real counterparts for
solving a predictive task.

They apply three methods to evaluate whether the synthetic data actually exhibits these
characteristics:

• Visualization: For a qualitative diversity assessment of diversity, we use
dimensionality reduction—principal component analysis (PCA) and t-SNE
(see Chapter 13, Data-Driven Risk Factors and Asset Allocation with Unsupervised
Learning)—to visually inspect how closely the distribution of the synthetic samples
resembles that of the original data.

• Discriminative score: For a quantitative assessment of fidelity, the test error of a
time-series classifier, such as a two-layer LSTM (see Chapter 18, CNNs for Financial
Time Series and Satellite Images), lets us evaluate whether real and synthetic time
series can be differentiated or are, in fact, indistinguishable.

Chapter 21

[673]

• Predictive score: For a quantitative measure of usefulness, we can compare the test
errors of a sequence prediction model trained on, alternatively, real or synthetic
data to predict the next time step for the real data.

We'll apply and discuss the results of each method in the following sections. See the
notebook evaluating_synthetic_data for the code samples and additional details.

Assessing diversity – visualization using PCA and t-SNE

To visualize the real and synthetic series with 24 time steps and six features, we will reduce
their dimensionality so that we can plot them in two dimensions. To this end, we will
sample 250 normalized sequences with six features each and reshape them to obtain data
with the dimensionality 1,500×24 (showing only the steps for real data; see the notebook for
the synthetic data):

same steps to create real sequences for training

real_data = get_real_data()

reload synthetic data

synthetic_data = np.load('generated_data.npy')

synthetic_data.shape

(4480, 24, 6)

ensure same number of sequences

real_data = real_data[:synthetic_data.shape[0]]

sample_size = 250

idx = np.random.permutation(len(real_data))[:sample_size]

real_sample = np.asarray(real_data)[idx]

real_sample_2d = real_sample.reshape(-1, seq_len)

real_sample_2d.shape

(1500, 24)

PCA is a linear method that identifies a new basis with mutually orthogonal vectors that,
successively, capture the directions of maximum variance in the data. We will compute the
first two components using the real data and then project both real and synthetic samples
onto the new coordinate system:

pca = PCA(n_components=2)

pca.fit(real_sample_2d)
pca_real = (pd.DataFrame(pca.transform(real_sample_2d))

 .assign(Data='Real'))

pca_synthetic = (pd.DataFrame(pca.transform(synthetic_sample_2d))

 .assign(Data='Synthetic'))

t-SNE is a nonlinear manifold learning method for the visualization of high-dimensional
data. It converts similarities between data points to joint probabilities and aims to minimize
the Kullback-Leibler divergence between the joint probabilities of the low-dimensional
embedding and the high-dimensional data (see Chapter 13, Data-Driven Risk Factors and

Generative Adversarial Networks for Synthetic Time-Series Data

[674]

Asset Allocation with Unsupervised Learning). We compute t-SNE for the combined real and
synthetic data as follows:

tsne_data = np.concatenate((real_sample_2d,

 synthetic_sample_2d), axis=0)

tsne = TSNE(n_components=2, perplexity=40)

tsne_result = tsne.fit_transform(tsne_data)

Figure 21.7 displays the PCA and t-SNE results for a qualitative assessment of the similarity
of the real and synthetic data distributions. Both methods reveal strikingly similar patterns
and significant overlap, suggesting that the synthetic data captures important aspects of the
real data characteristics.

Figure 21.7: 250 samples of real and synthetic data in two dimensions

Assessing fidelity – time-series classification performance
The visualization only provides a qualitative impression. For a quantitative assessment of
the fidelity of the synthetic data, we will train a time-series classifier to distinguish between
real and fake data and evaluate its performance on a held-out test set.

More specifically, we will select the first 80 percent of the rolling sequences for training and
the last 20 percent as a test set, as follows:

synthetic_data.shape

(4480, 24, 6)

n_series = synthetic_data.shape[0]

idx = np.arange(n_series)

n_train = int(.8*n_series)

train_idx, test_idx = idx[:n_train], idx[n_train:]

train_data = np.vstack((real_data[train_idx],

 synthetic_data[train_idx]))

test_data = np.vstack((real_data[test_idx],

Chapter 21

[675]

 synthetic_data[test_idx]))

n_train, n_test = len(train_idx), len(test_idx)

train_labels = np.concatenate((np.ones(n_train),

 np.zeros(n_train)))

test_labels = np.concatenate((np.ones(n_test),

 np.zeros(n_test)))

Then we will create a simple RNN with six units that receives mini batches of real and
synthetic series with the shape 24×6 and uses a sigmoid activation. We will optimize it
using binary cross-entropy loss and the Adam optimizer, while tracking the AUC and
accuracy metrics:

ts_classifier = Sequential([GRU(6, input_shape=(24, 6), name='GRU'),
 Dense(1, activation='sigmoid', name='OUT')])

ts_classifier.compile(loss='binary_crossentropy',
 optimizer='adam',

 metrics=[AUC(name='AUC'), 'accuracy'])

Model: "Time Series Classifier"

Layer (type) Output Shape Param #

===

GRU (GRU) (None, 6) 252

OUT (Dense) (None, 1) 7

===

Total params: 259

Trainable params: 259

The model has 259 trainable parameters. We will train it for 250 epochs on batches of 128
randomly selected samples and track the validation performance:

result = ts_classifier.fit(x=train_data,
 y=train_labels,

 validation_data=(test_data, test_labels),

 epochs=250, batch_size=128)

Once the training completes, evaluation of the test set yields a classification error of almost
56 percent on the balanced test set and a very low AUC of 0.15:

ts_classifier.evaluate(x=test_data, y=test_labels)
56/56 [==============================] - 0s 2ms/step - loss: 3.7510 - AUC:
0.1596 - accuracy: 0.4403

Generative Adversarial Networks for Synthetic Time-Series Data

[676]

Figure 21.8 plots the accuracy and AUC performance metrics for both train and test data
over the 250 training epochs:

Figure 21.8: Train and test performance of the time-series classifier over 250 epochs

The plot shows that that model is not able to learn the difference between the real and
synthetic data in a way that generalizes to the test set. This result suggests that the quality
of the synthetic data meets the fidelity standard.

Assessing usefulness – train on synthetic, test on real

Finally, we want to know how useful synthetic data is when it comes to solving a prediction
problem. To this end, we will train a time-series prediction model alternatively on the
synthetic and the real data to predict the next time step and compare the performance on a
test set created from the real data.

More specifically, we will select the first 23 time steps of each sequence as input, and the
final time step as output. At the same time, we will split the real data into train and test sets
using the same temporal split as in the previous classification example:

real_data.shape, synthetic_data.shape

((4480, 24, 6), (4480, 24, 6))

real_train_data = real_data[train_idx, :23, :]

real_train_label = real_data[train_idx, -1, :]

real_test_data = real_data[test_idx, :23, :]

real_test_label = real_data[test_idx, -1, :]

real_train_data.shape, real_train_label.shape

((3584, 23, 6), (3584, 6))

We will select the complete synthetic data for training since abundance is one of the reasons
we generated it in the first place:

synthetic_train = synthetic_data[:, :23, :]

synthetic_label = synthetic_data[:, -1, :]

synthetic_train.shape, synthetic_label.shape

((4480, 23, 6), (4480, 6))

Chapter 21

[677]

We will create a one-layer RNN with 12 GRU units that predicts the last time steps for
the six stock price series and, thus, has six linear output units. The model uses the Adam
optimizer to minimize the mean absolute error (MAE):

def get_model():

 model = Sequential([GRU(12, input_shape=(seq_len-1, n_seq)),

 Dense(6)])

 model.compile(optimizer=Adam(),

 loss=MeanAbsoluteError(name='MAE'))

 return model

We will train the model twice using the synthetic and real data for training, respectively,
and the real test set to evaluate the out-of-sample performance. Training on synthetic data
works as follows; training on real data works analogously (see the notebook):

ts_regression = get_model()

synthetic_result = ts_regression.fit(x=synthetic_train,
 y=synthetic_label,

 validation_data=(

 real_test_data,

 real_test_label),

 epochs=100,

 batch_size=128)

Figure 21.9 plots the MAE on the train and test sets (on a log scale so we can spot the
differences) for both models. It turns out that the MAE is slightly lower after training on the
synthetic dataset:

Figure 21.9: Train and test performance of the time-series prediction model over 100 epochs

The result shows that synthetic training data may indeed be useful. On the specific
predictive task of predicting the next daily stock price for six tickers, a simple model
trained on synthetic TimeGAN data delivers equal or better performance than training
on real data.

Generative Adversarial Networks for Synthetic Time-Series Data

[678]

Lessons learned and next steps
The perennial problem of overfitting that we encountered throughout this book implies
that the ability to generate useful synthetic data would be quite valuable. The TimeGAN
example justifies cautious optimism in this regard. At the same time, there are some
caveats: we generated price data for a small number of assets at a daily frequency. In
reality, we are probably interested in returns for a much larger number of assets, possibly at
a higher frequency. The cross-sectional and temporal dynamics will certainly become more
complex and may require adjustments to the TimeGAN architecture and training process.

These limitations of the experiment, however promising, imply natural next steps: we
need to expand the scope to higher-dimensional time series containing information other
than prices and also need to test their usefulness in the context of more complex models,
including for feature engineering. These are very early days for synthetic training data, but
this example should equip you to pursue your own research agenda towards more realistic
solutions.

Summary
In this chapter, we introduced GANs that learn a probability distribution over the input
data and are thus capable of generating synthetic samples that are representative of the
target data.

While there are many practical applications for this very recent innovation, they could be
particularly valuable for algorithmic trading if the success in generating time-series training
data in the medical domain can be transferred to financial market data. We learned how
to set up adversarial training using TensorFlow. We also explored TimeGAN, a recent
example of such a model, tailored to generating synthetic time-series data.

In the next chapter, we focus on reinforcement learning where we will build agents that
interactively learn from their (market) environment.

[679]

22
Deep Reinforcement Learning –

Building a Trading Agent
In this chapter, we'll introduce reinforcement learning (RL), which takes a different
approach to machine learning (ML) than the supervised and unsupervised algorithms
we have covered so far. RL has attracted enormous attention as it has been the main
driver behind some of the most exciting AI breakthroughs, like AlphaGo. David Silver,
AlphaGo's creator and the lead RL researcher at Google-owned DeepMind, recently
won the prestigious 2019 ACM Prize in Computing "for breakthrough advances in
computer game-playing." We will see that the interactive and online nature of RL
makes it particularly well-suited to the trading and investment domain.

RL models goal-directed learning by an agent that interacts with a typically stochastic
environment that the agent has incomplete information about. RL aims to automate how
the agent makes decisions to achieve a long-term objective by learning the value of states
and actions from a reward signal. The ultimate goal is to derive a policy that encodes
behavioral rules and maps states to actions.

RL is considered most similar to human learning that results from taking actions in the
real world and observing the consequences. It differs from supervised learning because it
optimizes the agent's behavior one trial-and-error experience at a time based on a scalar
reward signal, rather than by generalizing from correctly labeled, representative samples
of the target concept. Moreover, RL does not stop at making predictions. Instead, it takes
an end-to-end perspective on goal-oriented decision-making by including actions and their
consequences.

In this chapter, you will learn how to formulate an RL problem and apply various solution
methods. We will cover model-based and model-free methods, introduce the OpenAI
Gym environment, and combine deep learning with RL to train an agent that navigates a
complex environment. Finally, we'll show you how to adapt RL to algorithmic trading by
modeling an agent that interacts with the financial market to optimize its profit objective.

Deep Reinforcement Learning – Building a Trading Agent

[680]

More specifically, after reading this chapter, you will be able to:

• Define a Markov decision problem (MDP)

• Use value and policy iteration to solve an MDP

• Apply Q-learning in an environment with discrete states and actions

• Build and train a deep Q-learning agent in a continuous environment

• Use OpenAI Gym to train an RL trading agent

Elements of a reinforcement learning system
RL problems feature several elements that set them apart from the ML settings we have
covered so far. The following two sections outline the key features required for defining
and solving an RL problem by learning a policy that automates decisions. We'll use the
notation and generally follow Reinforcement Learning: An Introduction (Sutton and Barto
2018) and David Silver's UCL Courses on RL (https://www.davidsilver.uk/teaching/),
which are recommended for further study beyond the brief summary that the scope of
this chapter permits.

RL problems aim to solve for actions that optimize the agent's objective, given some
observations about the environment. The environment presents information about its state
to the agent, assigns rewards for actions, and transitions the agent to new states, subject
to probability distributions the agent may or may not know. It may be fully or partially
observable, and it may also contain other agents. The structure of the environment has
a strong impact on the agent's ability to learn a given task, and typically requires significant
up-front design effort to facilitate the training process.

RL problems differ based on the complexity of the environment's state and agent's action
spaces, which can be either discrete or continuous. Continuous actions and states, unless
discretized, require machine learning to approximate a functional relationship between
states, actions, and their values. They also require generalization because the agent almost
certainly experiences only a subset of the potentially infinite number of states and actions
during training.

Solving complex decision problems usually requires a simplified model that isolates the key
aspects. Figure 22.1 highlights the salient features of an RL problem. These typically include:

• Observations by the agent on the state of the environment

• A set of actions available to the agent

• A policy that governs the agent's decisions

You can find the code samples for this chapter and links to
additional resources in the corresponding directory of the GitHub
repository. The notebooks include color versions of the images.

https://www.davidsilver.uk/teaching/

Chapter 22

[681]

Figure 22.1: Components of an RL system

In addition, the environment emits a reward signal (that may be negative) as the agent's
action leads to a transition to a new state. At its core, the agent usually learns a value
function that informs its judgment of the available actions. The agent's objective function
processes the reward signal and translates the value judgments into an optimal policy.

The policy – translating states into actions
At any point in time, the policy defines the agent's behavior. It maps any state the agent
may encounter to one or several actions. In an environment with a limited number of states
and actions, the policy can be a simple lookup table that's filled in during training.

With continuous states and actions, the policy takes the form of a function that machine
learning can help to approximate. The policy may also involve significant computation,
as in the case of AlphaZero, which uses tree search to decide on the best action for a given
game state. The policy may also be stochastic and assign probabilities to actions, given a
state.

Rewards – learning from actions
The reward signal is a single value that the environment sends to the agent at each time
step. The agent's objective is typically to maximize the total reward received over time.
Rewards can also be a stochastic function of the state and the actions. They are typically
discounted to facilitate convergence and reflect the time decay of value.

Rewards are the only way for the agent to learn about the value of its decisions in a given
state and to modify the policy accordingly. Due to its critical impact on the agent's learning,
the reward signal is often the most challenging part of designing an RL system.

Rewards need to clearly communicate what the agent should accomplish (as opposed
to how it should do so) and may require domain knowledge to properly encode this
information. For example, the development of a trading agent may need to define rewards
for buy, hold, and sell decisions. These may be limited to profit and loss, but also may need
to include volatility and risk considerations, such as drawdown.

Deep Reinforcement Learning – Building a Trading Agent

[682]

The value function – optimal choice for the long run
The reward provides immediate feedback on actions. However, solving an RL problem
requires decisions that create value in the long run. This is where the value function comes
in: it summarizes the utility of states or of actions in a given state in terms of their long-term
reward.

In other words, the value of a state is the total reward an agent can expect to obtain in the
future when starting in that state. The immediate reward may be a good proxy of future
rewards, but the agent also needs to account for cases where low rewards are followed by
much better outcomes that are likely to follow (or the reverse).

Hence, value estimates aim to predict future rewards. Rewards are the key inputs, and the
goal of making value estimates is to achieve more rewards. However, RL methods focus on
learning accurate values that enable good decisions while efficiently leveraging the (often
limited) experience.

There are also RL approaches that do not rely on value functions, such as randomized
optimization methods like genetic algorithms or simulated annealing, which aim to find
optimal behaviors by efficiently exploring the policy space. The current interest in RL,
however, is mostly driven by methods that directly or indirectly estimate the value of states
and actions.

Policy gradient methods are a new development that relies on a parameterized,
differentiable policy that can be directly optimized with respect to the objective using
gradient descent (Sutton et al. 2000). See the resources on GitHub that include abstracts
of key papers and algorithms beyond the scope of this chapter.

With or without a model – look before you leap?
Model-based RL approaches learn a model of the environment to allow the agent to
plan ahead by predicting the consequences of its actions. Such a model may be used, for
example, to predict the next state and reward based on the current state and action. This is
the basis for planning, that is, deciding on the best course of action by considering possible
futures before they materialize.

Simpler model-free methods, in contrast, learn from trial and error. Modern RL methods
span the gamut from low-level trial-and-error methods to high-level, deliberative planning.
The right approach depends on the complexity and learnability of the environment.

How to solve reinforcement learning problems
RL methods aim to learn from experience how to take actions that achieve a long-term goal.
To this end, the agent and the environment interact over a sequence of discrete time steps via
the interface of actions, state observations, and rewards described in the previous section.

Chapter 22

[683]

Key challenges in solving RL problems
Solving RL problems requires addressing two unique challenges: the credit-assignment
problem and the exploration-exploitation trade-off.

Credit assignment

In RL, reward signals can occur significantly later than actions that contributed to the
result, complicating the association of actions with their consequences. For example, when
an agent takes 100 different positions and trades repeatedly, how does it realize that certain
holdings performed much better than others if it only learns about the portfolio return?

The credit-assignment problem is the challenge of accurately estimating the benefits and
costs of actions in a given state, despite these delays. RL algorithms need to find a way to
distribute the credit for positive and negative outcomes among the many decisions that
may have been involved in producing it.

Exploration versus exploitation

The dynamic and interactive nature of RL implies that the agent needs to estimate the value
of the states and actions before it has experienced all relevant trajectories. While it is able to
select an action at any stage, these decisions are based on incomplete learning, yet generate
the agent's first insights into the optimal choices of its behavior.

Partial visibility into the value of actions creates the risk of decisions that only exploit past
(successful) experience rather than exploring uncharted territory. Such choices limit the
agent's exposure and prevent it from learning an optimal policy.

An RL algorithm needs to balance this exploration-exploitation trade-off—too little
exploration will likely produce biased value estimates and suboptimal policies, whereas too
little exploitation prevents learning from taking place in the first place.

Fundamental approaches to solving RL problems
There are numerous approaches to solving RL problems, all of which involve finding rules
for the agent's optimal behavior:

• Dynamic programming (DP) methods make the often unrealistic assumption of
complete knowledge of the environment, but they are the conceptual foundation for
most other approaches.

• Monte Carlo (MC) methods learn about the environment and the costs and benefits
of different decisions by sampling entire state-action-reward sequences.

• Temporal difference (TD) learning significantly improves sample efficiency by
learning from shorter sequences. To this end, it relies on bootstrapping, which is
defined as refining its estimates based on its own prior estimates.

Deep Reinforcement Learning – Building a Trading Agent

[684]

When an RL problem includes well-defined transition probabilities and a limited number
of states and actions, it can be framed as a finite Markov decision process (MDP) for which
DP can compute an exact solution. Much of the current RL theory focuses on finite MDPs,
but practical applications are used for (and require) more general settings. Unknown
transition probabilities require efficient sampling to learn about their distribution.

Approaches to continuous state and/or action spaces often leverage machine learning
to approximate a value or policy function. They integrate supervised learning and, in
particular, deep learning methods like those discussed in the previous four chapters.
However, these methods face distinct challenges in the RL context:

• The reward signal does not directly reflect the target concept, like a labeled training
sample.

• The distribution of the observations depends on the agent's actions and the policy,
which is itself the subject of the learning process.

The following sections will introduce and demonstrate various solution methods. We'll
start with the DP methods value iteration and policy iteration, which are limited to finite
MDP with known transition probabilities. As we will see in the following section, they
are the foundation for Q-learning, which is based on TD learning and does not require
information about transition probabilities. It aims for similar outcomes as DP but with
less computation and without assuming a perfect model of the environment. Finally, we'll
expand the scope to continuous states and introduce deep Q-learning.

Solving dynamic programming problems
Finite MDPs are a simple yet fundamental framework. We will introduce the trajectories
of rewards that the agent aims to optimize, define the policy and value functions used to
formulate the optimization problem, and the Bellman equations that form the basis for the
solution methods.

Finite Markov decision problems
MDPs frame the agent-environment interaction as a sequential decision problem over
a series of time steps t =1, …, T that constitute an episode. Time steps are assumed as
discrete, but the framework can be extended to continuous time.

The abstraction afforded by MDPs makes its application easily adaptable to many contexts.
The time steps can be at arbitrary intervals, and actions and states can take any form that
can be expressed numerically.

The Markov property implies that the current state completely describes the process, that
is, the process has no memory. Information from past states adds no value when trying
to predict the process's future. Due to these properties, the framework has been used to
model asset prices subject to the efficient market hypothesis discussed in Chapter 5, Portfolio
Optimization and Performance Evaluation.

Chapter 22

[685]

Sequences of states, actions, and rewards

MDPs proceed in the following fashion: at each step t, the agent observes the environment's
state 𝑆𝑆𝑡𝑡 ∈ 𝑆𝑆 and selects an action 𝐴𝐴𝑡𝑡 ∈ 𝐴𝐴 , where S and A are the sets of states and actions,
respectively. At the next time step t+1, the agent receives a reward 𝑅𝑅𝑡𝑡𝑡𝑡 ∈ 𝑅𝑅 and transitions
to state S

t+1
. Over time, the MDP gives rise to a trajectory S

0
, A

0
, R

1
, S

1
, A

1
, R

1
, … that

continues until the agent reaches a terminal state and the episode ends.

Finite MDPs with a limited number of actions A, states S, and rewards R include well-
defined discrete probability distributions over these elements. Due to the Markov property,
these distributions only depend on the previous state and action.

The probabilistic nature of trajectories implies that the agent maximizes the expected sum
of future rewards. Furthermore, rewards are typically discounted using a factor 0 ≤ 𝛾𝛾 ≤ 𝛾
to reflect their time value. In the case of tasks that are not episodic but continue indefinitely,
a discount factor strictly less than 1 is necessary to avoid infinite rewards and ensure
convergence. Therefore, the agent maximizes the discounted, expected sum of future
returns R

t
, denoted as G

t
:

𝐺𝐺𝑡𝑡 = 𝐄𝐄[𝑅𝑅𝑡𝑡𝑡𝑡 + 𝛾𝛾𝑅𝑅𝑡𝑡𝑡𝑡 + 𝛾𝛾𝑡𝑅𝑅𝑡𝑡𝑡𝑡+. . .] =∑𝛾𝛾𝑠𝑠𝐄𝐄[𝑅𝑅𝑡𝑡𝑡𝑠𝑠]𝑇𝑇
𝑠𝑠𝑠𝑠

This relationship can also be defined recursively because the sum starting at the second step
is the same as G

t+1
 discounted once: 𝐺𝐺𝑡𝑡 = 𝑅𝑅𝑡𝑡𝑡𝑡 + 𝛾𝛾𝐺𝐺𝑡𝑡𝑡𝑡

We will see later that this type of recursive relationship is frequently used to formulate
RL algorithms.

Value functions – how to estimate the long-run reward

As introduced previously, a policy 𝜋𝜋 maps all states to probability distributions over
actions so that the probability of choosing action A

t
 in state S

t
 can be expressed as 𝜋𝜋(𝑎𝑎|𝑠𝑠) = 𝑃𝑃(𝐴𝐴𝑡𝑡 = 𝑎𝑎|𝑆𝑆𝑡𝑡 = 𝑠𝑠) . The value function estimates the long-run return for each state

or state-action pair. It is fundamental to find the policy that is the optimal mapping of states
to actions.

The state-value function 𝑣𝑣𝜋𝜋(𝑠𝑠) for policy 𝜋𝜋 gives the long-term value v of a specific state s
as the expected return G for an agent that starts in s and then always follows policy 𝜋𝜋 . It is
defined as follows, where 𝐸𝐸𝜋𝜋 refers to the expected value when the agent follows policy 𝜋𝜋 :𝑣𝑣𝜋𝜋(𝑠𝑠) = 𝐄𝐄𝜋𝜋[𝐺𝐺𝑡𝑡|𝑆𝑆𝑡𝑡 = 𝑠𝑠] = 𝐄𝐄𝜋𝜋 [∑ 𝛾𝛾𝑘𝑘𝑅𝑅𝑡𝑡𝑡𝑘𝑘𝑡𝑡|𝑠𝑠𝑡𝑡 = 𝑠𝑠∞

𝑘𝑘𝑘𝑘]

Deep Reinforcement Learning – Building a Trading Agent

[686]

Similarly, we can compute the state-action value function q(s,a) as the expected return of
starting in state s, taking action, and then always following the policy 𝜋𝜋 :𝑞𝑞𝜋𝜋(𝑠𝑠𝑠 𝑠𝑠) = 𝐄𝐄𝜋𝜋[𝐺𝐺𝑡𝑡|𝑆𝑆𝑡𝑡 = 𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 = 𝑠𝑠] = 𝐄𝐄𝜋𝜋 [∑ 𝛾𝛾𝑘𝑘𝑅𝑅𝑡𝑡𝑡𝑘𝑘𝑡𝑡|𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 = 𝑠𝑠∞𝑘𝑘𝑘𝑘]

The Bellman equations

The Bellman equations define a recursive relationship between the value functions
for all states s in S and any of their successor states s′ under a policy 𝜋𝜋 . They do so by
decomposing the value function into the immediate reward and the discounted value
of the next state:𝑣𝑣𝜋𝜋(𝑠𝑠) =. 𝐄𝐄[𝐺𝐺𝑡𝑡|𝑆𝑆𝑡𝑡 = 𝑠𝑠]

 = 𝐄𝐄 [𝑅𝑅𝑡𝑡𝑡𝑡⏟reward+ 𝛾𝛾𝑣𝑣(𝑆𝑆𝑡𝑡𝑡𝑡)⏟ discounted value] = ∑𝜋𝜋(𝑎𝑎|𝑠𝑠)𝑎𝑎 ∑∑𝑝𝑝(𝑠𝑠′, 𝑟𝑟|𝑠𝑠, 𝑎𝑎) [𝑟𝑟 + 𝛾𝛾 𝑣𝑣𝜋𝜋(𝑠𝑠′)]𝑟𝑟𝑠𝑠′ ∀𝑠𝑠

This equation says that for a given policy, the value of a state must equal the expected
value of its successor states under the policy, plus the expected reward earned from
arriving at that successor state.

This implies that, if we know the values of the successor states for the currently available
actions, we can look ahead one step and compute the expected value of the current state.
Since it holds for all states S, the expression defines a set of 𝑛𝑛 𝑛 |𝑆𝑆| equations. An analogous
relationship holds for 𝑞𝑞(𝑠𝑠𝑠 𝑠𝑠) .
Figure 22.2 summarizes this recursive relationship: in the current state, the agent selects
an action a based on the policy 𝜋𝜋 . The environment responds by assigning a reward that
depends on the resulting new state s′:

Figure 22.2: The recursive relationship expressed by the Bellman equation

Chapter 22

[687]

From a value function to an optimal policy

The solution to an RL problem is a policy that optimizes the cumulative reward. Policies
and value functions are closely connected: an optimal policy yields a value estimate for
each state 𝑣𝑣𝜋𝜋(𝑠𝑠) or state-action pair 𝑞𝑞𝜋𝜋(𝑠𝑠𝑠 𝑠𝑠) that is at least as high as for any other policy
since the value is the cumulative reward under the given policy. Hence, the optimal value
functions 𝑣𝑣∗(𝑠𝑠) = 𝑚𝑚𝑚𝑚𝑚𝑚𝜋𝜋𝑣𝑣𝜋𝜋(𝑠𝑠) and 𝑞𝑞∗(𝑠𝑠𝑠 𝑠𝑠) = 𝑚𝑚𝑠𝑠𝑚𝑚𝜋𝜋𝑞𝑞𝜋𝜋(𝑠𝑠𝑠 𝑠𝑠) implicitly define optimal
policies and solve the MDP.

The optimal value functions 𝑣𝑣∗ and 𝑞𝑞∗ also satisfy the Bellman equations from the previous
section. These Bellman optimality equations can omit the explicit reference to a policy as it
is implied by 𝑣𝑣∗ and 𝑞𝑞∗ . For 𝑣𝑣∗(𝑠𝑠𝑠 , the recursive relationship equates the current value to
the sum of the immediate reward from choosing the best action in the current state, as well
as the expected discounted value of the successor states:𝑠𝑠∗(𝑠𝑠) = max𝑎𝑎𝑞𝑞∗(𝑠𝑠𝑠 𝑠𝑠) = max𝑎𝑎𝑅𝑅𝑡𝑡 + 𝛾𝛾𝛾 𝛾𝛾(𝑠𝑠′|𝑠𝑠𝑠 𝑠𝑠)𝑠𝑠∗(𝑠𝑠′)𝑠𝑠′

For the optimal state-action value function 𝑞𝑞∗(𝑠𝑠𝑠 𝑠𝑠) , the Bellman optimality equation
decomposes the current state-action value into the sum of the reward for the implied
current action and the discounted expected value of the best action in all successor states:𝑞𝑞∗(𝑠𝑠) = 𝑅𝑅𝑡𝑡 + 𝛾𝛾𝛾 𝛾𝛾(𝑠𝑠′|𝑠𝑠𝑠 𝑠𝑠)𝑠𝑠∗(𝑠𝑠)𝑠𝑠′ = 𝑅𝑅𝑡𝑡 + 𝛾𝛾𝛾 𝛾𝛾(𝑠𝑠′|𝑠𝑠𝑠 𝑠𝑠)𝑠𝑠′ max𝑎𝑎𝑞𝑞∗(𝑠𝑠𝑠 𝑠𝑠)
The optimality conditions imply that the best policy is to always select the action that
maximizes the expected value in a greedy fashion, that is, to only consider the result
of a single time step.

The optimality conditions defined by the two previous expressions are nonlinear due to the
max operator and lack a closed-form solution. Instead, MDP solutions rely on an iterative
solution - like policy and value iteration or Q-learning, which we will cover next.

Policy iteration
DP is a general method for solving problems that can be decomposed into smaller,
overlapping subproblems with a recursive structure that permit the reuse of intermediate
results. MDPs fit the bill due to the recursive Bellman optimality equations and the
cumulative nature of the value function. More specifically, the principle of optimality
applies because an optimal policy consists of picking an optimal action and then following
an optimal policy.

DP requires knowledge of the MDP's transition probabilities. This is often not the case,
but many methods for more general cases follow an approach similar to DP and learn the
missing information from the data.

DP is useful for prediction tasks that estimate the value function and the control task that
focuses on optimal decisions and outputs a policy (while also estimating a value function in
the process).

Deep Reinforcement Learning – Building a Trading Agent

[688]

The policy iteration algorithm to find an optimal policy repeats the following two steps
until the policy has converged, that is, no longer changes more than a given threshold:

1. Policy evaluation: Update the value function based on the current policy.

2. Policy improvement: Update the policy so that actions maximize the expected
one-step value.

Policy evaluation relies on the Bellman equation to estimate the value function. More
specifically, it selects the action determined by the current policy and sums the resulting
reward, as well as the discounted value of the next state, to update the value for the current
state.

Policy improvement, in turn, alters the policy so that for each state, the policy produces the
action that produces the highest value in the next state. This improvement is called greedy
because it only considers the return of a single time step. Policy iteration always converges
to an optimal policy and often does so in relatively few iterations.

Value iteration
Policy iteration requires the evaluation of the policy for all states after each iteration. The
evaluation can be costly, as discussed previously, for search-tree-based policies, for example.

Value iteration simplifies this process by collapsing the policy evaluation and
improvement step. At each time step, it iterates over all states and selects the best greedy
action based on the current value estimate for the next state. Then, it uses the one-step
lookahead implied by the Bellman optimality equation to update the value function for the
current state.

The corresponding update rule for the value function 𝑣𝑣𝑘𝑘𝑘𝑘(𝑠𝑠) is almost identical to the
policy evaluation update; it just adds the maximization over the available actions:𝑣𝑣𝑘𝑘𝑘𝑘(𝑠𝑠) ⟵ max𝑎𝑎 ∑ ∑ 𝑝𝑝(𝑠𝑠′, 𝑟𝑟|𝑠𝑠, 𝑠𝑠)𝑟𝑟 [𝑟𝑟 𝑟 𝑟𝑟𝑣𝑣𝑘𝑘(𝑠𝑠′)]𝑠𝑠′

The algorithm stops when the value function has converged and outputs the greedy
policy derived from its value function estimate. It is also guaranteed to converge to an
optimal policy.

Generalized policy iteration
In practice, there are several ways to truncate policy iteration; for example, by evaluating
the policy k times before improving it. This just means that the max operator will only be
applied at every kth iteration.

Most RL algorithms estimate value and policy functions and rely on the interaction of
policy evaluation and improvement to converge to a solution, as illustrated in Figure
22.3. The general approach improves the policy with respect to the value function while
adjusting the value function so that it matches the policy:

Chapter 22

[689]

Figure 22.3: Convergence of policy evaluation and improvement

Convergence requires that the value function be consistent with the policy, which, in turn,
needs to stabilize while acting greedily with respect to the value function. Thus, both
processes stabilize only when a policy has been found that is greedy with respect to its own
evaluation function. This implies that the Bellman optimality equation holds, and thus that
the policy and the value function are optimal.

Dynamic programming in Python
In this section, we'll apply value and policy iteration to a toy environment that consists
of a 3 × 4 grid, as depicted in Figure 22.4, with the following features:

• States: 11 states represented as two-dimensional coordinates. One field is not
accessible and the top two states in the right-most column are terminal, that is, they
end the episode.

• Actions: Movements of one step up, down, left, or right. The environment is
randomized so that actions can have unintended outcomes. For each action, there
is an 80 percent probability of moving to the expected state, and 10 percent each
of moving in an adjacent direction (for example, right or left instead of up, or up/
down instead of right).

• Rewards: As depicted in the left panel, each state results in -.02 except the +1/-1
rewards in the terminal states.

Figure 22.4: 3×4 gridworld rewards, value function, and optimal policy

Deep Reinforcement Learning – Building a Trading Agent

[690]

Setting up the gridworld

We will begin by defining the environment parameters:

grid_size = (3, 4)

blocked_cell = (1, 1)

baseline_reward = -0.02

absorbing_cells = {(0, 3): 1, (1, 3): -1}

actions = ['L', 'U', 'R', 'D']

num_actions = len(actions)

probs = [.1, .8, .1, 0]

We will frequently need to convert between 1D and 2D representations, so we will
define two helper functions for this purpose; states are one-dimensional, and cells are the
corresponding 2D coordinates:

to_1d = lambda x: np.ravel_multi_index(x, grid_size)

to_2d = lambda x: np.unravel_index(x, grid_size)

Furthermore, we will precompute some data points to make the code more concise:

num_states = np.product(grid_size)

cells = list(np.ndindex(grid_size))

states = list(range(len(cells)))

cell_state = dict(zip(cells, states))

state_cell= dict(zip(states, cells))

absorbing_states = {to_1d(s):r for s, r in absorbing_cells.items()}

blocked_state = to_1d(blocked_cell)

We store the rewards for each state:

state_rewards = np.full(num_states, baseline_reward)

state_rewards[blocked_state] = 0

for state, reward in absorbing_states.items():

 state_rewards[state] = reward

state_rewards

array([-0.02, -0.02, -0.02, 1. , -0.02, 0. , -0.02, -1. , -0.02,

 -0.02, -0.02, -0.02])

To account for the probabilistic environment, we also need to compute the probability
distribution over the actual move for a given action:

action_outcomes = {}

for i, action in enumerate(actions):

 probs_ = dict(zip([actions[j % 4] for j in range(i,

 num_actions + i)], probs))

 action_outcomes[actions[(i + 1) % 4]] = probs_

Chapter 22

[691]

Action_outcomes

{'U': {'L': 0.1, 'U': 0.8, 'R': 0.1, 'D': 0},

 'R': {'U': 0.1, 'R': 0.8, 'D': 0.1, 'L': 0},

 'D': {'R': 0.1, 'D': 0.8, 'L': 0.1, 'U': 0},

 'L': {'D': 0.1, 'L': 0.8, 'U': 0.1, 'R': 0}}

Now, we are ready to compute the transition matrix, which is the key input to the MDP.

Computing the transition matrix

The transition matrix defines the probability of ending up in a certain state S for each
previous state and action A 𝑃𝑃𝑃𝑃𝑃′|𝑃𝑃𝑠 𝑠𝑠𝑠 . We will demonstrate pymdptoolbox and use one of
the formats available to specify transitions and rewards. For both transition probabilities,
we will create a NumPy array with dimensions 𝐴𝐴 × 𝑆𝑆 × 𝑆𝑆 .

We first compute the target cell for each starting cell and move:

def get_new_cell(state, move):

 cell = to_2d(state)

 if actions[move] == 'U':

 return cell[0] - 1, cell[1]

 elif actions[move] == 'D':

 return cell[0] + 1, cell[1]

 elif actions[move] == 'R':

 return cell[0], cell[1] + 1

 elif actions[move] == 'L':

 return cell[0], cell[1] - 1

The following function uses the arguments starting state, action, and outcome to fill in the
transition probabilities and rewards:

def update_transitions_and_rewards(state, action, outcome):

 if state in absorbing_states.keys() or state == blocked_state:

 transitions[action, state, state] = 1

 else:

 new_cell = get_new_cell(state, outcome)

 p = action_outcomes[actions[action]][actions[outcome]]

 if new_cell not in cells or new_cell == blocked_cell:

 transitions[action, state, state] += p

 rewards[action, state, state] = baseline_reward

 else:

 new_state= to_1d(new_cell)

 transitions[action, state, new_state] = p

 rewards[action, state, new_state] = state_rewards[new_state]

Deep Reinforcement Learning – Building a Trading Agent

[692]

We generate the transition and reward values by creating placeholder data structures and
iterating over the Cartesian product of 𝐴𝐴 × 𝑆𝑆 × 𝑆𝑆 , as follows:

rewards = np.zeros(shape=(num_actions, num_states, num_states))

transitions = np.zeros((num_actions, num_states, num_states))

actions_ = list(range(num_actions))

for action, outcome, state in product(actions_, actions_, states):

 update_transitions_and_rewards(state, action, outcome)

rewards.shape, transitions.shape

((4,12,12), (4,12,12))

Implementing the value iteration algorithm

We first create the value iteration algorithm, which is slightly simpler because it
implements policy evaluation and improvement in a single step. We capture the states for
which we need to update the value function, excluding terminal states that have a value of
0 for lack of rewards (+1/-1 are assigned to the starting state), and skip the blocked cell:

skip_states = list(absorbing_states.keys())+[blocked_state]

states_to_update = [s for s in states if s not in skip_states]

Then, we initialize the value function and set the discount factor gamma and the
convergence threshold epsilon:

V = np.random.rand(num_states)

V[skip_states] = 0

gamma = .99

epsilon = 1e-5

The algorithm updates the value function using the Bellman optimality equation, as
described previously, and terminates when the L1 norm of V changes to less than epsilon in
absolute terms:

while True:

 V_ = np.copy(V)

 for state in states_to_update:

 q_sa = np.sum(transitions[:, state] * (rewards[:, state] + gamma* V),

 axis=1)

 V[state] = np.max(q_sa)

 if np.sum(np.fabs(V - V_)) < epsilon:

 break

The algorithm converges in 16 iterations and 0.0117s. It produces the following optimal
value estimate, which, together with the implied optimal policy, is depicted in the right
panel of Figure 22.4, earlier in this section:

Chapter 22

[693]

pd.DataFrame(V.reshape(grid_size))

 0 1 2 3

0.884143 0.925054 0.961986 0.000000

1 0.848181 0.000000 0.714643 0.000000

2 0.808344 0.773327 0.736099 0.516082

Defining and running policy iteration
Policy iterations involve separate evaluation and improvement steps. We define the
improvement part by selecting the action that maximizes the sum of the expected reward
and next-state value. Note that we temporarily fill in the rewards for the terminal states to
avoid ignoring actions that would lead us there:

def policy_improvement(value, transitions):

 for state, reward in absorbing_states.items():

 value[state] = reward

 return np.argmax(np.sum(transitions * value, 2),0)

We initialize the value function as before and also include a random starting policy:

pi = np.random.choice(list(range(num_actions)), size=num_states)

The algorithm alternates between policy evaluation for a greedily selected action and policy
improvement until the policy stabilizes:

iterations = 0

converged = False

while not converged:

 pi_ = np.copy(pi)

 for state in states_to_update:

 action = policy[state]

 V[state] = np.dot(transitions[action, state],

 rewards[action, state] + gamma* V)

 pi = policy_improvement(V.copy(), transitions)

 if np.array_equal(pi_, pi):

 converged = True

 iterations += 1

Policy iteration converges after only three iterations. The policy stabilizes before the
algorithm finds the optimal value function, and the optimal policy differs slightly, most
notably by suggesting "up" instead of the safer "left" for the field next to the negative
terminal state. This can be avoided by tightening the convergence criteria, for example, by
requiring a stable policy of several rounds or by adding a threshold for the value function.

Solving MDPs using pymdptoolbox

We can also solve MDPs using the Python library pymdptoolbox, which includes a few other
algorithms, including Q-learning.

Deep Reinforcement Learning – Building a Trading Agent

[694]

To run value iteration, just instantiate the corresponding object with the desired
configuration options, rewards, and transition matrices before calling the .run() method:

vi = mdp.ValueIteration(transitions=transitions,

 reward=rewards,

 discount=gamma,

 epsilon=epsilon)

vi.run()

The value function estimate matches the result in the previous section:

np.allclose(V.reshape(grid_size), np.asarray(vi.V).reshape(grid_size))

Policy iteration works similarly:

pi = mdp.PolicyIteration(transitions=transitions,

 reward=rewards,

 discount=gamma,

 max_iter=1000)

pi.run()

It also yields the same policy, but the value function varies by run and does not need to
achieve the optimal value before the policy converges.

Lessons learned

The right panel we saw earlier in Figure 22.4 shows the optimal value estimate produced by
value iteration and the corresponding greedy policy. The negative rewards, combined with
the uncertainty in the environment, produce an optimal policy that involves moving away
from the negative terminal state.

The results are sensitive to both the rewards and the discount factor. The cost of the
negative state affects the policy in the surrounding fields, and you should modify the
example in the corresponding notebook to identify threshold levels that alter the optimal
action selection.

Q-learning – finding an optimal policy on the go
Q-learning was an early RL breakthrough when developed by Chris Watkins for his
PhD thesis (http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf) (1989). It introduces
incremental dynamic programming to learn to control an MDP without knowing or
modeling the transition and reward matrices that we used for value and policy iteration
in the previous section. A convergence proof followed 3 years later (Christopher J. C. H.
Watkins and Dayan 1992).

http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf

Chapter 22

[695]

Q-learning directly optimizes the action-value function q to approximate q*. The learning
proceeds "off-policy," that is, the algorithm does not need to select actions based on the
policy implied by the value function alone. However, convergence requires that all state-
action pairs continue to be updated throughout the training process. A straightforward way
to ensure this is through an 𝜀𝜀 -greedy policy.

Exploration versus exploitation – 𝛆𝛆 -greedy policy
An 𝛆𝛆 -greedy policy is a simple policy that ensures the exploration of new actions in a
given state while also exploiting the learning experience . It does this by randomizing the
selection of actions. An 𝜀𝜀 -greedy policy selects an action randomly with a probability of 𝜀𝜀 ,
and the best action according to the value function otherwise.

The Q-learning algorithm
The algorithm keeps improving a state-action value function after random initialization for
a given number of episodes. At each time step, it chooses an action based on an 𝜀𝜀 -greedy
policy, and uses a learning rate 𝛼𝛼 to update the value function, as follows:

𝑄𝑄(𝑆𝑆𝑡𝑡, 𝐴𝐴𝑡𝑡) ⟵ 𝑄𝑄(𝑆𝑆𝑡𝑡, 𝐴𝐴𝑡𝑡) + 𝛼𝛼 [𝑅𝑅𝑡𝑡 + 𝛾𝛾𝛾𝛾𝛾𝑎𝑎 𝑄𝑄(𝑆𝑆𝑡𝑡𝑡𝑡, 𝑎𝑎)⏟ TD Target − 𝑄𝑄(𝑆𝑆𝑡𝑡, 𝐴𝐴𝑡𝑡)⏟ Current Q−value]
⏞ Temporal Difference

Note that the algorithm does not compute expected values based on the transition
probabilities. Instead, it learns the Q function from the rewards R

t
 produced by the 𝜀𝜀 -greedy policy and its current estimate of the discounted value function for the next state.

The use of the estimated value function to improve this very estimate is called
bootstrapping. The Q-learning algorithm is part of the temporal difference (TD) learning
algorithms. TD learning does not wait until receiving the final reward for an episode.
Instead, it updates its estimates using the values of intermediate states that are closer to the
final reward. In this case, the intermediate state is one time step ahead.

How to train a Q-learning agent using Python
In this section, we will demonstrate how to build a Q-learning agent using the 3 × 4 grid of
states from the previous section. We will train the agent for 2,500 episodes, using a learning
rate of 𝛼𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼 and 𝜀𝜀𝜀 𝜀 𝜀𝜀𝜀5 for the 𝜀𝜀 -greedy policy (see the notebook gridworld_q_
learning.ipynb for details):

max_episodes = 2500

alpha = .1

epsilon = .05

Deep Reinforcement Learning – Building a Trading Agent

[696]

Then, we will randomly initialize the state-action value function as a NumPy array with
dimensions number of states × number of actions:

Q = np.random.rand(num_states, num_actions)

Q[skip_states] = 0

The algorithm generates 2,500 episodes that start at a random location and proceed
according to the 𝜀𝜀 -greedy policy until termination, updating the value function according
to the Q-learning rule:

for episode in range(max_episodes):
 state = np.random.choice([s for s in states if s not in skip_states])
 while not state in absorbing_states.keys():
 if np.random.rand() < epsilon:
 action = np.random.choice(num_actions)
 else:
 action = np.argmax(Q[state])
 next_state = np.random.choice(states, p=transitions[action, state])
 reward = rewards[action, state, next_state]
 Q[state, action] += alpha * (reward +
 gamma * np.max(Q[next_state])-Q[state, action])
 state = next_state

The episodes take 0.6 seconds and converge to a value function fairly close to the result of the
value iteration example from the previous section. The pymdptoolbox implementation works
analogously to previous examples (see the notebook for details).

Deep RL for trading with the OpenAI Gym
In the previous section, we saw how Q-learning allows us to learn the optimal state-action
value function q* in an environment with discrete states and discrete actions using iterative
updates based on the Bellman equation.

In this section, we will take RL one step closer to the real world and upgrade the algorithm
to continuous states (while keeping actions discrete). This implies that we can no longer
use a tabular solution that simply fills an array with state-action values. Instead, we will see
how to approximate q* using a neural network (NN), which results in a deep Q-network.
We will first discuss how deep learning integrates with RL before presenting the deep
Q-learning algorithm, as well as various refinements that accelerate its convergence and
make it more robust.

Continuous states also imply a more complex environment. We will demonstrate how to
work with OpenAI Gym, a toolkit for designing and comparing RL algorithms. First, we'll
illustrate the workflow by training a deep Q-learning agent to navigate a toy spaceship in
the Lunar Lander environment. Then, we'll proceed to customize OpenAI Gym to design
an environment that simulates a trading context where an agent can buy and sell a stock
while competing against the market.

Chapter 22

[697]

Value function approximation with neural networks
Continuous state and/or action spaces imply an infinite number of transitions that
make it impossible to tabulate the state-action values, as in the previous section. Rather,
we approximate the Q function by learning a continuous, parameterized mapping from
training samples.

Motivated by the success of NNs in other domains, which we discussed in the previous
chapters in Part 4, deep NNs have also become popular for approximating value functions.
However, machine learning in the RL context, where the data is generated by the
interaction of the model with the environment using a (possibly randomized) policy,
faces distinct challenges:

• With continuous states, the agent will fail to visit most states and thus needs to
generalize.

• Whereas supervised learning aims to generalize from a sample of independently and
identically distributed samples that are representative and correctly labeled, in the RL
context, there is only one sample per time step, so learning needs to occur online.

• Furthermore, samples can be highly correlated when sequential states are similar
and the behavior distribution over states and actions is not stationary, but rather
changes as a result of the agent's learning.

We will look at several techniques that have been developed to address these additional
challenges.

The Deep Q-learning algorithm and extensions
Deep Q-learning estimates the value of the available actions for a given state using a
deep neural network. DeepMind introduced this technique in Playing Atari with Deep
Reinforcement Learning (Mnih et al. 2013), where agents learned to play games solely from
pixel input.

The Deep Q-learning algorithm approximates the action-value function q by learning a set
of weights 𝜃𝜃 of a multilayered deep Q-network (DQN) that maps states to actions so that 𝑞𝑞(𝑠𝑠𝑠 𝑠𝑠𝑠 𝑠𝑠) ≈ 𝑞𝑞∗(𝑠𝑠𝑠 𝑠𝑠) .
The algorithm applies gradient descent based on a loss function that computes the squared
difference between the DQN's estimate of the target:𝑦𝑦𝑖𝑖 = 𝔼𝔼 [𝑟𝑟 𝑟 𝑟𝑟𝑟𝑟𝑟𝑎𝑎′ 𝑄𝑄𝑄𝑄𝑄′, 𝑎𝑎′; 𝜃𝜃𝑖𝑖𝑖𝑖|𝑄𝑄, 𝑎𝑎𝑠]

and its estimate of the action-value of the current state-action pair 𝑄𝑄(𝑠𝑠𝑠 𝑠𝑠𝑠 𝑠𝑠) to learn the
network parameters:

𝐿𝐿𝑖𝑖(𝜃𝜃𝑖𝑖) = (𝑦𝑦𝑖𝑖⏟Q Target− 𝑄𝑄(𝑠𝑠𝑠 𝑠𝑠𝑠 𝜃𝜃)⏟ Current Prediction⏞ TD Error)2

Deep Reinforcement Learning – Building a Trading Agent

[698]

Both the target and the current estimate depend on the DQN weights, underlining the
distinction from supervised learning where targets are fixed prior to training.

Rather than computing the full gradient, the Q-learning algorithm uses stochastic gradient
descent (SGD) and updates the weights 𝜃𝜃𝑖𝑖 after each time step i. To explore the state-action
space, the agent uses an ϵ -greedy policy that selects a random action with probability 𝜖𝜖 and
follows a greedy policy that selects the action with the highest predicted q-value otherwise.

The basic DQN architecture has been refined in several directions to make the learning
process more efficient and improve the final result; Hessel et al. (2017) combined these
innovations in the Rainbow agent and demonstrated how each contributes to significantly
higher performance across the Atari benchmarks. The following subsections summarize
some of these innovations.

(Prioritized) Experience replay – focusing on past mistakes

Experience replay stores a history of the state, action, reward, and next state transitions
experienced by the agent. It randomly samples mini-batches from this experience to update
the network weights at each time step before the agent selects an ε-greedy action.

Experience replay increases sample efficiency, reduces the autocorrelation of samples
collected during online learning, and limits the feedback due to current weights producing
training samples that can lead to local minima or divergence (Lin and Mitchell 1992).

This technique was later refined to prioritize experience that is more important from a
learning perspective. Schaul et al. (2015) approximated the value of a transition by the size of
the TD error that captures how "surprising" the event was for the agent. In practice, it samples
historical state transitions using their associated TD error rather than uniform probabilities.

The target network – decorrelating the learning process

To further weaken the feedback loop from the current network parameters on the NN
weight updates, the algorithm was extended by DeepMind in Human-level control through
deep reinforcement learning (Mnih et al. 2015) to use a slowly-changing target network.

The target network has the same architecture as the Q-network, but its weights 𝜃𝜃− are only
updated periodically after 𝜏𝜏 steps when they are copied from the Q-network and held
constant otherwise. The target network generates the TD target predictions, that is, it takes
the place of the Q-network to estimate:𝑦𝑦𝑖𝑖 = 𝔼𝔼[𝑟𝑟 𝑟 𝑟𝑟𝑟𝑟𝑟𝑎𝑎′ 𝑄𝑄𝑄𝑄𝑄′, 𝑎𝑎′; 𝜃𝜃−|𝑄𝑄, 𝑎𝑎𝑠]
Double deep Q-learning – decoupling action and prediction

Q-learning has been shown to overestimate the action values because it purposely samples
maximal estimated action values.

Chapter 22

[699]

This bias can negatively affect the learning process and the resulting policy if it does not
apply uniformly and alters action preferences, as shown in Deep Reinforcement Learning with
Double Q-learning (van Hasselt, Guez, and Silver 2015).

To decouple the estimation of action values from the selection of actions, the Double DQN
(DDQN) algorithm uses the weights 𝜃𝜃 of one network to select the best action given the
next state, as well as the weights 𝜃𝜃′ of another network, to provide the corresponding
action value estimate: 𝑦𝑦𝑖𝑖 = 𝔼𝔼 [𝑟𝑟 𝑟 𝑟𝑟𝑟𝑟 𝑟𝑟𝑟′, argmax𝑎𝑎′ 𝑟𝑟(𝑆𝑆𝑡𝑡𝑡𝑡, 𝑎𝑎, 𝑎𝑎𝑡𝑡); 𝑎𝑎𝑡𝑡′)]

.

One option is to randomly select one of two identical networks for training at each iteration
so that their weights will differ. A more efficient alternative is to rely on the target network
to provide 𝜃𝜃′ instead.

Introducing the OpenAI Gym
OpenAI Gym is an RL platform that provides standardized environments to test and
benchmark RL algorithms using Python. It is also possible to extend the platform and
register custom environments.

The Lunar Lander v2 (LL) environment requires the agent to control its motion in two
dimensions based on a discrete action space and low-dimensional state observations that
include position, orientation, and velocity. At each time step, the environment provides an
observation of the new state and a positive or negative reward. Each episode consists of up
to 1,000 time steps. Figure 22.5 shows selected frames from a successful landing after 250
episodes by the agent we will train later:

Figure 22.5: RL agent's behavior during the Lunar Lander episode

More specifically, the agent observes eight aspects of the state, including six continuous
and two discrete elements. Based on the observed elements, the agent knows its location,
direction, and speed of movement and whether it has (partially) landed. However, it
does not know in which direction it should move, nor can it observe the inner state of the
environment to understand the rules that govern its motion.

At each time step, the agent controls its motion using one of four discrete actions. It can
do nothing (and continue on its current path), fire its main engine (to reduce downward
motion), or steer toward the left or right using the respective orientation engines. There are
no fuel limitations.

Deep Reinforcement Learning – Building a Trading Agent

[700]

The goal is to land the agent between two flags on a landing pad at coordinates (0, 0), but
landing outside of the pad is possible. The agent accumulates rewards in the range of 100-140
for moving toward the pad, depending on the exact landing spot. However, a move away
from the target negates the reward the agent would have gained by moving toward the pad.
Ground contact by each leg adds 10 points, while using the main engine costs -0.3 points.

An episode terminates if the agent lands or crashes, adding or subtracting 100 points,
respectively, or after 1,000 time steps. Solving LL requires achieving a cumulative reward
of at least 200 on average over 100 consecutive episodes.

How to implement DDQN using TensorFlow 2
The notebook 03_lunar_lander_deep_q_learning implements a DDQN agent using
TensorFlow 2 that learns to solve OpenAI Gym's Lunar Lander 2.0 (LL) environment. The
notebook 03_lunar_lander_deep_q_learning contains a TensorFlow 1 implementation
that was discussed in the first edition and runs significantly faster because it does not rely
on eager execution and also converges sooner. This section highlights key elements of the
implementation; please see the notebook for much more extensive details.

Creating the DDQN agent

We create our DDQNAgent as a Python class to integrate the learning and execution logic with
the key configuration parameters and performance tracking.

The agent's __init__() method takes, as arguments, information on:

• The environment characteristics, like the number of dimensions for the state
observations and the number of actions available to the agent.

• The decay of the randomized exploration for the ε-greedy policy.

• The neural network architecture and the parameters for training and target
network updates.

class DDQNAgent:

 def __init__(self, state_dim, num_actions, gamma,

 epsilon_start, epsilon_end, epsilon_decay_steps,

 epsilon_exp_decay,replay_capacity, learning_rate,

 architecture, l2_reg, tau, batch_size,

 log_dir='results'):

Adapting the DDQN architecture to the Lunar Lander

The DDQN architecture was first applied to the Atari domain with high-dimensional
image observations and relied on convolutional layers. The LL's lower-dimensional state
representation makes fully connected layers a better choice (see Chapter 17, Deep Learning
for Trading).

Chapter 22

[701]

More specifically, the network maps eight inputs to four outputs, representing the Q values
for each action, so that it only takes a single forward pass to compute the action values. The
DQN is trained on the previous loss function using the Adam optimizer. The agent's DQN
uses three densely connected layers with 256 units each and L2 activity regularization. Using
a GPU via the TensorFlow Docker image can significantly speed up NN training performance
(see Chapter 17 and Chapter 18, CNNs for Financial Time Series and Satellite Images).

The DDQNAgent class's build_model() method creates the primary online and slow-moving
target networks based on the architecture parameter, which specifies the number of layers
and their number of units.

We set trainable to True for the primary online network and to False for the target
network. This is because we simply periodically copy the online NN weights to update
the target network:

 def build_model(self, trainable=True):

 layers = []

 for i, units in enumerate(self.architecture, 1):

 layers.append(Dense(units=units,

 input_dim=self.state_dim if i == 1 else None,

 activation='relu',

 kernel_regularizer=l2(self.l2_reg),

 trainable=trainable))

 layers.append(Dense(units=self.num_actions,

 trainable=trainable))

 model = Sequential(layers)

 model.compile(loss='mean_squared_error',

 optimizer=Adam(lr=self.learning_rate))

 return model

Memorizing transitions and replaying the experience

To enable experience replay, the agent memorizes each state transition so it can randomly
sample a mini-batch during training. The memorize_transition() method receives the
observation on the current and next state provided by the environment, as well as the
agent's action, the reward, and a flag that indicates whether the episode is completed.

It tracks the reward history and length of each episode, applies exponential decay to
epsilon at the end of each period, and stores the state transition information in a buffer:

 def memorize_transition(self, s, a, r, s_prime, not_done):

 if not_done:

 self.episode_reward += r

 self.episode_length += 1

 else:

 self.episodes += 1

 self.rewards_history.append(self.episode_reward)

 self.steps_per_episode.append(self.episode_length)

Deep Reinforcement Learning – Building a Trading Agent

[702]

 self.episode_reward, self.episode_length = 0, 0

 self.experience.append((s, a, r, s_prime, not_done))

The replay of the memorized experience begins as soon as there are enough samples to
create a full batch. The experience_replay() method predicts the Q values for the next
states using the online network and selects the best action. It then selects the predicted q
values for these actions from the target network to arrive at the TD targets.

Next, it trains the primary network using a single batch of current state observations as
input, the TD targets as the outcome, and the mean-squared error as the loss function.
Finally, it updates the target network weights every 𝛕𝛕 steps:

 def experience_replay(self):
 if self.batch_size > len(self.experience):
 return
 # sample minibatch from experience
 minibatch = map(np.array, zip(*sample(self.experience,
 self.batch_size)))
 states, actions, rewards, next_states, not_done = minibatch

 # predict next Q values to select best action
 next_q_values = self.online_network.predict_on_batch(next_states)
 best_actions = tf.argmax(next_q_values, axis=1)

 # predict the TD target
 next_q_values_target = self.target_network.predict_on_batch(
 next_states)
 target_q_values = tf.gather_nd(next_q_values_target,
 tf.stack((self.idx, tf.cast(
 best_actions, tf.int32)), axis=1))
 targets = rewards + not_done * self.gamma * target_q_values

 # predict q values
 q_values = self.online_network.predict_on_batch(states)
 q_values[[self.idx, actions]] = targets

 # train model
 loss = self.online_network.train_on_batch(x=states, y=q_values)
 self.losses.append(loss)

 if self.total_steps % self.tau == 0:
 self.update_target()

 def update_target(self):
 self.target_network.set_weights(self.online_network.get_weights())

The notebook contains additional implementation details for the ε-greedy policy and the
target network weight updates.

Chapter 22

[703]

Setting up the OpenAI environment

We will begin by instantiating and extracting key parameters from the LL environment:

env = gym.make('LunarLander-v2')

state_dim = env.observation_space.shape[0] # number of dimensions in state

num_actions = env.action_space.n # number of actions

max_episode_steps = env.spec.max_episode_steps # max number of steps per
episode

env.seed(42)

We will also use the built-in wrappers that permit the periodic storing of videos that
display the agent's performance:

from gym import wrappers

env = wrappers.Monitor(env,

 directory=monitor_path.as_posix(),

 video_callable=lambda count: count % video_freq == 0,

 force=True)

When running on a server or Docker container without a display, you can use
pyvirtualdisplay.

Key hyperparameter choices

The agent's performance is quite sensitive to several hyperparameters. We will start with
the discount and learning rates:

gamma=.99, # discount factor

learning_rate=1e-4 # learning rate

We will update the target network every 100 time steps, store up to 1 million past episodes
in the replay memory, and sample mini-batches of 1,024 from memory to train the agent:

tau=100 # target network update frequency

replay_capacity=int(1e6)

batch_size = 1024

The ε-greedy policy starts with pure exploration at ε = 1 , linear decay to 0.01 over 250
episodes, and exponential decay thereafter:

epsilon_start=1.0

epsilon_end=0.01

epsilon_linear_steps=250

epsilon_exp_decay=0.99

The notebook contains the training loop, including experience replay, SGD, and slow target
network updates.

Deep Reinforcement Learning – Building a Trading Agent

[704]

Lunar Lander learning performance

The preceding hyperparameter settings enable the agent to solve the environment in
around 300 episodes using the TensorFlow 1 implementation.

The left panel of Figure 22.6 shows the episode rewards and their moving average over
100 periods. The right panel shows the decay of exploration and the number of steps
per episode. There is a stretch of some 100 episodes that often take 1,000 time steps each
while the agent reduces exploration and "learns how to fly" before starting to land fairly
consistently:

Figure 22.6: The DDQN agent's performance in the Lunar Lander environment

Creating a simple trading agent
In this and the following sections, we will adapt the deep RL approach to design an
agent that learns how to trade a single asset. To train the agent, we will set up a simple
environment with a limited set of actions, a relatively low-dimensional state with
continuous observations, and other parameters.

More specifically, the environment samples a stock price time series for a single ticker
using a random start date to simulate a trading period that, by default, contains 252 days
or 1 year. Each state observation provides the agent with the historical returns for various
lags and some technical indicators, like the relative strength index (RSI).

The agent can choose from three actions:

• Buy: Invest all capital for a long position in the stock.

• Flat: Hold cash only.

• Sell short: Take a short position equal to the amount of capital.

The environment accounts for trading cost, set to 10 basis points by default, and deducts
one basis point per period without trades. The reward of the agent consists of the daily
return minus trading costs.

The environment tracks the net asset value (NAV) of the agent's portfolio (consisting of a
single stock) and compares it against the market portfolio, which trades frictionless to raise
the bar for the agent.

Chapter 22

[705]

An episode begins with a starting NAV of 1 unit of cash:

• If the NAV drops to 0, the episode ends with a loss.

• If the NAV hits 2.0, the agent wins.

This setting limits complexity as it focuses on a single stock and abstracts from position
sizing to avoid the need for continuous actions or a larger number of discrete actions, as
well as more sophisticated bookkeeping. However, it is useful to demonstrate how to
customize an environment and permits for extensions.

How to design a custom OpenAI trading environment
To build an agent that learns how to trade, we need to create a market environment that
provides price and other information, offers relevant actions, and tracks the portfolio to
reward the agent accordingly. For a description of the efforts to build a large-scale, real-
world simulation environment, see Byrd, Hybinette, and Balch (2019).

OpenAI Gym allows for the design, registration, and utilization of environments
that adhere to its architecture, as described in the documentation. The file
trading_env.py contains the following code examples, which illustrate the process unless
noted otherwise.

The trading environment consists of three classes that interact to facilitate the agent's
activities. The DataSource class loads a time series, generates a few features, and provides
the latest observation to the agent at each time step. TradingSimulator tracks the positions,
trades and cost, and the performance. It also implements and records the results of a buy-
and-hold benchmark strategy. TradingEnvironment itself orchestrates the process. We will
briefly describe each in turn; see the script for implementation details.

Designing a DataSource class

First, we code up a DataSource class to load and preprocess historical stock data to create
the information used for state observations and rewards. In this example, we will keep
it very simple and provide the agent with historical data on a single stock. Alternatively,
you could combine many stocks into a single time series, for example, to train the agent on
trading the S&P 500 constituents.

We will load the adjusted price and volume information for one ticker from the Quandl
dataset, in this case for AAPL with data from the early 1980s until 2018:

class DataSource:

 """Data source for TradingEnvironment

 Loads & preprocesses daily price & volume data

 Provides data for each new episode.

 """

 def __init__(self, trading_days=252, ticker='AAPL'):

Deep Reinforcement Learning – Building a Trading Agent

[706]

 self.ticker = ticker

 self.trading_days = trading_days

 def load_data(self):

 idx = pd.IndexSlice

 with pd.HDFStore('../data/assets.h5') as store:

 df = (store['quandl/wiki/prices']

 .loc[idx[:, self.ticker],

 ['adj_close', 'adj_volume', 'adj_low', 'adj_high']])

 df.columns = ['close', 'volume', 'low', 'high']

 return df

The preprocess_data() method creates several features and normalizes them. The most
recent daily returns play two roles:

• An element of the observations for the current state

• The net of trading costs and, depending on the position size, the reward for the last
period

The method takes the following steps, among others (refer to the Appendix for details on the
technical indicators):

def preprocess_data(self):

"""calculate returns and percentiles, then removes missing values"""

 self.data['returns'] = self.data.close.pct_change()

 self.data['ret_2'] = self.data.close.pct_change(2)

 self.data['ret_5'] = self.data.close.pct_change(5)

 self.data['rsi'] = talib.STOCHRSI(self.data.close)[1]

 self.data['atr'] = talib.ATR(self.data.high,

 self.data.low, self.data.close)

 self.data = (self.data.replace((np.inf, -np.inf), np.nan)

 .drop(['high', 'low', 'close'], axis=1)

 .dropna())

 if self.normalize:

 self.data = pd.DataFrame(scale(self.data),

 columns=self.data.columns,

 index=self.data.index)

The DataSource class keeps track of episode progress, provides fresh data to
TradingEnvironment at each time step, and signals the end of the episodes:

def take_step(self):

 """Returns data for current trading day and done signal"""

 obs = self.data.iloc[self.offset + self.step].values
 self.step += 1

Chapter 22

[707]

 done = self.step > self.trading_days

 return obs, done

The TradingSimulator class

The trading simulator computes the agent's reward and tracks the net asset values of the
agent and "the market," which executes a buy-and-hold strategy with reinvestment. It also
tracks the positions and the market return, computes trading costs, and logs the results.

The most important method of this class is the take_step method, which computes the
agent's reward based on its current position, the latest stock return, and the trading costs
(slightly simplified; see the script for full details):

def take_step(self, action, market_return):

 """ Calculates NAVs, trading costs and reward

 based on an action and latest market return

 returns the reward and an activity summary"""

 start_position = self.positions[max(0, self.step - 1)]

 start_nav = self.navs[max(0, self.step - 1)]

 start_market_nav = self.market_navs[max(0, self.step - 1)]

 self.market_returns[self.step] = market_return

 self.actions[self.step] = action

 end_position = action - 1 # short, neutral, long

 n_trades = end_position – start_position

 self.positions[self.step] = end_position

 self.trades[self.step] = n_trades

 time_cost = 0 if n_trades else self.time_cost_bps

 self.costs[self.step] = abs(n_trades) * self.trading_cost_bps + time_cost

 if self.step > 0:

 reward = start_position * market_return - self.costs[self.step-1]

 self.strategy_returns[self.step] = reward

 self.navs[self.step] = start_nav * (1 +

 self.strategy_returns[self.step])

 self.market_navs[self.step] = start_market_nav * (1 +

 self.market_returns[self.step])

 self.step += 1

 return reward

Deep Reinforcement Learning – Building a Trading Agent

[708]

The TradingEnvironment class

The TradingEnvironment class subclasses gym.Env and drives the environment dynamics.
It instantiates the DataSource and TradingSimulator objects and sets the action and state-
space dimensionality, with the latter depending on the ranges of the features defined by
DataSource:

class TradingEnvironment(gym.Env):

 """A simple trading environment for reinforcement learning.

 Provides daily observations for a stock price series

 An episode is defined as a sequence of 252 trading days with random start
 Each day is a 'step' that allows the agent to choose one of three
actions.

 """

 def __init__(self, trading_days=252, trading_cost_bps=1e-3,

 time_cost_bps=1e-4, ticker='AAPL'):

 self.data_source = DataSource(trading_days=self.trading_days,

 ticker=ticker)

 self.simulator = TradingSimulator(

 steps=self.trading_days,

 trading_cost_bps=self.trading_cost_bps,

 time_cost_bps=self.time_cost_bps)

 self.action_space = spaces.Discrete(3)

 self.observation_space = spaces.Box(self.data_source.min_values,

 self.data_source.max_values)

The two key methods of TradingEnvironment are .reset() and .step(). The former
initializes the DataSource and TradingSimulator instances, as follows:

def reset(self):

 """Resets DataSource and TradingSimulator; returns first observation"""
 self.data_source.reset()

 self.simulator.reset()

 return self.data_source.take_step()[0]

Each time step relies on DataSource and TradingSimulator to provide a state observation
and reward the most recent action:

def step(self, action):

 """Returns state observation, reward, done and info"""

 assert self.action_space.contains(action),

 '{} {} invalid'.format(action, type(action))

 observation, done = self.data_source.take_step()

 reward, info = self.simulator.take_step(action=action,

 market_return=observation[0])

Chapter 22

[709]

 return observation, reward, done, info

Registering and parameterizing the custom environment

Before using the custom environment, just as for the Lunar Lander environment, we need
to register it with the gym package, provide information about the entry_point in terms of
module and class, and define the maximum number of steps per episode (the following
steps occur in the q_learning_for_trading notebook):

from gym.envs.registration import register

register(

 id='trading-v0',

 entry_point='trading_env:TradingEnvironment',

 max_episode_steps=252)

We can instantiate the environment using the desired trading costs and ticker:

trading_environment = gym.make('trading-v0')

trading_environment.env.trading_cost_bps = 1e-3

trading_environment.env.time_cost_bps = 1e-4

trading_environment.env.ticker = 'AAPL'

trading_environment.seed(42)

Deep Q-learning on the stock market
The notebook q_learning_for_trading contains the DDQN agent training code; we will
only highlight noteworthy differences from the previous example.

Adapting and training the DDQN agent

We will use the same DDQN agent but simplify the NN architecture to two layers of 64
units each and add dropout for regularization. The online network has 5,059 trainable
parameters:

Layer (type) Output Shape Param #

Dense_1 (Dense) (None, 64) 704

Dense_2 (Dense) (None, 64) 4160

dropout (Dropout) (None, 64) 0

Output (Dense) (None, 3) 195

Total params: 5,059

Trainable params: 5,059

The training loop interacts with the custom environment in a manner very similar to the
Lunar Lander case. While the episode is active, the agent takes the action recommended by
its current policy and trains the online network using experience replay after memorizing
the current transition. The following code highlights the key steps:

for episode in range(1, max_episodes + 1):

Deep Reinforcement Learning – Building a Trading Agent

[710]

 this_state = trading_environment.reset()

 for episode_step in range(max_episode_steps):

 action = ddqn.epsilon_greedy_policy(this_state.reshape(-1,

 state_dim))

 next_state, reward, done, _ = trading_environment.step(action)

 ddqn.memorize_transition(this_state, action,

 reward, next_state,

 0.0 if done else 1.0)

 ddqn.experience_replay()

 if done:

 break

 this_state = next_state

trading_environment.close()

We let exploration continue for 2,000 1-year trading episodes, corresponding to about
500,000 time steps; we use linear decay of ε from 1.0 to 0.1 over 500 periods with
exponential decay at a factor of 0.995 thereafter.

Benchmarking DDQN agent performance

To compare the DDQN agent's performance, we not only track the buy-and-hold strategy
but also generate the performance of a random agent.

Figure 22.7 shows the rolling averages over the last 100 episodes of three cumulative return
values for the 2,000 training periods (left panel), as well as the share of the last 100 episodes
when the agent outperformed the buy-and-hold period (right panel). It uses AAPL stock
data, for which there are some 9,000 daily price and volume observations:

Figure 22.7: Trading agent performance relative to the market

This shows how the agent's performance improves steadily after 500 episodes, from the
level of a random agent, and starts to outperform the buy-and-hold strategy toward the end
of the experiment more than half of the time.

Chapter 22

[711]

Lessons learned
This relatively simple agent uses no information beyond the latest market data and the
reward signal compared to the machine learning models we covered elsewhere in this
book. Nonetheless, it learns to make a profit and achieve performance similar to that of the
market (after training on 2,000 years' worth of data, which takes only a fraction of the time
on a GPU).

Keep in mind that using a single stock also increases the risk of overfitting to the data—by
a lot. You can test your trained agent on new data using the saved model (see the notebook
for Lunar Lander).

In summary, we have demonstrated the mechanics of setting up an RL trading
environment and experimented with a basic agent that uses a small number of technical
indicators. You should try to extend both the environment and the agent, for example, to
choose from several assets, size the positions, and manage risks.

Reinforcement learning is often considered the most promising approach to algorithmic
trading because it most accurately models the task an investor is facing. However, our
dramatically simplified examples illustrate that creating a realistic environment poses
a considerable challenge. Moreover, deep reinforcement learning that has achieved
impressive breakthroughs in other domains may face greater obstacles given the noisy
nature of financial data, which makes it even harder to learn a value function based on
delayed rewards.

Nonetheless, the substantial interest in this subject makes it likely that institutional
investors are working on larger-scale experiments that may yield tangible results.
An interesting complementary approach beyond the scope of this book is Inverse
Reinforcement Learning, which aims to identify the reward function of an agent
(for example, a human trader) given its observed behavior; see Arora and Doshi (2019)
for a survey and Roa-Vicens et al. (2019) for an application on trading in the limit-order
book context.

Summary
In this chapter, we introduced a different class of machine learning problems that focus
on automating decisions by agents that interact with an environment. We covered the key
features required to define an RL problem and various solution methods.

We saw how to frame and analyze an RL problem as a finite Markov decision problem, as
well as how to compute a solution using value and policy iteration. We then moved on to
more realistic situations, where the transition probabilities and rewards are unknown to
the agent, and saw how Q-learning builds on the key recursive relationship defined by the
Bellman optimality equation in the MDP case. We saw how to solve RL problems using
Python for simple MDPs and more complex environments with Q-learning.

Deep Reinforcement Learning – Building a Trading Agent

[712]

We then expanded our scope to continuous states and applied the Deep Q-learning
algorithm to the more complex Lunar Lander environment. Finally, we designed a simple
trading environment using the OpenAI Gym platform, and also demonstrated how to train
an agent to learn how to make a profit while trading a single stock.

In the next and final chapter, we'll present a few conclusions and key takeaways from
our journey through this book and lay out some steps for you to consider as you continue
building your skills to use machine learning for trading.

[713]

23
Conclusions and Next Steps

Our goal for this book was to enable you to apply machine learning (ML) to a variety of
data sources and extract signals that add value to a trading strategy. To this end, we took
a more comprehensive view of the investment process, from idea generation to strategy
evaluation, and introduced ML as an important element of this process in the form of the
ML4T workflow.

While demonstrating the use of a broad range of ML algorithms, from the fundamental to
the advanced, we saw how ML can add value at multiple steps in the process of designing,
testing, and executing a strategy. For the most part, however, we focused on the core ML
value proposition, which consists of the ability to extract actionable information from much
larger amounts of data more systematically than human experts would ever be able to.

This value proposition has really gained currency with the explosion of digital data that
made it both more promising and necessary to leverage computing power to extract value
from ever more diverse sets of information. However, the application of ML still requires
significant human intervention and domain expertise to define objectives, select and curate
data, design and optimize a model, and make appropriate use of the results.

Domain-specific aspects of using ML for trading include the nature of financial data and
the environment of financial markets. The use of powerful models with a high capacity to
learn patterns requires particular care to avoid overfitting when the signal-to-noise ratio
is as low as is often the case with financial data. Furthermore, the competitive nature of
trading implies that patterns evolve quickly as signals decay, requiring additional attention
to performance monitoring and model maintenance.

In this concluding chapter, we will briefly summarize the key tools, applications, and
lessons learned throughout the book to avoid losing sight of the big picture after so much
detail. We will then identify areas that we did not cover but would be worthwhile to focus
on as you expand on the many ML techniques we introduced and become productive in
their daily use.

Conclusions and Next Steps

[714]

In sum, in this chapter, we will:

• Review key takeaways and lessons learned

• Point out the next steps to build on the techniques in this book

• Suggest ways to incorporate ML into your investment process

Key takeaways and lessons learned
A central goal of the book was to demonstrate the workflow of extracting signals from data
using ML to inform a trading strategy. Figure 23.1 outlines this ML-for-trading workflow. The
key takeaways summarized in this section relate to specific challenges we encounter when
building sophisticated predictive models for large datasets in the context of financial markets:

Figure 23.1: Key elements of using ML for trading

Important insights to keep in mind as you proceed to the practice of ML for trading include
the following:

• Data is the single most important ingredient that requires careful sourcing
and handling.

• Domain expertise is key to realizing the value contained in data and avoiding some
of the pitfalls of using ML.

• ML offers tools that you can adapt and combine to create solutions for your use case.

Chapter 23

[715]

• The choices of model objectives and performance diagnostics are key to
productive iterations toward an optimal system.

• Backtest overfitting is a huge challenge that requires significant attention.
• Transparency of black-box models can help build confidence and facilitate the

adoption of ML by skeptics.

We will elaborate a bit more on each of these ideas.

Data is the single most important ingredient
The rise of ML in trading and everywhere else largely complements the data explosion
that we covered in great detail. We illustrated in Chapter 2, Market and Fundamental Data
– Sources and Techniques, how to access and work with these data sources, historically the
mainstay of quantitative investment. In Chapter 3, Alternative Data for Finance – Categories
and Use Cases, we laid out a framework with criteria to assess the potential value of
alternative datasets.

A key insight is that state-of-the-art ML techniques like deep neural networks are successful
because their predictive performance continues to improve with more data. On the flip side,
model and data complexity need to match to balance the bias-variance trade-off, which
becomes more challenging the higher the noise-to-signal ratio of the data is. Managing data
quality and integrating datasets are key steps in realizing the potential value.

The new oil? Quality control for raw and intermediate data

Just like oil, a popular comparison these days, data passes through a pipeline with several
stages from its raw form to a refined product that can fuel a trading strategy. Careful
attention to the quality of the final product is critical to getting the desired mileage out of it.

Sometimes, you get data in its raw form and control the numerous transformations
required for your purposes. More often, you deal with an intermediate product and should
get clarity about what exactly the data measures at this point.

Different from oil, there is often no objective quality standard as data sources continue to
proliferate. Instead, the quality depends on its signal content, which in turn depends on your
investment objectives. The cost-effective evaluation of new datasets requires a productive
workflow, including appropriate infrastructure that we will address later in this chapter.

Data integration – the whole exceeds the sum of its parts

The value of data for an investment strategy often depends on combining complementary
sources of market, fundamental, and alternative data. We saw that the predictive power of
ML algorithms, like tree-based ensembles or neural networks, is in part due to their ability
to detect nonlinear relationships, in particular interaction effects among variables.

Conclusions and Next Steps

[716]

The ability to modulate the impact of a variable as a function of other model features
thrives on data inputs that capture different aspects of a target outcome. The combination
of asset prices with macro fundamentals, social sentiment, credit card payment, and
satellite data will likely yield significantly more reliable predictions throughout different
economic and market regimes than each source on its own (provided the amount of data is
large enough to learn the hidden relationships).

Working with data from multiple sources increases the challenges of proper labeling. It is
vital to assign accurate timestamps that accurately reflect historical publication. Otherwise,
we introduce lookahead bias by testing an algorithm with data before it actually becomes
available. For example, third-party data may have timestamps that require adjustments to
reflect the point in time when the information would have been available for a live algorithm.

Domain expertise – telling the signal from the noise
We emphasized that informative data is a necessary condition for successful ML
applications. However, domain expertise is equally essential to define the strategic
direction, select relevant data, engineer informative features, and design robust models.

In any domain, practitioners have theories about the drivers of key outcomes and
relationships among them. Finance is characterized by a large amount of available
quantitative research, both theoretical and empirical. However, Marcos López de Prado
and others (Cochrane 2011) criticize most empirical results: claims of predictive signals
found in hundreds of variables are often based on pervasive data mining and are not robust
to changes in the experimental setup. In other words, statistical significance often results
from large-scale trial-and-error rather than a true systematic relationship, along the lines of
"if you torture the data long enough, it will confess."

On the one hand, there exists a robust understanding of how financial markets work. This
should inform the selection and use of data as well as the justification of strategies that
rely on ML. An important reason is to prioritize ideas that are more likely to be successful
and avoid the multiple testing trap that leads to unreliable results. We outlined key ideas
in Chapter 4, Financial Feature Engineering – How to Research Alpha Factors, and Chapter 5,
Portfolio Optimization and Performance Evaluation.

On the other hand, novel ML techniques will likely uncover new hypotheses about drivers
of financial outcomes that will inform theory and should then be independently tested.

More than the raw data, feature engineering is often the key to making signals useful for an
algorithm. Leveraging decades of research into risk factors that drive returns on theoretical
and empirical grounds is a good starting point to prioritize data transformations that are
more likely to reflect relevant information.

However, only creative feature engineering will lead to innovative strategies that can
compete in the market over time. Even for new alpha factors, a compelling narrative that
explains how they work given established ideas on market dynamics and investor behavior
will provide more confidence to allocate capital.

Chapter 23

[717]

The risks of false discoveries and overfitting to historical data make it even more necessary
to prioritize strategies prior to testing rather than "letting the data speak." We covered how
to deflate the Sharpe ratio in Chapter 7, Linear Models – From Risk Factors to Return Forecasts,
to account for the number of experiments.

ML is a toolkit for solving problems with data
ML offers algorithmic solutions and techniques that can be applied to many use cases.
Parts 2, 3, and 4 of this book have presented ML as a diverse set of tools that can add value
to various steps of the strategy process, including:

• Idea generation and alpha factor research

• Signal aggregation and portfolio optimization

• Strategy testing

• Trade execution

• Strategy evaluation

Moreover, ML algorithms are designed to be further developed, adapted, and combined to
solve new problems in different contexts. For these reasons, it is important to understand
key concepts and ideas underlying these algorithms, in addition to being able to apply
them to data for productive experimentation and research as outlined in Chapter 6, The
Machine Learning Process, and summarized in Figure 23.2:

Figure 23.2: The ML workflow

Furthermore, the best results are often achieved by human-in-the-loop solutions that
combine humans with ML tools. In Chapter 1, Machine Learning for
Trading – From Idea to Execution, we covered the quantamental investment style where
discretionary and algorithmic trading converge. This approach will likely further grow in
importance and depends on the flexible and creative application of the fundamental tools
that we covered and their extensions to a variety of datasets.

Model diagnostics help speed up optimization

In Chapter 6, The Machine Learning Process, we outlined the most important ML-specific
concepts. ML algorithms learn relationships between input data and a target by making
assumptions about the functional form. If the learning is based on noise rather than signal,
predictive performance will suffer.

Conclusions and Next Steps

[718]

Of course, we do not know today how to separate signal and noise from the perspective
of tomorrow's outcomes. Careful cross-validation that avoids lookahead bias and robust
model diagnostics, such as learning curves and the optimization verification test, can
help alleviate this fundamental challenge and calibrate the choice or configuration of an
algorithm. This task can be made easier by defining focused model objectives and, for
complex models, distinguishing between performance shortcomings due to issues with the
optimization algorithm and those with the objective itself.

Making do without a free lunch

No system, whether a computer program or a human, can reliably predict outcomes
for new examples beyond those it has observed during training. The only way out is to
have some additional prior knowledge or make assumptions that go beyond the training
examples. We covered a broad range of algorithms from linear models in Chapter 7, Linear
Models – From Risk Factors to Return Forecasts, to nonlinear ensembles in Chapter 11, Random
Forests – A Long-Short Strategy for Japanese Stocks, and Chapter 12, Boosting Your Trading
Strategy, as well as neural networks in various chapters of Part 4 of this book.

We saw that a linear model makes the strong assumption that the relationship between
inputs and outputs has a very simple form, whereas nonlinear models like gradient
boosting or neural networks aim to learn more complex functions. While it's probably
obvious that a simple model will fail in most circumstances, a complex model is not always
better. If the true relationship is linear but the data is noisy, the complex model will learn
the noise as part of the complex relationship that it assumes to exist. This is the basic idea
behind the "no free lunch" theorem, which states that no algorithm is universally superior
for all tasks. Good fit in some instances comes at the cost of poor performance elsewhere.

The key tools to tailor the choice of the algorithm to the data are data exploration and
experiments based on an understanding of the assumptions the model makes.

Managing the bias-variance trade-off
A key challenge in adapting an algorithm to data is the trade-off between bias and variance,
which both increase prediction errors beyond the natural noisiness of the data. A simple
model that does not adequately capture the relationships in the data will underfit and exhibit
bias, that is, make systematically wrong predictions. A model that is too complex will overfit
and learn the noise in addition to any signal so that the result will show a lot of variance for
different samples.

The key tool to diagnose this trade-off at any given iteration of the model selection and
optimization process is the learning curve. It shows how training and validation errors
depend on the sample size. This allows us to decide between different options to improve
performance: adjust the complexity of the model or get more data points.

The closer the training error is to human performance or another benchmark, the more
likely the model will overfit. A low validation error tells us that we are lucky and found
a good model. If the validation error is high, we are not. If it continues to decline with
the training size, however, more data may help. If the training error is high, more data is
unlikely to help, and we should instead add features or use a more flexible algorithm.

Chapter 23

[719]

Defining targeted model objectives
One of the first steps in the ML process is the definition of an objective for the algorithm
to optimize. Sometimes, the choice is simple, such as in a regression problem. A
classification task can be more difficult, for example, when we care about precision and
recall. Consolidating conflicting objectives into a single metric like the F1 score helps to
focus optimization efforts. We can also include conditions that need to be met rather than
optimized for. We also saw that reinforcement learning is all about defining the right
reward function to guide the agent's learning process.

The optimization verification test
Andrew Ng emphasizes the distinction between performance shortcomings due to a
problem with the learning algorithm or the optimization algorithm. Complex models like
neural networks assume nonlinear relationships, and the search process of the optimization
algorithm may end up in a local rather than a global optimum.

If a model fails to correctly translate a phrase, for example, the test compares the scores for
the correct prediction and the solution discovered by the search algorithm. If the learning
algorithm scores the correct solution higher, the search algorithm requires improvements.
Otherwise, the learning algorithm is optimizing for the wrong objective.

Beware of backtest overfitting
We covered the risks of false discoveries due to overfitting to historical data repeatedly
throughout the book. Chapter 5, Portfolio Optimization and Performance Evaluation, on
strategy evaluation, lays out the main drivers and potential remedies. The low noise-to-
signal ratio and relatively small datasets (compared to web-scale image or text data) make
this challenge particularly serious in the trading domain. Awareness is critical since the
ease of access to data and tools to apply ML increases the risks significantly.

There are no easy answers because the risks are inevitable. However, we presented
methods to adjust backtest metrics to account for repeated trials, such as the deflated
Sharpe ratio. When working toward a live trading strategy, staged paper-trading and
closely monitored performance during execution in the market need to be part of the
implementation process.

How to gain insights from black-box models
Deep neural networks and complex ensembles can raise suspicion when they are
considered impenetrable black-box models, particularly in light of the risks of backtest
overfitting. We introduced several methods to gain insights into how these models make
predictions in Chapter 12, Boosting Your Trading Strategy.

Conclusions and Next Steps

[720]

In addition to conventional measures of feature importance, the recent game-theoretic
innovation of SHapley Additive exPlanations (SHAP) is a significant step toward
understanding the mechanics of complex models. SHAP values allow the exact attribution
of features and their values to predictions so that it becomes easier to validate the logic of a
model in the light of specific theories about market behavior for a given investment target.
Besides justification, exact feature importance scores and attribution of predictions allow
deeper insights into the drivers of the investment outcome of interest.

On the other hand, there is some controversy over how important transparency around
model predictions should be. Geoffrey Hinton, one of the inventors of deep learning,
argues that the reasons for human decisions are often obscure. Perhaps machines should be
evaluated by their results, just as we do with investment managers.

ML for trading in practice
As you proceed to integrate the numerous tools and techniques into your investment and
trading process, there are numerous things you can focus your efforts on. If your goal is
to make better decisions, you should select projects that are realistic yet ambitious given
your current skill set. This will help you to develop an efficient workflow underpinned by
productive tools and gain practical experience.

We will briefly list some of the tools that are useful to expand on the Python ecosystem
covered in this book. They include big data technologies that will eventually be necessary
to implement ML-driven trading strategies at scale. We will also list some of the platforms
that allow you to implement trading strategies using Python, possibly with access to data
sources, and ML algorithms and libraries. Finally, we will point out good practices for
adopting ML as an organization.

Data management technologies
The central role of data in the ML4T process requires familiarity with a range of
technologies to store, transform, and analyze data at scale, including the use of cloud-based
services like Amazon Web Services, Microsoft Azure, and Google Cloud.

Database systems

Data storage implies the use of databases. Historically, these have typically been relational
database management systems (RDBMSes) that use SQL to store and retrieve data in a
well-defined table format. These have included databases from commercial providers like
Oracle and Microsoft and open-source implementations like PostgreSQL and MySQL. More
recently, non-relational alternatives have emerged that are often collectively labeled NoSQL
but are quite diverse, namely:

• Key-value storage: Fast read/write access to objects. We covered the HDF5 format
in Chapter 2, Market and Fundamental Data – Sources and Techniques, which facilitates
fast access to a pandas DataFrame.

Chapter 23

[721]

• Columnar storage: Capitalizes on the homogeneity of data in a column to facilitate
compression and faster column-based operations like aggregation. This is used
in the popular Amazon Redshift data warehouse solution, Apache Parquet,
Cassandra, and Google's Big Table.

• Document store: Designed to store data that defies the rigid schema definition
required by an RDBMS. This has been popularized by web applications that
use JSON or XML format, which we encountered in Chapter 4, Financial Feature
Engineering – How to Research Alpha Factors. It is used, for example, in MongoDB.

• Graph database: Designed to store networks that have nodes and edges and
specializes in queries about network metrics and relationships. It is used in Neo4J
and Apache Giraph.

There has been some convergence toward the conventions established by the relational
database systems. The Python ecosystem facilitates the interaction with many standard data
sources and provides the fast HDF5 and Parquet formats, as demonstrated throughout the
book.

Big data technologies – from Hadoop to Spark

Data management at scale for hundreds of gigabytes and beyond requires the use of multiple
machines that form a cluster to conduct read, write, and compute operations in parallel.
In other words, you need a distributed system that operates on multiple machines in an
integrated way.

The Hadoop ecosystem has emerged as an open-source software framework for distributed
storage and processing of big data using the MapReduce programming model developed
by Google. The ecosystem has diversified under the roof of the Apache Foundation and
today includes numerous projects that cover different aspects of data management at scale.

Key tools within Hadoop include:

• Apache Pig: A data processing language, developed at Yahoo, for implementing
large-scale extract-transform-load (ETL) pipelines using MapReduce.

• Apache Hive: The de facto standard for interactive SQL queries over petabytes of
data. It was developed at Facebook.

• Apache HBASE: A NoSQL database for real-time read/write access that scales
linearly to billions of rows and millions of columns. It can combine data sources
using a variety of different schemas.

Apache Spark has become the most popular platform for interactive analytics on a cluster.
The MapReduce framework allowed parallel computation but required repeated read/
write operations from disk to ensure data redundancy. Spark has dramatically accelerated
computation at scale due to the resilient distributed data (RDD) structure, which allows
highly optimized in-memory computation. This includes iterative computation as required
for optimization, for example, gradient descent for numerous ML algorithms. Fortunately,
the Spark DataFrame interface has been designed with pandas in mind so that your skills
transfer relatively smoothly.

Conclusions and Next Steps

[722]

ML tools
We covered many libraries of the Python ecosystem in this book. Python has evolved to
become the language of choice for data science and ML. The set of open-source libraries
continues to both diversify and mature, and is built on the robust core of scientific
computing libraries NumPy and SciPy.

The popular pandas library has contributed significantly to popularizing the use of Python
for data science and has matured with its 1.0 release in January 2020. The scikit-learn
interface has become the standard for modern, specialized ML libraries like XGBoost or
LightGBM that often interface with the workflow automation tools like GridSearchCV and
Pipeline that we have used repeatedly throughout the book.

There are several providers that aim to facilitate the ML workflow:

• H2O.ai offers the H2O platform, which integrates cloud computing with ML
automation. It allows users to fit thousands of potential models to their data to
explore patterns in the data. It has interfaces in Python as well as R and Java.

• Datarobot aims to automate the model development process by providing a
platform to rapidly build and deploy predictive models in the cloud or on-premises.

• Dataiku is a collaborative data science platform designed to help analysts and
engineers explore, prototype, build, and deliver their own data products.

There are also several open-source initiatives led by companies that build on and expand
the Python ecosystem:

• The quantitative hedge fund TwoSigma contributes quantitative analysis tools to
the Jupyter Notebook environment under the BeakerX project.

• Bloomberg has integrated the Jupyter Notebook into its terminal to facilitate the
interactive analysis of its financial data.

Online trading platforms
The main options to develop trading strategies that use ML are online platforms, which
often look for and allocate capital to successful trading strategies. Popular solutions include
Quantopian, Quantconnect, and QuantRocket. The more recent Alpha Trading Labs focuses
on high-frequency trading. In addition, Interactive Brokers (IB) offers a Python API that
you can use to develop your own trading solution.

Quantopian

We introduced the Quantopian platform and demonstrated the use of its research
and trading environment to analyze and test trading strategies against historical data.
Quantopian uses Python and offers a lot of educational material.

Chapter 23

[723]

Quantopian hosts competitions to recruit algorithms for its crowd-sourced hedge fund
portfolio. It provides capital to the winning algorithm. Live trading was discontinued in
September 2017, but the platform still provides a large range of historical data and attracts
an active community of developers and traders. It is a good starting point to discuss ideas
and learn from others.

QuantConnect

QuantConnect is another open-source, community-driven algorithmic trading platform that
competes with Quantopian. It also provides an IDE to backtest and live trade algorithmic
strategies using Python and other languages.

QuantConnect also has a dynamic, global community from all over the world, and provides
access to numerous asset classes, including equities, futures, FOREX, and cryptocurrency. It
offers live trading integration with various brokers, such as IB, OANDA, and GDAX.

QuantRocket

QuantRocket is a Python-based platform for researching, backtesting, and running
automated quantitative trading strategies. It provides data collection tools, multiple data
vendors, a research environment, multiple backtest engines, and live and paper trading
through IB. It prides itself on support for international equity trading and sets itself apart
with its flexibility (but Quantopian is working toward this as well).

QuantRocket supports multiple engines — its own Moonshot, as well as third-party engines
as chosen by the user. While QuantRocket doesn't have a traditional IDE, it is integrated
well with Jupyter to produce something similar. QuantRocket offers a free version with
access to sample data, but access to a wider set of capabilities starts at $29 per month at the
time of writing in early 2020.

Conclusion
We started by highlighting the explosion of digital data and the emergence of ML as a
strategic capability for investment and trading strategies. This dynamic reflects global
business and technology trends beyond finance and is much more likely to continue than
to stall or reverse. Many investment firms are just getting started to leverage the range of
artificial intelligence tools, just as individuals are acquiring the relevant skills and business
processes are adapting to these new opportunities for value creation, as outlined in the
introductory chapter.

There are also numerous exciting developments for the application of ML to trading on
the horizon that are likely to propel the current momentum. They are likely to become
relevant in the coming years and include the automation of the ML process, the generation
of synthetic training data, and the emergence of quantum computing. The extraordinary
vibrancy of the field implies that this alone could fill a book and the journey will continue
to remain exciting.

[725]

Alpha Factor Library

Throughout this book, we've described how to engineer features from market,
fundamental, and alternative data to build machine learning (ML) models that yield
signals for a trading strategy. The smart design of features, including appropriate
preprocessing and denoising, is what typically leads to an effective strategy. This appendix
synthesizes some of the lessons learned on feature engineering and provides additional
information on this important topic.

Chapter 4, Financial Feature Engineering – How to Research Alpha Factors, summarized the
long-standing efforts of academics and practitioners to identify information or variables
that help reliably predict asset returns. This research led from the single-factor capital asset
pricing model to a "zoo of new factors" (Cochrane, 2011). This factor zoo contains hundreds
of firm characteristics and security price metrics presented as statistically significant
predictors of equity returns in the anomalies literature since 1970 (see a summary in Green,
Hand, and Zhang, 2017).

Chapter 4, Financial Feature Engineering – How to Research Alpha Factors, categorized factors
by the underlying risk they represent and for which an investor would earn a reward above
and beyond the market return. These categories include value versus growth, quality, and
sentiment, as well as volatility, momentum, and liquidity. Throughout this book, we used
numerous metrics to capture these risk factors. This appendix expands on those examples
and collects popular indicators so you can use it as a reference or inspiration for your own
strategy development. It also shows you how to compute them and includes some steps to
evaluate these indicators.

To this end, we'll focus on the broad range of indicators implemented by TA-Lib (see
Chapter 4, Financial Feature Engineering – How to Research Alpha Factors) and the 101
Formulaic Alphas paper (Kakushadze 2016), which presents real-life quantitative trading
factors used in production with an average holding period of 0.6-6.4 days. To facilitate
replication, we'll limit this review to indicators that rely on readily available market data.
This restriction notwithstanding, the vast and rapidly evolving scope of potentially useful
data sources and features implies that this overview is far from comprehensive.

Throughout this chapter, we will use P
t
 for the closing price and V

t
 for the trading volume

of an asset at time t. Where necessary, superscripts like 𝑃𝑃𝑡𝑡high or 𝑃𝑃𝑡𝑡H differentiate between
open, high, low, or close prices. r

t
 denotes the simple return for the period return at time t.𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = {𝑝𝑝𝑡𝑡𝑡𝑡𝑡 𝑡 𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 … 𝑡 𝑝𝑝𝑡𝑡} and 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = {𝑟𝑟𝑡𝑡𝑡𝑡𝑡 𝑡 𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 … 𝑡 𝑟𝑟𝑡𝑡} refer to a time series of prices

and returns, respectively, from t-d to t.

Alpha Factor Library

[726]

Common alpha factors implemented in TA-Lib
The TA-Lib library is widely used to perform technical analysis of financial market data by
trading software developers. It includes over 150 popular indicators from multiple categories
that range from overlap studies, including moving averages and Bollinger Bands, to statistic
functions such as linear regression. The following table summarizes the main categories:

Function Group # Indicators

Overlap Studies 17

Momentum Indicators 30

Volume Indicators 3

Volatility Indicators 3

Price Transform 4

Cycle Indicators 5

Math Operators 11

Math Transform 15

Statistic Functions 9

There are also over 60 functions that aim to recognize candlestick patterns popular with
traders that rely on the visual inspection of charts. Given the mixed evidence on their
predictive ability (Horton 2009; Marshall, Young, and Rose 2006), and the goal of learning
such patterns from data using the ML algorithms covered in this book, we will focus on
the categories listed in the preceding table. Specifically, we will focus on moving averages,
overlap studies, momentum, volume and liquidity, volatility, and fundamental risk factors
in this section.

See the notebook common_alpha_factors for the code examples in this section and
additional implementation details regarding TA-Lib indicators. We'll demonstrate how to
compute selected indicators for an individual stock, as well as a sample of the 500 most-
traded US stocks over the 2007-2016 period (see the notebook sample_selection for the
preparation of this larger dataset).

A key building block – moving averages
Numerous indicators allow for calculation using different types of moving averages (MAs).
They make different tradeoffs between smoothing a series and reacting to new developments.
You can use them as building blocks for your own indicators or modify the behavior of
existing indicators by altering the type of MA used in its construction, as we'll demonstrate in
the next section. The following table lists the available types of MAs, the TA-Lib function to
compute them, and the code you can pass to other indicators to select the given type:

Moving Average Function Code

Simple SMA 0

Exponential EMA 1

Weighted WMA 2

Appendix

[727]

Double Exponential DEMA 3

Triple Exponential TEMA 4

Triangular TRIMA 5

Kaufman Adaptive KAMA 6

MESA Adaptive MAMA 7

In the remainder of this section, we'll briefly outline their definitions and visualize their
different behavior.

Simple moving average

For price series P
t
 with a window of length N, the simple moving average (SMA) at time t

weighs each data point within the window equally:SMA(𝑁𝑁𝑁𝑡𝑡 = 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑃𝑃𝑡𝑡𝑁𝑁 = 1𝑁𝑁∑𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑡𝑡𝑖𝑡

Exponential moving average

For price series P
t
 with a window of length N, the exponential moving average (EMA) at

time t, EMA
t
, is recursively defined as the weighted average of the current price and the

most recent previous EMA
t-1

, where the weights 𝛼𝛼 and 1 − 𝛼𝛼 are defined as follows:EMA(𝑁𝑁𝑁𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑡𝑡 + (1 − 𝛼𝛼𝑁EMA(𝑁𝑁𝑁𝑡𝑡𝑡𝑡 𝛼𝛼 𝛼 2𝑁𝑁 𝑁 𝑁

Weighted moving average

For price series P
t
 with a window of length N, the weighted moving average (WMA) at

time t is computed such that the weight of each data point corresponds to its index within
the window: WMA(𝑁𝑁𝑁𝑡𝑡 = 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 2𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 3𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡 +𝑁𝑁𝑃𝑃𝑡𝑡𝑁𝑁(𝑁𝑁 + 𝑁𝑁𝑁2

Double exponential moving average

The double exponential moving average (DEMA) for a price series P
t
 at time t, DEMA

t
,

is based on the EMA designed to react faster to changes in price. It is computed as the
difference between twice the current EMA and the EMA applied to the current EMA,
labeled EMA2(𝑁𝑁)𝑡𝑡 : DEMA(𝑁𝑁𝑁𝑡𝑡 = 2 × EMA(𝑁𝑁𝑁𝑡𝑡 − EMA2(𝑁𝑁𝑁𝑡𝑡
Since the calculation uses EMA

2
, DEMA needs 2 × 𝑁𝑁 𝑁 𝑁 samples to start producing values.

Alpha Factor Library

[728]

Triple exponential moving average

The triple exponential moving average (TEMA) for a price series P
t
 at time t, TEMA

t
, is

also based on the EMA, yet designed to react even faster to changes in price and indicate
short-term price direction. It is computed as the difference between three times the
difference between the current EMA and the EMA applied to the current EMA, EMA

2
,

with the addition of the EMA applied to the EMA
2
, labeled EMA

3
:TEMA(𝑁𝑁𝑁𝑡𝑡 = 3 × [EMA(𝑁𝑁𝑁𝑡𝑡 − EMA2(𝑁𝑁𝑁𝑡𝑡] + EMA3(𝑁𝑁𝑁𝑡𝑡

Since the calculation uses EMA
3
, DEMA needs 3 × 𝑁𝑁 𝑁 𝑁 samples to start producing values.

Triangular moving average

The triangular moving average (TRIMA) with window length N for a price series P
t
 at time

t, TRIMA(N)
t
, is a weighted average of the last N SMA(N)

t
 values. In other words, it applies

the SMA to a time series of SMA values:

TRIMA(𝑁𝑁𝑁𝑡𝑡 = 1𝑁𝑁∑SMA(𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑡𝑡𝑖𝑖

Kaufman adaptive moving average

The computation of the Kaufman adaptive moving average (KAMA) aims to take into
account changes in market volatility. See the notebook for links to resources that explain
the details of this slightly more involved computation.

MESA adaptive moving average

The MESA adaptive moving average (MAMA) is an exponential moving average
that adapts to price movement based on the rate change of phase, as measured by the
Hilbert Transform discriminator (see TA-Lib documentation). In addition to the price
series, MAMA accepts two additional parameters, fastlimit and slowlimit, that control
the maximum and minimum alpha values that should be applied to the EMA when
calculating MAMA.

Visual comparison of moving averages

Figure A.1 illustrates how the behavior of the different MAs differs in terms of smoothing
the time series and adapting to recent changes. All the time series are calculated for a
21-day moving window (see the notebook for details and color images):

Appendix

[729]

Figure A.1: Comparison of MAs for AAPL closing price

Overlap studies – price and volatility trends
TA-Lib includes several indicators aimed at capturing recent trends, as listed in the
following table:

Function Name

BBANDS Bollinger Bands

HT_TRENDLINE Hilbert Transform – Instantaneous Trendline

MAVP Moving average with variable period

MA Moving average

SAR Parabolic SAR

SAREXT Parabolic SAR – Extended

The MA and MAVP functions are wrappers for the various MAs described in the previous
section. We will highlight a few examples in this section; see the notebook for additional
information and visualizations.

Alpha Factor Library

[730]

Bollinger Bands

Bollinger Bands combine an MA with an upper band and a lower band representing the
moving standard deviation. We can obtain the three time series by providing an input price
series, the length of the moving window, the multiplier for the upper and lower bands, and
the type of MA, as follows:

s = talib.BBANDS(df.close, # No. of periods (2 to 100000)

 timeperiod=20,

 nbdevup=2, # Deviation multiplier for lower band

 nbdevdn=2, # Deviation multiplier for upper band

 matype=1) # default: SMA

For a sample of AAPL closing prices for 2012, we can plot the result like so:

bb_bands = ['upper', 'middle', 'lower']

df = price_sample.loc['2012', ['close']]

df = df.assign(**dict(zip(bb_bands, s)))

ax = df.loc[:, ['close'] + bb_bands].plot(figsize=(16, 5), lw=1);

The preceding code results in the following plot:

Figure A.2: Bollinger Bands for AAPL close price in 2012

John Bollinger, who invented the concept, also defined over 20 trading rules based on the
relationships between the three lines and the current price (see Chapter 4, Financial Feature
Engineering – How to Research Alpha Factors). For example, a smaller distance between the
outer bands implies reduced recent price volatility, which, in turn, is interpreted as greater
volatility and price change going forward.

We can standardize the security-specific values of the Bollinger Bands by forming ratios
between the upper and lower bands, as well as between each of them and the close price, as
follows:

Appendix

[731]

fig, ax = plt.subplots(figsize=(16,5))
df.upper.div(df.close).plot(ax=ax, label='bb_up')

df.lower.div(df.close).plot(ax=ax, label='bb_low')

df.upper.div(df.lower).plot(ax=ax, label='bb_squeeze')

plt.legend()

fig.tight_layout();

The following plot displays the resulting normalized time series:

Figure A.3: Normalized Bollinger Band indicators

The following function can be used with the pandas .groupby() and .apply() methods to
compute the indicators for a larger sample of 500 stocks, as shown here:

def compute_bb_indicators(close, timeperiod=20, matype=0):

 high, mid, low = talib.BBANDS(close,

 timeperiod=20,

 matype=matype)

 bb_up = high / close -1

 bb_low = low / close -1

 squeeze = (high - low) / close

 return pd.DataFrame({'BB_UP': bb_up,

 'BB_LOW': bb_low,

 'BB_SQUEEZE': squeeze},

 index=close.index)

data = (data.join(data

 .groupby(level='ticker')

 .close

 .apply(compute_bb_indicators)))

Alpha Factor Library

[732]

Figure A.4 plots the distribution of values for each indicator across the 500 stocks (clipped at
the 1st and 99th percentiles, hence the spikes in the plots):

Figure A.4: Distribution of normalized Bollinger Band indicators

Parabolic SAR

The parabolic SAR aims to identify trend reversals. It is a trend-following (lagging)
indicator that can be used to set a trailing stop loss or determine entry or exit points.
It is usually represented in a price chart as a set of dots near the price bars. Generally,
when these dots are above the price, it signals a downward trend; it signals an upward
trend when the dots are below the price. The change in the direction of the dots can be
interpreted as a trade signal. However, the indicator is less reliable in a flat or range-bound
market. It is computed as follows:SAR𝑡𝑡 = SAR𝑡𝑡𝑡𝑡 + 𝛼𝛼𝛼EP − SAR𝑡𝑡𝑡𝑡)

The extreme point (EP) is a record that's kept during each trend that represents the
highest value reached by the price during the current uptrend—or lowest value during a
downtrend. During each period, if a new maximum (or minimum) is observed, the EP is
updated with that value.

The α value represents the acceleration factor and is typically set initially to a value of 0.02.
This factor increases by α each time a new EP is recorded. The rate will then quicken to a
point where the SAR converges toward the price. To prevent it from getting too large, a
maximum value for the acceleration factor is normally set to 0.20.

We can compute and plot it for our sample close price series as follows:

df = price_sample.loc['2012', ['close', 'high', 'low']]

df['SAR'] = talib.SAR(df.high, df.low,

 acceleration=0.02, # common value

 maximum=0.2)

df[['close', 'SAR']].plot(figsize=(16, 4), style=['-', '--']);

Appendix

[733]

The preceding code produces the following plot:

Figure A.5: Parabolic SAR for AAPL stock price

Momentum indicators
Chapter 4, Financial Feature Engineering – How to Research Alpha Factors, introduced
momentum as one of the best-performing risk factors historically and listed several
indicators designed to identify the corresponding price trends. These indicators include the
relative strength index (RSI), as well as price momentum and price acceleration:

Factor Description Calculation

Relative strength
index (RSI)

RSI compares the magnitude of recent price
changes across stocks to identify stocks as
overbought or oversold. A high RSI (usually
above 70) indicates overbought and a low
RSI (typically below 30) indicates oversold. It
first computes the average price change for a
given number (often 14) of prior trading days
with rising (∆𝑝𝑝𝑢𝑢𝑝𝑝) and falling prices (∆𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑),
respectively.

RSI = 100 − 1001 + ∆𝑝𝑝𝑢𝑢𝑝𝑝∆𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Price momentum

This factor computes the total return for a
given number of prior trading days d. In the
academic literature, it is common to use the last
12 months except for the most recent month
due to a short-term reversal effect frequently
observed. However, shorter periods have also
been widely used.

Mom𝑑𝑑 = 𝑃𝑃𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡 − 1

Price acceleration

Price acceleration calculates the gradient of
the price trend using the linear regression
coefficient 𝛽𝛽 of a time trend on daily prices for a
longer and a shorter period, for example, 1 year
and 3 months of trading days, and compares
the change in the slope as a measure of price
acceleration.

𝛽𝛽63𝛽𝛽252

Alpha Factor Library

[734]

TA-Lib implements 30 momentum indicators; the most important ones are listed in the
following table. We will introduce a few selected examples; please see the notebook common_
alpha_factors for additional information:

Function Name

PLUS_DM/MINUS_DM Plus/Minus Directional Movement

PLUS_DI/MINUS_DI Plus/Minus Directional Indicator

DX Directional Movement Index

ADX Average Directional Movement Index

ADXR Average Directional Movement Index Rating

APO/PPO Absolute/Percentage Price Oscillator

AROON/AROONOSC Aroon/Aroon Oscillator

BOP Balance of Power

CCI Commodity Channel Index

CMO Chande Momentum Oscillator

MACD Moving Average Convergence/Divergence

MFI Money Flow Index

MOM Momentum

RSI Relative Strength Index

STOCH Stochastic

ULTOSC Ultimate Oscillator

WILLR Williams' %R

Several of these indicators are closely related and build on each other, as the following
example demonstrates.

Average directional movement indicators

The average directional movement index (ADX) combines two other indicators, namely
the positive and negative directional indicators (PLUS_DI and MINUS_DI), which, in turn,
build on the positive and negative directional movement (PLUS_DM and MINUS_DM). See the
notebook for additional details.

Plus/minus directional movement

For a price series P
t
 with daily highs 𝑃𝑃𝑡𝑡𝐻𝐻 and daily lows 𝑃𝑃𝑡𝑡𝐿𝐿 , the directional movement tracks

the absolute size of price moves over a time period T, as follows:Up𝑡𝑡 = 𝑃𝑃𝑡𝑡𝐻𝐻 − 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝐻𝐻 Down𝑡𝑡 = 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝐿𝐿 𝑡 𝑃𝑃𝑡𝑡𝐿𝐿 PLUS_DM𝑡𝑡 = {Up𝑡𝑡 if Up𝑡𝑡 > Down𝑡𝑡 and Up𝑡𝑡 > 00 otherwise

Appendix

[735]

MINUS_DM𝑡𝑡 = {Down𝑡𝑡 if Down𝑡𝑡 > Up𝑡𝑡 and Down𝑡𝑡 < 00 otherwise
We can compute and plot this indicator for a 2-year price series of the AAPL stock in
2012-13:

df = price_sample.loc['2012': '2013', ['high', 'low', 'close']]

df['PLUS_DM'] = talib.PLUS_DM(df.high, df.low, timeperiod=10)

df['MINUS_DM'] = talib.MINUS_DM(df.high, df.low, timeperiod=10)

The following plot visualizes the resulting time series:

Figure A.6: PLUS_DM/MINUS_DM for AAPL stock price

Plus/minus directional index

PLUS_DI and MINUS_DI are the simple MAs of PLUS_DM and MINUS_DM, respectively, each
divided by the average true range (ATR). See the Volatility indicators section later in this
chapter for more details.

The simple MA is calculated over the given number of periods. The ATR is a smoothed
average of the true ranges.

Average directional index

Finally, the average directional index (ADX) is the (simple) MA of the absolute value of the
difference between PLUS_DI and MINUS_DI, divided by their sum:ADX = 100 × SMA(𝑁𝑁𝑁𝑡𝑡 |PLUSD𝐼𝐼𝑡𝑡 −MINUSDI𝑡𝑡PLUSD𝐼𝐼𝑡𝑡 +MINUSDI𝑡𝑡|
Its values oscillate in the 0-100 range and are often interpreted as follows:

ADX Value Trend Strength

0-25 Absent or weak trend

25-50 Strong trend

50-75 Very strong trend

75-100 Extremely strong trend

Alpha Factor Library

[736]

We compute the ADX time series for our AAPL sample series similar to the previous
examples, as follows:

df['ADX'] = talib.ADX(df.high,

 df.low,

 df.close,

 timeperiod=14)

The following plot visualizes the result over the 2007-2016 period:

Figure A.7: ADX for the AAPL stock price series

Aroon Oscillator

The Aroon indicator measures the time between highs and the time between lows over a
time period. It computes an AROON_UP and an AROON_DWN indicator, as follows:AROON_UP = 𝑇𝑇 𝑇 P𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 × 100

AROON_DOWN = 𝑇𝑇 𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 × 100

The Aroon Oscillator is simply the difference between the AROON_UP and AROON_DOWN
indicators and moves within the range from -100 to 100, as shown here for the AAPL
price series:

Figure A.8: Aroon Oscillator for the AAPL stock price series

Appendix

[737]

Balance of power

The balance of power (BOP) intends to measure the strength of buyers relative to sellers
in the market by assessing the influence of each side on the price. It is computed as the
difference between the close and the open price, divided by the difference between the high
and the low price: BOP𝑡𝑡 = 𝑃𝑃𝑡𝑡Close − 𝑃𝑃𝑡𝑡Open𝑃𝑃𝑡𝑡High − 𝑃𝑃𝑡𝑡Low

Commodity channel index

The commodity channel index (CCI) measures the difference between the current typical
price, computed as the average of current low, high, and close price and the historical
average price. A positive (negative) CCI indicates that the price is above (below) the historic
average. It is computed as follows: �̅�𝑃𝑡𝑡 = 𝑃𝑃𝑡𝑡𝐻𝐻 + 𝑃𝑃𝑡𝑡𝐿𝐿 + 𝑃𝑃𝑡𝑡𝐶𝐶3

CCI𝑡𝑡 = �̅�𝑃𝑡𝑡 − SMA(𝑁𝑁𝑁𝑡𝑡0.15∑ |�̅�𝑃𝑡𝑡 − SMA(𝑁𝑁𝑁𝑡𝑡|/𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡

Moving average convergence divergence

Moving average convergence divergence (MACD) is a very popular trend-following
(lagging) momentum indicator that shows the relationship between two MAs of a security's
price. It is calculated by subtracting the 26-period EMA from the 12-period EMA.

The TA-Lib implementation returns the MACD value and its signal line, which is the 9-day
EMA of the MACD. In addition, the MACD-Histogram measures the distance between the
indicator and its signal line. The following charts show the results:

Alpha Factor Library

[738]

Figure A.9: The three MACD series for the AAPL stock price series

Stochastic relative strength index

The stochastic relative strength index (StochRSI) is based on the RSI described at the
beginning of this section and intends to identify crossovers, as well as overbought and
oversold conditions. It compares the distance of the current RSI to the lowest RSI over a
given time period T to the maximum range of values the RSI has assumed for this period. It
is computed as follows: STOCHRSI𝑡𝑡 = RSI𝑡𝑡 − RSI𝑡𝑡𝐿𝐿(𝑇𝑇𝑇RSI𝑡𝑡𝐻𝐻(𝑇𝑇𝑇 − RSI𝑡𝑡𝐿𝐿(𝑇𝑇𝑇
The TA-Lib implementation offers more flexibility than the original unsmoothed
stochastic RSI version by Chande and Kroll (1993). To calculate the original indicator, keep
timeperiod and fastk_period equal.

The return value fastk is the unsmoothed RSI. fastd_period is used to compute a
smoothed StochRSI, which is returned as fastd. If you do not care about StochRSI
smoothing, just set fastd_period to 1 and ignore the fasytd output:

fastk, fastd = talib.STOCHRSI(df.close,

 timeperiod=14,

 fastk_period=14,

 fastd_period=3,

 fastd_matype=0)

df['fastk'] = fastk

df['fastd'] = fastd

Appendix

[739]

Figure A.10 plots the closing price and both the smoothed and unsmoothed stochastic RSI:

Figure A.10: Smoothed and unsmoothed StochRSI series for the AAPL stock price

Stochastic oscillator

A stochastic oscillator is a momentum indicator that compares a particular closing price of a
security to a range of its prices over a certain period of time. Stochastic oscillators are based
on the idea that closing prices should confirm the trend. For Stochastic (STOCH), there are
four different lines: KFast, DFast, KSlow, and DSlow. D is the signal line usually drawn over its
corresponding K function: 𝐾𝐾Fast(𝑇𝑇𝐾𝐾) = 𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑇𝑇𝐾𝐾𝐿𝐿𝑃𝑃𝑇𝑇𝐾𝐾𝐻𝐻 − 𝑃𝑃𝑇𝑇𝐾𝐾𝐿𝐿 ∗ 100

𝐷𝐷Fast(𝑇𝑇FastD) = MA(𝑇𝑇FastD)[𝐾𝐾Fast] 𝐾𝐾Slow(𝑇𝑇SlowK) = MA(𝑇𝑇SlowK)[𝐾𝐾Fast] 𝐷𝐷Slow(𝑇𝑇SlowD) = MA(𝑇𝑇SlowD)[𝐾𝐾Slow] 𝑃𝑃𝑇𝑇𝐾𝐾𝐿𝐿 , 𝑃𝑃𝑇𝑇𝐾𝐾𝐻𝐻 , and 𝑃𝑃𝑇𝑇𝐾𝐾𝐿𝐿 are the extreme values of the last 𝑇𝑇𝐾𝐾 period. 𝐾𝐾Slow and 𝐷𝐷Fast are
equivalent when using the same period. We obtain the series shown in Figure A.11, as
follows:

slowk, slowd = talib.STOCH(df.high,

 df.low,

 df.close,

 fastk_period=14,

 slowk_period=3,

 slowk_matype=0,

 slowd_period=3,

 slowd_matype=0)

df['STOCH'] = slowd / slowk

Alpha Factor Library

[740]

Figure A.11: STOCH series for the AAPL stock price

Ultimate oscillator

The ultimate oscillator (ULTOSC) measures the average difference between the current
close and the previous lowest price over three timeframes—with the default values 7,
14, and 28—to avoid overreacting to short-term price changes and incorporate short-,
medium-, and long-term market trends.

It first computes the buying pressure, BP
t
, then sums it over the three periods T

1
, T

2
, and T

3
,

normalized by the true range (TR
t
):BP𝑡𝑡 = 𝑃𝑃𝑡𝑡Close −min(𝑃𝑃𝑡𝑡𝑡𝑡Close, 𝑃𝑃𝑡𝑡Low) TR𝑡𝑡 = max(𝑃𝑃𝑡𝑡𝑡𝑡Close, 𝑃𝑃𝑡𝑡High) − min(𝑃𝑃𝑡𝑡𝑡𝑡Close, 𝑃𝑃𝑡𝑡Low)

ULTOSC is then computed as a weighted average over the three periods, as follows:Avg𝑡𝑡(𝑇𝑇) = ∑ BP𝑡𝑡𝑡𝑡𝑡𝑇𝑇𝑡𝑇𝑡𝑡𝑖𝑖∑ TR𝑡𝑡𝑡𝑡𝑡𝑇𝑇𝑡𝑇𝑡𝑡𝑖𝑖

ULTOSC𝑡𝑡 = 100 ∗ 4Avg𝑡𝑡(7) + 2Avg𝑡𝑡(14) + Avg𝑡𝑡(28)4 + 2 + 1

The following plot shows the result of this:

Figure A.12: ULTOSC series for the AAPL stock price

Appendix

[741]

Williams %R

Williams %R, also known as the Williams Percent Range, is a momentum indicator that
moves between 0 and -100 and measures overbought and oversold levels to identify entry
and exit points. It is similar to the stochastic oscillator and compares the current closing
price 𝑃𝑃𝑡𝑡Close to the range of highest (𝑃𝑃𝑇𝑇High) and lowest (𝑃𝑃𝑇𝑇Low) prices over the last T periods
(typically 14). The indicators are computed as follows, and the result is shown in the
following chart: WILLR𝑡𝑡 = 𝑃𝑃𝑇𝑇High − 𝑃𝑃𝑡𝑡Close𝑃𝑃𝑇𝑇High − 𝑃𝑃𝑇𝑇Low

Figure A.13: WILLR series for the AAPL stock price

Volume and liquidity indicators
Risk factors that focus on volume and liquidity incorporate metrics like turnover, dollar
volume, or market capitalization. TA-Lib implements three indicators, the first two of
which are closely related:

Function Name

AD Chaikin A/D Line

ADOSC Chaikin A/D Oscillator

OBV On Balance Volume

Also see Chapter 20, Autoencoders for Conditional Risk Factors and Asset Pricing, where we
use the Amihud Illiquidity indicator to measure a rolling average ratio between absolute
returns and the dollar volume.

Alpha Factor Library

[742]

Chaikin accumulation/distribution line and oscillator

The Chaikin advance/decline (AD) or accumulation/distribution (AD) line is a volume-
based indicator designed to measure the cumulative flow of money into and out of an asset.
The indicator assumes that the degree of buying or selling pressure can be determined by
the location of the close, relative to the high and low for the period. There is buying (selling)
pressure when a stock closes in the upper (lower) half of a period's range. The intention is
to signal a change in direction when the indicator diverges from the security price.

The A/D line is a running total of each period's money flow volume (MFV). It is calculated
as follows:

1. Compute the money flow index (MFI) as the relationship of the close to the high-
low range

2. Multiply the MFI by the period's volume V
t
 to come up with the MFV

3. Obtain the AD line as the running total of the MFV:MFI𝑡𝑡 = 𝑃𝑃𝑡𝑡Close − 𝑃𝑃𝑡𝑡Low𝑃𝑃𝑡𝑡High − 𝑃𝑃𝑡𝑡Low

MFV𝑡𝑡 = MFI𝑡𝑡 × 𝑉𝑉𝑡𝑡 AD𝑡𝑡 = AD𝑡𝑡𝑡𝑡 +MFV𝑡𝑡
The Chaikin A/D oscillator (ADOSC) is the MACD indicator that's applied to the Chaikin
AD line. The Chaikin oscillator intends to predict changes in the AD line.

It is computed as the difference between the 3-day EMA and the 10-day EMA of the AD
line. The following chart shows the ADOSC series:

Figure A.14: ADOSC series for the AAPL stock price

On-balance volume

The on-balance volume (OBV) indicator is a cumulative momentum indicator that relates
volume to price change. It assumes that OBV changes precede price changes because smart
money can be seen flowing into the security by a rising OBV. When the public then follows,
both the security and OBV will rise.

Appendix

[743]

The current OBV
t
 is computed by adding (subtracting) the current volume to (from) the last

OBV
t-1

 if the security closes higher (lower) than the previous close:OBV𝑡𝑡 = { OBV𝑡𝑡𝑡𝑡 + 𝑉𝑉𝑡𝑡 if 𝑃𝑃𝑡𝑡 > 𝑃𝑃𝑡𝑡 OBV𝑡𝑡𝑡𝑡 − 𝑉𝑉𝑡𝑡 if 𝑃𝑃𝑡𝑡 < 𝑃𝑃𝑡𝑡𝑡𝑡OBV𝑡𝑡𝑡𝑡 otherwise
Volatility indicators
Volatility indicators include stock-specific measures like the rolling (normalized) standard
deviation of asset prices and returns. It also includes broader market measures like the
Chicago Board Options Exchange's CBOE volatility index (VIX), which is based on the
implied volatility of S&P 500 options.

TA-Lib implements both normalized and averaged versions of the true range indicator.

Average true range

The average true range (ATR) indicator shows the volatility of the market. It was introduced
by Wilder (1978) and has been used as a component of numerous other indicators since. It
aims to anticipate changes in trend such that the higher its value, the higher the probability of
a trend change; the lower the indicator's value, the weaker the current trend.

ATR is computed as the simple moving average for a period T of the true range (TRANGE),
which measures volatility as the absolute value of the largest recent trading range:TRANGE𝑡𝑡 = max [𝑃𝑃𝑡𝑡High − 𝑃𝑃𝑡𝑡low, |𝑃𝑃𝑡𝑡High − 𝑃𝑃𝑡𝑡𝑡𝑡Close|, |𝑃𝑃𝑡𝑡low − 𝑃𝑃𝑡𝑡𝑡𝑡Close|]
The resulting series is shown in the following plot:

Figure A.15: ATR series for the AAPL stock price

Normalized average true range

TA-Lib also offers a normalized ATR that permits comparisons across assets. The
normalized average true range (NATR) is computed as follows:NATR𝑡𝑡 = ATR𝑡𝑡(𝑇𝑇𝑇𝑃𝑃𝑡𝑡Close ∗ 100

Alpha Factor Library

[744]

Normalization makes the ATR more relevant for long-term analysis where the price
changes substantially and for cross-market or cross-security comparisons.

Fundamental risk factors
Commonly used measures of risk include the exposure of asset returns to the returns of
portfolios designed to represent fundamental factors. We introduced the five-factor model
by Fama and French (2015) and showed how to estimate factor loadings and risk factor
premia using two-state Fama-Macbeth regressions in Chapter 7, Linear Models – From Risk
Factors to Return Forecasts.

To estimate the relationship between the price of security and the forces included in the
five-factor model such as firm size, value-versus-growth dynamic, investment policy and
profitability, in addition to the broad market, we can use the portfolio returns provided by
Kenneth French's data library as exogenous variables in a rolling linear regression.

The following example accesses the data using the pandas_datareader module (see Chapter

2, Market and Fundamental Data – Sources and Techniques). It then computes the regression
coefficients for windows of 21, 63, and 252 trading days:

factor_data = (web.DataReader('F-F_Research_Data_5_Factors_2x3_daily',
'famafrench',

 start=2005)[0].rename(columns={'Mkt-RF':
'MARKET'}))

factor_data.index.names = ['date']

factors = factor_data.columns[:-1]

t = 1

ret = f'ret_{t:02}'

windows = [21, 63, 252]

for window in windows:

 print(window)

 betas = []

 for ticker, df in data.groupby('ticker', group_keys=False):

 model_data = df[[ret]].merge(factor_data, on='date').dropna()

 model_data[ret] -= model_data.RF

 rolling_ols = RollingOLS(endog=model_data[ret],

 exog=sm.add_constant(model_data[factors]),

 window=window)

 factor_model = rolling_ols.fit(params_only=True).params.rename(
 columns={'const':'ALPHA'})

 result = factor_model.assign(ticker=ticker).set_index(

 'ticker', append=True).swaplevel()

 betas.append(result)

 betas = pd.concat(betas).rename(columns=lambda x: f'{x}_{window:02}')

 data = data.join(betas)

Appendix

[745]

The risk factors just described are commonly used and also known as smart beta factors
(see Chapter 1, Machine Learning for Trading – From Idea to Execution). In addition, hedge
funds have started to resort to alpha factors derived from large-scale data mining exercises,
which we'll turn to now.

WorldQuant's quest for formulaic alphas
We introduced WorldQuant in Chapter 1, Machine Learning for Trading – From Idea to
Execution, as part of a trend toward crowd-sourcing investment strategies. WorldQuant
maintains a virtual research center where quants worldwide compete to identify alphas.
These alphas are trading signals in the form of computational expressions that help predict
price movements, just like the common factors described in the previous section.

These formulaic alphas translate the mechanism to extract the signal from data into
code, and they can be developed and tested individually with the goal to integrate their
information into a broader automated strategy (Tulchinsky 2019). As stated repeatedly
throughout this book, mining for signals in large datasets is prone to multiple testing bias
and false discoveries. Regardless of these important caveats, this approach represents a
modern alternative to the more conventional features presented in the previous section.

Kakushadze (2016) presents 101 examples of such alphas, 80 percent of which were used in
a real-world trading system at the time. It defines a range of functions that operate on cross-
sectional or time-series data and can be combined, for example, in nested form.

The notebook 101_formulaic_alphas shows how to implement these functions using
pandas and NumPy, and also illustrates how to compute around 80 of these formulaic
alphas for which we have input data (we lack, for example, accurate historical sector
information).

Cross-sectional and time-series functions
The building blocks of the formulaic alphas proposed by Kakushadze (2016) are relatively
simple expressions that compute over longitudinal or cross-sectional data that are readily
implemented using pandas and NumPy.

The cross-sectional functions include ranking and scaling, as well as the group-wise
normalization of returns, where the groups are intended to represent sector information
at different levels of granularity:

Alpha Factor Library

[746]

We can directly translate the ranking function into a pandas expression, using a DataFrame
as an argument in the format number of period × number of tickers, as follows:

def rank(df):

 """Return the cross-sectional percentile rank

 Args:

 :param df: tickers in columns, sorted dates in rows.

 Returns:

 pd.DataFrame: the ranked values

 """

 return df.rank(axis=1, pct=True)

There are also several time-series functions that will likely be familiar:

Function Definition
ts_{O}(x, d) Operator O applied to the time series for the past d days;

non-integer number of days d converted to floor(d).

ts_lag(x, d) Value of x, d days ago.

ts_delta(x, d) Difference between the value of x today and d days ago.

ts_rank(x, d) Rank over the past d days.

ts_mean(x, d) Simple moving average over the past d days.

ts_weighted_mean(x, d) Weighted moving average over the past d days with linearly
decaying weights d, d – 1, …, 1 (rescaled to sum up to 1).

ts_sum(x, d) Rolling sum over the past d days.

ts_product(x, d) Rolling product over the past d days.

ts_stddev(x, d) Moving standard deviation over the past d days.

ts_max(x, d), ts_min(x, d) Rolling maximum/minimum over the past d days.

ts_argmax(x, d), ts_
argmin(x, d)

Day of ts_max(x, d), ts_min(x, c).

ts_correlation(x, y, d) Correlation of x and y for the past d days.

These time-series functions are also straightforward to implement using pandas' rolling
window functionality. For the rolling weighted mean, for example, we can combine pandas
with TA-Lib, as demonstrated in the previous section:

def ts_weighted_mean(df, period=10):

 """

 Linear weighted moving average implementation.

 :param df: a pandas DataFrame.

 :param period: the LWMA period

 :return: a pandas DataFrame with the LWMA.

 """

 return (df.apply(lambda x: WMA(x, timeperiod=period)))

Appendix

[747]

To create the rolling correlation function, we provide two DataFrames containing time
series for different tickers in the columns:

def ts_corr(x, y, window=10):

 """

 Wrapper function to estimate rolling correlations.

 :param x, y: pandas DataFrames.

 :param window: the rolling window.

 :return: DataFrame with time-series min for past 'window' days.

 """

 return x.rolling(window).corr(y)

In addition, the expressions use common operators, as we will see as we turn to the
formulaic alphas that each combine several of the preceding functions.

Formulaic alpha expressions
To illustrate the computation of the alpha expressions, we need to create the following
input tables using the sample of the 500 most-traded stocks from 2007-2016 from the
previous section (see the notebook sample_selection for details on data preparation).
Each table contains columns of time series for individual tickers:

Variable Description

returns Daily close-to-close returns

open, close, high, low, volume Standard definitions for daily price and volume data

vwap Daily volume-weighted average price

adv(d) Average daily dollar volume for the past d days

Our data does not include the daily volume-weighted average price required by many alpha
expressions. To be able to demonstrate their computation, we very roughly approximate this
value using the simple average of the daily open, high, low, and close prices.

Contrary to the common alphas presented in the previous section, the formulaic alphas do
not come with an economic interpretation of the risk exposure they represent. We will now
demonstrate a few simply numbered instances.

Alpha 001

The first alpha expression is formulated as follows:

rank(ts_argmax(power(((returns < 0) ? ts_std(returns, 20) : close), 2.), 5))

Alpha Factor Library

[748]

The ternary operator a ? b : c executes b if a evaluates to true, and c otherwise. Thus, if
the daily returns are positive, it squares the 20-day rolling standard deviation; otherwise,
it squares the current close price. It then proceeds to rank the assets by the index of the day
that shows the maximum for this value.

Using c and r to represent the close and return inputs, the alpha translates into Python
using the previous functions and pandas methods, like so:

def alpha001(c, r):

 """(rank(ts_argmax(power(((returns < 0)

 ? ts_std(returns, 20)

 : close), 2.), 5)) -0.5)"""

 c[r < 0] = ts_std(r, 20)

 return (rank(ts_argmax(power(c, 2), 5)).mul(-.5)

 .stack().swaplevel())

For the 10-year sample of 500 stocks, the distribution of Alpha 001 values and its
relationship with one-day forward returns looks as follows:

Figure A.16: Alpha 001 histogram and scatter plot

The information coefficient (IC) is fairly low, yet it is statistically significant at -0.0099
and the mutual information (MI) estimate yields 0.0129 (see Chapter 4, Financial Feature
Engineering – How to Research Alpha Factors, and the notebook 101_formulaic_alphas, for
implementation details).

Alpha 054

Our second expression is the ratio of the difference between the low and the close price and
the low and the high price, each multiplied by the open and close, respectively, raised to
the fifth power:

-(low - close) * power(open, 5) / ((low - high) * power(close, 5))

Appendix

[749]

Similarly, the translation into pandas is straightforward. We use o, h, l, and c to represent
the DataFrames containing the respective price series for each ticker in the 500 columns:

def alpha054(o, h, l, c):

 """-(low - close) * power(open, 5) / ((low - high) * power(close, 5))"""

 return (l.sub(c).mul(o.pow(5)).mul(-1)

 .div(l.sub(h).replace(0, -0.0001).mul(c ** 5))

 .stack('ticker')

 .swaplevel())

In this case, the IC is significant at 0.025, while the MI score is lower at 0.005.

We will now take a look at how these different types of alpha factors compare from a
univariate and a multivariate perspective.

Bivariate and multivariate factor evaluation
To evaluate the numerous factors, we rely on the various performance measures introduced
in this book, including the following:

• Bivariate measures of the signal content of a factor with respect to the one-day
forward returns

• Multivariate measures of feature importance for a gradient boosting model trained
to predict the one-day forward returns using all factors

• Financial performance of portfolios invested according to factor quantiles using
Alphalens

We will first discuss the bivariate metrics and then turn to the multivariate metrics; we will
conclude by comparing the results. See the notebook factor_evaluation for the relevant
code examples and additional exploratory analysis, such as the correlation among the
factors, which we'll omit here.

Information coefficient and mutual information
We will use the following bivariate metrics, which we introduced in Chapter 4, Financial
Feature Engineering – How to Research Alpha Factors:

• The IC measured as the Spearman rank correlation

• The MI score computed using mutual_info_regression, provided by scikit-learn

The MI score uses a sample of 100,000 observations to limit the computational cost of the
nearest neighbor computations. Both metrics are otherwise easy to compute and have been
used repeatedly; see the notebook for implementation details. We will see, however, that
they can yield quite different results.

Alpha Factor Library

[750]

Feature importance and SHAP values
To measure the predictive relevance of a feature given all other available factors, we can
train a LightGBM gradient boosting model with default settings to predict the forward
returns using all of the (approximately) 130 factors. The model uses 8.5 years of data to
train 104 trees using early stopping. We will obtain test predictions for the last year of data,
which yield a global IC of 3.40 and a daily average of 2.01.

We will then proceed to compute the feature importance and SHapley Additive

exPlanation (SHAP) values, as described in Chapter 12, Boosting Your Trading Strategy; see
the notebook for details. The influence plot in Figure A.17 highlights how the values of the
20 most important features impact the model's predictions positively or negatively relative
to the model's default output. In SHAP value terms, alphas 054 and 001 are among the top
five factors:

Figure A.17: SHAP values for common and formulaic alphas

Now, let's compare how the different metrics rate our factors.

Comparison – the top 25 features for each metric
The rank correlation among SHAP values and conventional feature importance measured
as the weighted contribution of a feature to the reduction of the model's loss function
is high at 0.89. It is also substantial between SHAP values and both univariate metrics
at around 0.5.

Appendix

[751]

Interestingly, though, MI and IC disagree significantly in their feature rankings with
a correlation of only 0.16, as shown in the following diagram:

Figure A.18: Rank correlation of performance metrics

Figure A.19 displays the top 25 features according to each metric. Except for the MI score,
which prefers the "common" alpha factors, features from both sources are ranked highly:

Figure A.19: Top 25 features for each performance metric

Alpha Factor Library

[752]

It is not immediately apparent why MI disagrees with the other metrics and why few of
the features it assigns a high score play a significant role in the gradient boosting model.
A possible explanation is that the computation uses only a 10 percent sample and the scores
appear sensitive to the sample size.

Financial performance – Alphalens
Finally, we mostly care about the value of the trading signals emitted by an alpha
factor. As introduced in Chapter 4, Financial Feature Engineering – How to Research Alpha
Factors, and demonstrated repeatedly, Alphalens evaluates factor performance on a
standalone basis.

The notebook alphalens_analysis lets you select an individual factor and compute how
portfolios invested for a given horizon according to how factor quantile values would have
performed.

The example in Figure A.20 shows the result for Alpha 54; while portfolios in the top
and bottom quintiles did achieve a 1.5 bps average spread on a daily basis, the cumulative
returns of a long-short portfolio were negative:

Figure A.20: Alphalens performance metric for Alpha 54

Feel free to use the notebook as a template to evaluate the sample factors or others of your
own choosing more systematically.

[753]

References
Abdel-Hamid, Ossama, Abdel-rahman Mohamed, Hui Jiang, Li Deng, Gerald Penn,

and Dong Yu. 2014. "Convolutional Neural Networks for Speech Recognition."
IEEE/ACM Transactions on Audio, Speech, and Language Processing 22 (10): 1533–45.
https://doi.org/10.1109/TASLP.2014.2339736.

Alqahtani, Hamed, Manolya Kavakli-Thorne, and Gulshan Kumar. 2019. "Applications
of Generative Adversarial Networks (GANs): An Updated Review." Archives of
Computational Methods in Engineering, December. https://doi.org/10.1007/s11831-
019-09388-y.

Ang, Andrew, Robert J Hodrick, Yuhang Xing, and Xiaoyan Zhang. 2006. "The Cross-
Section of Volatility and Expected Returns." The Journal of Finance 61 (1): 259–99.

Ang, Andrew. 2014. Asset Management: A Systematic Approach to Factor Investing.
1 edition. Oxford: Oxford University Press.

Araci, Dogu. 2019. "FinBERT: Financial Sentiment Analysis with Pre-Trained Language
Models." ArXiv:1908.10063 [Cs], August. http://arxiv.org/abs/1908.10063.

Arora, Saurabh, and Prashant Doshi. 2019. "A Survey of Inverse Reinforcement
Learning: Challenges, Methods and Progress." ArXiv:1806.06877 [Cs, Stat], August.
http://arxiv.org/abs/1806.06877.

Asness, Clifford S., Tobias J. Moskowitz, and Lasse Heje Pedersen. 2013. "Value
and Momentum Everywhere." The Journal of Finance 68 (3): 929–85. https://www.
jstor.org/stable/42002613.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. 2016. "Neural Machine
Translation by Jointly Learning to Align and Translate." ArXiv:1409.0473 [Cs, Stat],
May. http://arxiv.org/abs/1409.0473.

Bailey, David H., Jonathan M. Borwein, and Marcos Lopez de Prado. 2016. The
Probability of Backtest Overfitting. Journal of Computational Finance, September.
https://www.risk.net/node/2471206.

Banz, Rolf W. 1981. "The Relationship between Return and Market Value of Common
Stocks." Journal of Financial Economics 9 (1): 3–18.

https://doi.org/10.1109/TASLP.2014.2339736
https://doi.org/10.1007/s11831-019-09388-y
https://doi.org/10.1007/s11831-019-09388-y
http://arxiv.org/abs/1908.10063
http://arxiv.org/abs/1806.06877
https://www.jstor.org/stable/42002613
https://www.jstor.org/stable/42002613
http://arxiv.org/abs/1409.0473
https://www.risk.net/node/2471206

References

[754]

Barberis, Nicholas, Andrei Shleifer, and Robert Vishny. 1998. "A Model of Investor
Sentiment." Journal of Financial Economics 49 (3): 307–43.

Basu, Sanjoy, and others. 1981. "The Relationship between Earnings' Yield, Market
Value and Return for NYSE Common Stocks: Further Evidence."

Bengio, Y., A. Courville, and P. Vincent. 2013. "Representation Learning: A Review and
New Perspectives." IEEE Transactions on Pattern Analysis and Machine Intelligence 35
(8): 1798–1828. https://doi.org/10.1109/TPAMI.2013.50.

Betancourt, Michael. 2018. "A Conceptual Introduction to Hamiltonian Monte Carlo."
ArXiv:1701.02434 [Stat], July. http://arxiv.org/abs/1701.02434.

Bishop, Christopher. 2006. Pattern Recognition and Machine Learning. Information
Science and Statistics. New York: Springer-Verlag. https://www.springer.com/gp/
book/9780387310732.

Blei, David M., Andrew Y. Ng, and Michael I. Jordan. 2003. "Latent Dirichlet
Allocation." Journal of Machine Learning Research 3 (Jan): 993–1022. http://jmlr.
csail.mit.edu/papers/v3/blei03a.html.

Burges, Chris J. C. 2010. "Dimension Reduction: A Guided Tour." Foundations and
Trends in Machine Learning, January. https://www.microsoft.com/en-us/research/
publication/dimension-reduction-a-guided-tour-2/.

Byrd, David, Maria Hybinette, and Tucker Hybinette Balch. 2019. "ABIDES: Towards
High-Fidelity Market Simulation for AI Research." ArXiv:1904.12066 [Cs], April.
http://arxiv.org/abs/1904.12066.

Casella, George, and Edward I. George. 1992. "Explaining the Gibbs Sampler."
The American Statistician 46 (3): 167–74. https://doi.org/10.2307/2685208.

Chan, Ernie., 2008. Quantitative Trading: How to Build Your Own Algorithmic
Trading Business, 1 edition. ed. Wiley, Hoboken, N.J.

Chan, Ernie. 2013. Algorithmic Trading: Winning Strategies and Their Rationale. 1st ed.
Wiley Publishing.

Chen, Tianqi, and Carlos Guestrin. 2016. "XGBoost: A Scalable Tree Boosting System."
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining - KDD '16, 785–94. https://doi.org/10.1145/2939672.2939785.

Chen, Wei, Tie-yan Liu, Yanyan Lan, Zhi-ming Ma, and Hang Li. 2009.
"Ranking Measures and Loss Functions in Learning to Rank." In Advances in Neural
Information Processing Systems 22, edited by Y. Bengio, D. Schuurmans, J. D. Lafferty,
C. K. I. Williams, and A. Culotta, 315–323. Curran Associates, Inc. http://papers.
nips.cc/paper/3708-ranking-measures-and-loss-functions-in-learning-to-

rank.pdf.

Cheung, W., 2010. The Black–Litterman model explained. J Asset Manag 11, 229–243.
https://doi.org/10.1057/jam.2009.28.

Chib, Siddhartha, and Edward Greenberg. 1995. "Understanding the Metropolis-
Hastings Algorithm." The American Statistician 49 (4): 327–35. https://doi.org/10.1
080/00031305.1995.10476177.

https://doi.org/10.1109/TPAMI.2013.50
http://arxiv.org/abs/1701.02434
https://www.springer.com/gp/book/9780387310732
https://www.springer.com/gp/book/9780387310732
http://jmlr.csail.mit.edu/papers/v3/blei03a.html
http://jmlr.csail.mit.edu/papers/v3/blei03a.html
https://www.microsoft.com/en-us/research/publication/dimension-reduction-a-guided-tour-2/
https://www.microsoft.com/en-us/research/publication/dimension-reduction-a-guided-tour-2/
ArXiv:1904.12066 [Cs]
http://arxiv.org/abs/1904.12066
https://doi.org/10.2307/2685208
https://doi.org/10.1145/2939672.2939785
http://papers.nips.cc/paper/3708-ranking-measures-and-loss-functions-in-learning-to-rank.pdf
http://papers.nips.cc/paper/3708-ranking-measures-and-loss-functions-in-learning-to-rank.pdf
http://papers.nips.cc/paper/3708-ranking-measures-and-loss-functions-in-learning-to-rank.pdf
https://doi.org/10.1057/jam.2009.28
https://doi.org/10.1080/00031305.1995.10476177
https://doi.org/10.1080/00031305.1995.10476177

References

[755]

Cho, Kyunghyun, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. "Learning Phrase
Representations Using RNN Encoder–Decoder for Statistical Machine Translation."
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 1724–1734. Doha, Qatar: Association for Computational
Linguistics. https://doi.org/10.3115/v1/D14-1179.

Chung, Junyoung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. 2014.
"Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
Modeling." NIPS 2014 Workshop on Deep Learning, December 2014. https://
nyuscholars.nyu.edu/en/publications/empirical-evaluation-of-gated-

recurrent-neural-networks-on-sequen.

Clarke, R., Silva, H. de, Thorley, S., 2002. Portfolio Constraints and the Fundamental Law of
Active Management. Financial Analysts Journal 58, 48–66.

Creswell, Antonia, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta,
and Anil A. Bharath. 2018. "Generative Adversarial Networks: An Overview."
IEEE Signal Processing Magazine 35 (1): 53–65. https://doi.org/10.1109/
MSP.2017.2765202.

Cubuk, Ekin D. 2019. "AutoAugment: Learning Augmentation Strategies From Data."
CVFPR, 11.

Cummins, Mark, and Andrea Bucca. 2012. "Quantitative Spread Trading on Crude Oil
and Refined Products Markets." Quantitative Finance 12 (12): 1857–75. https://doi.
org/10.1080/14697688.2012.715749.

Cybenko, G. 1989. "Approximation by Superpositions of a Sigmoidal Function."
Mathematics of Control, Signals and Systems 2 (4): 303–14. https://doi.org/10.1007/
BF02551274.

David H. Bailey et al. (2015), Backtest Overfitting: An Interactive Example. http://
datagrid.lbl.gov/backtest/.

De Prado, Marcos Lopez. 2018. Advances in Financial Machine Learning. John Wiley
& Sons.

DeMiguel, V., Garlappi, L., Uppal, R., 2009. Optimal Versus Naive Diversification: How
Inefficient is the 1/N Portfolio Strategy? Rev Financ Stud 22, 1915–1953. https://doi.
org/10.1093/rfs/hhm075.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. "BERT:
Pre-Training of Deep Bidirectional Transformers for Language Understanding."
In Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), 4171–4186. Minneapolis, Minnesota: Association for Computational
Linguistics. https://doi.org/10.18653/v1/N19-1423.

Dumais, S. T., G. W. Furnas, T. K. Landauer, S. Deerwester, and R. Harshman. 1988.
"Using Latent Semantic Analysis to Improve Access to Textual Information."
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
281–285. CHI '88. Washington, D.C., USA: Association for Computing Machinery.
https://doi.org/10.1145/57167.57214.

https://doi.org/10.3115/v1/D14-1179
https://nyuscholars.nyu.edu/en/publications/empirical-evaluation-of-gated-recurrent-neural-networks-on-sequen
https://nyuscholars.nyu.edu/en/publications/empirical-evaluation-of-gated-recurrent-neural-networks-on-sequen
https://nyuscholars.nyu.edu/en/publications/empirical-evaluation-of-gated-recurrent-neural-networks-on-sequen
https://doi.org/10.1109/MSP.2017.2765202
https://doi.org/10.1109/MSP.2017.2765202
https://doi.org/10.1080/14697688.2012.715749
https://doi.org/10.1080/14697688.2012.715749
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
http://datagrid.lbl.gov/backtest/
http://datagrid.lbl.gov/backtest/
https://doi.org/10.1093/rfs/hhm075
https://doi.org/10.1093/rfs/hhm075
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/57167.57214

References

[756]

Elliott, Robert J., John Van Der Hoek, and William P. Malcolm. 2005. "Pairs Trading."
Quantitative Finance 5 (3): 271–76. https://doi.org/10.1080/14697680500149370.

Esposito, F., D. Malerba, G. Semeraro, and J. Kay. 1997. "A Comparative Analysis of
Methods for Pruning Decision Trees." IEEE Transactions on Pattern Analysis and
Machine Intelligence 19 (5): 476–91. https://doi.org/10.1109/34.589207.

Esteban, Cristóbal, Stephanie L. Hyland, and Gunnar Rätsch. 2017. "Real-Valued
(Medical) Time Series Generation with Recurrent Conditional GANs."
ArXiv:1706.02633 [Cs, Stat], December. http://arxiv.org/abs/1706.02633.

Fabozzi, Frank J, Sergio M Focardi, and Petter N Kolm. 2010. Quantitative
Equity Investing: Techniques and Strategies. John Wiley & Sons.

Fama, E.F., French, K.R., 2004. The Capital Asset Pricing Model: Theory and
Evidence. Journal of Economic Perspectives 18, 25–46. https://doi.
org/10.1257/0895330042162430.

Fama, Eugene F, and James D MacBeth. 1973. "Risk, Return, and Equilibrium: Empirical
Tests." Journal of Political Economy 81 (3): 607–36.

Fama, Eugene F, and Kenneth R French. 1993. "Common Risk Factors in the Returns on
Stocks and Bonds." Journal of Financial Economics 33: 3–56.

Fama, Eugene F, and Kenneth R French. 1998. "Value versus Growth: The International
Evidence." The Journal of Finance 53 (6): 1975–99.

Fama, Eugene F., and Kenneth R. French. 2015. "A Five-Factor Asset Pricing
Model." Journal of Financial Economics 116 (1): 1–22. https://doi.org/10.1016/j.
jfineco.2014.10.010.

Fawcett, Tom. 2006. "An Introduction to ROC Analysis." Pattern Recognition Letters,
ROC Analysis in Pattern Recognition, 27 (8): 861–74. https://doi.org/10.1016/j.
patrec.2005.10.010.

Fefferman, Charles, Sanjoy Mitter, and Hariharan Narayanan. 2016. "Testing the
Manifold Hypothesis." Journal of the American Mathematical Society 29 (4): 983–1049.
https://doi.org/10.1090/jams/852.

Fei-Fei, Li. 2015. "ImageNet Large Scale Visual Recognition Challenge." International
Journal of Computer Vision 115 (3): 211–52. https://doi.org/10.1007/s11263-015-
0816-y.

Fisher, Walter D. 1958. "On Grouping for Maximum Homogeneity." Journal of the
American Statistical Association 53 (284): 789–98. https://doi.org/10.2307/2281952.

Freund, Yoav, and Robert E Schapire. 1997. "A Decision-Theoretic Generalization of
On-Line Learning and an Application to Boosting." Journal of Computer and System
Sciences 55 (1): 119–39. https://doi.org/10.1006/jcss.1997.1504.

Friedman, Jerome H. 2001. "Greedy Function Approximation: A Gradient Boosting
Machine." The Annals of Statistics 29 (5): 1189–1232. https://www.jstor.org/
stable/2699986.

https://doi.org/10.1080/14697680500149370
https://doi.org/10.1109/34.589207
http://arxiv.org/abs/1706.02633
https://doi.org/10.1257/0895330042162430
https://doi.org/10.1257/0895330042162430
https://doi.org/10.1016/j.jfineco.2014.10.010
https://doi.org/10.1016/j.jfineco.2014.10.010
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1090/jams/852
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.2307/2281952
https://doi.org/10.1006/jcss.1997.1504
https://www.jstor.org/stable/2699986
https://www.jstor.org/stable/2699986

References

[757]

Fu, Rao, Jie Chen, Shutian Zeng, Yiping Zhuang, and Agus Sudjianto. 2019. "Time
Series Simulation by Conditional Generative Adversarial Net." ArXiv:1904.11419
[Cs, Eess, Stat], April. http://arxiv.org/abs/1904.11419.

Gatev, Evan, William N. Goetzmann, and K. Geert Rouwenhorst. 2006. "Pairs Trading:
Performance of a Relative-Value Arbitrage Rule." The Review of Financial Studies 19
(3): 797–827. https://doi.org/10.1093/rfs/hhj020.

Gelman, Andrew, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and
Donald B. Rubin. 2013. Bayesian Data Analysis, Third Edition. CRC Press.

Gómez, David, and Alfonso Rojas. 2015. "An Empirical Overview of the No Free Lunch
Theorem and Its Effect on Real-World Machine Learning Classification." Neural
Computation 28 (1): 216–28. https://doi.org/10.1162/NECO_a_00793.

Gonzalo, Jesús, and Tae-Hwy Lee. 1998. "Pitfalls in Testing for Long-Run
Relationships." Journal of Econometrics 86 (1): 129–54. https://doi.org/10.1016/
S0304-4076(97)00111-5.

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. "Generative Adversarial
Nets." In Advances in Neural Information Processing Systems 27, edited by Z.
Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, 2672–
2680. Curran Associates, Inc. http://papers.nips.cc/paper/5423-generative-
adversarial-nets.pdf.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT press.

Goodfellow, Ian. 2014. "Multi-Digit Number Recognition from Street View Imagery
Using Deep Convolutional Neural Networks." In ICLR2014.

Goyal, Amit. 2012. "Empirical Cross-Sectional Asset Pricing: A Survey." Financial
Markets and Portfolio Management 26 (1): 3–38. https://doi.org/10.1007/s11408-
011-0177-7.

Graham, Benjamin, David Dodd, and David Le Fevre Dodd. 1934. Security Analysis: The
Classic 1934 Edition. McGraw Hill Professional.

Green, Jeremiah, John R. M. Hand, and X. Frank Zhang. 2017. "The Characteristics That
Provide Independent Information about Average U.S. Monthly Stock Returns." The
Review of Financial Studies 30 (12): 4389–4436. https://doi.org/10.1093/rfs/hhx019.

Grinold, R.C., 1989. The fundamental law of active management. The Journal of Portfolio
Management 15, 30–37. https://doi.org/10.3905/jpm.1989.409211.

Gu, S., Kelly, B., and Xu, D. 2020 "Autoencoder Asset Pricing Models." Journal
of Econometrics (forthcoming).

Gu, Shihao, Bryan Kelly, and Dacheng Xiu. 2020. "Empirical Asset Pricing via Machine
Learning." The Review of Financial Studies, no. hhaa009 (February). https://doi.
org/10.1093/rfs/hhaa009.

Harris, Larry. 2003. Trading and Exchanges: Market Microstructure for Practitioners. Oxford
University Press.

http://arxiv.org/abs/1904.11419
https://doi.org/10.1093/rfs/hhj020
https://doi.org/10.1162/NECO_a_00793
https://doi.org/10.1016/S0304-4076(97)00111-5
https://doi.org/10.1016/S0304-4076(97)00111-5
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://doi.org/10.1007/s11408-011-0177-7
https://doi.org/10.1007/s11408-011-0177-7
https://doi.org/10.1093/rfs/hhx019
https://doi.org/10.3905/jpm.1989.409211
https://doi.org/10.1093/rfs/hhaa009
https://doi.org/10.1093/rfs/hhaa009

References

[758]

Hasselt, Hado van, Arthur Guez, and David Silver. 2015. "Deep Reinforcement
Learning with Double Q-Learning." ArXiv:1509.06461 [Cs], September. http://
arxiv.org/abs/1509.06461.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2009. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Second Edition. 2nd ed. Springer
Series in Statistics. New York: Springer-Verlag. https://doi.org/10.1007/978-0-
387-84858-7.

Hastie, Trevor, Robert Tibshirani, and Martin Wainwright. 2015. Statistical Learning with
Sparsity: The Lasso and Generalizations. CRC press.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. "Deep Residual
Learning for Image Recognition." ArXiv:1512.03385 [Cs], December. http://arxiv.
org/abs/1512.03385.

Hendricks, Dieter, and Diane Wilcox. 2014. "A Reinforcement Learning Extension to the
Almgren-Chriss Framework for Optimal Trade Execution." In 2014 IEEE Conference
on Computational Intelligence for Financial Engineering Economics (CIFEr), 457–64.
https://doi.org/10.1109/CIFEr.2014.6924109.

Hessel, Matteo, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver.
2017. "Rainbow: Combining Improvements in Deep Reinforcement Learning."
ArXiv:1710.02298 [Cs], October. http://arxiv.org/abs/1710.02298.

Hihi, Salah El, and Yoshua Bengio. 1996. "Hierarchical Recurrent Neural Networks for
Long-Term Dependencies." In Advances in Neural Information Processing Systems 8,
edited by D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, 493–499. MIT Press.
http://papers.nips.cc/paper/1102-hierarchical-recurrent-neural-networks-

for-long-term-dependencies.pdf.

Hochreiter, Sepp, and Jürgen Schmidhuber. 1996. "LSTM Can Solve Hard Long Time
Lag Problems." In Proceedings of the 9th International Conference on Neural Information
Processing Systems, 473–479. NIPS'96. Denver, Colorado: MIT Press.

Hochreiter, Sepp, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber, and others.
2001. "Gradient Flow in Recurrent Nets: The Difficulty of Learning Long-Term
Dependencies."

Hoerl, Arthur E, and Robert W Kennard. 1970. "Ridge Regression: Biased Estimation for
Nonorthogonal Problems." Technometrics 12 (1): 55–67.

Hoffman, Matthew D., and Andrew Gelman. 2011. "The No-U-Turn Sampler:
Adaptively Setting Path Lengths in Hamiltonian Monte Carlo." ArXiv:1111.4246 [Cs,
Stat], November. http://arxiv.org/abs/1111.4246.

Hofmann, Thomas. 2001. "Unsupervised Learning by Probabilistic Latent
Semantic Analysis." Machine Learning 42 (1): 177–96. https://doi.
org/10.1023/A:1007617005950.

Hong, Harrison, Terence Lim, and Jeremy C. Stein. 2000. "Bad News Travels Slowly:
Size, Analyst Coverage, and the Profitability of Momentum Strategies." The Journal
of Finance 55 (1): 265–95. https://doi.org/10.1111/0022-1082.00206.

http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1509.06461
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://doi.org/10.1109/CIFEr.2014.6924109
http://arxiv.org/abs/1710.02298
http://papers.nips.cc/paper/1102-hierarchical-recurrent-neural-networks-for-long-term-dependencies.pdf
http://papers.nips.cc/paper/1102-hierarchical-recurrent-neural-networks-for-long-term-dependencies.pdf
http://arxiv.org/abs/1111.4246
https://doi.org/10.1023/A:1007617005950
https://doi.org/10.1023/A:1007617005950
https://doi.org/10.1111/0022-1082.00206

References

[759]

Hornik, Kurt. 1991. "Approximation Capabilities of Multilayer Feedforward Networks."
Neural Networks 4 (2): 251–57. https://doi.org/10.1016/0893-6080(91)90009-T.

Hou, Kewei, Chen Xue, and Lu Zhang. 2015. "Digesting Anomalies: An Investment
Approach." The Review of Financial Studies 28 (3): 650–705. https://doi.
org/10.1093/rfs/hhu068.

Hou, K., Xue, C., Zhang, L., 2017. Replicating Anomalies (SSRN Scholarly Paper No. ID
2961979). Social Science Research Network, Rochester, NY.

Huang, Gao, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. 2018.
"Densely Connected Convolutional Networks." ArXiv:1608.06993 [Cs], January.
http://arxiv.org/abs/1608.06993.

Ismail Fawaz, Hassan, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and
Pierre-Alain Muller. 2019. "Deep Learning for Time Series Classification: A Review."
Data Mining and Knowledge Discovery 33 (4): 917–63. https://doi.org/10.1007/
s10618-019-00619-1.

Jaeger, Herbert. 2001. "The 'Echo State' Approach to Analysing and Training Recurrent
Neural Networks with an Erratum Note." Bonn, Germany: German National Research
Center for Information Technology GMD Technical Report 148 (34): 13.

James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. An
Introduction to Statistical Learning. Vol. 112. Springer.

Jegadeesh, Narasimhan, and Sheridan Titman. 1993. "Returns to Buying Winners and
Selling Losers: Implications for Stock Market Efficiency." The Journal of Finance 48
(1): 65–91.

Jones, Charles. 2018. "Understanding the Market for Us Equity Market Data." NYSE.
https://www0.gsb.columbia.edu/faculty/cjones/papers/2018.08.31%20US%20

Equity%20Market%20Data%20Paper.pdf.

JP Morgan, 2012. Improving on risk parity – Hedging Forecast Uncertainty. https://
am.jpmorgan.com/blobcontent/1378404528937/83456/11_77%20Risk%20Parity.pdf.

Ke, Guolin, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye,
and Tie-Yan Liu. 2017. "LightGBM: A Highly Efficient Gradient Boosting Decision
Tree." In Advances in Neural Information Processing Systems 30, edited by I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
3146–3154. Curran Associates, Inc. http://papers.nips.cc/paper/6907-lightgbm-
a-highly-efficient-gradient-boosting-decision-tree.pdf.

Kearns, Michael, and Yuriy Nevmyvaka. 2013. "Machine Learning for Market
Microstructure and High Frequency Trading." High Frequency Trading: New Realities
for Traders, Markets, and Regulators.

Kelley, David. 2019. "Which Leading Indicators Have Done Better at Signaling Past
Recessions?" Chicago Fed Letter, no. 425: 1.

Kelly, Bryan T., Seth Pruitt, and Yinan Su. 2019. "Characteristics Are Covariances: A
Unified Model of Risk and Return." Journal of Financial Economics 134 (3): 501–24.
https://doi.org/10.1016/j.jfineco.2019.05.001.

https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1093/rfs/hhu068
https://doi.org/10.1093/rfs/hhu068
http://arxiv.org/abs/1608.06993
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1007/s10618-019-00619-1
https://www0.gsb.columbia.edu/faculty/cjones/papers/2018.08.31%20US%20Equity%20Market%20Data%20Paper.pdf
https://www0.gsb.columbia.edu/faculty/cjones/papers/2018.08.31%20US%20Equity%20Market%20Data%20Paper.pdf
https://am.jpmorgan.com/blobcontent/1378404528937/83456/11_77%20Risk%20Parity.pdf
https://am.jpmorgan.com/blobcontent/1378404528937/83456/11_77%20Risk%20Parity.pdf
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
https://doi.org/10.1016/j.jfineco.2019.05.001

References

[760]

Kelly, J.L., 2011. A New Interpretation of Information Rate, in: The Kelly Capital Growth
Investment Criterion, World Scientific Handbook in Financial Economics Series.
WORLD SCIENTIFIC, pp. 25–34. https://doi.org/10.1142/9789814293501_0003.

Kingma, Diederik P., and Max Welling. 2014. "Auto-Encoding Variational Bayes."
ArXiv:1312.6114 [Cs, Stat], May. http://arxiv.org/abs/1312.6114.

Kingma, Diederik, and Jimmy Ba. 2014. "Adam: A Method for Stochastic Optimization,"
December. https://arxiv.org/abs/1412.6980v8.

Kingma, Diederik P., and Max Welling. 2019. "An Introduction to Variational
Autoencoders." Foundations and Trends® in Machine Learning 12 (4): 307–92. https://
doi.org/10.1561/2200000056.

Kolanovic, Marko, and Rajesh Krishnamachari. 2017. "Big Data and AI Strategies -
Machine Learning and Alternative Data Approach to Investing." White Paper.
JP Morgan. http://www.fullertreacymoney.com/system/data/files/PDFs/2017/
October/18th/Big%20Data%20and%20AI%20Strategies%20-%20Machine%20

Learning%20and%20Alternative%20Data%20Approach%20to%20Investing.pdf.

Koshiyama, Adriano, Nick Firoozye, and Philip Treleaven. 2019. "Generative
Adversarial Networks for Financial Trading Strategies Fine-Tuning and
Combination." ArXiv:1901.01751 [Cs, q-Fin, Stat], March. http://arxiv.org/
abs/1901.01751.

Krauss, Christopher, Xuan Anh Do, and Nicolas Huck. 2017. "Deep Neural Networks,
Gradient-Boosted Trees, Random Forests: Statistical Arbitrage on the S&P
500." European Journal of Operational Research 259 (2): 689–702. https://doi.
org/10.1016/j.ejor.2016.10.031.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton. 2012. "ImageNet
Classification with Deep Convolutional Neural Networks." In Advances in Neural
Information Processing Systems 25, edited by F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, 1097–1105. Curran Associates, Inc. http://papers.nips.cc/
paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.
pdf.

Lecun, Y., L. Bottou, Y. Bengio, and P. Haffner. 1998. "Gradient-Based Learning Applied
to Document Recognition." Proceedings of the IEEE 86 (11): 2278–2324. https://doi.
org/10.1109/5.726791.

LeCun, Yann, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard,
Wayne Hubbard, and Lawrence D Jackel. 1989. "Backpropagation Applied to
Handwritten Zip Code Recognition." Neural Computation 1 (4): 541–51.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015. "Deep Learning." Nature 521
(7553): 436–44. https://doi.org/10.1038/nature14539.

Ledig, Christian, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham,
Alejandro Acosta, Andrew Aitken, et al. 2017. "Photo-Realistic Single Image
Super-Resolution Using a Generative Adversarial Network." In , 4681–90. http://
openaccess.thecvf.com/content_cvpr_2017/html/Ledig_Photo-Realistic_Single_

Image_CVPR_2017_paper.html.

https://doi.org/10.1142/9789814293501_0003
http://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1412.6980v8
https://doi.org/10.1561/2200000056
https://doi.org/10.1561/2200000056
http://www.fullertreacymoney.com/system/data/files/PDFs/2017/October/18th/Big%20Data%20and%20AI%20Strategies%20-%20Machine%20Learning%20and%20Alternative%20Data%20Approach%20to%20Investing.pdf
http://www.fullertreacymoney.com/system/data/files/PDFs/2017/October/18th/Big%20Data%20and%20AI%20Strategies%20-%20Machine%20Learning%20and%20Alternative%20Data%20Approach%20to%20Investing.pdf
http://www.fullertreacymoney.com/system/data/files/PDFs/2017/October/18th/Big%20Data%20and%20AI%20Strategies%20-%20Machine%20Learning%20and%20Alternative%20Data%20Approach%20to%20Investing.pdf
http://arxiv.org/abs/1901.01751
http://arxiv.org/abs/1901.01751
https://doi.org/10.1016/j.ejor.2016.10.031
https://doi.org/10.1016/j.ejor.2016.10.031
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1038/nature14539
http://openaccess.thecvf.com/content_cvpr_2017/html/Ledig_Photo-Realistic_Single_Image_CVPR_2017_paper.html
http://openaccess.thecvf.com/content_cvpr_2017/html/Ledig_Photo-Realistic_Single_Image_CVPR_2017_paper.html
http://openaccess.thecvf.com/content_cvpr_2017/html/Ledig_Photo-Realistic_Single_Image_CVPR_2017_paper.html

References

[761]

Ledoit, O., Wolf, M., 2003. Improved estimation of the covariance matrix of stock returns with
an application to portfolio selection. Journal of Empirical Finance 10, 603–621. https://
doi.org/10.1016/S0927-5398(03)00007-0.

Levy, Omer, and Yoav Goldberg. 2014. "Neural Word Embedding as Implicit Matrix
Factorization." In Advances in Neural Information Processing Systems 27, edited by Z.
Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, 2177–
2185. Curran Associates, Inc. http://papers.nips.cc/paper/5477-neural-word-
embedding-as-implicit-matrix-factorization.pdf.

Lin, Long-Ji, and Tom M Mitchell. 1992. Memory Approaches to Reinforcement Learning in
Non-Markovian Domains. Citeseer.

Liu, Yinhan, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. "RoBERTa:
A Robustly Optimized BERT Pretraining Approach." ArXiv:1907.11692 [Cs], July.
http://arxiv.org/abs/1907.11692.

Lo, A.W., 2002. The Statistics of Sharpe Ratios. https://doi.org/10.2469/faj.v58.
n4.2453.

Maaten, Laurens van der, and Geoffrey Hinton. 2008. "Visualizing Data Using T-SNE."
Journal of Machine Learning Research 9 (Nov): 2579–2605. http://www.jmlr.org/
papers/v9/vandermaaten08a.html.

Madhavan, Ananth. 2002. "Market Microstructure: A Practitioner's Guide." Financial
Analysts Journal 58 (5): 28–42. www.jstor.org/stable/4480415.

Madhavan, Ananth. 2000. "Market Microstructure: A Survey." Journal of Financial
Markets 3 (3): 205–58. https://doi.org/10.1016/S1386-4181(00)00007-0.

Malkiel, Burton G. 2003. "The Efficient Market Hypothesis and Its Critics." Journal of
Economic Perspectives 17 (1): 59–82. https://doi.org/10.1257/089533003321164958.

Man, Xiliu, Tong Luo, and Jianwu Lin. 2019. "Financial Sentiment Analysis(FSA): A
Survey." In 2019 IEEE International Conference on Industrial Cyber Physical Systems
(ICPS), 617–22. https://doi.org/10.1109/ICPHYS.2019.8780312.

Markowitz, H., 1952. Portfolio Selection. The Journal of Finance 7, 77–91. https://doi.
org/10.2307/2975974.

Meredith, Mike, and John Kruschke. 2018. "Bayesian Estimation Supersedes the T-Test,"
14.

Michaud, Richard O., Esch, D.N., Michaud, Robert O., 2017. The "Fundamental Law of
Active Management" is No Law of Anything. https://doi.org/10.2139/ssrn.2834020.

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
"Distributed Representations of Words and Phrases and Their Compositionality."
In Proceedings of the 26th International Conference on Neural Information Processing
Systems – Volume 2, 3111–3119. NIPS'13. USA: Curran Associates Inc. http://
dl.acm.org/citation.cfm?id=2999792.2999959.

Miller, Rena S. 2016. "High Frequency Trading: Overview of Recent Developments."
High Frequency Trading, 19.

https://doi.org/10.1016/S0927-5398(03)00007-0
https://doi.org/10.1016/S0927-5398(03)00007-0
http://papers.nips.cc/paper/5477-neural-word-embedding-as-implicit-matrix-factorization.pdf
http://papers.nips.cc/paper/5477-neural-word-embedding-as-implicit-matrix-factorization.pdf
http://arxiv.org/abs/1907.11692
https://doi.org/10.2469/faj.v58.n4.2453
https://doi.org/10.2469/faj.v58.n4.2453
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1016/S1386-4181(00)00007-0
https://doi.org/10.1257/089533003321164958
https://doi.org/10.1109/ICPHYS.2019.8780312
https://doi.org/10.2307/2975974
https://doi.org/10.2307/2975974
https://doi.org/10.2139/ssrn.2834020
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=2999792.2999959

References

[762]

Mimno, David, Hanna M. Wallach, Edmund Talley, Miriam Leenders, and Andrew
McCallum. 2011. "Optimizing Semantic Coherence in Topic Models." In Proceedings
of the Conference on Empirical Methods in Natural Language Processing, 262–272.
EMNLP '11. Edinburgh, United Kingdom: Association for Computational
Linguistics.

Mitchell, Tom M. 1997. "Machine Learning."

Mnih, Andriy, and Koray Kavukcuoglu. 2013. "Learning Word Embeddings Efficiently
with Noise-Contrastive Estimation." In Advances in Neural Information Processing
Systems 26, edited by C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Q. Weinberger, 2265–2273. Curran Associates, Inc. http://papers.nips.cc/
paper/5165-learning-word-embeddings-efficiently-with-noise-contrastive-
estimation.pdf.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. "Playing Atari with
Deep Reinforcement Learning." ArXiv:1312.5602 [Cs], December. http://arxiv.
org/abs/1312.5602.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, et al. 2015. "Human-Level Control through Deep
Reinforcement Learning." Nature 518 (7540): 529–33. https://doi.org/10.1038/
nature14236.

Morin, Frederic, and Yoshua Bengio. 2005. "Hierarchical Probabilistic Neural Network
Language Model." In Aistats, 5:246–52.

Nakamoto, Yukikazu. 2011. "A Short Introduction to Learning to Rank." IEICE
Transactions on Information and Systems E94-D (1): 1–2. https://doi.org/10.1587/
transinf.E94.D.1.

Nasseri, Alya Al, Allan Tucker, and Sergio de Cesare. 2015. "Quantifying StockTwits
Semantic Terms' Trading Behavior in Financial Markets: An Effective Application
of Decision Tree Algorithms." Expert Systems with Applications 42 (23): 9192–9210.
https://doi.org/10.1016/j.eswa.2015.08.008.

Netzer, Yuval. 2011. "Reading Digits in Natural Images with Unsupervised Feature
Learning." In NIPS Workshop on Deep Learning.

Nevmyvaka, Yuriy, Yi Feng, and Michael Kearns. 2006. "Reinforcement Learning
for Optimized Trade Execution." In Proceedings of the 23rd International Conference
on Machine Learning, 673–680. ICML '06. Pittsburgh, Pennsylvania, USA: Association
for Computing Machinery. https://doi.org/10.1145/1143844.1143929.

Ng, Andrew Y., and Michael I. Jordan. 2002. "On Discriminative vs. Generative
Classifiers: A Comparison of Logistic Regression and Naive Bayes." In Advances
in Neural Information Processing Systems 14, edited by T. G. Dietterich, S. Becker,
and Z. Ghahramani, 841–848. MIT Press. http://papers.nips.cc/paper/2020-
on-discriminative-vs-generative-classifiers-a-comparison-of-logistic-
regression-and-naive-bayes.pdf.

http://papers.nips.cc/paper/5165-learning-word-embeddings-efficiently-with-noise-contrastive-estimation.pdf
http://papers.nips.cc/paper/5165-learning-word-embeddings-efficiently-with-noise-contrastive-estimation.pdf
http://papers.nips.cc/paper/5165-learning-word-embeddings-efficiently-with-noise-contrastive-estimation.pdf
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1587/transinf.E94.D.1
https://doi.org/10.1587/transinf.E94.D.1
https://doi.org/10.1016/j.eswa.2015.08.008
https://doi.org/10.1145/1143844.1143929
http://papers.nips.cc/paper/2020-on-discriminative-vs-generative-classifiers-a-comparison-of-logistic-regression-and-naive-bayes.pdf
http://papers.nips.cc/paper/2020-on-discriminative-vs-generative-classifiers-a-comparison-of-logistic-regression-and-naive-bayes.pdf
http://papers.nips.cc/paper/2020-on-discriminative-vs-generative-classifiers-a-comparison-of-logistic-regression-and-naive-bayes.pdf

References

[763]

Nilsson, Nils J. 2009. The Quest for Artificial Intelligence. Cambridge University Press.

Novy-Marx, R., 2015. Backtesting Strategies Based on Multiple Signals (Working Paper No.
21329). National Bureau of Economic Research. https://doi.org/10.3386/w21329.

Odena, Augustus. 2019. "Open Questions about Generative Adversarial Networks."
Distill 4 (4): e18. https://doi.org/10.23915/distill.00018.

Pan, Zhaoqing, Weijie Yu, Xiaokai Yi, Asifullah Khan, Feng Yuan, and Yuhui Zheng.
2019. "Recent Progress on Generative Adversarial Networks (GANs): A Survey."
IEEE Access 7: 36322–33. https://doi.org/10.1109/ACCESS.2019.2905015.

Pennington, Jeffrey, Richard Socher, and Christoper Manning. 2014. "Glove: Global
Vectors for Word Representation." In EMNLP, 14:1532–43. https://doi.
org/10.3115/v1/D14-1162.

Perold, A.F., 2004. The Capital Asset Pricing Model. Journal of Economic Perspectives 18,
3–24. https://doi.org/10.1257/0895330042162340.

Prabhavalkar, Rohit, Kanishka Rao, Tara N. Sainath, Bo Li, Leif Johnson, and
Navdeep Jaitly. 2017. "A Comparison of Sequence-to-Sequence Models for Speech
Recognition." In Interspeech 2017, 939–43. ISCA. https://doi.org/10.21437/
Interspeech.2017-233.

Prado, M.L. de, 2016. "Building Diversified Portfolios that Outperform Out of
Sample." The Journal of Portfolio Management 42, 59–69. https://doi.org/10.3905/
jpm.2016.42.4.059.

Preis, Tobias, Helen Susannah Moat, and H. Eugene Stanley. 2013. "Quantifying
Trading Behavior in Financial Markets Using Google Trends." Scientific Reports 3 (1):
1–6. https://doi.org/10.1038/srep01684.

Prokhorenkova, Liudmila, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush,
and Andrey Gulin. 2019. "CatBoost: Unbiased Boosting with Categorical Features."
ArXiv:1706.09516 [Cs], January. http://arxiv.org/abs/1706.09516.

Radford, Alec, Luke Metz, and Soumith Chintala. 2016. "Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks."
ArXiv:1511.06434 [Cs], January. http://arxiv.org/abs/1511.06434.

Raffinot, T., 2017. Hierarchical Clustering-Based Asset Allocation. The Journal of Portfolio
Management 44, 89–99. https://doi.org/10.3905/jpm.2018.44.2.089.

Rasekhschaffe, Keywan Christian, and Robert C. Jones. 2019. "Machine Learning for
Stock Selection." Financial Analysts Journal 75 (3): 70–88. https://doi.org/10.1080/0
015198X.2019.1596678.

Redmon, Joseph. 2016. "You Only Look Once: Unified, Real-Time Object Detection."
ArXiv:1506.02640 [Cs], May.

Reed, Scott, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, and Honglak
Lee. 2016. "Learning What and Where to Draw." ArXiv:1610.02454 [Cs], October.
http://arxiv.org/abs/1610.02454.

https://doi.org/10.3386/w21329
https://doi.org/10.23915/distill.00018
https://doi.org/10.1109/ACCESS.2019.2905015
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.1257/0895330042162340
https://doi.org/10.21437/Interspeech.2017-233
https://doi.org/10.21437/Interspeech.2017-233
https://doi.org/10.3905/jpm.2016.42.4.059
https://doi.org/10.3905/jpm.2016.42.4.059
https://doi.org/10.1038/srep01684
http://arxiv.org/abs/1706.09516
http://arxiv.org/abs/1511.06434
https://doi.org/10.3905/jpm.2018.44.2.089
https://doi.org/10.1080/0015198X.2019.1596678
https://doi.org/10.1080/0015198X.2019.1596678
http://arxiv.org/abs/1610.02454

References

[764]

Reinganum, Marc R. 1981. "Misspecification of Capital Asset Pricing: Empirical
Anomalies Based on Earnings' Yields and Market Values." Journal of Financial
Economics 9 (1): 19–46.

Ren, Shaoqing, Kaiming He, Ross Girshick, and Jian Sun. 2015. "Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks." In Advances
in Neural Information Processing Systems 28, edited by C. Cortes, N. D. Lawrence, D.
D. Lee, M. Sugiyama, and R. Garnett, 91–99. Curran Associates, Inc. http://papers.
nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-

region-proposal-networks.pdf.

Roa-Vicens, Jacobo, Cyrine Chtourou, Angelos Filos, Francisco Rullan, Yarin Gal, and
Ricardo Silva. 2019. "Towards Inverse Reinforcement Learning for Limit Order
Book Dynamics." ArXiv:1906.04813 [Cs, q-Fin, Stat], June. http://arxiv.org/
abs/1906.04813.

Röder, Michael, Andreas Both, and Alexander Hinneburg. 2015. "Exploring the Space of
Topic Coherence Measures." In Proceedings of the Eighth ACM International Conference
on Web Search and Data Mining, 399–408. WSDM '15. Shanghai, China: Association
for Computing Machinery. https://doi.org/10.1145/2684822.2685324.

Rokach, Lior, and Oded Z. Maimon. 2008. Data Mining with Decision Trees: Theory and
Applications. World Scientific.

Roll, Richard, and Stephen A. Ross. 1984. "The Arbitrage Pricing Theory Approach to
Strategic Portfolio Planning." Financial Analysts Journal 40 (3): 14–26. https://doi.
org/10.2469/faj.v40.n3.14.

Romero, P.J., Balch, T., 2014. What Hedge Funds Really Do: An Introduction to Portfolio
Management. Business Expert Press.

Ruder, Sebastian. 2017. "An Overview of Gradient Descent Optimization Algorithms."
ArXiv:1609.04747 [Cs], June. http://arxiv.org/abs/1609.04747.

Salimans, Tim, Diederik P. Kingma, and Max Welling. 2015. "Markov Chain Monte
Carlo and Variational Inference: Bridging the Gap." ArXiv:1410.6460 [Stat], May.
http://arxiv.org/abs/1410.6460.

Samuelson, P., Thorp, E., T. Kassouf, S., 1968. Beat the Market: A Scientific Stock Market
System. Journal of the American Statistical Association 63, 1049. https://doi.
org/10.2307/2283900.

Saul, Lawrence K, and Sam T Roweis. 2000. "An Introduction to Locally Linear
Embedding." Unpublished. Available at: https://cs.nyu.edu/~roweis/lle/papers/
lleintro.pdf.

Schapire, Robert E., and Yoav Freund. 2012. Boosting: Foundations and Algorithms. MIT
Press.

Schaul, Tom, John Quan, Ioannis Antonoglou, and David Silver. 2015. "Prioritized
Experience Replay." ArXiv:1511.05952 [Cs], November. http://arxiv.org/
abs/1511.05952.

http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
http://arxiv.org/abs/1906.04813
http://arxiv.org/abs/1906.04813
https://doi.org/10.1145/2684822.2685324
https://doi.org/10.2469/faj.v40.n3.14
https://doi.org/10.2469/faj.v40.n3.14
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1410.6460
https://doi.org/10.2307/2283900
https://doi.org/10.2307/2283900
https://cs.nyu.edu/~roweis/lle/papers/lleintro.pdf
https://cs.nyu.edu/~roweis/lle/papers/lleintro.pdf
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1511.05952

References

[765]

Schuster, M., and K.K. Paliwal. 1997. "Bidirectional Recurrent Neural Networks."
IEEE Transactions on Signal Processing 45 (11): 2673–81. https://doi.
org/10.1109/78.650093.

Sezer, Omer Berat, and Ahmet Murat Ozbayoglu. 2018. "Algorithmic Financial Trading
with Deep Convolutional Neural Networks: Time Series to Image Conversion
Approach." Applied Soft Computing 70 (September): 525–38. https://doi.
org/10.1016/j.asoc.2018.04.024.

Sievert, Carson, and Kenneth Shirley. 2014. "LDAvis: A Method for Visualizing and
Interpreting Topics." In Proceedings of the Workshop on Interactive Language Learning,
Visualization, and Interfaces, 63–70.

Sigtia, Siddharth, Emmanouil Benetos, Srikanth Cherla, Tillman Weyde, A. Garcez, and
Simon Dixon. 2014. "RNN-Based Music Language Models for Improving Automatic
Music Transcription."

Simonyan, Karen. 2015. "Very Deep Convolutional Networks for Large-Scale Image
Recognition." ArXiv:1409.1556 [Cs], April.

Srivastava, Nitish, Elman Mansimov, and Ruslan Salakhutdinov. 2016. "Unsupervised
Learning of Video Representations Using LSTMs," 10.

Stevens, Keith, Philip Kegelmeyer, David Andrzejewski, and David Buttler.
2012. "Exploring Topic Coherence over Many Models and Many Topics."

Strumeyer, Gary. 2017. The Capital Markets: Evolution of the Financial Ecosystem.
John Wiley & Sons.

Sutskever, Ilya, James Martens, George Dahl, and Geoffrey Hinton. 2013. "On the
Importance of Initialization and Momentum in Deep Learning." In International
Conference on Machine Learning, 1139–47. http://proceedings.mlr.press/v28/
sutskever13.html.

Sutton, Richard S, and Andrew G Barto. 2018. Reinforcement Learning: An Introduction.
MIT press.

Sutton, Richard S, David A. McAllester, Satinder P. Singh, and Yishay Mansour.
2000. "Policy Gradient Methods for Reinforcement Learning with Function
Approximation." In Advances in Neural Information Processing Systems 12, edited by
S. A. Solla, T. K. Leen, and K. Müller, 1057–1063. MIT Press. http://papers.nips.
cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-

function-approximation.pdf.

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
"Going Deeper with Convolutions." In 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 1–9. https://doi.org/10.1109/CVPR.2015.7298594.

Trichilo, D., Braun, J.L., 2005. Extending the Fundamental Law of Investment Management.

https://doi.org/10.1109/78.650093
https://doi.org/10.1109/78.650093
https://doi.org/10.1016/j.asoc.2018.04.024
https://doi.org/10.1016/j.asoc.2018.04.024
http://proceedings.mlr.press/v28/sutskever13.html
http://proceedings.mlr.press/v28/sutskever13.html
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf
http://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf
https://doi.org/10.1109/CVPR.2015.7298594

References

[766]

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. "Attention Is All You Need."
In Advances in Neural Information Processing Systems 30, edited by I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, 5998–
6008. Curran Associates, Inc. http://papers.nips.cc/paper/7181-attention-is-
all-you-need.pdf.

Vincent, Pascal, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
2008. "Extracting and Composing Robust Features with Denoising Autoencoders."
In Proceedings of the 25th International Conference on Machine Learning, 1096–1103.
ICML '08. Helsinki, Finland: Association for Computing Machinery. https://doi.
org/10.1145/1390156.1390294.

Wang, Alex, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian
Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. 2019. "SuperGLUE:
A Stickier Benchmark for General-Purpose Language Understanding Systems."
ArXiv:1905.00537 [Cs], May. http://arxiv.org/abs/1905.00537.

Wang, Jia, Tong Sun, Benyuan Liu, Yu Cao, and Hongwei Zhu. 2019. "CLVSA: A
Convolutional LSTM Based Variational Sequence-to-Sequence Model with
Attention for Predicting Trends of Financial Markets." In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, 3705–11. Macao, China:
International Joint Conferences on Artificial Intelligence Organization. https://
doi.org/10.24963/ijcai.2019/514.

Watkins, Christopher J. C. H., and Peter Dayan. 1992. "Q-Learning." In Machine
Learning, 279–292.

Watkins, Christopher John Cornish Hellaby. 1989. "Learning from Delayed Rewards.",
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf.

Werbos, P.J. 1990. "Backpropagation through Time: What It Does and How to Do It."
Proceedings of the IEEE 78 (10): 1550–60. https://doi.org/10.1109/5.58337.

Wiese, Magnus, Robert Knobloch, Ralf Korn, and Peter Kretschmer. 2019. "Quant
GANs: Deep Generation of Financial Time Series." ArXiv:1907.06673 [Cs, q-Fin, Stat],
December. http://arxiv.org/abs/1907.06673.

Williams, Ronald J, and David Zipser. 1989. "A Learning Algorithm for Continually
Running Fully Recurrent Neural Networks." Neural Computation 1 (2): 270–80.

Wooldridge, Jeffrey M. 2002. "Econometric Analysis of Cross Section and Panel Data
MIT Press." Cambridge, MA 108.

Wooldridge, Jeffrey M. 2008. Introductory Econometrics: A Modern Approach. Cengage
Learning.

Yoon, Jinsung, Daniel Jarrett, and Mihaela van der Schaar. 2019. "Time-Series
Generative Adversarial Networks." In Advances in Neural Information Processing
Systems 32, edited by H. Wallach, H. Larochelle, A. Beygelzimer, F. d\
textquotesingle Alché-Buc, E. Fox, and R. Garnett, 5508–5518. Curran Associates,
Inc. http://papers.nips.cc/paper/8789-time-series-generative-adversarial-
networks.pdf.

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1145/1390156.1390294
http://arxiv.org/abs/1905.00537
https://doi.org/10.24963/ijcai.2019/514
https://doi.org/10.24963/ijcai.2019/514
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
https://doi.org/10.1109/5.58337
http://arxiv.org/abs/1907.06673
http://papers.nips.cc/paper/8789-time-series-generative-adversarial-networks.pdf
http://papers.nips.cc/paper/8789-time-series-generative-adversarial-networks.pdf

References

[767]

Zhang, Han, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang,
and Dimitris Metaxas. 2017. "StackGAN: Text to Photo-Realistic Image Synthesis
with Stacked Generative Adversarial Networks." ArXiv:1612.03242 [Cs, Stat],
August. http://arxiv.org/abs/1612.03242.

Zhou, Xingyu, Zhisong Pan, Guyu Hu, Siqi Tang, and Cheng Zhao. 2018. "Stock
Market Prediction on High-Frequency Data Using Generative Adversarial Nets."
Research Article: Mathematical Problems in Engineering. Hindawi. 2018. https://doi.
org/10.1155/2018/4907423.

Zhu, Jun-Yan, Taesung Park, Phillip Isola, and Alexei A. Efros. 2018. "Unpaired
Image-to-Image Translation Using Cycle-Consistent Adversarial Networks."
ArXiv:1703.10593 [Cs], November. http://arxiv.org/abs/1703.10593.

http://arxiv.org/abs/1612.03242
https://doi.org/10.1155/2018/4907423
https://doi.org/10.1155/2018/4907423
http://arxiv.org/abs/1703.10593

[769]

Index

Symbols

1/N portfolio 131

(first), high, low, and closing (last) price
and volume (OHLCV) 35

A

Accession Number (adsh) 54
AdaBoost algorithm 367

advantages 368

disadvantages 368

used, for predicting monthly price

moves 368, 369

AdaGrad 525
adaptive boosting 366, 367
adaptive learning rates 524

AdaGrad 525

adaptive moment derivation (Adam) 525

RMSProp 525

adaptive moment derivation (Adam) 525
agglomerative clustering 429
aggressive strategies 4
Akaike information criterion (AIC) 182
AlexNet 563
AlexNet performance

comparing 564, 565

algorithm
finding, for task 149

Algorithm API 241
algorithmic trading libraries

Alpha Trading Labs 118
Interactive Brokers 119
pybacktest 119
Python Algorithmic Trading Library

(PyAlgoTrade) 118
QuantConnect 118
Trading with Python 119
ultrafinance 119
WorldQuant 118

AlgoSeek 40

AlgoSeek intraday data
processing 42-44

AlgoSeek NASDAQ 100 dataset 402
AllenNLP 510
all or none orders 23
alpha 124
alpha factor research 13

execution phase 14
research phase 14

alpha factors 82, 83
denoising, with Kalman filter 100, 101
engineering 94

engineering, NumPy used 95

engineering, pandas used 95

from market data 107, 109
resources 118

Alphalens
factor evaluation 111
pyfolio input, obtaining from 141
used, for backtesting long-short

trading strategy 548

Alphalens analysis
information coefficient 390
quantile spread 390

Alpha Trading Labs 118
alternative betas 126
alternative data

data providers 70
email receipt data 72
geolocation data 71
market 69, 70
satellite data 71
social sentiment data 70
URL 70
use cases 70
working with 72

alternative data revolution 60
alternative data revolution, technical aspects

format 69

latency 68

[770]

alternative datasets
evaluating, based on quality of data 67
evaluating, based on quality of signal content 65

evaluating, criteria 65

alternative datasets, sources 62
business processes data 63

individuals data 62, 63

sensors data 63

alternative RNN architectures 595
attention mechanism 596

bidirectional RNNs 595

encoder-decoder architectures 596

output recurrence 595

teacher forcing 595

transformer architecture 596

alternative trading system (ATS) 3, 24
American Depositary Receipts (ADR) 24
Amihud Illiquidity 642
analytical tools

for diagnostics and feature extraction 256, 257
Apache HBASE 721
Apache Hive 721
Apache MXNet 541
Apache Pig 721
Apache Spark 721
API access

to market data 44
Applied Quantitative Research (AQR) 8, 10
appraisal risk 124
approximate inference 296, 301
approximate split-finding algorithm 380
arbitrage pricing theory (APT) 6, 189
arbitrage strategy

backtesting, based on boosting
ensemble 399, 400

area under the curve (AUC) 159
ARIMA models 268
AR model

relationship, with MA model 268

artificial intelligence (AI) 153
relation, with DL 517

asset price moves
probabilities, estimating of 299, 301

asset quality
measuring 93, 94

assets under management (AUM) 7
assumptions

updating, from empirical evidence 297, 298
attention mechanism 508, 596
augmented Dickey-Fuller test (ADF test) 262
autocorrelation

measuring 259, 260
autocorrelation coefficient 259
autocorrelation function (ACF) 259
autoencoders 152

data, preparing 630, 631
designing, with TensorFlow 2 630
used, for nonlinear feature extraction 626

training, with TensorFlow 2 630
Automatic Differentiation Variational Inference

(ADVI) 304
autoregressive CNN, building with

one-dimensional convolutions 577
data preprocessing 578, 579
model architecture, defining 579, 580
model training 580
performance evaluation 580

autoregressive conditional heteroskedasticity
(ARCH) model 272

autoregressive models
building 266

model fit, diagnosing 266
number of lags, identifying 266

autoregressive moving-average (ARMA) 266, 269
autoregressive stochastic process 262
averaging method 345

B
backprop 518

implementing, with Python 529

backpropagation through time 595
backtesting

optimal stopping 227
pitfalls 223

pitfalls, avoiding 224

right data, obtaining 224

right simulation, obtaining 225

right statistics, obtaining 226

backtesting engine
working 227

backtesting engine, key implementation aspects
230

data ingestion 230
factor engineering 231
ML models 231
performance evaluation 232

predictions 231
signals 231
trading rules and execution 231

backtest overfitting 719
backtest portfolio performance

measuring, with pyfolio 140

[771]

backtests 66
backtrader 232

data, loading 236

overview 239

pairs, tracking with custom DataClass 292
price, loading 236

strategy, backtesting 292
strategy, evaluating 293

strategy, running 293

trading logic, formulating 236, 237
using 235

backtrader Cerebro architecture 232
data feeds 233

indicators 233

lines 233

Strategy object 234

trades 234, 235

bagged decision trees 347, 348
bagging methods

drawback 346
pasting 346

random patches 347
random subspaces 347

bag-of-words model 450
text data, converting into numbers 449

Baltic Dry Index (BDI) 62
baseline model 175

assumptions, validating 181
formulating 175
Gauss-Markov theorem (GMT) 179, 180
learning, with MLE 177, 178
learning, with OLS 176, 177
learning, with SGD 178, 179
problems, diagnosing 181
statistical inference, conducting 180, 181
training 176

Bayesian credible interval 307
Bayesian information criterion (BIC) 182
Bayesian machine learning

with Theano 305
working 296

Bayesian ML
for trading 317

Bayesian rolling regression
for pairs trading 320-322

Bayesian Sharpe ratio
for performance comparison 317
performance of two return series,

comparing 319, 320
Bayesian statistics 296

Bayesian view 296
Bayes' theorem 296, 456
Beautiful Soup

used, for extracting data from HTML 72, 73
behavioral algorithms 16
Bellman equations 686
best linear unbiased estimates (BLUE) 180
bias 162
bias-variance trade-off 150, 162

diagnosing 171
managing 163

bid-ask bounce 35
Bidirectional Encoder Representation from

Transformers (BERT) 508-510
 attention mechanism 509
bidirectional pretraining 509
unsupervised pretraining 509

bidirectional language models 507
bidirectional RNN GRU, using with SEC fillings to

predict weekly return
RNN model, data preparing for 620-623
SEC filling data, preprocessing 620
yfinance, using to obtain stock price data 619

bidirectional RNNs 596
binary data formats

creating 384, 385

binary order messages
parsing 28-31

binary sentiment classification, with
Twitter data 458

comparison, with TextBlob sentiment scores 459

multinomial naive Bayes 458

binary tree 328
black-box models

insights, obtaining from 719
Black-Litterman approach 132
blind source separation 417
Bollinger Bands 99, 289

computing 290
boosting method 345
bootstrap aggregation 346
bootstrapping 683, 695
breakthrough of DL algorithm 517
browser automation tool

Selenium 74
Broyden-Fletcher-Goldfarb-Shanno (BFGS) 309
bundle 240
burn-in samples 303
business processes data 63
buy stop order 23

[772]

C
C++ 384
capital asset pricing model (CAPM) 5, 91, 121,

126
migrating, to Fama-French five-factor

model 188, 189
carry strategy 6
CatBoost 378

versus LightGBM 389

CatBoost models
signals, generating 383, 384

causal inference 155
Central Index Key (CIK) 54
central limit theorem (CLT) 123
Cerebro control system 235
Cerebro instance

configuring 238
CIFAR-10 data

preprocessing, with image augmentation 563

classical linear model
normality 180

classical statistics 296
classification 154, 212
classification error rate 333
classification performance

comparing, with regression performance 341
classification problems 158
classification trees 328, 349

building 333

node purity, optimizing 333, 334

training 334, 335

clustered standard errors 183
clustering

for portfolio optimization 433

clustering algorithms 151, 426
CNN architectures

evolution 558

network size 558
performance breakthroughs 558

CNN-TA 581
cointegration 281, 294

testing approaches 282

cointegration approach 284
cointegration tests

precomputing 288

columnar storage 721
combinatorial algorithms 426
combinatorial cross-validation 169
components, TimeGAN architecture

adversarial network, generator and discriminator
elements 662

autoencoder, embedding and recovery

components 662

computational graph 594
computer-to-computer interface (CTCI) 27
conditional autoencoder architecture 639
conditional autoencoder, for return forecasts

and trading 638, 639
architecture, creating 643, 644, 645, 647
dataset, creating with stock price and metadata

information 639, 640, 641
predictive asset characteristics,

computing 641-643
conditional GANs (cGANs)

using, for image-to-image translation 653

conjugate priors 296, 299
conservative-minus-aggressive (CMA) investment

factor 85
consolidated feed 26, 41
constant proportion portfolio insurance (CPPI) 86
context 593
context-free models 509
continuous-bag-of-words (CBOW) model 485

versus skip-gram (SG) model 485, 486
convolutional autoencoders 636, 637

using, to compress images 627
convolutional layer

convolution stage 555

detector stage 557
key elements, operating 554, 555
pooling stage 557

convolutional neural networks (CNNs) 626
for images 559

for time-series data 577
grid-like data, modeling 552, 553

cophenetic correlation 430
correlogram 260
corrupted data

fixing, with denoising autoencoders 628
CountVectorizer

used, for finding similar documents 453
used, for visualizing vocabulary distribution 452

using 452

credit-assignment problem 683
cross-asset relative value strategies 88
cross-entropy 333
cross-entropy cost function 529
cross-validation

implementing, in Python 166, 167
results 389

used, for selecting model 165

[773]

cross-validation, in finance
challenges 168

cross-validation performance
analyzing 360
information coefficient, for lookahead

periods 360
information coefficient, for lookback periods 360
information coefficient, for roll-forward

periods 360
OLS regression, of random forest configuration

parameters on IC 360
crowdsourcing trading algorithms 12
CSV 57
curse of dimensionality 408-411

approaches 464

custom metric
GridSearchCV, using for decision trees 339, 340

custom ML factor
designing 251

custom OpenAI trading environment
DataSource class, designing 705, 706
designing 705
parameterizing 709
registering 709
TradingEnvironment class 708
TradingSimulator class 707

custom probability model
defining 318

custom TradingCalendar
creating 244

registering 244

custom word embeddings, with LSTM for
sentiment classification 614

embedding, defining 615, 616
IMDB movie review data, loading 615
RNN architecture, defining 615, 616

CycleGAN 654

D
dark pools 3, 25
data

collecting 160
hierarchical features, extracting from 516, 517
loading 95

preparing 160
reshaping 95

slicing 95

data-driven risk factors 421, 638
data, preparing 421

Dataiku 722
Dataminr 71

data quality, aspects 67
exclusivity 67
frequency 68

legal and reputational risks 67
reliability 68

time horizon 68

Datarobot 722
DDQN, implementing with TensorFlow 2 700

DDQN agent, creating 700
DDQN architecture, adapting to LL

environment 700, 701
experience replay, enabling 701, 702
key hyperparameter choices 703
Lunar Lander learning performance 704
OpenAI environment, setting up 703
transitions, memorizing 701, 702

decision trees 328
advantages 344

classification tree, building 333
disadvantages 344

features 330
GridSearchCV, using with custom

metric 339, 340
monthly stock returns 330
overfitting 336
predictions, evaluating 336

pruning 338

regression tree, building with time series

data 331, 332
regularization 336-338

rules, applying 328, 329

rules, learning 328, 329

strengths and weaknesses 343
using 330
visualizing 335

decoder function 596
deep convolutional GANs (DCGANs) 653

using, for unsupervised representation

learning 653

deep feedforward autoencoder 634, 635
encoding, visualizing 635

deep learning (DL)
hierarchical features, extracting from data 516
hierarchical features, using for high-dimensional

data 515
libraries 534

need for 514, 515
optimizations for 523

relation, with AI 517
relation, with ML 517
using, as representation learning 516

[774]

deep NNs
regularizing 522

deep NNs, regularization technique
dropout 523

early stopping 522

parameter norm penalties 522

Deep Q-learning algorithm 697, 698
Deep Q-learning, on stock market

DDQN agent, adapting 709
DDQN agent performance, benchmarking 710
DDQN agent, training 709

deep Q-network (DQN) 697
Deep RL for algorithmic trading

trading agent, creating 704
with OpenAI Gym 696

with TensorFlow 2 696

deep RNNs
designing 596, 597

define-by-run 538
deflated SR 227
deflation 261
degrees of freedom (DF) 317
dendrograms 430, 431
denoising autoencoders 637, 638

used, for fixing corrupted data 628
DenseNet201 572
density-based clustering algorithm 151, 431
density-based spatial clustering of applications

with noise (DBSCAN) algorithm 431
deterministic methods

versus stochastic techniques 301
diagnostic tests, baseline model

conducting 181
goodness-of-fit measures 182
heteroskedasticity 182
multicollinearity 184
serial correlation 183

differentiable function 552
dimensionality reduction 152, 336, 408, 409
direct market access (DMA) 4
discriminative models 650

versus generative models 651
discriminator network 652
distance approach 284
distance-based heuristics

computing, to identify cointegrated

pairs 286, 287
distributed bag of words (DBOW) model 503
distributed memory (DM) model 503
divisive clustering 429
document store 721

document-term matrix 449
creating 450
similarity of documents, measuring 450
with sklearn 451

dollar bars 39
domain expertise 716
domain-specific embeddings

training, for financial news 491
Double DQN (DDQN) algorithm 698, 699
DQN architecture

experience replay 698

target network, changing 698
dropout 523
dropout for additive regression trees (DART) 382
Durbin-Watson statistic diagnoses serial

correlation 183
dynamic programming (DP) 683, 684

Finite MDPs 684

generalized policy iteration 688, 689

policy iteration 687, 688
value iteration 688

dynamic programming, in Python 689
gridworld, setting up 690
MDPs, solving with pymdptoolbox 693

policy iteration, defining 693
policy iteration, running 693

transition matrix, computing 691, 692
value iteration algorithm, implementing 692

E
early stopping 373, 522
earnings before interest and taxes (EBIT) 93
earnings before interest, taxes, depreciation, and

amortization (EBITDA) 90
earnings calls data, topic modeling

data preprocessing 478, 479
experiments, running 480, 481
model evaluation 479, 480
model, training 479, 480

earnings call transcript
parsing 77-80
scraping 77-80

earnings per diluted share (EPS) 55
earnings-per-share (EPS) 224
efficient frontier 125

finding, in Python 127-130
efficient market hypothesis (EMH) 5, 126
eigenportfolios 424-426
elastic net regression 195
electronic communication network (ECN) 3, 24

[775]

Electronic Data Gathering, Analysis, and
Retrieval (EDGAR) 51

electronic Financial Information
eXchange (FIX) 26

electronic trading 3
email receipt data 72
embargoing 169
embeddings 483
embeddings evaluation

vector analogies, expressing 487-489
vector arithmetic, expressing 487-489

empirical evidence
assumptions, updating from 297, 298

empirical prior 299
encoder 596
encoder-decoder architectures 596
engineering of features 161
Engle-Granger two-step method 282
ensembled signals

long-short strategy, backtesting based on 547
ensemble learning, goal

accurate 345

independent 345

ensemble methods
averaging method 345

boosting method 345

ensemble models 336
ensemble size 373
epoch 179, 486
equal-weighted (EW) 437
equity quote 40
error 176
error correction model (ECM) 282
Euclidean distance 410
event-driven backtest

versus vectorized backtest 228, 229
exact greedy algorithm 380
exact inference 298
exchange 24
exchange-traded funds (ETFs) 3
explained variance score 156
exponential GARCH (EGARCH) model 274
exponential smoothing models 259
extensions 294
extract-transform-load (ETL) 721

F
F1 score 159
Facebook AI Research (FAIR) 538
factor betas

computing 97

factor establishment 84
factor evaluation, with Alphalens 111

factor quantiles, creating 112
factor turnover 117
forward returns, creating 112
information coefficient 115-117
predictive performance, by factor

quantiles 113, 114, 115
factor loadings 638
factors

combining, from data sources 109-111
false positive rates (FPR) 159
Fama-French factor models 189, 188, 638

risk factors 189-191
Fama-Macbeth regression 191-193
fastai library 542
feasible generalized least squares (GLSAR) 183
feature extraction

automating 516
feature importance 392

capturing 343

feature maps 555
features

evaluating, information theory used 161
Federal Reserve's Economic Data (FRED) 306
feedforward autoencoder

with sparsity constraints 634

fill or kill orders 23
filters

synthesizing, from data 553

Financial Industry Regulatory Authority
(FINRA) 26

financial news
domain-specific embeddings, training for 491

financial news, word embeddings
n-grams, creating 492, 493

sentence detection 492, 493

training with Gensim 497-499
visualizing, with TensorBoard 496

financial statement and notes (FSN)
datasets 52, 53

financial statement data 51
financial text data

trading 511
financial time series

RNNs, using with TensorFlow 2 599

financial time series, clustering in two-
dimensional image format 581

convolutional neural network, creating 585
hierarchical feature clustering 584, 585

[776]

long-short trading strategy, backtesting 588
models, assembling to generate tradeable

signals 587, 588
relevant features, selecting based on mutual

information 583

rolling factor betas, computing for horizons 582

technical indicators, creating at different

intervals 581, 582
Finite Markov decision problems 684

actions 685

Bellman equations 686

long-run reward, estimating 685

optimal value functions 687
rewards 685

sequences of states 685

value functions 685, 686

five Fama-French risk factors 582
five Vs, big data

value 60
variety 60
velocity 60
veracity 60
volume 60

FIX protocol 27
forward propagation 519, 529
forward returns

creating 99

fundamental approaches, for solving RL problems
dynamic programming (DP) methods 683

Monte Carlo (MC) methods 683

temporal difference (TD) learning algorithm 683

fundamental data 51
fundamental data time series

building 52

Fundamental Law of Active
Management 124, 125

fundamental value strategies 88

G
GAN applications, to images and time-series

data 653
CycleGAN 654

SRGAN 654

StackGAN 654
GAN architecture 652

evolution 652

GAN, building with TensorFlow 2 655
adversarial training process, designing 658

adversarial training process, setting up 657
discriminator loss functions, defining 658
discriminator network, creating 656

generator loss functions, defining 658
generator network, building 655, 656
results, evaluating 660
training loop 659

gated recurrent units (GRUs) 597, 599
Gaussian mixture model (GMM)

algorithm 151, 427, 432, 433
Gaussian white noise 257
Gauss-Markov theorem (GMT) 179, 180

assumptions 179
GBM models

training 372, 373
tuning 372, 373

GBM results
interpreting 391

Gelman-Rubin statistic 314
General Data Protection Regulation (GDPR) 67
generalized autoregressive conditional

heteroskedasticity (GARCH)
model 272, 273

generalized least squares (GLS) 183
generalized linear models (GLM) 173, 309
generalized policy iteration 688, 689
General Language Understanding Evaluation

(GLUE) 509
Generally Accepted Accounting Principles

(GAAP) 51
generative adversarial networks (GANs) 18

training 651, 652
using, for synthetic data 650

generative adversarial what-where network
(GAWWN) 653

generative models 650
versus discriminative models 651

generator network 651
Gensim 497

used, for implementing LDA 476-478
used, for training word embeddings of financial

news 497-499
geolocation data 71
Gibbs sampling 303
Gini impurity 333
global minimum-variance (GMV) portfolio 131
Global Portfolio Optimization 132
global vectors (GloVe) 617

using, for word representation 489, 490
goodness-of-fit measures 182
GoogLeNet 566
GPU acceleration

leveraging 534, 535

gradient-based One-Side sampling (GOSS) 380

[777]

gradient boosting 367-372
for high-frequency strategy 402
long-short trading strategy 383

using, with sklearn 374, 375
gradient boosting machines (GBMs) 371
gradient boosting model predictions

ensembling 436

gradients
computing 530
testing 532

Granger causality 277
graph database 721
graphics processing units (GPUs) 534
greedy approach 329
greedy policy 695
GridSearchCV

for parameter tuning 171
parameters, tuning 376
using, with custom metric for decision

trees 339, 340

H
H2O.ai 722
Hadoop ecosystem 721
Hadoop ecosystem, tools

Apache HBASE 721
Apache Hive 721
Apache Pig 721

half-life of mean reversion
estimating 290

Hamiltonian Monte Carlo (HMC) 304
handwritten digit classification 560, 561
HDF5 57
heads 508
heterogeneous ARCH (HARCH) model 274
heterogeneous autoregressive processes

(HAR) 274
heteroskedasticity 168, 182
heuristics

significant cointegration, predicting 287, 288
hidden layer gradients 531
hierarchical Bayesian model 471
hierarchical clustering algorithm 426, 429

dendrograms 430, 431
drawbacks 431
strengths 431

hierarchical clustering algorithm, approaches
agglomerative clustering 429

divisive clustering 429

hierarchical clustering portfolios (HCP) 136
hierarchical clusters 151

Hierarchical DBSCAN (HDBSCAN) algorithm 432
hierarchical risk parity (HRP) 135, 136, 433

backtesting, with ML trading strategy 435
working 433-435

hierarchical softmax 486
high-dimensional data

hierarchical features, using for 515
higher-order features 554
highest posterior density (HPD) 313
high-frequency market data 26
high-frequency trading (HFT) 4, 402

engineering features 402, 403
high-minus-low (HML) value factor 85
holdout set

testing on 378
HRP performance 437
HRP weights

computing, with PyPortfolioOpt 436

HTML
data, extracting with Beautiful Soup 72, 73
data, extracting with requests 72, 73

HTML tables
reading 45

Hugging Face Transformers library 510
hyperparameters

tuning 386

hyperparameter tuning 338
decision trees, strengths and weaknesses 343
feature importance, capturing 343

GridSearchCV, using with custom metric for

decision trees 339

training set size, diagnosing with learning curve

342

tree structure, inspecting 340, 341
Hypertext Transfer Protocol (HTTP) 72
hypothesis space 149

I
idiosyncratic volatility 642
illiquidity premium 6
image augmentation

CIFAR-10 data, preprocessing 563
image classification 559
ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) 558
images

compressing, with convolutional autoencoders

627
immediate or cancel orders 23
impulse-response function 277
Inception module 566

[778]

independent component analysis (ICA)
algorithm 417, 418

assumptions 418
with sklearn 418

independently and identically
distributed (IID) 123, 165, 257

individuals data 62, 63
inertia 427
inference

versus prediction 155
information coefficient (IC) 116, 124, 202, 386,

544, 604, 645
information ratio (IR) 123
information theory 17

used, for evaluating features 161
initial public offerings (IPOs) 32
Instrumented Principal Component Analysis

(IPCA) 639
Interactive Brokers 119
interactive development environment (IDE) 48
Internet of Things (IoT) 64
inverse document frequency (IDF) 451
inverted yield curve 307
investment industry

algorithmic pioneers, using 7, 8
alternative data, using 10, 11
crowdsourcing trading algorithms, using 11
high-frequency trading, using 3, 4

ML-driven funds 8, 9

ML-driven strategies, designing for 12, 13
ML-driven strategies, executing for 12, 13
ML, using 2, 3, 10, 11
quantamental funds 9

risk factors, investing 5, 6
smart beta funds 7
strategic capabilities, investments 9

investment industry, ML-driven strategies
alpha factor research 13
backtesting 15
data, managing 13
data, sourcing 13

J

Japanese equities 354
features 354, 355

outcomes 355

Johansen likelihood-ratio test 282

K
Kalman filter (KF)

alpha factors, denoising 100, 101
applying, pykalman used 103
prices, smoothing 289

rolling hedge ratio, computing 289

working 101, 102
Kelly criterion 132
Keras Functional API 607
kernel 555
key challenges, for solving RL problems

credit assignment 683

exploration, versus exploitation 683

key elements, RL systems
model-free agents, versus model-based

agents 682

policy 681
reward signal 681
value function 682

key hyperparameters
tuning 525, 526

key return drivers
identifying, with PCA execution 422-424

key-value storage 720
KFold iterator 167
k-means clustering 151, 427

observations, assigning 427, 428
quality, evaluating 428, 429

k-means objective function 428
k-nearest neighbors (KNN) 154

L
L1 regularization 628
labeling 443
lagged return features

creating 98

lagged returns
using 97

Lagrange multiplier (LM) test 181
language features

engineering 455

lasso regression
sklearn, using 210
working 196

[779]

lasso regression, with sklearn 210
IC and lasso path, evaluating 211
lasso model, cross-validating 210

latent Dirichlet allocation (LDA) 471
Dirichlet distribution 472
generative model 472
generative process, reverse engineering 473
implementing, with Gensim 476-478
implementing, with sklearn 475
working 471

latent semantic analysis (LSA) 465
latent semantic indexing (LSI) 465

implementing, with sklearn 466-468
limitations 469

strengths 468

latent space 596
LDA results

visualizing, with pyLDAvis 475
LDA topics

evaluating 473
LDA topics, evaluating options

perplexity 474
topic coherence 474

learning curve 164, 171, 342
training set size, diagnosing with 342

learning parameters 386
learning rate 373
leave-one-out method 167
leave-P-out CV 168
LeNet5 560
LeNet5 architecture

defining 561, 562
model, evaluating 562

model, training 562

LightGBM 378
minute-frequency signals, generating 404
versus CatBoost 389

LightGBM documentation
reference link 357

LightGBM models
best-performing parameter settings 389, 390
hyperparameter impact 390
signals, generating 383, 384

LightGBM Random Forest model
ML4T workflow, using 355

limit order 23
linear classification 212

inference, conducting with statsmodels 215- 217
with logistic regression model 213

linear classification, with logistic regression
model 213

logistic function 214
maximum likelihood estimation 214, 215
objective function 213

linear dimensionality reduction
algorithms 409, 411

generalizing 626, 627
linear factor model

building 187
linear models 328
linear OLS regression

with statsmodels 203
linear OLS regression, with statsmodels 203

diagnostic statistics 204
relevant universe, selecting 203
vanilla OLS regression, estimating 204

linear regression
with scikit-learn 205
used, for predicting stock returns 197

linear regression models 174
implementing 184

linear regression, with scikit-learn
cross-validating 205, 206
features and targets, selecting 205
information coefficient, evaluating 206, 207
RMSE 206, 207

linguistic annotation 442
linguistic annotation, concepts

dependency parsing 442

lemmatization 442

POS 442

stemming 442

liquidity detection 4
Ljung-Box Q-statistic 267
local features

extracting 555

locally linear embedding (LLE) 419
logarithm 261
logistic regression

AUC and IC results, evaluating 219
converting, into classification problem 217
hyperparameters, cross-validating 218
used, for predicting price movements 217

log-likelihood function 177
log-likelihood ratio (LLR) 216
log-odds 214
long-range dependencies

learning, challenges 597
long-short signals

for Japanese stocks, with random
forest 353, 354

[780]

long-short trading strategy, backtesting based on
ensembled signals 547

predictions, ensembling to produce tradeable

signals 547
long short-term memory (LSTM) 597, 629
long-short trading strategy

backtesting, with Alphalens 548
backtesting, with Zipline 548
cross-validating design options, for tuning

NN 543-545

engineering features, to predict daily stock
returns 542

neural networks (NNs), optimizing for 542
NN architecture framework, defining 542, 543
predictive performance, evaluating 545, 546

with gradient boosting 383

lookahead bias 165, 224
loss function 386
loss function gradient 530, 531
lower hedge fund fees 3
LSTM architecture 598, 599
LSTM cell state

forget gate 599

input gate 599

output gate 599

LSTM unit
information flow 598

Lunar Lander v2 (LL) environment 699

M
machine learning (ML) 148, 408, 514, 717

bias-variance trade-off, managing 718
linear models 718
model diagnostics, to speed up

optimization 717, 718
nonlinear models 718
optimization verification test 719
relation, with DL 517
targeted model objectives, defining 719
using, for investment industry 2, 3

with text data 440
workflow 153, 717

machine learning model
ensembling 355

hyperparameters 355

lookahead period 355
lookback period 355
test period 355

machine learning signal
backtesting 245

manifold 408
manifold hypothesis 418
manifold learning 152
market beta 642
market data 22

regularizing 35

market-data providers 50, 51
market makers 24
market microstructure 23, 86
market order 23
market portfolio 126
market value strategies 88
Markov chain 302
Markov chain Monte Carlo (MCMC) 301
Markov chain MonteCarlo sampling

using, for stochastic inference 302
Markov decision process (MDP) 684
Markowitz curse 135
mark-to-market performance 225
material non-public information (MNPI) 67
maximum a posteriori probability (MAP) 298
maximum likelihood estimation (MLE) 298

used, for learning baseline model 177, 178
max pooling 557
mean of the absolute errors (MAE) 156
mean-squared error (MSE) 332
mean-variance (MV) 437
mean-variance optimization 127

implementing 138-140
working 127

mean-variance optimization, alternatives
1/N portfolio 131
Global Portfolio Optimization 132
Kelly criterion 132
minimum-variance portfolio 131

median of the absolute errors (MedAE) 156
Metropolis-Hastings sampling 303
Microsoft Cognitive Toolkit (CNTK) 541
minimum backtest length 227
minute bars 40, 41
minute-frequency signals

generating, with LightGBM 404
ML4T workflow

cross-validating signals, over horizons 358, 360
cross-validation performance, analyzing 360
ensembling forecasts 361
experimental design 355, 356

hyperparameter tuning 357, 358
lookahead, defining 357
lookback, defining 357

[781]

roll-forward periods, defining 357
universe selection 356

with LightGBM Random Forest model 355

ML algorithm
selecting 162

ML-driven strategy
backtesting 222

ML for algorithmic trading
quantitative strategies, evolution 15, 16
use cases 16

ML for trading
data 715
data integration 715
domain expertise 716
in practice 720
key elements 714
ML tools 722
online trading platforms 722
quality control, for intermediate data sources 715
quality control, for raw sources 715

ML for trading, data management technologies
big data technologies 721
database systems 720

model
designing 162
selecting, cross-validation used 165
training, during backtest 250
tuning 162

model features and forward returns
preparation 197

alpha factors, computing with TA-Lib 200, 201
alpha factors, selecting with TA-Lib 199, 200
dummy encoding, of categorical

variables 202, 203
investment universe, creating 197-199
lagged returns, adding 201
target forward returns, generating 202

model selection problem 165
model transparency 17
modern portfolio theory (MPT) 5, 125, 126

challenges 130
shortcomings 130

modern portfolio theory (MPT), approaches
mean-variance optimization 127

momentum 524
excess returns, driving 85

measuring 86

momentum effect 6
momentum factors 98
momentum investing 84, 85

momentum updates
implementing, with Python 532

monotonicity constraints 383
Monte Carlo (MC) method 302, 683
Montreal Institute for Learning Algorithms

(MILA) 305
moving average convergence/divergence

(MACD) 354
moving-average models 258, 259

building 267
number of lags, identifying 267

moving averages 258, 259
multiclass sentiment analysis, Yelp business

reviews 459, 460
benchmark accuracy 460
LightGBM gradient boosting tree, training 461
logistic regression 461
multinomial naive Bayes model, training 460
predictive performance 462

text and numerical features, combining 460
multicollinearity

challenges 184
multilabel problems 150
multilayer perceptron (MLP) 519
multiple testing bias 166
multivariate time-series models 276

systems of equations 277
vector autoregressive (VAR) model 277, 278

multivariate time-series regression, for macro
data 611

data stationary, making 611
model, defining 613, 614
model, training 613, 614
multivariate RNN inputs, creating 612
scale, adjusting 611
 sentiment and industrial production data, loading

from Fed 611
mutual information (MI) 161

N

naive Bayes classifier 456
conditional independence assumption 456, 457

naive Bayes model
used, for classifying news articles 457, 458

named-entity recognition (NER)
labeling 443

NASDAQ order book data 26
NASDAQ TotalView-ITCH data feed 27

[782]

National Best Bid and Offer (NBBO) 25, 41
National Bureau of Economic Research

(NBER) 306
National Financial Conditions Index (NFCI) 306
natural language generation

transforming 508
natural language processing (NLP) 152

used, for trading 455

with TextBlob 448

Natural Language Toolkit (NLTK) 448
negative sampling (NEG) 486
nesterov momentum 524
Net Order Imbalance Indicator (NOII) 28
network

training 533, 534

network-in-network concept 566
neural language models 485
neural networks (NNs) 552

architecture 519, 520
building, in Python 526

cost functions 521
designing 518
optimizing, for long-short trading strategy 542

output units 521
training, in Python 526

using, for value function approximation 697
neural networks (NNs), key design choices 520

activation functions 521
hidden units 521

New York Stock Exchange (NYSE) 24
n-grams 442

creating, for financial news 492, 493
NLP pipeline

constructing 443

constructing, with spaCy 444

constructing, with textacy 444

NLP pipeline construction
documents, batch-processing 445

multi-language NLP 447, 448
named entity recognition 446

n-grams 447
sentence, annotating 444, 445

sentence boundary detection 446

sentence, parsing 444, 445

sentence, tokenizing 444, 445
spaCy's streaming API 447

NLP workflow 441
labeling 443

linguistic annotation 442

semantic annotation 443

text data, parsing 442

text data, tokenizing 442
node purity 333

optimizing 333, 334

no-free-lunch theorem 149
noise contrastive estimation (NCE) 486
noisy signals

preprocessing, with wavelets 104-106
non-diversifiable risk 126
nonlinear activation functions 627
nonlinear dimensionality reduction

algorithm 409, 418, 419
nonlinear feature extraction

autoencoders 626

non-observable 638
non-traditional sources of risk premiums 126
Normalized Average True Range (NATR) 582
not-held orders 23
No U-Turn Sampler (NUTS) 304
numerical evaluations 161
NumPy

alpha factors, engineering 95

O
object detection 559, 573
object detection, Google's Street View House

Numbers
custom loss function, creating 575
evaluation metrics 575
source images, preprocessing 573
transfer learning, with custom final layer 574
two-step training 576

objective function 386
objective priors 299
object segmentation 573
odds 214
OHLCV bundles

custom bundle ingest function, writing 243

data, obtaining to be bundled 243

loading, with minute data 242

registering 243

OLS estimates correction ways,
heteroskedasticity

clustered standard errors 183
robust standard errors 183

one-layer feedforward autoencoder 631, 632
decoder, defining 633
encoder, defining 632

[783]

model, training 633

results, evaluating 633

online learning 524
online trading platforms, ML for trading

QuantConnect 723
Quantopian 722
QuantRocket 723

on state-of-the-art architectures
building 566

OpenAI Gym 699
open/close orders 23
OpenTable data

restaurant bookings and ratings
dataset, building 74-76

scraping 72
optimal size of bet 132, 133
optimal value functions 687
order book

reconstructing 32-34

orders 23
Ordinary least squares (OLS)

used, for learning baseline model 176, 177
using, with statsmodels 186

outlier control 225
out-of-bag (OOB) 353

testing 352, 353

output recurrence 595
overfitting 150, 162

addressing, with regularized autoencoders 628

controlling, with regularization 194, 195
over-the-counter (OTC) markets 24

P
padding 556
pairs trading 283

in practice 285

pandas
alpha factors, engineering 95

pandas-datareader library 56
pandas library

datareader, for market data 45, 46
data storage 57
remote data access 44

paper trading 48
parameter norm penalties 522
parameter tuning

with GridSearchCV 171
with pipeline 171
with scikit-learn 170
with Yellowbrick 170

Parquet 57
partial autocorrelation 260
partial autocorrelation function (PACF) 260
partial dependence plots 393-395
passive strategies 4
performance gains, obtaining from algorithmic

innovations 379
additional features, and optimizations 382, 383

depth-wise, versus leaf-wise growth 381
dropout for additive regression trees

(DART) 381, 382
GPU-based training 381
second-order loss function

approximation 379, 380
simplified split-finding algorithms 380
treatment, of categorical features 382

perplexity
used, for evaluating LDA topics 474

personally identifiable information (PII) 67
pipeline

creating, with custom ML factor 247-249
for parameter tuning 171

Pipeline API 245
DataFrameLoader, enabling 246

pipeline factors
defining 250

plain-vanilla denoising 36, 38
plate notation 469
point72 9
pointwise mutual information (PMI) 474
policy gradient methods 682
policy iteration 687
polysemy 507
portfolio benchmark inputs

generating 141
portfolio management

with Zipline 136
portfolio performance

measuring 122
testing 142

portfolio position data
generating 141

portfolio returns
generating 141
managing 125

portfolio risk

managing 125
posterior predictive checks (PPCs) 314
posterior probability distribution 297, 298
precision 159
precision-recall curves 159

[784]

predictions
evaluating, during backtest 252-254
generating 315, 316
versus inference 155

predictive modeling
outcomes, assigning 443

predictive signals
quality, comparing 212

pretrained RoBERTa model 510
pretrained state-of-the-art models

AllenNLP 510
Hugging Face Transformers library 510
using 510

pretrained word vectors
used, for sentiment analysis 617
using 489

price/earnings time series
building 55

price/earnings to growth (PEG) ratio 90
price formation 24
price-to-earnings (P/E) ratio 90
price-to-earnings (P/E) valuation ratio 55
principal component analysis (PCA)

algorithm 152, 411, 627, 672
based on covariance matrix 414, 415
key assumptions 413
running, to identify key return drivers 422-424
using, for algorithmic trading 421
visualizing, in 2D 412
with sklearn 416, 417
with SVD algorithm 415, 416
working 413

principal diagnostic tool 526
priors

selecting 299

probabilistic latent semantic analysis (pLSA) 469
implementing, with sklearn 470
limitations 471
strengths 471

probabilistic modeling 426
probabilistic programming

with PyMC3 305
probabilities

estimating, of asset price moves 299, 301
probability distribution 298
proprietary products 26
pseudo-R2 statistic 216
Public Dissemination Service (PDS) 52
purging 169
p-value 180
pybacktest 119

pyfolio 232
drawdown periods 144, 145
factor exposure 144, 145
used, for measuring backtest portfolio

performance 140
pyfolio event risk analysis 145, 146
pyfolio input

obtaining, from Alphalens 141
obtaining, from Zipline backtest 141

pyfolio summary performance statistics 143, 144
pykalman

used, for applying Kalman filter 103
pyLDAvis

used, for visualizing LDA results 475
PyMC3 305
PyMC3 workflow, recession prediction 305

approximate inference, MCMC 309, 311
approximate inference, variational Bayes 312
convergence 312-314
data 306
exact MAP Inference 309
model definition 307
model diagnostic 312

PyPortfolioOpt
using, to compute HRP weights 436

Python
cross-validation, implementing 166, 167
dynamic programming 689

efficient frontier, finding 127-130
neural networks (NNs), building 526
neural networks (NNs), training 526
used, for implementing backprop 529
used, for implementing momentum updates 532

used, for training Q-learning agent 695, 696

Python Algorithmic Trading Library
(PyAlgoTrade) 118

PyTorch 1.4
model predictions, evaluating 541
model training 540, 541
NN architecture, defining 539, 540
using 538

PyTorch DataLoader
creating 539

Q
Q-learning agent

training, with Python 695, 696

Q-learning algorithm 695
greedy policy 695

optimal policy, finding 694

[785]

quality factors
for quantitative investing 92, 93

Quandl 50
QuantConnect 118, 723
quantile sketch algorithm 380
Quantopian 48, 722

production-ready backtesting 239
research environment, using on 254

Quantopian factors 109
QuantRocket 723
quarterly Apple filings

retrieving 54

quote data
fields 42

R
R2 score 156
random forest 345

advantages 353

boostrap aggregation 346

building 349

disadvantages 353

ensemble models, performance 345

feature importance 352

long-short signals, for Japanese stocks 353, 354
out-of-bag (OOB), testing 352, 353

training 350, 351
tuning 350, 351

randomized grid search 387, 388
random walk 262
ranking problem 154
RavenPack 71
recall 159
receiver operating characteristics (ROC)

curve 159
receptive field 554
rectified linear unit (ReLU) 521, 557, 627
recurrent conditional GANs (RCGANs)

with synthetic time series 654

recurrent neural networks
(RNNs) 508, 519, 629, 654

applying, to text data for detecting return

prediction 614
applying, to text data for detecting sentiment

analysis 614
backpropagation through time 594
computational graph 594

long-range dependencies, learning

challenges 597
using, for financial time series with

TensorFlow 2 599

working 592, 593
recursive binary splitting 329
regression performance

comparing, with classification performance 341
regression problems 154, 156, 157

building, with time series data 331
regression trees 328, 349

building, with time series data 331
regularization 194, 387
regularized autoencoders

used, for addressing overfitting 628
regulated exchanges 24
reinforcement learning (RL) 152, 153, 651
relational database management systems

(RDBMSes) 720
relative strength index (RSI) 330, 582
relative value strategies 88
remote data access

with pandas library 44

Renaissance Technologies (RenTec) 124
requests

used, for extracting data from HTML 72, 73
resampling 96
research environment

using, on Quantopian 254

residual 176
residual network (ResNet) 566, 567
residual sum of squares (RSS) 176
resilient distributed data (RDD) 721
returns

computing, for multiple historical periods 96, 97
reward signal 681
ridge regression 195

working 195, 196
ridge regression, with scikit-learn 208

cross-validation results 209
regularization parameters, tuning with

cross-validation 208, 209
ridge coefficient paths 209
top 10 coefficients 210

riding the yield curve 6
risk-factor exposure 2
risk factor investment 135
risk factors as latent 638
risk parity 134, 135
risk-return trade-offs

capturing, in single number 122
RL problems

solving 682

RL systems
key elements 680

RMSProp 525

[786]

RNN input tensor
dimensions 600

robust estimation methods 173
robust-minus-weak (RMW) profitability factor 85
robust simulations

calendars and Pipeline API, exchanging 240
robust standard errors 183
rolling window statistics 259
roll return 6
root-mean-square error (RMSE) 156
root-mean-square of the log of the error

(RMSLE) 156

S

sample period 225
sandwich estimator 183
SARIMAX 270
satellite data 71
scikit-learn

parameter tuning 170
time series cross-validation 168

Scrapy
using 76, 77

SEC filings
labeling, with stock returns 500, 501
using, with bidirectional RNN GRU to predict

weekly returns 619
SEC filings, word embeddings 499

automatic phrase detection 500
content selection 500
model evaluation 502
model training 501
n-grams, creating 500
parameter settings, performance impact 502
sentence detection 500

Securities Information Processor (SIP) 41
Selenium

using 74
self-supervised learning 626
semantic annotation 443
semantic segmentation 573
semi-supervised pretraining 507
sensors data 64

geolocation data 64

satellites images 64

sentiment
excess returns, driving 85

measuring 86

sentiment analysis 455, 458
Twitter data, used for binary sentiment

classification 458

Yelp business reviews, used for multiclass

sentiment analysis 459, 460
sentiment analysis, with doc2vec

embeddings 503
doc2vec input, creating from Yelp sentiment

data 503, 504
doc2vec model, training 504
sentiment classifier, training with document

vectors 505, 506
sentiment analysis, with pretrained word vectors

architecture, defining with frozen weights 618
pretrained GloVe embeddings, loading 617
text data, processing 617

seq2seq autoencoders
used, for extracting time-series features 629

sequence-to-sequence models, types
many-to-many 593

many-to-one 593

one-to-many 593

sequence-to-sequence (seq2seq) 596
serial correlation 183, 259
SHapley Additive exPlanations

(SHAP) 17, 395, 720
feature interaction, analyzing 398, 399

plots, forcing to explain predictions 397
SHAP values

summarizing, by feature 396

Sharpe ratio (SR) 123, 224
shrinkage methods 173

interpretation, improving 194
prediction accuracy, improving 194
regularizing, for linear regression 194

shrinkage techniques 373
ShuffleSplit class 168
signal content evaluation

alpha content and quality 66

asset classes 66

investment style 66

risk premiums 66
signal generation

scheduling 137, 138
silhouette coefficient 428
simple moving average (SMA) 99
single-layer architecture 526

cross-entropy cost function 529

forward propagation 529

hidden layer 527
input layer 526, 527
output layer 528

singular value decomposition (SVD)
algorithm 413, 465

[787]

PCA, using 415, 416
size

measuring 92

returns, predicting 91
size anomaly 91
skip-gram architecture, implementing in

TensorFlow 2 493, 494
noise-contrastive estimation (NCE) 494

target-context word pairs, generating 495

validation samples, creating 494

word2vec model layers, creating 495, 496

skip-gram (SG) model 485
versus continuous-bag-of-words (CBOW)

model 485

sklearn
gradient boosting, using 374, 375
stochastic gradient descent (SGD), using

with 186, 187
used, for implementing LDA 475
used, for implementing LSI 466, 467, 468
used, for implementing pLSA 470
with document-term matrix 451
with ICA algorithm 418
with PCA algorithm 416, 417

smart beta funds 7
social sentiment data 70

Dataminr 71
RavenPack 71
StockTwits 71

softplus function 557
spaCy

used, for constructing NLP pipeline 444

Splash
using 76, 77

spread
computing 290

SRGAN 654
stacked LSTM, for predicting weekly stock price

moves and returns 605, 606
architecture, defining with Keras Functional

API 607-610
multiple inputs, creating in RNN format 606
returns, predicting instead of directional price

moves 610
StackGAN 654
standard error 181
Standard Industrial Classification (SIC) 52
state-value function 685
stationarity

achieving 260
diagnosing 260

stationary time series 260
statistical arbitrage (StatArb) 88
statsmodels

used, for conducting inference 215, 216
stochastic control approach 284
stochastic gradient boosting 374
stochastic gradient descent (SGD) 251, 524, 698

used, for learning baseline model 178, 179
using, with sklearn 186, 187

stochastic inference
with Markov chain Monte Carlo sampling 302

stochastic techniques
versus deterministic methods 301

stochastic trends
handling 261

stochastic volatility models 323-325
stock momentum 642
stock return prediction, with linear

regression 197
model features and forward returns,

preparing 197
StockTwits 71
stop order 23
strategy backtest

preparing 288

Street View House Numbers (SVHN) dataset 573
strict stationarity 260
strides 556
subjective priors 299
subsampling 374
supervised learning 149
supervised learning problem, types

binary classification 521
multiclass problems 521
regression problems 521

survivorship bias 224
synthetic data

GANs, using for 650
synthetic time series

with RCGANs 654

T
tag-based FIXML 27
TA-Lib

technical alpha factors, creating 99, 100
TA-Lib, technical indicators

Bollinger Bands 355

normalized average true range (NATR) 355

percentage price oscillator (PPO) 354

relative strength index (RSI) 355

[788]

t-distributed Stochastic Neighbor Embedding
(t-SNE) algorithm 409, 419, 420, 635

teacher forcing 595
temporal difference (TD) learning

algorithm 683, 695
TensorBoard

used, for visualizing word embeddings of financial
news 496

using 537, 538
TensorFlow 2

skip-gram architecture, implementing 493, 494
used, for designing autoencoders 630
used, for implementing TimeGAN 663

used, for training autoencoders 630
using 535-537

term frequency (TF) 451
test scores

parameter impact 377
test statistics

distributional characteristics 181
textacy

used, for constructing NLP pipeline 444

TextBlob, with NLP 448
sentiment polarity and subjectivity 449

stemming, performing 449

text classifications 455
text data

key challenges 440
parsing 442

tokenizing 442
text data, with ML 440

applications 443

TfidfTransformer
using 454

TfidfVectorizer
used, for smoothing documents 455

used, for summarizing news articles 455

using 454

Theano
for Bayesian machine learning 305

tick bars 35, 36
time bars 36, 38
TimeGAN architecture

components 661, 662
joint training, of autoencoder and adversarial

network 662
reconstruction loss 663

supervised loss 663

unsupervised loss 663

TimeGAN, implementing with TensorFlow 2 663
autoencoder, using with real data 666, 667

joint training, with real and random

data 668-670
quality of synthetic time-series data,

evaluating 672, 673
real and random input series,

preparing 664, 665

supervised learning, using with real data 668

synthetic time-series data, visualizing

with PCA 673
synthetic time-series data, visualizing

with t-SNE 673
synthetic time series, generating 671, 672
TimeGAN model components, creating 665, 666

time-series classification performance 674-676
time-series prediction model, training on synthetic

and real data 676, 677
time indicators

adding, to capture seasonal effects 98

time series 256
transforming, to achieve stationarity 261

time-series approach 284
time series cross-validation

with scikit-learn 168
time-series data 165

used, for building regression tree 331, 332
time-series features

extracting, with seq2seq autoencoders 629

time-series generative adversarial network
(TimeGAN) 660

adversarial and supervised training, combining

with time-series embedding 661
data generation process, across features 661
data generation process, across time 661

time-series patterns
decomposing 257, 258

time-series transformations
in practice 263-265

timing of decisions 226
tokens 439
top-down approach 329
topic coherence

used, for evaluating LDA topics 474
topic modeling

approaches 464, 465

used, for earnings calls data 478
used, for financial news 481, 482
goals 464, 465

trace 303
trade data 40

fields 41

[789]

trade execution
scheduling 137, 138

trade-execution programs 16
trades

reconstructing 32

trade simulation
with Zipline 136

trading 23
trading activity 31
TradingCalendar library 241
trading signal quality

evaluating 405, 406
trading strategies

use cases 151
Trading with Python 119
transaction costs 226
transfer coefficient (TC) 124
transfer learning 558, 565

alternative approaches 565

transfer learning, used for identifying land use
with satellite images 571

DenseNet201 571
EuroSat dataset 571
model training 572
results evaluation 572

transfer learning, with VGG 567
bottleneck features, extracting 567, 568
pretrained model, fine-tuning 568-570

transformer architecture 596
Transformer model 508
Transmission Control Protocol (TCP) 27
tree pruning 336
tree structure

inspecting 340, 341
trend-stationary 261
true positive rates (TPR) 159
two-layer RNN

defining, with single LSTM layer 602

U
ultrafinance 119
undercomplete autoencoder 626
underfitting 163
Uniform Manifold Approximation and Projection

(UMAP) algorithm 409, 420, 421
unigram 442
unit roots 261

diagnosing 262

removing 263

univariate time-series models 265
ARIMA models and extensions 268

autoregressive models 266

designing, guidelines 268

features, adding 269

macro fundamentals, forecasting 270, 271
moving-average models 267
number of AR and MA terms, identifying 269

seasonal differencing, adding 270
time-series models 272

univariate time-series regression model
evaluating 603
predictions, re-scaling 604
single LSTM layer, used for defining two-layer

RNN 602
training 603
used, for predicting S&P 500 index

values 600, 602
universal approximation theorem 517
unsupervised learning 17, 150
unsupervised representation learning

DCGANs, using for 653

use cases, ML for algorithmic trading
asset allocation 18
data mining, for feature extraction 17
 data mining, for insights 17
reinforcement learning 19
supervised learning, using for alpha factor

aggregation 17
supervised learning, using for alpha factor

creation 17
trade ideas, testing 18

V
validation curves 170
value at risk (VaR) 225
value effects

capturing 89

value factors 88
returns, predicting 89

value function approximation
with NNs 697

value functions 682
value iteration 688
variance 162
variational autoencoders (VAE)

input data, generating 629

variational Bayes (VB) 301, 473
variational inference 301
vector autoregressive (VAR) model 277, 611

using, for macro fundamentals

forecasts 278-280
vector error correction model (VECM) 278

[790]

vectorized backtest
versus event-driven backtest 228, 229

VGGNet 566
visualizations 160
volatility

measuring 92

returns, predicting 91
volatility anomaly 90
volatility model

building, for asset-return series 274-276
volume bars 38
volume-weighted average price

(VWAP) 35, 38, 42
Voronoi 427

W
wavelets

noisy signals, preprocessing 104-106
weighted least squares (WLS) 183
white noise 257
White standard errors 183
Wiecki, Thomas 317
winner minus loser (WML) factor 85
word2vec models

automating phrase detection 487
hierarchical softmax, using 486

negative sampling (NEG), using 486

noise contrastive estimation (NCE), using 486

objective 486

phrase embeddings 485, 486

softmax function, simplifying 486

using, for trading 499

word embeddings 485, 486

word embedding models
characteristics 507

word embeddings
for SEC filings 499
semantics, encoding 484

word representation
GloVe, using for 489, 490

WorldQuant 118

X
XBRL 51
XGBoost 378

Y
Yellowbrick

parameter tuning 170
yfinance 46

end-of-day and intraday prices, downloading 46

option chain, downloading 47
prices, downloading 47

You Only Look Once (YOLO) 573

Z

Zipline 48, 49, 106, 239
backtest 362
evaluation, with pyfolio 362, 363

in and out-of-sample strategy backtest,
executing 362

Japanese Equities, ingesting 362

single-factor strategy, backtesting 106
used, for backtesting long-short

trading strategy 548

using, for portfolio management 136
using, for trade simulation 136

Zipline backtest
pyfolio input, obtaining from 141

	Cover
	Copyright
	Packt Page
	Contributors
	Table of Contents
	Preface
	Chapter 1: Machine Learning for Trading – From Idea to Execution
	The rise of ML in the investment industry
	From electronic to high-frequency trading
	Factor investing and smart beta funds
	Algorithmic pioneers outperform humans
	ML and alternative data
	Crowdsourcing trading algorithms

	Designing and executing an ML-driven strategy
	Sourcing and managing data
	From alpha factor research to portfolio management
	Strategy backtesting

	ML for trading – strategies and use cases
	The evolution of algorithmic strategies
	Use cases of ML for trading

	Summary

	Chapter 2: Market and Fundamental Data – Sources and Techniques
	Market data reflects its environment
	Market microstructure – the nuts and bolts
	How to trade – different types of orders
	Where to trade – from exchanges to dark pools

	Working with high-frequency data
	How to work with Nasdaq order book data
	Communicating trades with the FIX protocol
	The Nasdaq TotalView-ITCH data feed
	From ticks to bars – how to regularize market data
	AlgoSeek minute bars – equity quote and trade data

	API access to market data
	Remote data access using pandas
	yfinance – scraping data from Yahoo! Finance
	Quantopian
	Zipline
	Quandl
	Other market data providers

	How to work with fundamental data
	Financial statement data
	Other fundamental data sources

	Efficient data storage with pandas
	Summary

	Chapter 3: Alternative Data for Finance – Categories and Use Cases
	The alternative data revolution
	Sources of alternative data
	Individuals
	Business processes
	Sensors

	Criteria for evaluating alternative data
	Quality of the signal content
	Quality of the data
	Technical aspects

	The market for alternative data
	Data providers and use cases

	Working with alternative data
	Scraping OpenTable data
	Scraping and parsing earnings call transcripts

	Summary

	Chapter 4: Financial Feature Engineering – How to Research Alpha Factors
	Alpha factors in practice – from data to signals
	Building on decades of factor research
	Momentum and sentiment – the trend is your friend
	Value factors – hunting fundamental bargains
	Volatility and size anomalies
	Quality factors for quantitative investing

	Engineering alpha factors that predict returns
	How to engineer factors using pandas and NumPy
	How to use TA-Lib to create technical alpha factors
	Denoising alpha factors with the Kalman filter
	How to preprocess your noisy signals using wavelets

	From signals to trades – Zipline for backtests
	How to backtest a single-factor strategy
	Combining factors from diverse data sources

	Separating signal from noise with Alphalens
	Creating forward returns and factor quantiles
	Predictive performance by factor quantiles
	The information coefficient
	Factor turnover

	Alpha factor resources
	Alternative algorithmic trading libraries

	Summary

	Chapter 5: Portfolio Optimization and Performance Evaluation
	How to measure portfolio performance
	Capturing risk-return trade-offs in a single number
	The fundamental law of active management

	How to manage portfolio risk and return
	The evolution of modern portfolio management
	Mean-variance optimization
	Alternatives to mean-variance optimization
	Risk parity
	Risk factor investment
	Hierarchical risk parity

	Trading and managing portfolios with Zipline
	Scheduling signal generation and trade execution
	Implementing mean-variance portfolio optimization

	Measuring backtest performance with pyfolio
	Creating the returns and benchmark inputs
	Walk-forward testing – out-of-sample returns

	Summary

	Chapter 6: The Machine Learning Process
	How machine learning from data works
	The challenge – matching the algorithm to the task
	Supervised learning – teaching by example
	Unsupervised learning – uncovering useful patterns
	Reinforcement learning – learning by trial and error

	The machine learning workflow
	Basic walkthrough – k-nearest neighbors
	Framing the problem – from goals to metrics
	Collecting and preparing the data
	Exploring, extracting, and engineering features
	Selecting an ML algorithm
	Design and tune the model
	How to select a model using cross-validation
	How to implement cross-validation in Python
	Challenges with cross-validation in finance
	Parameter tuning with scikit-learn and Yellowbrick

	Summary

	Chapter 7: Linear Models – From Risk Factors to Return Forecasts
	From inference to prediction
	The baseline model – multiple linear regression
	How to formulate the model
	How to train the model
	The Gauss–Markov theorem
	How to conduct statistical inference
	How to diagnose and remedy problems

	How to run linear regression in practice
	OLS with statsmodels
	Stochastic gradient descent with sklearn

	How to build a linear factor model
	From the CAPM to the Fama–French factor models
	Obtaining the risk factors
	Fama–Macbeth regression

	Regularizing linear regression using shrinkage
	How to hedge against overfitting
	How ridge regression works
	How lasso regression works

	How to predict returns with linear regression
	Preparing model features and forward returns
	Linear OLS regression using statsmodels
	Linear regression using scikit-learn
	Ridge regression using scikit-learn
	Lasso regression using sklearn
	Comparing the quality of the predictive signals

	Linear classification
	The logistic regression model
	How to conduct inference with statsmodels
	Predicting price movements with logistic regression

	Summary

	Chapter 8: The ML4T Workflow – From ML Model to Strategy Backtest
	How to backtest an ML-driven strategy
	Backtesting pitfalls and how to avoid them
	Getting the data right
	Getting the simulation right
	Getting the statistics right

	How a backtesting engine works
	Vectorized versus event-driven backtesting
	Key implementation aspects

	backtrader – a flexible tool for local backtests
	Key concepts of backtrader's Cerebro architecture
	How to use backtrader in practice
	backtrader summary and next steps

	Zipline – scalable backtesting by Quantopian
	Calendars and the Pipeline for robust simulations
	Ingesting your own bundles with minute data
	The Pipeline API – backtesting an ML signal
	How to train a model during the backtest
	Instead of How to use

	Summary

	Chapter 9: Time-Series Models for Volatility Forecasts and Statistical Arbitrage
	Tools for diagnostics and feature extraction
	How to decompose time-series patterns
	Rolling window statistics and moving averages
	How to measure autocorrelation

	How to diagnose and achieve stationarity
	Transforming a time series to achieve stationarity
	Handling instead of How to handle
	Time-series transformations in practice

	Univariate time-series models
	How to build autoregressive models
	How to build moving-average models
	How to build ARIMA models and extensions
	How to forecast macro fundamentals
	How to use time-series models to forecast volatility

	Multivariate time-series models
	Systems of equations
	The vector autoregressive (VAR) model
	Using the VAR model for macro forecasts

	Cointegration – time series with a shared trend
	The Engle-Granger two-step method
	The Johansen likelihood-ratio test

	Statistical arbitrage with cointegration
	How to select and trade comoving asset pairs
	Pairs trading in practice
	Preparing the strategy backtest
	Backtesting the strategy using backtrader
	Extensions – how to do better

	Summary

	Chapter 10: Bayesian ML – Dynamic Sharpe Ratios and Pairs Trading
	How Bayesian machine learning works
	How to update assumptions from empirical evidence
	Exact inference – maximum a posteriori estimation
	Deterministic and stochastic approximate inference

	Probabilistic programming with PyMC3
	Bayesian machine learning with Theano
	The PyMC3 workflow: predicting a recession

	Bayesian ML for trading
	Bayesian Sharpe ratio for performance comparison
	Bayesian rolling regression for pairs trading
	Stochastic volatility models

	Summary

	Chapter 11: Random Forests – A Long-Short Strategy for Japanese Stocks
	Decision trees – learning rules from data
	How trees learn and apply decision rules
	Decision trees in practice
	Overfitting and regularization
	Hyperparameter tuning

	Random forests – making trees more reliable
	Why ensemble models perform better
	Boostrap aggregation
	How to build a random forest
	How to train and tune a random forest
	Feature importance for random forests
	Out-of-bag testing
	Pros and cons of random forests

	Long-short signals for Japanese stocks
	The data – Japanese equities
	The ML4T workflow with LightGBM
	The strategy – backtest with Zipline

	Summary

	Chapter 12: Boosting Your Trading Strategy
	Getting started – adaptive boosting
	The AdaBoost algorithm
	Using AdaBoost to predict monthly price moves

	Gradient boosting – ensembles for most tasks
	How to train and tune GBM models
	How to use gradient boosting with sklearn

	Using XGBoost, LightGBM, and CatBoost
	How algorithmic innovations boost performance

	A long-short trading strategy with boosting
	Generating signals with LightGBM and CatBoost
	Inside the black box - interpreting GBM results
	Backtesting a strategy based on a boosting ensemble
	Lessons learned and next steps

	Boosting for an intraday strategy
	Engineering features for high-frequency data
	Minute-frequency signals with LightGBM
	Evaluating the trading signal quality

	Summary

	Chapter 13: Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning
	Dimensionality reduction
	The curse of dimensionality
	Linear dimensionality reduction
	Manifold learning – nonlinear dimensionality reduction

	PCA for trading
	Data-driven risk factors
	Eigenportfolios

	Clustering
	k-means clustering
	Hierarchical clustering
	Density-based clustering
	Gaussian mixture models

	Hierarchical clustering for optimal portfolios
	How hierarchical risk parity works
	Backtesting HRP using an ML trading strategy

	Summary

	Chapter 14: Text Data for Trading – Sentiment Analysis
	ML with text data – from language to features
	Key challenges of working with text data
	The NLP workflow
	Applications

	From text to tokens – the NLP pipeline
	NLP pipeline with spaCy and textacy
	NLP with TextBlob

	Counting tokens – the document-term matrix
	The bag-of-words model
	Document-term matrix with scikit-klearn
	Key lessons instead of lessons learned

	NLP for trading
	The naive Bayes classifier
	Classifying news articles
	Sentiment analysis with Twitter and Yelp data

	Summary

	Chapter 15: Topic Modeling – Summarizing Financial News
	Learning latent topics – Goals and approaches
	How to implement LSI using sklearn
	Strengths and limitations

	Probabilistic latent semantic analysis
	How to implement pLSA using sklearn
	Strengths and limitations

	Latent Dirichlet allocation
	How LDA works
	How to evaluate LDA topics
	How to implement LDA using sklearn
	How to visualize LDA results using pyLDAvis
	How to implement LDA using Gensim

	Modeling topics discussed in earnings calls
	Data preprocessing
	Model training and evaluation
	Running experiments

	Topic modeling for with financial news
	Summary

	Chapter 16: Word Embeddings for Earnings Calls and SEC Filings
	How word embeddings encode semantics
	How neural language models learn usage in context
	word2vec – scalable word and phrase embeddings
	Evaluating embeddings using semantic arithmetic

	How to use pretrained word vectors
	GloVe – Global vectors for word representation

	Custom embeddings for financial news
	Preprocessing – sentence detection and n-grams
	The skip-gram architecture in TensorFlow 2
	Visualizing embeddings using TensorBoard
	How to train embeddings faster with Gensim

	word2vec for trading with SEC filings
	Preprocessing – sentence detection and n-grams
	Model training

	Sentiment analysis using doc2vec embeddings
	Creating doc2vec input from Yelp sentiment data
	Training a doc2vec model
	Training a classifier with document vectors
	Lessons learned and next steps

	New frontiers – pretrained transformer models
	Attention is all you need
	BERT – towards a more universal language model
	Trading on text data – lessons learned and next steps

	Summary

	Chapter 17: Deep Learning for Trading
	Deep learning – what's new and why it matters
	Hierarchical features tame high-dimensional data
	DL as representation learning
	How DL relates to ML and AI

	Designing an NN
	A simple feedforward neural network architecture
	Key design choices
	How to regularize deep NNs
	Training faster – optimizations for deep learning
	Summary – how to tune key hyperparameters

	A neural network from scratch in Python
	The input layer
	The hidden layer
	The output layer
	Forward propagation
	The cross-entropy cost function
	How to implement backprop using Python

	Popular deep learning libraries
	Leveraging GPU acceleration
	How to use TensorFlow 2
	How to use TensorBoard
	How to use PyTorch 1.4
	Alternative options

	Optimizing an NN for a long-short strategy
	Engineering features to predict daily stock returns
	Defining an NN architecture framework
	Cross-validating design options to tune the NN
	Evaluating the predictive performance
	Backtesting a strategy based on ensembled signals
	How to further improve the results

	Summary

	Chapter 18: CNNs for Financial Time Series and Satellite Images
	How CNNs learn to model grid-like data
	From hand-coding to learning filters from data
	How the elements of a convolutional layer operate
	The evolution of CNN architectures: key innovations

	CNNs for satellite images and object detection
	LeNet5 – The first CNN with industrial applications
	AlexNet – reigniting deep learning research
	Transfer learning – faster training with less data
	Object detection and segmentation
	Object detection in practice

	CNNs for time-series data – predicting returns
	An autoregressive CNN with 1D convolutions
	CNN-TA – clustering time series in 2D format

	Summary

	Chapter 19: RNNs for Multivariate Time Series and Sentiment Analysis
	How recurrent neural nets work
	Unfolding a computational graph with cycles
	Backpropagation through time
	Alternative RNN architectures
	How to design deep RNNs
	The challenge of learning long-range dependencies
	Gated recurrent units

	RNNs for time series with TensorFlow 2
	Univariate regression – predicting the S&P 500
	How to get time series data into shape for an RNN
	Stacked LSTM – predicting price moves and returns
	Multivariate time-series regression for macro data

	RNNs for text data
	LSTM with embeddings for sentiment classification
	Sentiment analysis with pretrained word vectors
	Predicting returns from SEC filing embeddings

	Summary

	Chapter 20: Autoencoders for Conditional Risk Factors and Asset Pricing
	Autoencoders for nonlinear feature extraction
	Generalizing linear dimensionality reduction
	Convolutional autoencoders for image compression
	Managing overfitting with regularized autoencoders
	Fixing corrupted data with denoising autoencoders
	Seq2seq autoencoders for time series features
	Generative modeling with variational autoencoders

	Implementing autoencoders with TensorFlow 2
	How to prepare the data
	One-layer feedforward autoencoder
	Feedforward autoencoder with sparsity constraints
	Deep feedforward autoencoder
	Convolutional autoencoders
	Denoising autoencoders

	A conditional autoencoder for trading
	Sourcing stock prices and metadata information
	Computing predictive asset characteristics
	Creating the conditional autoencoder architecture
	Lessons learned and next steps

	Summary

	Chapter 21: Generative Adversarial Nets for Synthetic Time-Series Data
	Creating synthetic data with GANs
	Comparing generative and discriminative models
	Adversarial training – a zero-sum game of trickery
	The rapid evolution of the GAN architecture zoo
	GAN applications to images and time-series data

	How to build a GAN using TensorFlow 2
	Building the generator network
	Creating the discriminator network
	Setting up the adversarial training process
	Evaluating the results

	TimeGAN for synthetic financial data
	Learning to generate data across features and time
	Implementing TimeGAN using TensorFlow 2
	Evaluating the quality of synthetic time-series data
	Lessons learned and next steps

	Summary

	Chapter 22: Deep Reinforcement Learning – Building a Trading Agent
	Elements of a reinforcement learning system
	The policy – translating states into actions
	Rewards – learning from actions
	The value function – optimal choice for the long run
	With or without a model – look before you leap?

	How to solve reinforcement learning problems
	Key challenges in solving RL problems
	Fundamental approaches to solving RL problems

	Solving dynamic programming problems
	Finite Markov decision problems
	Policy iteration
	Value iteration
	Generalized policy iteration
	Dynamic programming in Python

	Q-learning – finding an optimal policy on the go
	Exploration versus exploitation – ￼-greedy policy
	The Q-learning algorithm
	How to train a Q-learning agent using Python

	Deep RL for trading with the OpenAI Gym
	Value function approximation with neural networks
	The Deep Q-learning algorithm and extensions
	Introducing the OpenAI Gym
	How to implement DDQN using TensorFlow 2
	Creating a simple trading agent
	How to design a custom OpenAI trading environment
	Deep Q-learning on the stock market
	Lessons learned

	Summary

	Chapter 23: Conclusions and Next Steps
	Key takeaways and lessons learned
	Data is the single most important ingredient
	Domain expertise: telling the signal from the noise
	ML is a toolkit for solving problems with data
	Beware of backtest overfitting
	How to gain insights from black-box models

	ML for trading in practice
	Data management technologies
	ML tools
	Online trading platforms

	Conclusion

	Alpha Factor Library
	Common alpha factors implemented in TA-Lib
	A key building block – moving averages
	Overlap studies – price and volatility trends
	Momentum indicators
	Volume and liquidity indicators
	Volatility indicators
	Fundamental risk factors

	WorldQuant's quest for formulaic alphas
	Cross-sectional and time-series functions
	Formulaic alpha expressions

	Bivariate and multivariate factor evaluation
	Information coefficient and mutual information
	Feature importance and SHAP values
	Comparison – the top 25 features for each metric
	Financial performance – Alphalens

	References
	Index

