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Preface
If you are reading this, you are probably aware that machine learning (ML) has become a 
strategic capability in many industries, including the investment industry. The explosion 
of digital data closely related to the rise of ML is having a particularly powerful impact 
on investing, which already has a long history of using sophisticated models to process 
information. These trends are enabling novel approaches to quantitative investment 
and are boosting the demand for the application of data science to both discretionary and 
algorithmic trading strategies.

The scope of trading across asset classes is vast because it ranges from equities and 
government bonds to commodities and real estate. This implies that a very large range 
of new alternative data sources may be relevant above and beyond the market and 
fundamental data that used to be at the center of most analytical efforts in the past.

You also may have come across the insight that the successful application of ML or data 
science requires the integration of statistical knowledge, computational skills, and 
domain expertise at the individual or team level. In other words, it is essential to ask the 
right questions, identify and understand the data that may provide the answers, deploy a 
broad range of tools to obtain results, and interpret them in a way that leads to the right 
decisions.

Therefore, this book provides an integrated perspective on the application of ML to the 
domain of investment and trading. In this preface, we outline what you should expect, how 
we have organized the content to facilitate achieving our objectives, and what you need 
both to meet your goals and have fun in the process.

What to expect
This book aims to equip you with a strategic perspective, conceptual understanding, and 
practical tools to add value when applying ML to the trading and investment process. To 
this end, we cover ML as a key element in a process rather than a standalone exercise. Most 
importantly, we introduce an end-to-end ML for trading (ML4T) workflow that we apply 
to numerous use cases with relevant data and code examples.

The ML4T workflow starts with generating ideas and sourcing data and continues to 
extracting features, tuning ML models, and designing trading strategies that act on the 
models' predictive signals. It also includes simulating strategies on historical data using a 
backtesting engine and evaluating their performance.
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First and foremost, the book demonstrates how you can extract signals from a diverse set of 
data sources and design trading strategies for different asset classes using a broad range of 
supervised, unsupervised, and reinforcement learning algorithms. In addition, it provides 
relevant mathematical and statistical background to facilitate tuning an algorithm and 
interpreting the results. Finally, it includes financial background to enable you to work with 
market and fundamental data, extract informative features, and manage the performance of 
a trading strategy.

The book emphasizes that investors can gain at least as much value from third-party data 
as other industries. As a consequence, it covers not only how to work with market and 
fundamental data but also how to source, evaluate, process, and model alternative data 
sources such as unstructured text and image data.

It should not be a surprise that this book does not provide investment advice or ready-
made trading algorithms. On the contrary, it intends to communicate that ML faces many 
additional challenges in the trading domain, ranging from lower signal content to shorter 
time series that often make it harder to achieve robust results. In fact, we have included 
several examples that do not yield great results to avoid exaggerating the benefits of ML 
or understating the effort it takes to have a good idea, obtain the right data, engineer 
ingenious features, and design an effective strategy (with potentially attractive rewards).

Instead, you should find the book most useful as a guide to leveraging key ML algorithms 
to inform a trading strategy using a systematic workflow. To this end, we present a 
framework that guides you through the ML4T process of the following:

1. Sourcing, evaluating, and combining data for any investment objective

2. Designing and tuning ML models that extract predictive signals from the data

3. Developing and evaluating trading strategies based on the results

After reading this book, you will be able to begin designing and evaluating your own ML-
based strategies and might want to consider participating in competitions or connecting to 
the API of an online broker and begin trading in the real world.

What's new in the second edition
This second edition emphasizes the end-to-end ML4T workflow, reflected in a new chapter 
on strategy backtesting (Chapter 8, The ML4T Workflow – From Model to Strategy Backtesting), 
a new appendix describing over 100 different alpha factors, and many new practical 
applications. We have also rewritten most of the existing content for clarity and readability.

The applications now use a broader range of data sources beyond daily US equity prices, 
including international stocks and ETFs, as well as minute-frequency equity data to 
demonstrate an intraday strategy. Also, there is now broader coverage of alternative data 
sources, including SEC filings for sentiment analysis and return forecasts, as well as satellite 
images to classify land use.
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Furthermore, the book replicates several applications recently published in academic 
papers. Chapter 18, CNNs for Financial Time Series and Satellite Images, demonstrates how to 
apply convolutional neural networks to time series converted to image format for return 
predictions. Chapter 20, Autoencoders for Conditional Risk Factors and Asset Pricing, shows 
how to extract risk factors conditioned on stock characteristics for asset pricing using 
autoencoders. Chapter 21, Generative Adversarial Networks for Synthetic Time-Series Data, 
examines how to create synthetic training data using generative adversarial networks.

All applications now use the latest available (at the time of writing) software versions, such 
as pandas 1.0 and TensorFlow 2.2. There is also a customized version of Zipline that makes 
it easy to include machine learning model predictions when designing a trading strategy.

Who should read this book
You should find the book informative if you are an analyst, data scientist, or ML engineer 
with an understanding of financial markets and an interest in trading strategies. You 
should also find value as an investment professional who aims to leverage ML to make 
better decisions.

If your background is in software and ML, you may be able to just skim or skip some 
introductory material in this area. Similarly, if your expertise is in investment, you will 
likely be familiar with some, or all, of the financial context that we provide for those with 
different backgrounds.

The book assumes that you want to continue to learn about this very dynamic area. To this 
end, it includes numerous end-of-chapter academic references and additional resources 
linked in the README files for each chapter in the companion GitHub repository.

You should be comfortable using Python 3 and scientific computing libraries like NumPy, 
pandas, or SciPy and look forward to picking up numerous others along the way. Some 
experience with ML and scikit-learn would be helpful, but we briefly cover the basic 
workflow and reference various resources to fill gaps or dive deeper. Similarly, basic 
knowledge of finance and investment will make some terminology easier to follow.

What this book covers
This book provides a comprehensive introduction to how ML can add value to the design 
and execution of trading strategies. It is organized into four parts that cover different 
aspects of the data sourcing and strategy development process, as well as different 
solutions to various ML challenges.
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Part 1 – Data, alpha factors, and portfolios
The first part covers fundamental aspects relevant across trading strategies that leverage 
machine learning. It focuses on the data that drives the ML algorithms and strategies 
discussed in this book, outlines how you can engineer features that capture the data's signal 
content, and explains how to optimize and evaluate the performance of a portfolio.

Chapter 1, Machine Learning for Trading – From Idea to Execution, summarizes how and why 
ML became important for trading, describes the investment process, and outlines how ML 
can add value.

Chapter 2, Market and Fundamental Data – Sources and Techniques, covers how to source and 
work with market data, including exchange-provided tick data, and reported financials. 
It also demonstrates access to numerous open source data providers that we will rely on 
throughout this book.

Chapter 3, Alternative Data for Finance – Categories and Use Cases, explains categories and 
criteria to assess the exploding number of sources and providers. It also demonstrates how 
to create alternative datasets by scraping websites, for example, to collect earnings call 
transcripts for use with natural language processing (NLP) and sentiment analysis, which 
we cover in the second part of the book.

Chapter 4, Financial Feature Engineering – How to Research Alpha Factors, presents the process 
of creating and evaluating data transformations that capture the predictive signal and 
shows how to measure factor performance. It also summarizes insights from research into 
risk factors that aim to explain alpha in financial markets otherwise deemed to be efficient. 
Furthermore, it demonstrates how to engineer alpha factors using Python libraries offline 
and introduces the Zipline and Alphalens libraries to backtest factors and evaluate their 
predictive power.

Chapter 5, Portfolio Optimization and Performance Evaluation, introduces how to manage, 
optimize, and evaluate a portfolio resulting from the execution of a strategy. It presents 
risk metrics and shows how to apply them using the Zipline and pyfolio libraries. It also 
introduces methods to optimize a strategy from a portfolio risk perspective.

Part 2 – ML for trading – Fundamentals
The second part illustrates how fundamental supervised and unsupervised learning 
algorithms can inform trading strategies in the context of an end-to-end workflow.

Chapter 6, The Machine Learning Process, sets the stage by outlining how to formulate, train, 
tune, and evaluate the predictive performance of ML models in a systematic way. It also 
addresses domain-specific concerns, such as using cross-validation with financial time 
series to select among alternative ML models.
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Chapter 7, Linear Models – From Risk Factors to Return Forecasts, shows how to use linear and 
logistic regression for inference and prediction and how to use regularization to manage 
the risk of overfitting. It demonstrates how to predict US equity returns or the direction of 
their future movements and how to evaluate the signal content of these predictions using 
Alphalens.

Chapter 8, The ML4T Workflow – From Model to Strategy Backtesting, integrates the various 
building blocks of the ML4T workflow thus far discussed separately. It presents an end-to-
end perspective on the process of designing, simulating, and evaluating a trading strategy 
driven by an ML algorithm. To this end, it demonstrates how to backtest an ML-driven 
strategy in a historical market context using the Python libraries backtrader and Zipline.

Chapter 9, Time-Series Models for Volatility Forecasts and Statistical Arbitrage, covers univariate 
and multivariate time series diagnostics and models, including vector autoregressive 
models as well as ARCH/GARCH models for volatility forecasts. It also introduces 
cointegration and shows how to use it for a pairs trading strategy using a diverse set of 
exchange-traded funds (ETFs).

Chapter 10, Bayesian ML – Dynamic Sharpe Ratios and Pairs Trading, presents probabilistic 
models and how Markov chain Monte Carlo (MCMC) sampling and variational Bayes 
facilitate approximate inference. It also illustrates how to use PyMC3 for probabilistic 
programming to gain deeper insights into parameter and model uncertainty, for example, 
when evaluating portfolio performance.

Chapter 11, Random Forests – A Long-Short Strategy for Japanese Stocks, shows how to build, 
train, and tune nonlinear tree-based models for insight and prediction. It introduces tree-
based ensembles and shows how random forests use bootstrap aggregation to overcome 
some of the weaknesses of decision trees. We then proceed to develop and backtest a long-
short strategy for Japanese equities.

Chapter 12, Boosting Your Trading Strategy, introduces gradient boosting and demonstrates 
how to use the libraries XGBoost, LightBGM, and CatBoost for high-performance training 
and prediction. It reviews how to tune the numerous hyperparameters and interpret the 
model using SHapley Additive exPlanation (SHAP) values before building and evaluating 
a strategy that trades US equities based on LightGBM return forecasts.

Chapter 13, Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning, shows 
how to use dimensionality reduction and clustering for algorithmic trading. It uses 
principal and independent component analysis to extract data-driven risk factors and 
generate eigenportfolios. It presents several clustering techniques and demonstrates the 
use of hierarchical clustering for asset allocation.
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Part 3 – Natural language processing
Part 3 focuses on text data and introduces state-of-the-art unsupervised learning techniques 
to extract high-quality signals from this key source of alternative data.

Chapter 14, Text Data for Trading – Sentiment Analysis, demonstrates how to convert text data 
into a numerical format and applies the classification algorithms from Part 2 for sentiment 
analysis to large datasets. 

Chapter 15, Topic Modeling – Summarizing Financial News, uses unsupervised learning to 
extract topics that summarize a large number of documents and offer more effective ways 
to explore text data or use topics as features for a classification model. It demonstrates 
how to apply this technique to earnings call transcripts sourced in Chapter 3 and to annual 
reports filed with the Securities and Exchange Commission (SEC).

Chapter 16, Word Embeddings for Earnings Calls and SEC Filings, uses neural networks to 
learn state-of-the-art language features in the form of word vectors that capture semantic 
context much better than traditional text features and represent a very promising avenue 
for extracting trading signals from text data.

Part 4 – Deep and reinforcement learning
Part 4 introduces deep learning and reinforcement learning.

Chapter 17, Deep Learning for Trading, introduces TensorFlow 2 and PyTorch, the most 
popular deep learning frameworks, which we will use throughout Part 4. It presents 
techniques for training and tuning, including regularization. It also builds and evaluates 
a trading strategy for US equities.

Chapter 18, CNNs for Financial Time Series and Satellite Images, covers convolutional neural 
networks (CNNs) that are very powerful for classification tasks with unstructured data 
at scale. We will introduce successful architectural designs, train a CNN on satellite data 
(for example, to predict economic activity), and use transfer learning to speed up training. 
We'll also replicate a recent idea to convert financial time series into a two-dimensional 
image format to leverage the built-in assumptions of CNNs.

Chapter 19, RNNs for Multivariate Time Series and Sentiment Analysis, shows how recurrent 
neural networks (RNNs) are useful for sequence-to-sequence modeling, including for 
univariate and multivariate time series to predict. It demonstrates how RNNs capture 
nonlinear patterns over longer periods using word embeddings introduced in Chapter 16 
to predict returns based on the sentiment expressed in SEC filings.

Chapter 20, Autoencoders for Conditional Risk Factors and Asset Pricing, covers autoencoders 
for the nonlinear compression of high-dimensional data. It implements a recent paper that 
uses a deep autoencoder to learn both risk factor returns and factor loadings from the data 
while conditioning the latter on asset characteristics. We'll create a large US equity dataset 
with metadata and generate predictive signals. 
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Chapter 21, Generative Adversarial Networks for Synthetic Time-Series Data, presents one of the 
most exciting advances in deep learning. Generative adversarial networks (GANs) are 
capable of learning to reproduce synthetic replicas of a target data type, such as images of 
celebrities. In addition to images, GANs have also been applied to time-series data. This 
chapter replicates a novel approach to generate synthetic stock price data that could be 
used to train an ML model or backtest a strategy, and also evaluate its quality.

Chapter 22, Deep Reinforcement Learning – Building a Trading Agent, presents how 
reinforcement learning (RL) permits the design and training of agents that learn to 
optimize decisions over time in response to their environment. You will see how to create 
a custom trading environment and build an agent that responds to market signals using 
OpenAI Gym.

Chapter 23, Conclusions and Next Steps, summarizes the lessons learned and outlines several 
steps you can take to continue learning and building your own trading strategies.

Appendix, Alpha Factor Library, lists almost 200 popular financial features, explains 
their rationale, and shows how to compute them. It also evaluates and compares their 
performance in predicting daily stock returns.

To get the most out of this book
In addition to the content summarized in the previous section, the hands-on nature of the 
book consists of over 160 Jupyter notebooks hosted on GitHub that demonstrate the use of 
ML for trading in practice on a broad range of data sources. This section describes how to 
use the GitHub repository, obtain the data used in the numerous examples, and set up the 
environment to run the code.

The GitHub repository
The book revolves around the application of ML algorithms to trading. The hands-on 
aspects are covered in Jupyter notebooks, hosted on GitHub, that illustrate many of the 
concepts and models in more detail. While the chapters aim to be self-contained, the code 
examples and results often take up too much space to include in their complete forms. 
Therefore, it is very important to view the notebooks that contain significant additional 
content while reading the chapter, even if you do not intend to run the code yourself.

The repository is organized so that each chapter has its own directory containing the 
relevant notebooks and a README file containing separate instructions where needed, as 
well as references and resources specific to the chapter's content. The relevant notebooks 
are identified throughout each chapter, as necessary. The repository also contains 
instructions on how to install the requisite libraries and obtain the data.

You can find the code files placed at: https://github.com/PacktPublishing/Machine-
Learning-for-Algorithmic-Trading-Second-Edition.
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Data sources
We will use freely available historical data from market, fundamental, and alternative 
sources. Chapter 2 and Chapter 3 cover characteristics and access to these data sources and 
introduce key providers that we will use throughout the book. The companion GitHub 
repository just described contains instructions on how to obtain or create some of the 
datasets that we will use throughout and includes some smaller datasets.

A few sample data sources that we will source and work with include, but are not limited to:

• Nasdaq ITCH order book data

• Electronic Data Gathering, Analysis, and Retrieval (EDGAR) SEC filings
• Earnings call transcripts from Seeking Alpha

• Quandl daily prices and other data points for over 3,000 US stocks

• International equity data from Stooq and using the yfinance library
• Various macro fundamental and benchmark data from the Federal Reserve

• Large Yelp business reviews and Twitter datasets
• EUROSAT satellite image data

Some of the data is large (several gigabytes), such as Nasdaq and SEC filings. The 
notebooks indicate when that is the case.

See the data directory in the root folder of the GitHub repository for instructions.

Anaconda and Docker images
The book requires Python 3.7 or higher and uses the Anaconda distribution. The book uses 
various conda environments for the four parts to cover a broad range of libraries while 
limiting dependencies and conflicts.

The installation directory in the GitHub repository contains detailed instructions. You 
can either use the provided Docker image to create a container with the necessary 
environments or use the .yml files to create them locally.

Download the example code files
You can download the example code files for this book from your account at http://
www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at http://www.packtpub.com.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com
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2. Select the SUPPORT tab.

3. Click on Code Downloads & Errata.

4. Enter the name of the book in the Search box and follow the on-screen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the 
latest version of your preferred compression tool:

• WinRAR or 7-Zip for Windows

• Zipeg, iZip, or UnRarX for Mac

• 7-Zip or PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Machine-Learning-for-Algorithmic-Trading-Second-Edition. 
We also have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams 
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781839217715_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, 
file extensions, pathnames, dummy URLs, user input, and Twitter handles. For example, 
"The compute_factors() method creates a MeanReversion factor instance and creates 
long, short, and ranking pipeline columns."

A block of code is set as follows:

from pykalman import KalmanFilter

kf = KalmanFilter(transition_matrices = [1],

                  observation_matrices = [1],

                  initial_state_mean = 0,

                  initial_state_covariance = 1,

                  observation_covariance=1,

                  transition_covariance=.01)

Bold: Indicates a new term, an important word, or words that you see on the screen, for 
example, in menus or dialog boxes, also appear in the text like this. For example, "The 
Python Algorithmic Trading Library (PyAlgoTrade) focuses on backtesting and offers 
support for paper trading and live trading."

https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781839217715_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781839217715_ColorImages.pdf
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Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book's title in the 
subject of your message. If you have questions about any aspect of this book, please email 
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you have found a mistake in this book we would be grateful if you would 
report this to us. Please visit, http://www.packtpub.com/submit-errata, selecting your 
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we 
would be grateful if you would provide us with the location address or website name. 
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise 
in and you are interested in either writing or contributing to a book, please visit http://
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on 
the site that you purchased it from? Potential readers can then see and use your unbiased 
opinion to make purchase decisions, we at Packt can understand what you think about our 
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

Informational notes appear like this.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com
http://authors.packtpub.com
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1
Machine Learning for Trading – 

From Idea to Execution

Algorithmic trading relies on computer programs that execute algorithms to automate 
some or all elements of a trading strategy. Algorithms are a sequence of steps or rules 
designed to achieve a goal. They can take many forms and facilitate optimization 
throughout the investment process, from idea generation to asset allocation, trade 
execution, and risk management.

Machine learning (ML) involves algorithms that learn rules or patterns from data to 
achieve a goal such as minimizing a prediction error. The examples in this book will 
illustrate how ML algorithms can extract information from data to support or automate 
key investment activities. These activities include observing the market and analyzing data 
to form expectations about the future and decide on placing buy or sell orders, as well as 
managing the resulting portfolio to produce attractive returns relative to the risk.

Ultimately, the goal of active investment management is to generate alpha, defined as 
portfolio returns in excess of the benchmark used for evaluation. The fundamental law of 
active management postulates that the key to generating alpha is having accurate return 
forecasts combined with the ability to act on these forecasts (Grinold 1989; Grinold and 
Kahn 2000).

This law defines the information ratio (IR) to express the value of active management as 
the ratio of the return difference between the portfolio and a benchmark to the volatility of 
those returns. It further approximates the IR as the product of the following:

• The information coefficient (IC), which measures the quality of forecasts as their 
rank correlation with outcomes

• The square root of the breadth of a strategy expressed as the number 
of independent bets on these forecasts
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The competition of sophisticated investors in financial markets implies that making precise 
predictions to generate alpha requires superior information, either through access to better 
data, a superior ability to process it, or both. 

This is where ML comes in: applications of ML for trading (ML4T) typically aim to make 
more efficient use of a rapidly diversifying range of data to produce both better and more 
actionable forecasts, thus improving the quality of investment decisions and results.

Historically, algorithmic trading used to be more narrowly defined as the automation 
of trade execution to minimize the costs offered by the sell-side. This book takes a more 
comprehensive perspective since the use of algorithms in general and ML in particular has 
come to impact a broader range of activities, from generating ideas and extracting signals 
from data to asset allocation, position-sizing, and testing and evaluating strategies.

This chapter looks at industry trends that have led to the emergence of ML as a source of 
competitive advantage in the investment industry. We will also look at where ML fits into 
the investment process to enable algorithmic trading strategies. More specifically, we will 
be covering the following topics:

• Key trends behind the rise of ML in the investment industry

• The design and execution of a trading strategy that leverages ML

• Popular use cases for ML in trading

The rise of ML in the investment industry
The investment industry has evolved dramatically over the last several decades and 
continues to do so amid increased competition, technological advances, and a challenging 
economic environment. This section reviews key trends that have shaped the overall 
investment environment and the context for algorithmic trading and the use of  
ML more specifically.

The trends that have propelled algorithmic trading and ML to their current 
prominence include:

• Changes in the market microstructure, such as the spread of electronic trading and 
the integration of markets across asset classes and geographies

• The development of investment strategies framed in terms of risk-factor exposure, 
as opposed to asset classes

• The revolutions in computing power, data generation and management, and 
statistical methods, including breakthroughs in deep learning

You can find links to additional resources and references in the 
README file for this chapter in the GitHub repository (https://
github.com/PacktPublishing/Machine-Learning-for-
Algorithmic-Trading-Second-Edition).
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• The outperformance of the pioneers in algorithmic trading relative to human, 
discretionary investors

In addition, the financial crises of 2001 and 2008 have affected how investors approach 
diversification and risk management. One outcome is the rise in low-cost passive 
investment vehicles in the form of exchange-traded funds (ETFs). 

Amid low yields and low volatility following the 2008 crisis, which triggered large-scale 
asset purchases by leading central banks, cost-conscious investors shifted over $3.5 trillion 
from actively managed mutual funds into passively managed ETFs.

Competitive pressure is also reflected in lower hedge fund fees, which dropped from the 
traditional 2 percent annual management fee and 20 percent take of profits to an average 
of 1.48 percent and 17.4 percent, respectively, in 2017.

From electronic to high-frequency trading
Electronic trading has advanced dramatically in terms of capabilities, volume, coverage of 
asset classes, and geographies since networks started routing prices to computer terminals 
in the 1960s. Equity markets have been at the forefront of this trend worldwide. See 
Harris (2003) and Strumeyer (2017) for comprehensive coverage of relevant changes in 
financial markets; we will return to this topic when we cover how to work with market and 
fundamental data in the next chapter.

The 1997 order-handling rules by the SEC introduced competition to exchanges through 
electronic communication networks (ECNs). ECNs are automated alternative trading 
systems (ATS) that match buy-and-sell orders at specified prices, primarily for equities 
and currencies, and are registered as broker-dealers. It allows significant brokerages and 
individual traders in different geographic locations to trade directly without intermediaries, 
both on exchanges and after hours.

Dark pools are another type of private ATS that allows institutional investors to trade large 
orders without publicly revealing their information, contrary to how exchanges managed 
their order books prior to competition from ECNs. Dark pools do not publish pre-trade 
bids and offers, and trade prices only become public some time after execution. They have 
grown substantially since the mid-2000s to account for 40 percent of equities traded in the 
US due to concerns about adverse price movements of large orders and order front-running 
by high-frequency traders. They are often housed within large banks and are subject to 
SEC regulation.

With the rise of electronic trading, algorithms for cost-effective execution developed 
rapidly and adoption spread quickly from the sell-side to the buy-side and across asset 
classes. Automated trading emerged around 2000 as a sell-side tool aimed at cost-effective 
execution that broke down orders into smaller, sequenced chunks to limit their market 
impact. These tools spread to the buy side and became increasingly sophisticated by taking 
into account, for example, transaction costs and liquidity, as well as short-term price and 
volume forecasts.
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Direct market access (DMA) gives a trader greater control over execution by allowing them 
to send orders directly to the exchange using the infrastructure and market participant 
identification of a broker who is a member of an exchange. Sponsored access removes pre-
trade risk controls by the brokers and forms the basis for high-frequency trading (HFT).

HFT refers to automated trades in financial instruments that are executed with extremely 
low latency in the microsecond range and where participants hold positions for very short 
periods. The goal is to detect and exploit inefficiencies in the market microstructure, the 
institutional infrastructure of trading venues. 

HFT has grown substantially over the past 10 years and is estimated to make up roughly 
55 percent of trading volume in US equity markets and about 40 percent in European 
equity markets. HFT has also grown in futures markets to roughly 80 percent of foreign-
exchange futures volumes and two-thirds of both interest rate and Treasury 10-year futures 
volumes (Miller 2016).

HFT strategies aim to earn small profits per trade using passive or aggressive strategies. 
Passive strategies include arbitrage trading to profit from very small price differentials for 
the same asset, or its derivatives, traded on different venues. Aggressive strategies include 
order anticipation or momentum ignition. Order anticipation, also known as liquidity 
detection, involves algorithms that submit small exploratory orders to detect hidden 
liquidity from large institutional investors and trade ahead of a large order to benefit from 
subsequent price movements. Momentum ignition implies an algorithm executing and 
canceling a series of orders to spoof other HFT algorithms into buying (or selling) more 
aggressively and benefit from the resulting price changes.

Regulators have expressed concern over the potential link between certain aggressive HFT 
strategies and increased market fragility and volatility, such as that experienced during 
the May 2010 Flash Crash, the October 2014 Treasury market volatility, and the sudden 
crash by over 1,000 points of the Dow Jones Industrial Average on August 24, 2015. At the 
same time, market liquidity has increased with trading volumes due to the presence of 
HFT, which has lowered overall transaction costs.

The combination of reduced trading volumes amid lower volatility and rising costs of 
technology and access to both data and trading venues has led to financial pressure. 
Aggregate HFT revenues from US stocks were estimated to have dropped beneath $1 
billion in 2017 for the first time since 2008, down from $7.9 billion in 2009. This trend has 
led to industry consolidation, with various acquisitions by, for example, the largest listed 
proprietary trading firm, Virtu Financial, and shared infrastructure investments, such as the 
new Go West ultra-low latency route between Chicago and Tokyo. Simultaneously, start-
ups such as Alpha Trading Labs are making HFT trading infrastructure and data available 
to democratize HFT by crowdsourcing algorithms in return for a share of the profits.
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Factor investing and smart beta funds
The return provided by an asset is a function of the uncertainty or risk associated with 
the investment. An equity investment implies, for example, assuming a company's 
business risk, and a bond investment entails default risk. To the extent that specific risk 
characteristics predict returns, identifying and forecasting the behavior of these risk 
factors becomes a primary focus when designing an investment strategy. It yields valuable 
trading signals and is the key to superior active-management results. The industry's 
understanding of risk factors has evolved very substantially over time and has impacted 
how ML is used for trading. Chapter 4, Financial Feature Engineering – How to Research 
Alpha Factors, and Chapter 5, Portfolio Optimization and Performance Evaluation, will dive 
deeper into the practical applications of the concepts outlined here; see Ang (2014) for 
comprehensive coverage.

Modern portfolio theory (MPT) introduced the distinction between idiosyncratic and 
systematic sources of risk for a given asset. Idiosyncratic risk can be eliminated through 
diversification, but systematic risk cannot. In the early 1960s, the capital asset pricing 
model (CAPM) identified a single factor driving all asset returns: the return on the market 
portfolio in excess of T-bills. The market portfolio consisted of all tradable securities, 
weighted by their market value. The systematic exposure of an asset to the market is 
measured by beta, which is the correlation between the returns of the asset and the 
market portfolio.

The recognition that the risk of an asset does not depend on the asset in isolation, but rather 
how it moves relative to other assets and the market as a whole, was a major conceptual 
breakthrough. In other words, assets earn a risk premium based on their exposure to 
underlying, common risks experienced by all assets, not due to their specific, idiosyncratic 
characteristics.

Subsequently, academic research and industry experience have raised numerous critical 
questions regarding the CAPM prediction that an asset's risk premium depends only on 
its exposure to a single factor measured by the asset's beta. Instead, numerous additional 
risk factors have since been discovered. A factor is a quantifiable signal, attribute, or any 
variable that has historically correlated with future stock returns and is expected to remain 
correlated in the future.

These risk factors were labeled anomalies since they contradicted the efficient market 
hypothesis (EMH). The EMH maintains that market equilibrium would always price 
securities according to the CAPM so that no other factors should have predictive power 
(Malkiel 2003). The economic theory behind factors can be either rational, where factor risk 
premiums compensate for low returns during bad times, or behavioral, where agents fail to 
arbitrage away excess returns.
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Well-known anomalies include the value, size, and momentum effects that help predict 
returns while controlling for the CAPM market factor. The size effect rests on small firms 
systematically outperforming large firms (Banz 1981; Reinganum 1981). The value effect 
(Basu et. al. 1981) states that firms with low valuation metrics outperform their counterparts 
with the opposite characteristics. It suggests that firms with low price multiples, such as 
the price-to-earnings or the price-to-book ratios, perform better than their more expensive 
peers (as suggested by the inventors of value investing, Benjamin Graham and David 
Dodd, and popularized by Warren Buffet).

The momentum effect, discovered in the late 1980s by, among others, Clifford Asness, 
the founding partner of AQR, states that stocks with good momentum, in terms of recent 
6-12 month returns, have higher returns going forward than poor momentum stocks 
with similar market risk. Researchers also found that value and momentum factors 
explain returns for stocks outside the US, as well as for other asset classes, such as bonds, 
currencies, and commodities, and additional risk factors (Jegadeesh and Titman 1993; 
Asness, Moskowitz, and Pedersen 2013).

In fixed income, the value strategy is called riding the yield curve and is a form of the 
duration premium. In commodities, it is called the roll return, with a positive return for an 
upward-sloping futures curve and a negative return otherwise. In foreign exchange, the 
value strategy is called carry.

There is also an illiquidity premium. Securities that are more illiquid trade at low prices 
and have high average excess returns, relative to their more liquid counterparts. Bonds 
with a higher default risk tend to have higher returns on average, reflecting a credit risk 
premium. Since investors are willing to pay for insurance against high volatility when 
returns tend to crash, sellers of volatility protection in options markets tend to earn 
high returns.

Multifactor models define risks in broader and more diverse terms than just the market 
portfolio. In 1976, Stephen Ross proposed the arbitrage pricing theory, which asserted that 
investors are compensated for multiple systematic sources of risk that cannot be diversified 
away (Roll and Ross 1984). The three most important macro factors are growth, inflation, 
and volatility, in addition to productivity, demographic, and political risk. In 1993, Eugene 
Fama and Kenneth French combined the equity risk factors' size and value with a market 
factor into a single three-factor model that better explained cross-sectional stock returns. 
They later added a model that also included bond risk factors to simultaneously explain 
returns for both asset classes (Fama and French 1993; 2015).

A particularly attractive aspect of risk factors is their low or negative correlation. Value 
and momentum risk factors, for instance, are negatively correlated, reducing the risk and 
increasing risk-adjusted returns above and beyond the benefit implied by the risk factors. 
Furthermore, using leverage and long-short strategies, factor strategies can be combined 
into market-neutral approaches. The combination of long positions in securities exposed 
to positive risks with underweight or short positions in the securities exposed to negative 
risks allows for the collection of dynamic risk premiums.
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As a result, the factors that explained returns above and beyond the CAPM were 
incorporated into investment styles that tilt portfolios in favor of one or more factors, and 
assets began to migrate into factor-based portfolios. The 2008 financial crisis underlined 
how asset-class labels could be highly misleading and create a false sense of diversification 
when investors do not look at the underlying factor risks, as asset classes came crashing 
down together.

Over the past several decades, quantitative factor investing has evolved from a simple 
approach based on two or three styles to multifactor smart or exotic beta products. Smart 
beta funds have crossed $1 trillion AUM in 2017, testifying to the popularity of the hybrid 
investment strategy that combines active and passive management. Smart beta funds take 
a passive strategy but modify it according to one or more factors, such as cheaper stocks or 
screening them according to dividend payouts, to generate better returns. This growth has 
coincided with increasing criticism of the high fees charged by traditional active managers 
as well as heightened scrutiny of their performance.

The ongoing discovery and successful forecasting of risk factors that, either individually 
or in combination with other risk factors, significantly impact future asset returns across 
asset classes is a key driver of the surge in ML in the investment industry and will be a key 
theme throughout this book.

Algorithmic pioneers outperform humans
The track record and growth of assets under management (AUM) of firms that 
spearheaded algorithmic trading has played a key role in generating investor interest and 
subsequent industry efforts to replicate their success. Systematic funds differ from HFT in 
that trades may be held significantly longer while seeking to exploit arbitrage opportunities 
as opposed to advantages from sheer speed.

Systematic strategies that mostly or exclusively rely on algorithmic decision-making were 
most famously introduced by mathematician James Simons, who founded Renaissance 
Technologies in 1982 and built it into the premier quant firm. Its secretive Medallion Fund, 
which is closed to outsiders, has earned an estimated annualized return of 35 percent 
since 1982.

D. E. Shaw, Citadel, and Two Sigma, three of the most prominent quantitative hedge 
funds that use systematic strategies based on algorithms, rose to the all-time top-20 
performers for the first time in 2017, in terms of total dollars earned for investors, after fees, 
and since inception.

D. E. Shaw, founded in 1988 and with $50 billion in AUM in 2019, joined the list at number 
3. Citadel, started in 1990 by Kenneth Griffin, manages $32 billion, and ranked 5. Two 
Sigma, started only in 2001 by D. E. Shaw alumni John Overdeck and David Siegel, has 
grown from $8 billion in AUM in 2011 to $60 billion in 2019. Bridgewater, started by Ray 
Dalio in 1975, had over $160 billion in AUM in 2019 and continues to lead due to its Pure 
Alpha fund, which also incorporates systematic strategies.
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Similarly, on the Institutional Investors 2018 Hedge Fund 100 list, the four largest 
firms, and five of the top six firms, rely largely or completely on computers and trading 
algorithms to make investment decisions—and all of them have been growing their assets 
in an otherwise challenging environment. Several quantitatively focused firms climbed the 
ranks and, in some cases, grew their assets by double-digit percentages. Number 2-ranked 
Applied Quantitative Research (AQR) grew its hedge fund assets by 48 percent in 2017 
and by 29 percent in 2018 to nearly $90 billion.

ML-driven funds attract $1 trillion in AUM

The familiar three revolutions in computing power, data availability, and statistical 
methods have made the adoption of systematic, data-driven strategies not only more 
compelling and cost-effective but a key source of competitive advantage.

As a result, algorithmic approaches are not only finding wider application in the hedge-
fund industry that pioneered these strategies but across a broader range of asset managers 
and even passively managed vehicles such as ETFs. In particular, predictive analytics 
using ML and algorithmic automation play an increasingly prominent role in all steps of 
the investment process across asset classes, from idea generation and research to strategy 
formulation and portfolio construction, trade execution, and risk management.

Estimates of industry size vary because there is no objective definition of a quantitative 
or algorithmic fund. Many traditional hedge funds or even mutual funds and ETFs 
are introducing computer-driven strategies or integrating them into a discretionary 
environment in a human-plus-machine approach.

According to the Economist, in 2016, systematic funds became the largest driver of 
institutional trading in the US stock market (ignoring HFT, which mainly acts as a 
middleman). In 2019, they accounted for over 35 percent of institutional volume, up from 
just 18 percent in 2010; just 10% of trading is still due to traditional equity funds. Measured 
by the Russell 3000 index, the value of US stocks is around $31 trillion. The three types of 
computer-managed funds—index funds, ETFs, and quant funds—run around 35 percent, 
whereas human managers at traditional hedge funds and other mutual funds manage just 
24 percent.

The market research firm Preqin estimates that almost 1,500 hedge funds make a majority 
of their trades with help from computer models. Quantitative hedge funds are now 
responsible for 27 percent of all US stock trades by investors, up from 14 percent in 2013. 
But many use data scientists—or quants—who, in turn, use machines to build large 
statistical models.

In recent years, however, funds have moved toward true ML, where artificially intelligent 
systems can analyze large amounts of data at speed and improve themselves through such 
analyses. Recent examples include Rebellion Research, Sentient, and Aidyia, which rely on 
evolutionary algorithms and deep learning to devise fully automatic artificial intelligence 
(AI)-driven investment platforms.
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From the core hedge fund industry, the adoption of algorithmic strategies has spread to 
mutual funds and even passively managed EFTs in the form of smart beta funds, and to 
discretionary funds in the form of quantamental approaches.

The emergence of quantamental funds

Two distinct approaches have evolved in active investment management: systematic 
(or quant) and discretionary investing. Systematic approaches rely on algorithms for a 
repeatable and data-driven approach to identify investment opportunities across many 
securities. In contrast, a discretionary approach involves an in-depth analysis of the 
fundamentals of a smaller number of securities. These two approaches are becoming more 
similar as fundamental managers take more data science-driven approaches.

Even fundamental traders now arm themselves with quantitative techniques, accounting 
for $55 billion of systematic assets, according to Barclays. Agnostic to specific companies, 
quantitative funds trade based on patterns and dynamics across a wide swath of securities. 
Such quants accounted for about 17 percent of total hedge fund assets, as data compiled by 
Barclays in 2018 showed.

Point72, with $14 billion in assets, has been shifting about half of its portfolio managers to 
a human-plus-machine approach. Point72 is also investing tens of millions of dollars into a 
group that analyzes large amounts of alternative data and passes the results on to traders.

Investments in strategic capabilities

Three trends have boosted the use of data in algorithmic trading strategies and may further 
shift the investment industry from discretionary to quantitative styles:

• The exponential increase in the availability of digital data

• The increase in computing power and data storage capacity at a lower cost

• The advances in statistical methods for analyzing complex datasets

Rising investments in related capabilities—technology, data, and, most importantly, 
skilled humans—highlight how significant algorithmic trading using ML has become 
for competitive advantage, especially in light of the rising popularity of passive, indexed 
investment vehicles, such as ETFs, since the 2008 financial crisis.

Morgan Stanley noted that only 23 percent of its quant clients say they are not considering 
using or not already using ML, down from 44 percent in 2016. Guggenheim Partners built 
what it calls a supercomputing cluster for $1 million at the Lawrence Berkeley National 
Laboratory in California to help crunch numbers for Guggenheim's quant investment 
funds. Electricity for computers costs another $1 million per year.
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AQR is a quantitative investment group that relies on academic research to identify and 
systematically trade factors that have, over time, proven to beat the broader market. 
The firm used to eschew the purely computer-powered strategies of quant peers such as 
Renaissance Technologies or DE Shaw. More recently, however, AQR has begun to seek 
profitable patterns in markets using ML to parse through novel datasets, such as satellite 
pictures of shadows cast by oil wells and tankers.

The leading firm BlackRock, with over $5 trillion in AUM, also bets on algorithms to beat 
discretionary fund managers by heavily investing in SAE, a systematic trading firm it 
acquired during the financial crisis. Franklin Templeton bought Random Forest Capital, 
a debt-focused, data-led investment company, for an undisclosed amount, hoping that its 
technology can support the wider asset manager.

ML and alternative data
Hedge funds have long looked for alpha through informational advantage and the ability 
to uncover new uncorrelated signals. Historically, this included things such as proprietary 
surveys of shoppers, or of voters ahead of elections or referendums.

Occasionally, the use of company insiders, doctors, and expert networks to expand 
knowledge of industry trends or companies crosses legal lines: a series of prosecutions 
of traders, portfolio managers, and analysts for using insider information after 2010 has 
shaken the industry.

In contrast, the informational advantage from exploiting conventional and alternative data 
sources using ML is not related to expert and industry networks or access to corporate 
management, but rather the ability to collect large quantities of very diverse data sources 
and analyze them in real time.

Conventional data includes economic statistics, trading data, or corporate reports. 
Alternative data is much broader and includes sources such as satellite images, credit card 
sales, sentiment analysis, mobile geolocation data, and website scraping, as well as the 
conversion of data generated in the ordinary course of business into valuable intelligence. It 
includes, in principle, any data source containing (potential) trading signals.

For instance, data from an insurance company on the sales of new car insurance policies 
captures not only the volumes of new car sales but can be broken down into brands 
or geographies. Many vendors scrape websites for valuable data, ranging from app 
downloads and user reviews to airline and hotel bookings. Social media sites can also be 
scraped for hints on consumer views and trends.

Typically, the datasets are large and require storage, access, and analysis using scalable 
data solutions for parallel processing, such as Hadoop and Spark. There are more than 1 
billion websites with more than 10 trillion individual web pages, with 500 exabytes (or 500 
billion gigabytes) of data, according to Deutsche Bank. And more than 100 million websites 
are added to the internet every year.
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Real-time insights into a company's prospects, long before their results are released, can be 
gleaned from a decline in job listings on its website, the internal rating of its chief executive 
by employees on the recruitment site Glassdoor, or a dip in the average price of clothes 
on its website. Such information can be combined with satellite images of car parks and 
geolocation data from mobile phones that indicate how many people are visiting stores. 
On the other hand, strategic moves can be learned from a jump in job postings for specific 
functional areas or in certain geographies.

Among the most valuable sources is data that directly reveals consumer expenditures, with 
credit card information as a primary source. This data offers only a partial view of sales 
trends, but it can offer vital insights when combined with other data. Point72, for instance, 
at some point analyzed 80 million credit card transactions every day. We will explore the 
various sources, their use cases, and how to evaluate them in detail in Chapter 3, Alternative 
Data for Finance – Categories and Use Cases.

Investment groups have more than doubled their spending on alternative sets and data 
scientists in the past two years, as the asset management industry has tried to reinvigorate 
its fading fortunes. In December 2018, there were 375 alternative data providers listed on 
alternativedata.org (sponsored by provider Yipit).

Asset managers spent a total of $373 million on datasets and hiring new employees to parse 
them in 2017, up 60 percent from 2016, and will probably spend a total of $616 million this 
year, according to a survey of investors by alternativedata.org. It forecast that overall 
expenditures will climb to over $1 billion by 2020. Some estimates are even higher: Optimus, 
a consultancy, estimates that investors are spending about $5 billion per year on alternative 
data, and expects the industry to grow 30 percent per year over the coming years.

As competition for valuable data sources intensifies, exclusivity arrangements are a key 
feature of data-source contracts, to maintain an informational advantage. At the same time, 
privacy concerns are mounting, and regulators have begun to start looking at the currently 
largely unregulated data-provider industry.

Crowdsourcing trading algorithms
More recently, several algorithmic trading firms have begun to offer investment platforms 
that provide access to data and a programming environment to crowdsource risk factors 
that become part of an investment strategy or entire trading algorithms. Key examples 
include WorldQuant, Quantopian, and, most recently, Alpha Trading Labs (launched 
in 2018).

http://alternativedata.org
http://alternativedata.org.
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WorldQuant was spun out of Millennium Management (AUM: $41 billion) in 2007, for 
whom it manages around $5 billion. It employs hundreds of scientists and many more 
part-time workers around the world in its alpha factory, which organizes the investment 
process as a quantitative assembly line. This factory claims to have produced 4 million 
successfully tested alpha factors for inclusion in more complex trading strategies and is 
aiming for 100 million. Each alpha factor is an algorithm that seeks to predict a future asset 
price change. Other teams then combine alpha factors into strategies and strategies into 
portfolios, allocate funds between portfolios, and manage risk while avoiding strategies 
that cannibalize each other. See the Appendix, Alpha Factor Library, for dozens of examples of 
quantitative factors used at WorldQuant.

Designing and executing an ML-driven strategy
In this book, we demonstrate how ML fits into the overall process of designing, executing, 
and evaluating a trading strategy. To this end, we'll assume that an ML-based strategy is 
driven by data sources that contain predictive signals for the target universe and strategy, 
which, after suitable preprocessing and feature engineering, permit an ML model to predict 
asset returns or other strategy inputs. The model predictions, in turn, translate into buy or 
sell orders based on human discretion or automated rules, which in turn may be manually 
encoded or learned by another ML algorithm in an end-to-end approach.

Figure 1.1 depicts the key steps in this workflow, which also shapes the organization of 
this book:

Figure 1.1: The ML4T workflow
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Part 1 introduces important skills and techniques that apply across different strategies and 
ML use cases. These include the following:

• How to source and manage important data sources

• How to engineer informative features or alpha factors that extract signal content

• How to manage a portfolio and track strategy performance

Moreover, Chapter 8, The ML4T Workflow – From Model to Strategy Backtesting, in Part 2, 
covers strategy backtesting. We will briefly outline each of these areas before turning to 
relevant ML use cases, which make up the bulk of the book in Parts 2, 3, and 4.

Sourcing and managing data
The dramatic evolution of data availability in terms of volume, variety, and velocity is a 
key complement to the application of ML to trading, which in turn has boosted industry 
spending on the acquisition of new data sources. However, the proliferating supply of data 
requires careful selection and management to uncover the potential value, including the 
following steps:

1. Identify and evaluate market, fundamental, and alternative data sources containing 
alpha signals that do not decay too quickly.

2. Deploy or access a cloud-based scalable data infrastructure and analytical tools like 
Hadoop or Spark to facilitate fast, flexible data access.

3. Carefully manage and curate data to avoid look-ahead bias by adjusting it to the 
desired frequency on a point-in-time basis. This means that data should reflect 
only information available and known at the given time. ML algorithms trained on 
distorted historical data will almost certainly fail during live trading.

We will cover these aspects in practical detail in Chapter 2, Market and Fundamental Data – 
Sources and Techniques, and Chapter 3, Alternative Data for Finance – Categories and Use Cases.

From alpha factor research to portfolio management
Alpha factors are designed to extract signals from data to predict returns for a given 
investment universe over the trading horizon. A typical factor takes on a single value for 
each asset when evaluated at a given point in time, but it may combine one or several input 
variables or time periods. If you are already familiar with the ML workflow (see Chapter 

6, The Machine Learning Process), you may view alpha factors as domain-specific features 
designed for a specific strategy. Working with alpha factors entails a research phase and an 
execution phase as outlined in Figure 1.2:



Machine Learning for Trading – From Idea to Execution

[ 14 ]

Figure 1.2: The alpha factor research process

The research phase

The research phase includes the design and evaluation of alpha factors. A predictive factor 
captures some aspect of a systematic relationship between a data source and an important 
strategy input like asset returns. Optimizing the predictive power requires creative feature 
engineering in the form of effective data transformations.

False discoveries due to data mining are a key risk that requires careful management. One 
way of reducing the risk is to focus the search process by following the guidance of decades 
of academic research that has produced several Nobel prizes. Many investors still prefer 
factors that align with theories about financial markets and investor behavior. Laying out 
these theories is beyond the scope of this book, but the references highlight avenues to dive 
deeper into this important framing aspect.

Validating the signal content of an alpha factor requires a robust estimate of its predictive 
power in a representative context. There are numerous methodological and practical 
pitfalls that undermine a reliable estimate. In addition to data mining and the failure to 
correct for multiple testing bias, these pitfalls include the use of data contaminated by 
survivorship or look-ahead bias, not reflecting realistic Principal, Interest and Taxes 
(PIT) information. Chapter 4, Financial Feature Engineering – How to Research Alpha Factors, 
discusses how to successfully manage this process.

The execution phase

During the execution phase, alpha factors emit signals that lead to buy or sell orders. The 
resulting portfolio holdings, in turn, have specific risk profiles that interact and contribute 
to the aggregate portfolio risk. Portfolio management involves optimizing position sizes 
to achieve a balance of return and risk of the portfolio that aligns with the investment 
objectives.

Chapter 5, Portfolio Optimization and Performance Evaluation, introduces key techniques and 
tools applicable to this phase of the trading strategy workflow, from portfolio optimization 
to performance measurement.
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Strategy backtesting
Incorporating an investment idea into a real-life algorithmic strategy implies a significant 
risk that requires a scientific approach. Such an approach involves extensive empirical tests 
with the goal of rejecting the idea based on its performance in alternative out-of-sample 
market scenarios. Testing may involve simulated data to capture scenarios deemed possible 
but not reflected in historic data.

To obtain unbiased performance estimates for a candidate strategy, we need a backtesting 
engine that simulates its execution in a realistic manner. In addition to the potential 
biases introduced by the data or a flawed use of statistics, the backtesting engine needs to 
accurately represent the practical aspects of trade-signal evaluation, order placement, and 
execution in line with market conditions.

Chapter 8, The ML4T Workflow – From Model to Strategy Backtesting, shows how to use 
backtrader and Zipline and navigate the multiple methodological challenges and completes 
the introduction to the end-to-end ML4T workflow.

ML for trading – strategies and use cases
In practice, we apply ML to trading in the context of a specific strategy to meet a certain 
business goal. In this section, we briefly describe how trading strategies have evolved and 
diversified, and outline real-world examples of ML applications, highlighting how they 
relate to the content covered in this book.

The evolution of algorithmic strategies
Quantitative strategies have evolved and become more sophisticated in three waves:

1. In the 1980s and 1990s, signals often emerged from academic research and used a 
single or very few inputs derived from market and fundamental data. AQR, one of 
the largest quantitative hedge funds today, was founded in 1998 to implement such 
strategies at scale. These signals are now largely commoditized and available as 
ETF, such as basic mean-reversion strategies.

2. In the 2000s, factor-based investing proliferated based on the pioneering work 
by Eugene Fama and Kenneth French and others. Funds used algorithms to 
identify assets exposed to risk factors like value or momentum to seek arbitrage 
opportunities. Redemptions during the early days of the financial crisis triggered 
the quant quake of August 2007, which cascaded through the factor-based fund 
industry. These strategies are now also available as long-only smart beta funds that 
tilt portfolios according to a given set of risk factors.
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3. The third era is driven by investments in ML capabilities and alternative data to 
generate profitable signals for repeatable trading strategies. Factor decay is a major 
challenge: the excess returns from new anomalies have been shown to drop by a 
quarter from discovery to publication, and by over 50 percent after publication due 
to competition and crowding.

Today, traders pursue a range of different objectives when using algorithms to execute rules:

• Trade execution algorithms that aim to achieve favorable pricing

• Short-term trades that aim to profit from small price movements, for example, due 
to arbitrage

• Behavioral strategies that aim to anticipate the behavior of other market 
participants

• Trading strategies based on absolute and relative price and return predictions

Trade-execution programs aim to limit the market impact of trades and range from the 
simple slicing of trades to match time-weighted or volume-weighted average pricing. 
Simple algorithms leverage historical patterns, whereas more sophisticated versions take 
into account transaction costs, implementation shortfall, or predicted price movements.

HFT funds most prominently rely on very short holding periods to benefit from minor 
price movements based on bid-ask or statistical arbitrage. Behavioral algorithms usually 
operate in lower-liquidity environments and aim to anticipate moves by a larger player 
with significant price impact, based, for example, on sniffing algorithms that generate 
insights into other market participants' strategies.

In this book, we will focus on strategies that trade based on expectations of relative price 
changes over various time horizons beyond the very short term, dominated by latency 
advantages, because they are both widely used and very suitable for the application of ML.

Use cases of ML for trading
ML is capable of extracting tradable signals from a wide range of market, fundamental, and 
alternative data and is thus applicable to strategies targeting a range of asset classes and 
investment horizons. More generally, however, it is a flexible tool to support or automate 
decisions with quantifiable goals and digital data relevant to achieving these goals. 
Therefore, it can be applied at several steps of the trading process. There are numerous use 
cases in different categories, including:

• Data mining to identify patterns, extract features, and generate insights

• Supervised learning to generate risk factors or alphas and create trade ideas

• The aggregation of individual signals into a strategy

• The allocation of assets according to risk profiles learned by an algorithm
• The testing and evaluation of strategies, including through the use of synthetic data

• The interactive, automated refinement of a strategy using reinforcement learning
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We briefly highlight some of these applications and identify where we will demonstrate 
their use in later chapters.

Data mining for feature extraction and insights

The cost-effective evaluation of large, complex datasets requires the detection of signals at 
scale. There are several examples throughout the book:

• Information theory helps estimate a signal content of candidate features and is 
thus useful for extracting the most valuable inputs for an ML model. In Chapter 

4, Financial Feature Engineering – How to Research Alpha Factors, we use mutual 
information to compare the potential values of individual features for a supervised 
learning algorithm to predict asset returns. Chapter 18 in De Prado (2018) estimates 
the information content of a price series as a basis for deciding between alternative 
trading strategies.

• Unsupervised learning provides a broad range of methods to identify structure in 
data to gain insights or help solve a downstream task. We provide several examples:

• In Chapter 13, Data-Driven Risk Factors and Asset Allocation with Unsupervised 
Learning, we introduce clustering and dimensionality reduction to generate 
features from high-dimensional datasets.

• In Chapter 15, Topic Modeling – Summarizing Financial News, we apply 
Bayesian probability models to summarize financial text data.

• In Chapter 20, Autoencoders for Conditional Risk Factors and Asset Pricing, 
we use deep learning to extract nonlinear risk factors conditioned on asset 
characteristics and predict stock returns based on Kelly et al. (2020).

• Model transparency emphasizes model-specific ways to gain insights into the 
predictive power of individual variables and introduce a novel game-theoretic 
approach called SHapley Additive exPlanations (SHAP). We apply it to gradient 
boosting machines with a large number of input variables in Chapter 12, Boosting 
Your Trading Strategy, and the Appendix, Alpha Factor Library.

Supervised learning for alpha factor creation

The most familiar rationale for applying ML to trading is to obtain predictions of asset 
fundamentals, price movements, or market conditions. A strategy can leverage multiple 
ML algorithms that build on each other:

• Downstream models can generate signals at the portfolio level by integrating 
predictions about the prospects of individual assets, capital market expectations, 
and the correlation among securities.

• Alternatively, ML predictions can inform discretionary trades as in the 
quantamental approach outlined previously.
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ML predictions can also target specific risk factors, such as value or volatility, or 
implement technical approaches, such as trend-following or mean reversion:

• In Chapter 3, Alternative Data for Finance – Categories and Use Cases, we illustrate how 
to work with fundamental data to create inputs to ML-driven valuation models.

• In Chapter 14, Text Data for Trading – Sentiment Analysis, Chapter 15, Topic Modeling 
– Summarizing Financial News, and Chapter 16, Word Embeddings for Earnings Calls 
and SEC Filings, we use alternative data on business reviews that can be used to 
project revenues for a company as an input for a valuation exercise.

• In Chapter 9, Time-Series Models for Volatility Forecasts and Statistical Arbitrage, we 
demonstrate how to forecast macro variables as inputs to market expectations and 
how to forecast risk factors such as volatility.

• In Chapter 19, RNNs for Multivariate Time Series and Sentiment Analysis, we introduce 
recurrent neural networks that achieve superior performance with nonlinear time 
series data.

Asset allocation

ML has been used to allocate portfolios based on decision-tree models that compute a 
hierarchical form of risk parity. As a result, risk characteristics are driven by patterns in 
asset prices rather than by asset classes and achieve superior risk-return characteristics.

In Chapter 5, Portfolio Optimization and Performance Evaluation, and Chapter 13, Data-Driven 
Risk Factors and Asset Allocation with Unsupervised Learning, we illustrate how hierarchical 
clustering extracts data-driven risk classes that better reflect correlation patterns than 
conventional asset class definition (see Chapter 16 in De Prado 2018).

Testing trade ideas

Backtesting is a critical step to select successful algorithmic trading strategies. Cross-
validation using synthetic data is a key ML technique to generate reliable out-of-sample 
results when combined with appropriate methods to correct for multiple testing. The time-
series nature of financial data requires modifications to the standard approach to avoid 
look-ahead bias or otherwise contaminating the data used for training, validation, and 
testing. In addition, the limited availability of historical data has given rise to alternative 
approaches that use synthetic data.

We will demonstrate various methods to test ML models using market, fundamental, and 
alternative data sources that obtain sound estimates of out-of-sample errors.

In Chapter 21, Generative Adversarial Networks for Synthetic Time-Series Data, we present 
generative adversarial networks (GANs), which are capable of producing high-quality 
synthetic data.
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Reinforcement learning

Trading takes place in a competitive, interactive marketplace. Reinforcement learning aims 
to train agents to learn a policy function based on rewards; it is often considered as one of 
the most promising areas in financial ML. See, for example, Hendricks and Wilcox (2014) 
and Nevmyvaka, Feng, and Kearns (2006) for applications to trade execution.

In Chapter 22, Deep Reinforcement Learning – Building a Trading Agent, we present key 
reinforcement algorithms like Q-learning to demonstrate the training of reinforcement 
learning algorithms for trading using OpenAI's Gym environment.

Summary
In this chapter, we reviewed key industry trends around algorithmic trading strategies, 
the emergence of alternative data, and the use of ML to exploit these new sources of 
informational advantage. Furthermore, we introduced key elements of the ML4T workflow 
and outlined important use cases of ML for trading in the context of different strategies.

In the next two chapters, we will take a closer look at the oil that fuels any algorithmic 
trading strategy—the market, fundamental, and alternative data sources—using ML.
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2
Market and Fundamental Data – 

Sources and Techniques

Data has always been an essential driver of trading, and traders have long made efforts to 
gain an advantage from access to superior information. These efforts date back at least to 
the rumors that the House of Rothschild benefited handsomely from bond purchases upon 
advance news about the British victory at Waterloo, which was carried by pigeons across 
the channel.

Today, investments in faster data access take the shape of the Go West consortium 
of leading high-frequency trading (HFT) firms that connects the Chicago Mercantile 
Exchange (CME) with Tokyo. The round-trip latency between the CME and the BATS 
(Better Alternative Trading System) exchanges in New York has dropped to close to the 
theoretical limit of eight milliseconds as traders compete to exploit arbitrage opportunities. 
At the same time, regulators and exchanges have started to introduce speed bumps 
that slow down trading to limit the adverse effects on competition of uneven access to 
information.

Traditionally, investors mostly relied on publicly available market and fundamental data. 
Efforts to create or acquire private datasets, for example, through proprietary surveys, were 
limited. Conventional strategies focus on equity fundamentals and build financial models 
on reported financials, possibly combined with industry or macro data to project earnings 
per share and stock prices. Alternatively, they leverage technical analysis to extract signals 
from market data using indicators computed from price and volume information.

Machine learning (ML) algorithms promise to exploit market and fundamental data 
more efficiently than human-defined rules and heuristics, particularly when combined with 
alternative data, which is the topic of the next chapter. We will illustrate how to apply ML 
algorithms ranging from linear models to recurrent neural networks (RNNs) to market 
and fundamental data and generate tradeable signals.
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This chapter introduces market and fundamental data sources and explains how they 
reflect the environment in which they are created. The details of the trading environment 
matter not only for the proper interpretation of market data but also for the design and 
execution of your strategy and the implementation of realistic backtesting simulations. 

We also illustrate how to access and work with trading and financial statement data from 
various sources using Python.

In particular, this chapter will cover the following topics:

• How market data reflects the structure of the trading environment
• Working with trade and quote data at minute frequency

• Reconstructing an order book from tick data using Nasdaq ITCH

• Summarizing tick data using various types of bars

• Working with eXtensible Business Reporting Language (XBRL)-encoded 
electronic filings

• Parsing and combining market and fundamental data to create a price-to-earnings 
(P/E) series

• How to access various market and fundamental data sources using Python

Market data reflects its environment
Market data is the product of how traders place orders for a financial instrument directly 
or through intermediaries on one of the numerous marketplaces, how they are processed, 
and how prices are set by matching demand and supply. As a result, the data reflects 
the institutional environment of trading venues, including the rules and regulations that 
govern orders, trade execution, and price formation. See Harris (2003) for a global overview 
and Jones (2018) for details on the U.S. market.

Algorithmic traders use algorithms, including ML, to analyze the flow of buy and sell 
orders and the resulting volume and price statistics to extract trade signals that capture 
insights into, for example, demand-supply dynamics or the behavior of certain market 
participants.

We will first review institutional features that impact the simulation of a trading strategy 
during a backtest before we start working with actual tick data created by one such 
environment, namely Nasdaq.

You can find the code samples for this chapter and links to 
additional resources in the corresponding directory of the GitHub 
repository. The notebooks include color versions of the images.



Chapter 2

[ 23 ]

Market microstructure – the nuts and bolts
Market microstructure studies how the institutional environment affects the trading 
process and shapes outcomes like price discovery, bid-ask spreads and quotes, intraday 
trading behavior, and transaction costs (Madhavan 2000; 2002). It is one of the fastest-
growing fields of financial research, propelled by the rapid development of algorithmic and 
electronic trading.

Today, hedge funds sponsor in-house analysts to track the rapidly evolving, complex 
details and ensure execution at the best possible market prices and design strategies that 
exploit market frictions. We will provide only a brief overview of these key concepts before 
we dive into the data generated by trading. The references contain several sources that treat 
this subject in great detail.

How to trade – different types of orders
Traders can place various types of buy or sell orders. Some orders guarantee immediate 
execution, while others may state a price threshold or other conditions that trigger 
execution. Orders are typically valid for the same trading day unless specified otherwise.

A market order is intended for immediate execution of the order upon arrival at the trading 
venue, at the price that prevails at that moment. In contrast, a limit order only executes if the 
market price is higher than the limit for a sell limit order, or lower than the limit for a buy 
limit order. A stop order, in turn, only becomes active when the market price rises above a 
specified price for a buy stop order, or falls below a specified price for a sell order. A buy 
stop order can be used to limit the losses of short sales. Stop orders may also have limits.

Numerous other conditions can be attached to orders. For example, all or none orders 
prevent partial execution; they are filled only if a specified number of shares is available 
and can be valid for a day or longer. They require special handling and are not visible 
to market participants. Fill or kill orders also prevent partial execution but cancel if not 
executed immediately. Immediate or cancel orders immediately buy or sell the number of 
shares that are available and cancel the remainder. Not-held orders allow the broker to 
decide on the time and price of execution. Finally, the market on open/close orders executes 
on or near the opening or closing of the market. Partial executions are allowed.
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Where to trade – from exchanges to dark pools
Securities trade in highly organized and regulated exchanges or with varying degrees 
of formality in over-the-counter (OTC) markets. An exchange is a central marketplace 
where buyers and sellers compete for the lowest ask and highest bid, respectively. Exchange 
regulations typically impose listing and reporting requirements to create transparency and 
attract more traders and liquidity. OTC markets, such as the Best Market (OTCQX) or the 
Venture Market (OTCQB), often have lower regulatory barriers. As a result, they are suitable 
for a far broader range of securities, including bonds or American Depositary Receipts 
(ADRs; equity listed on a foreign exchange, for example, for Nestlé, S.A.).

Exchanges may rely on bilateral trading or centralized order-driven systems that match 
all buy and sell orders according to certain rules. Many exchanges use intermediaries that 
provide liquidity by making markets in certain securities. These intermediaries include 
dealers that act as principals on their own behalf and brokers that trade as agents on behalf 
of others. Price formation may occur through auctions, such as in the New York Stock 
Exchange (NYSE), where the highest bid and lowest offer are matched, or through dealers 
who buy from sellers and sell to buyers.

Back in the day, companies either registered and traded mostly on the NYSE, or they traded 
on OTC markets like Nasdaq. On the NYSE, a sole specialist intermediated trades of a 
given security. The specialist received buy and sell orders via a broker and tracked limit 
orders in a central order book. Limit orders were executed with a priority based on price 
and time. Buy market orders routed to the specialist transacted with the lowest ask (and 
sell market orders routed to the specialist transacted with the highest bid) in the limit order 
book, prioritizing earlier limit orders in the case of ties. Access to all orders in the central 
order book allowed the specialist to publish the best bid, ask prices, and set market prices 
based on the overall buy-sell imbalance.

On Nasdaq, multiple market makers facilitated stock trades. Each dealer provided their 
best bid and ask price to a central quotation system and stood ready to transact the 
specified number of shares at the specified prices. Traders would route their orders to 
the market maker with the best quote via their broker. The competition for orders made 
execution at fair prices very likely. Market makers ensured a fair and orderly market, 
provided liquidity, and disseminated prices like specialists but only had access to the 
orders routed to them as opposed to market-wide supply and demand. This fragmentation 
could create difficulties in identifying fair value market prices.

Today, trading has fragmented; instead of two principal venues in the US, there are more 
than thirteen displayed trading venues, including exchanges and (unregulated) alternative 
trading systems (ATSs) such as electronic communication networks (ECNs). Each reports 
trades to the consolidated tape, but at different latencies. To make matters more difficult, the 
rules of engagement for each venue differ with several different pricing and queuing models.

The following table lists some of the larger global exchanges and the trading volumes for 
the 12 months ending 03/2018 in various asset classes, including derivatives. Typically, a 
minority of financial instruments account for most trading:
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Exchange

Stocks

Market cap 
(USD mn)

# Listed 
companies

Volume / day 
(USD mn)

# Shares / 
day ('000)

# Options 
/ day ('000)

NYSE 23,138,626 2,294 78,410 6,122 1,546

Nasdaq — US 10,375,718 2,968 65,026 7,131 2,609

Japan Exchange 
Group Inc.

6,287,739 3,618 28,397 3,361 1

Shanghai Stock 
Exchange

5,022,691 1,421 34,736 9,801

Euronext 4,649,073 1,240 9,410 836 304

Hong Kong Exchanges 
and Clearing

4,443,082 2,186 12,031 1,174 516

LSE Group 3,986,413 2,622 10,398 1,011

Shenzhen Stock 
Exchange

3,547,312 2,110 40,244 14,443

Deutsche Boerse AG 2,339,092 506 7,825 475

BSE India Limited 2,298,179 5,439 602 1,105

National Stock 
Exchange of India 
Limited

2,273,286 1,952 5,092 10,355

BATS Global Markets 
- US

1,243

Chicago Board Options 
Exchange

1,811

International Securities 
Exchange

1,204

The ATSs mentioned previously include dozens of dark pools that allow traders to execute 
anonymously. They are estimated to account for 40 percent of all U.S. stock trades in 2017, 
compared with an estimated 16 percent in 2010. Dark pools emerged in the 1980s when the 
SEC allowed brokers to match buyers and sellers of big blocks of shares. The rise of high-
frequency electronic trading and the 2007 SEC Order Protection rule that intended to spur 
competition and cut transaction costs through transparency as part of Regulation National 
Market System (Reg NMS) drove the growth of dark pools, as traders aimed to avoid the 
visibility of large trades (Mamudi 2017). Reg NMS also established the National Best Bid 
and Offer (NBBO) mandate for brokers to route orders to venues that offer the best price.

Some ATSs are called dark pools because they do not broadcast pre-trade data, including 
the presence, price, and amount of buy and sell orders as traditional exchanges are required 
to do. However, dark pools report information about trades to the Financial Industry 
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Regulatory Authority (FINRA) after they occur. As a result, dark pools do not contribute 
to the process of price discovery until after trade execution but provide protection against 
various HFT strategies outlined in the first chapter.

In the next section, we will see how market data captures trading activity and reflect the 
institutional infrastructure in U.S. markets.

Working with high-frequency data
Two categories of market data cover the thousands of companies listed on U.S. exchanges 
that are traded under Reg NMS: the consolidated feed combines trade and quote data from 
each trading venue, whereas each individual exchange offers proprietary products with 
additional activity information for that particular venue.

In this section, we will first present proprietary order flow data provided by Nasdaq 
that represents the actual stream of orders, trades, and resulting prices as they occur on 
a tick-by-tick basis. Then, we will demonstrate how to regularize this continuous stream 
of data that arrives at irregular intervals into bars of a fixed duration. Finally, we will 
introduce AlgoSeek's equity minute bar data, which contains consolidated trade and quote 
information. In each case, we will illustrate how to work with the data using Python so that 
you can leverage these sources for your trading strategy.

How to work with Nasdaq order book data
The primary source of market data is the order book, which updates in real time 
throughout the day to reflect all trading activity. Exchanges typically offer this data as a 
real-time service for a fee; however, they may provide some historical data for free.

In the United States, stock markets provide quotes in three tiers, namely Level L1, L2, and 
L3, that offer increasingly granular information and capabilities:

• Level 1 (L1): Real-time bid- and ask-price information, as available from numerous 
online sources.

• Level 2 (L2): Adds information about bid and ask prices by specific market makers 
as well as the size and time of recent transactions for better insights into the 
liquidity of a given equity.

• Level 3 (L3): Adds the ability to enter or change quotes, execute orders, and confirm 
trades and is available only to market makers and exchange member firms. Access 
to Level 3 quotes permits registered brokers to meet best execution requirements.

The trading activity is reflected in numerous messages about orders sent by market 
participants. These messages typically conform to the electronic Financial Information 
eXchange (FIX) communications protocol for the real-time exchange of securities 
transactions and market data or a native exchange protocol.
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Communicating trades with the FIX protocol
Just like SWIFT is the message protocol for back-office (for example, in trade-settlement) 
messaging, the FIX protocol is the de facto messaging standard for communication before 
and during trade executions between exchanges, banks, brokers, clearing firms, and other 
market participants. Fidelity Investments and Salomon Brothers introduced FIX in 1992 
to facilitate the electronic communication between broker-dealers and institutional clients 
who, until then, exchanged information over the phone.

It became popular in global equity markets before expanding into foreign exchange, fixed 
income and derivatives markets, and further into post-trade to support straight-through 
processing. Exchanges provide access to FIX messages as a real-time data feed that is 
parsed by algorithmic traders to track market activity and, for example, identify the 
footprint of market participants and anticipate their next move.

The sequence of messages allows for the reconstruction of the order book. The scale 
of transactions across numerous exchanges creates a large amount (~10 TB) of unstructured 
data that is challenging to process and, hence, can be a source of competitive advantage.

The FIX protocol, currently at version 5.0, is a free and open standard with a large 
community of affiliated industry professionals. It is self-describing, like the more recent 
XML, and a FIX session is supported by the underlying Transmission Control Protocol 
(TCP) layer. The community continually adds new functionality.

The protocol supports pipe-separated key-value pairs, as well as a tag-based FIXML 
syntax. A sample message that requests a server login would look as follows:

8=FIX.5.0|9=127|35=A|59=theBroker.123456|56=CSERVER|34=1|32=20180117- 
08:03:04|57=TRADE|50=any_string|98=2|108=34|141=Y|553=12345|554=passw0
rd!|10=131|

There are a few open source FIX implementations in Python that can be used to formulate 
and parse FIX messages. The service provider Interactive Brokers offers a FIX-based 
computer-to-computer interface (CTCI) for automated trading (refer to the resources 
section for this chapter in the GitHub repository).

The Nasdaq TotalView-ITCH data feed
While FIX has a dominant market share, exchanges also offer native protocols. Nasdaq 
offers a TotalView-ITCH direct data-feed protocol, which allows subscribers to track 
individual orders for equity instruments from placement to execution or cancellation.

Historical records of this data flow permit the reconstruction of the order book that keeps 
track of the active limit orders for a specific security. The order book reveals the market 
depth throughout the day by listing the number of shares being bid or offered at each 
price point. It may also identify the market participant responsible for specific buy and sell 
orders unless they are placed anonymously. Market depth is a key indicator of liquidity 
and the potential price impact of sizable market orders.
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In addition to matching market and limit orders, Nasdaq also operates auctions or crosses 
that execute a large number of trades at market opening and closing. Crosses are becoming 
more important as passive investing continues to grow and traders look for opportunities 
to execute larger blocks of stock. TotalView also disseminates the Net Order Imbalance 
Indicator (NOII) for Nasdaq opening and closing crosses and Nasdaq IPO/Halt Cross.

How to parse binary order messages

The ITCH v5.0 specification declares over 20 message types related to system events, stock 
characteristics, the placement and modification of limit orders, and trade execution. It also 
contains information about the net order imbalance before the open and closing cross.

Nasdaq offers samples of daily binary files for several months. The GitHub repository for 
this chapter contains a notebook, parse_itch_order_flow_messages.ipynb, that illustrates 
how to download and parse a sample file of ITCH messages. The notebook rebuild_
nasdaq_order_book.ipynb then goes on to reconstruct both the executed trades and the 
order book for any given ticker.

The following table shows the frequency of the most common message types for the 
sample file date October 30, 2019:

Message type Order book impact Number of messages

A New unattributed limit order 127,214,649

D Order canceled 123,296,742

U Order canceled and replaced 25,513,651

E
Full or partial execution; possibly multiple 
messages for the same original order

7,316,703

X Modified after partial cancellation 3,568,735

F Add attributed order 1,423,908

P Trade message (non-cross) 1,525,363

C
Executed in whole or in part at a price different 
from the initial display price

129,729

Q Cross trade message 17,775

For each message, the specification lays out the components and their respective length 
and data types:

Name Offset Length Value Notes

Message type 0 1 S System event message.

Stock locate 1 2 Integer Always 0.

Tracking 
number

3 2 Integer Nasdaq internal tracking number.

Timestamp 5 6 Integer The number of nanoseconds since midnight.
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Order 
reference 
number

11 8 Integer
The unique reference number assigned to the 
new order at the time of receipt.

Buy/sell 
indicator

19 1 Alpha
The type of order being added: B = Buy Order, 
and S = Sell Order.

Shares 20 4 Integer
The total number of shares associated with the 
order being added to the book.

Stock 24 8 Alpha Stock symbol, right - padded with spaces.

Price 32 4
Price 
(4)

The display price of the new order. Refer 
to Data Types in the specification for field 
processing notes.

Attribution 36 4 Alpha
The Nasdaq market participant identifier 
associated with the entered order.

Python provides the struct module to parse binary data using format strings that identify 
the message elements by indicating the length and type of the various components of the 
byte string as laid out in the specification.

Let's walk through the critical steps required to parse the trading messages and reconstruct 
the order book:

1. The ITCH parser relies on the message specifications provided in the file message_
types.xlsx (refer to the notebook parse_itch_order_flow_messages.ipynb for 
details). It assembles format strings according to the formats dictionary:

formats = {

    ('integer', 2): 'H',  # int of length 2 => format string 'H'

    ('integer', 4): 'I',

    ('integer', 6): '6s', # int of length 6 => parse as string, 

      convert later

    ('integer', 8): 'Q',

    ('alpha', 1)  : 's',

    ('alpha', 2)  : '2s',

    ('alpha', 4)  : '4s',

    ('alpha', 8)  : '8s',

    ('price_4', 4): 'I',

    ('price_8', 8): 'Q',

}
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2. The parser translates the message specs into format strings and named tuples that 
capture the message content:

# Get ITCH specs and create formatting (type, length) tuples

specs = pd.read_csv('message_types.csv')

specs['formats'] = specs[['value', 'length']].apply(tuple, 

                           axis=1).map(formats)

# Formatting for alpha fields
alpha_fields = specs[specs.value == 'alpha'].set_index('name')
alpha_msgs = alpha_fields.groupby('message_type')
alpha_formats = {k: v.to_dict() for k, v in alpha_msgs.formats}

alpha_length = {k: v.add(5).to_dict() for k, v in alpha_msgs.length}

# Generate message classes as named tuples and format strings

message_fields, fstring = {}, {}
for t, message in specs.groupby('message_type'):

    message_fields[t] = namedtuple(typename=t,
                                  field_names=message.name.tolist())
    fstring[t] = '>' + ''.join(message.formats.tolist())

3. Fields of the alpha type require postprocessing, as defined in the format_alpha 
function:

def format_alpha(mtype, data):

    """Process byte strings of type alpha"""

    for col in alpha_formats.get(mtype).keys():

        if mtype != 'R' and col == 'stock':

            data = data.drop(col, axis=1)

            continue

        data.loc[:, col] = (data.loc[:, col]

                            .str.decode("utf-8")

                            .str.strip())

        if encoding.get(col):

            data.loc[:, col] = data.loc[:, col].map(encoding.get(col))

    return data

The binary file for a single day contains over 300,000,000 messages that are worth over 
9 GB. The script appends the parsed result iteratively to a file in the fast HDF5 format to 
avoid memory constraints. (Refer to the Efficient data storage with pandas section later in this 
chapter for more information on the HDF5 format.)
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The following (simplified) code processes the binary file and produces the parsed orders 
stored by message type:

with (data_path / file_name).open('rb') as data:
    while True:

        message_size = int.from_bytes(data.read(2), byteorder='big', 

                       signed=False)

        message_type = data.read(1).decode('ascii')

        message_type_counter.update([message_type])

        record = data.read(message_size - 1)

        message = message_fields[message_type]._make(
            unpack(fstring[message_type], record))

        messages[message_type].append(message)

            

        # deal with system events like market open/close

        if message_type == 'S':

            timestamp = int.from_bytes(message.timestamp, 

                                       byteorder='big')

            if message.event_code.decode('ascii') == 'C': # close

                store_messages(messages)

                break

Summarizing the trading activity for all 8,500 stocks

As expected, a small number of the 8,500-plus securities traded on this day account for 
most trades:

with pd.HDFStore(itch_store) as store:

    stocks = store['R'].loc[:, ['stock_locate', 'stock']]

    trades = (store['P'].append(

            store['Q'].rename(columns={'cross_price': 'price'}),

            sort=False).merge(stocks))

trades['value'] = trades.shares.mul(trades.price)

trades['value_share'] = trades.value.div(trades.value.sum())

trade_summary = (trades.groupby('stock').value_share

                 .sum().sort_values(ascending=False))

trade_summary.iloc[:50].plot.bar(figsize=(14, 6),
                                 color='darkblue',

                                 title='Share of Traded Value')

f = lambda y, _: '{:.0%}'.format(y)

plt.gca().yaxis.set_major_formatter(FuncFormatter(f))
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Figure 2.1 shows the resulting plot:

Figure 2.1: The share of traded value of the 50 most traded securities

How to reconstruct all trades and the order book

The parsed messages allow us to rebuild the order flow for the given day. The 'R' message 
type contains a listing of all stocks traded during a given day, including information about 
initial public offerings (IPOs) and trading restrictions.

Throughout the day, new orders are added, and orders that are executed and canceled are 
removed from the order book. The proper accounting for messages that reference orders 
placed on a prior date would require tracking the order book over multiple days.

The get_messages() function illustrates how to collect the orders for a single stock that affects 
trading. (Refer to the ITCH specification for details about each message.) The code is slightly 
simplified; refer to the notebook rebuild_nasdaq_order_book.ipynb for further details:

def get_messages(date, stock=stock):

    """Collect trading messages for given stock"""

    with pd.HDFStore(itch_store) as store:

        stock_locate = store.select('R', where='stock = 

                                     stock').stock_locate.iloc[0]

        target = 'stock_locate = stock_locate'

        data = {}

        # relevant message types

        messages = ['A', 'F', 'E', 'C', 'X', 'D', 'U', 'P', 'Q']

        for m in messages:

            data[m] = store.select(m,  

              where=target).drop('stock_locate', axis=1).assign(type=m)

    order_cols = ['order_reference_number', 'buy_sell_indicator', 

                  'shares', 'price']

    orders = pd.concat([data['A'], data['F']], sort=False,  
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                        ignore_index=True).loc[:, order_cols]

    for m in messages[2: -3]:

        data[m] = data[m].merge(orders, how='left')

    data['U'] = data['U'].merge(orders, how='left',

                                right_on='order_reference_number',

                                left_on='original_order_reference_number',

                                suffixes=['', '_replaced'])
    data['Q'].rename(columns={'cross_price': 'price'}, inplace=True)

    data['X']['shares'] = data['X']['cancelled_shares']

    data['X'] = data['X'].dropna(subset=['price'])

    data = pd.concat([data[m] for m in messages], ignore_index=True, 

                      sort=False)

Reconstructing successful trades—that is, orders that were executed as opposed to those that 
were canceled from trade-related message types C, E, P, and Q—is relatively straightforward:

def get_trades(m):

    """Combine C, E, P and Q messages into trading records"""

    trade_dict = {'executed_shares': 'shares', 'execution_price': 'price'}

    cols = ['timestamp', 'executed_shares']

    trades = pd.concat([m.loc[m.type == 'E',

                              cols + ['price']].rename(columns=trade_dict),

                        m.loc[m.type == 'C',

                              cols + ['execution_price']]

                        .rename(columns=trade_dict),

                        m.loc[m.type == 'P', ['timestamp', 'price',

                                              'shares']],

                        m.loc[m.type == 'Q',

                              ['timestamp', 'price', 'shares']]

                        .assign(cross=1), ],

                       sort=False).dropna(subset=['price']).fillna(0)
    return trades.set_index('timestamp').sort_index().astype(int)

The order book keeps track of limit orders, and the various price levels for buy and sell 
orders constitute the depth of the order book. Reconstructing the order book for a given 
level of depth requires the following steps:

The add_orders() function accumulates sell orders in ascending order and buy orders in 
descending order for a given timestamp up to the desired level of depth:

def add_orders(orders, buysell, nlevels):

    new_order = []

    items = sorted(orders.copy().items())

    if buysell == 1:

        items = reversed(items)  

    for i, (p, s) in enumerate(items, 1):

        new_order.append((p, s))

        if i == nlevels:
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            break

    return orders, new_order

We iterate over all ITCH messages and process orders and their replacements as required 
by the specification:

for message in messages.itertuples():

    i = message[0]

    if np.isnan(message.buy_sell_indicator):

        continue

    message_counter.update(message.type)

    buysell = message.buy_sell_indicator

    price, shares = None, None

    if message.type in ['A', 'F', 'U']:

        price, shares = int(message.price), int(message.shares)

        current_orders[buysell].update({price: shares})

        current_orders[buysell], new_order = 

          add_orders(current_orders[buysell], buysell, nlevels)

        order_book[buysell][message.timestamp] = new_order

    if message.type in ['E', 'C', 'X', 'D', 'U']:

        if message.type == 'U':

            if not np.isnan(message.shares_replaced):

                price = int(message.price_replaced)

                shares = -int(message.shares_replaced)

        else:

            if not np.isnan(message.price):

                price = int(message.price)

                shares = -int(message.shares)

        if price is not None:

            current_orders[buysell].update({price: shares})

            if current_orders[buysell][price] <= 0:

                current_orders[buysell].pop(price)

            current_orders[buysell], new_order = 

              add_orders(current_orders[buysell], buysell, nlevels)

            order_book[buysell][message.timestamp] = new_order

Figure 2.2 highlights the depth of liquidity at any given point in time using different 
intensities that visualize the number of orders at different price levels. The left panel shows 
how the distribution of limit order prices was weighted toward buy orders at higher prices. 

The right panel plots the evolution of limit orders and prices throughout the trading day: 
the dark line tracks the prices for executed trades during market hours, whereas the red 
and blue dots indicate individual limit orders on a per-minute basis (refer to the notebook 
for details):
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Figure 2.2: AAPL market liquidity according to the order book

From ticks to bars – how to regularize market data
The trade data is indexed by nanoseconds, arrives at irregular intervals, and is very noisy. 
The bid-ask bounce, for instance, causes the price to oscillate between the bid and ask 
prices when trade initiation alternates between buy and sell market orders. To improve the 
noise-signal ratio and the statistical properties of the price series, we need to resample and 
regularize the tick data by aggregating the trading activity.

We typically collect the open (first), high, low, and closing (last) price and volume (jointly 
abbreviated as OHLCV) for the aggregated period, alongside the volume-weighted 
average price (VWAP) and the timestamp associated with the data.

Refer to the normalize_tick_data.ipynb notebook in the folder for this chapter on GitHub 
for additional details.

The raw material – tick bars

The following code generates a plot of the raw tick price and volume data for AAPL:

stock, date = 'AAPL', '20191030'

title = '{} | {}'.format(stock, pd.to_datetime(date).date()

with pd.HDFStore(itch_store) as store:

    sys_events = store['S'].set_index('event_code') # system events

    sys_events.timestamp = sys_events.timestamp.add(pd.to_datetime(date)).
dt.time

    market_open = sys_events.loc['Q', 'timestamp'] 

    market_close = sys_events.loc['M', 'timestamp']

with pd.HDFStore(stock_store) as store:

    trades = store['{}/trades'.format(stock)].reset_index()

trades = trades[trades.cross == 0] # excluding data from open/close crossings

trades.price = trades.price.mul(1e-4) # format price
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trades = trades[trades.cross == 0]    # exclude crossing trades

trades = trades.between_time(market_open, market_close) # market hours only

tick_bars = trades.set_index('timestamp')

tick_bars.index = tick_bars.index.time

tick_bars.price.plot(figsize=(10, 5), title=title), lw=1)

Figure 2.3 displays the resulting plot:

Figure 2.3: Tick bars

The tick returns are far from normally distributed, as evidenced by the low p-value of 
scipy.stats.normaltest:

from scipy.stats import normaltest

normaltest(tick_bars.price.pct_change().dropna())

NormaltestResult(statistic=62408.76562431228, pvalue=0.0)

Plain-vanilla denoising – time bars

Time bars involve trade aggregation by period. The following code gets the data for the 
time bars:

def get_bar_stats(agg_trades):

    vwap = agg_trades.apply(lambda x: np.average(x.price, 

           weights=x.shares)).to_frame('vwap')

    ohlc = agg_trades.price.ohlc()

    vol = agg_trades.shares.sum().to_frame('vol')

    txn = agg_trades.shares.size().to_frame('txn')

    return pd.concat([ohlc, vwap, vol, txn], axis=1)

resampled = trades.groupby(pd.Grouper(freq='1Min'))

time_bars = get_bar_stats(resampled)
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We can display the result as a price-volume chart:

def price_volume(df, price='vwap', vol='vol', suptitle=title, fname=None):

    fig, axes = plt.subplots(nrows=2, sharex=True, figsize=(15, 8))
    axes[0].plot(df.index, df[price])

    axes[1].bar(df.index, df[vol], width=1 / (len(df.index)), 

                color='r')

    xfmt = mpl.dates.DateFormatter('%H:%M')

    axes[1].xaxis.set_major_locator(mpl.dates.HourLocator(interval=3))

    axes[1].xaxis.set_major_formatter(xfmt)

    axes[1].get_xaxis().set_tick_params(which='major', pad=25)

    axes[0].set_title('Price', fontsize=14)

    axes[1].set_title('Volume', fontsize=14)

    fig.autofmt_xdate()
    fig.suptitle(suptitle)
    fig.tight_layout()
    plt.subplots_adjust(top=0.9)

price_volume(time_bars)

The preceding code produces Figure 2.4:

Figure 2.4: Time bars
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Alternatively, we can represent the data as a candlestick chart using the Bokeh 
plotting library:

resampled = trades.groupby(pd.Grouper(freq='5Min')) # 5 Min bars for better 
print

df = get_bar_stats(resampled)

increase = df.close > df.open

decrease = df.open > df.close

w = 2.5 * 60 * 1000 # 2.5 min in ms

WIDGETS = "pan, wheel_zoom, box_zoom, reset, save"

p = figure(x_axis_type='datetime', tools=WIDGETS, plot_width=1500, 
          title = "AAPL Candlestick")

p.xaxis.major_label_orientation = pi/4

p.grid.grid_line_alpha=0.4

p.segment(df.index, df.high, df.index, df.low, color="black")

p.vbar(df.index[increase], w, df.open[increase], df.close[increase], 

       fill_color="#D5E1DD", line_color="black")
p.vbar(df.index[decrease], w, df.open[decrease], df.close[decrease], 

       fill_color="#F2583E", line_color="black")
show(p)

This produces the plot in Figure 2.5:

Figure 2.5: Bokeh candlestick plot

Accounting for order fragmentation – volume bars

Time bars smooth some of the noise contained in the raw tick data but may fail to account 
for the fragmentation of orders. Execution-focused algorithmic trading may aim to match 
the volume-weighted average price (VWAP) over a given period. This will divide a single 
order into multiple trades and place orders according to historical patterns. Time bars would 
treat the same order differently, even though no new information has arrived in the market.
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Volume bars offer an alternative by aggregating trade data according to volume. We can 
accomplish this as follows:

min_per_trading_day = 60 * 7.5

trades_per_min = trades.shares.sum() / min_per_trading_day

trades['cumul_vol'] = trades.shares.cumsum()

df = trades.reset_index()

by_vol = (df.groupby(df.cumul_vol.

                     div(trades_per_min)

                     .round().astype(int)))

vol_bars = pd.concat([by_vol.timestamp.last().to_frame('timestamp'),

                      get_bar_stats(by_vol)], axis=1)

price_volume(vol_bars.set_index('timestamp'))

We get the plot in Figure 2.6 for the preceding code:

Figure 2.6: Volume bars

Accounting for price changes – dollar bars

When asset prices change significantly, or after stock splits, the value of a given amount of 
shares changes. Volume bars do not correctly reflect this and can hamper the comparison of 
trading behavior for different periods that reflect such changes. In these cases, the volume 
bar method should be adjusted to utilize the product of shares and prices to produce 
dollar bars.
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The following code shows the computation for dollar bars:

value_per_min = trades.shares.mul(trades.price).sum()/(60*7.5) # min per 
trading day

trades['cumul_val'] = trades.shares.mul(trades.price).cumsum()

df = trades.reset_index()

by_value = df.groupby(df.cumul_val.div(value_per_min).round().astype(int))

dollar_bars = pd.concat([by_value.timestamp.last().to_frame('timestamp'), 
get_bar_stats(by_value)], axis=1)

price_volume(dollar_bars.set_index('timestamp'), 

             suptitle=f'Dollar Bars | {stock} | {pd.to_datetime(date).
date()}')

The plot looks quite similar to the volume bar since the price has been fairly stable 
throughout the day:

Figure 2.7: Dollar bars

AlgoSeek minute bars – equity quote and trade data
AlgoSeek provides historical intraday data of the quality previously available only to 
institutional investors. The AlgoSeek Equity bars provide very detailed intraday quote 
and trade data in a user-friendly format, which is aimed at making it easy to design and 
backtest intraday ML-driven strategies. As we will see, the data includes not only OHLCV 
information but also information on the bid-ask spread and the number of ticks with up 
and down price moves, among others.

AlgoSeek has been so kind as to provide samples of minute bar data for the Nasdaq 100 
stocks from 2013-2017 for demonstration purposes and will make a subset of this data 
available to readers of this book.
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In this section, we will present the available trade and quote information and show how 
to process the raw data. In later chapters, we will demonstrate how you can use this data 
for ML-driven intraday strategies.

From the consolidated feed to minute bars

AlgoSeek minute bars are based on data provided by the Securities Information Processor 
(SIP), which manages the consolidated feed mentioned at the beginning of this section. You 
can view the documentation at https://www.algoseek.com/samples/.

The SIP aggregates the best bid and offers quotes from each exchange, as well as the 
resulting trades and prices. Exchanges are prohibited by law from sending their quotes and 
trades to direct feeds before sending them to the SIP. Given the fragmented nature of U.S. 
equity trading, the consolidated feed provides a convenient snapshot of the current state of 
the market.

More importantly, the SIP acts as the benchmark used by regulators to determine the 
National Best Bid and Offer (NBBO) according to Reg NMS. The OHLC bar quote prices 
are based on the NBBO, and each bid or ask quote price refers to an NBBO price.

Every exchange publishes its top-of-book price and the number of shares available at that 
price. The NBBO changes when a published quote improves the NBBO. Bid/ask quotes 
persist until there is a change due to trade, price improvement, or the cancelation of the 
latest bid or ask. While historical OHLC bars are often based on trades during the bar 
period, NBBO bid/ask quotes may be carried forward from the previous bar until there is a 
new NBBO event.

AlgoSeek bars cover the whole trading day, from the opening of the first exchange until 
the closing of the last exchange. Bars outside regular market hours normally exhibit limited 
activity. Trading hours, in Eastern Time, are:

• Premarket: Approximately 04:00:00 (this varies by exchange) to 09:29:59 

• Market: 09:30:00 to 16:00:00 

• Extended hours: 16:00:01 to 20:00:00

Quote and trade data fields
The minute bar data contains up to 54 fields. There are eight fields for the open, high, low, 
and close elements of the bar, namely:

• The timestamp for the bar and the corresponding trade 

• The price and the size for the prevailing bid-ask quote and the relevant trade

https://www.algoseek.com/samples/
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There are also 14 data points with volume information for the bar period:

• The number of shares and corresponding trades

• The trade volumes at or below the bid, between the bid quote and the midpoint, at 
the midpoint, between the midpoint and the ask quote, and at or above the ask, as 
well as for crosses

• The number of shares traded with upticks or downticks, that is, when the price 
rose or fell, as well as when the price did not change, differentiated by the previous 
direction of price movement

The AlgoSeek data also contains the number of shares reported to FINRA and processed 
internally at broker-dealers, by dark pools, or OTC. These trades represent volume that is 
hidden or not publicly available until after the fact.

Finally, the data includes the volume-weighted average price (VWAP) and minimum and 
maximum bid-ask spread for the bar period.

How to process AlgoSeek intraday data

In this section, we'll process the AlgoSeek sample data. The data directory on GitHub 
contains instructions on how to download that data from AlgoSeek.

The minute bar data comes in four versions: with and without quote information, and with 
or without FINRA's reported volume. There is one zipped folder per day, containing one 
CSV file per ticker.

The following code example extracts the trade-only minute bar data into daily .parquet files:

directories = [Path(d) for d in ['1min_trades']]

target = directory / 'parquet'

for zipped_file in directory.glob('*/**/*.zip'):
    fname = zipped_file.stem
    print('\t', fname)

    zf = ZipFile(zipped_file)
    files = zf.namelist()
    data = (pd.concat([pd.read_csv(zf.open(f),

                                   parse_dates=[['Date',

                                                 'TimeBarStart']])

                       for f in files],
                      ignore_index=True)

            .rename(columns=lambda x: x.lower())

            .rename(columns={'date_timebarstart': 'date_time'})

            .set_index(['ticker', 'date_time']))

    data.to_parquet(target / (fname + '.parquet'))
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We can combine the parquet files into a single piece of HDF5 storage as follows, yielding 
53.8 million records that consume 3.2 GB of memory and covering 5 years and 100 stocks:

path = Path('1min_trades/parquet')

df = pd.concat([pd.read_parquet(f) for f in path.glob('*.parquet')]).
dropna(how='all', axis=1)

df.columns = ['open', 'high', 'low', 'close', 'trades', 'volume', 'vwap']

df.to_hdf('data.h5', '1min_trades')

print(df.info(null_counts=True))

MultiIndex: 53864194 entries, (AAL, 2014-12-22 07:05:00) to (YHOO, 2017-06-16 
19:59:00)

Data columns (total 7 columns):

open      53864194 non-null float64
high      53864194 non-null float64
Low       53864194 non-null float64
close     53864194 non-null float64
trades    53864194 non-null int64

volume    53864194 non-null int64

vwap      53852029 non-null float64

We can use plotly to quickly create an interactive candlestick plot for one day of AAPL 
data to view in a browser:

idx = pd.IndexSlice

with pd.HDFStore('data.h5') as store:

    print(store.info())

    df = (store['1min_trades']

          .loc[idx['AAPL', '2017-12-29'], :]

          .reset_index())

fig = go.Figure(data=go.Ohlc(x=df.date_time,
                             open=df.open,

                             high=df.high,

                             low=df.low,

                             close=df.close))
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Figure 2.8 shows the resulting static image:

Figure 2.8: Plotly candlestick plot

AlgoSeek also provides adjustment factors to correct pricing and volumes for stock splits, 
dividends, and other corporate actions.

API access to market data
There are several options you can use to access market data via an API using Python. 
We will first present a few sources built into the pandas library and the yfinance tool that 
facilitates the downloading of end-of-day market data and recent fundamental data from 
Yahoo! Finance.

Then we will briefly introduce the trading platform Quantopian, the data provider Quandl, 
and the Zipline backtesting library that we will use later in the book, as well as listing 
several additional options to access various types of market data. The directory data_
providers on GitHub contains several notebooks that illustrate the usage of these options.

Remote data access using pandas
The pandas library enables access to data displayed on websites using the read_html 
function and access to the API endpoints of various data providers through the related 
pandas-datareader library.



Chapter 2

[ 45 ]

Reading HTML tables

Downloading the content of one or more HTML tables, such as for the constituents of the 
S&P 500 index from Wikipedia, works as follows:

sp_url = 'https://en.wikipedia.org/wiki/List_of_S%26P_500_companies'

sp = pd.read_html(sp_url, header=0)[0] # returns a list for each table

sp.info()

RangeIndex: 505 entries, 0 to 504

Data columns (total 9 columns):

Symbol                    505 non-null object

Security                  505 non-null object

SEC filings                505 non-null object
GICS Sector               505 non-null object

GICS Sub Industry         505 non-null object

Headquarters Location     505 non-null object

Date first added           408 non-null object
CIK                       505 non-null int64

Founded                   234 non-null object

pandas-datareader for market data

pandas used to facilitate access to data provider APIs directly, but this functionality has 
moved to the pandas-datareader library (refer to the README for links to the documentation).

The stability of the APIs varies with provider policies and continues to change. Please 
consult the documentation for up-to-date information. As of December 2019, at version 
0.8.1, the following sources are available:

Source Scope Comment

Tiingo
Historical end-of-day prices on equities, 
mutual funds, and ETF.

Free registration for the 
API key. Free accounts can 
access only 500 symbols.

Investor 
Exchange (IEX)

Historical stock prices are available if traded 
on IEX.

Requires an API key from 
IEX Cloud Console.

Alpha Vantage

Historical equity data for daily, weekly, and 
monthly frequencies, 20+ years, and the past 
3-5 days of intraday data. It also has FOREX 
and sector performance data.

Quandl Free data sources as listed on their website.

Fama/French Risk factor portfolio returns.
Used in Chapter 7, Linear 
Models – From Risk Factors to 
Return Forecasts.

TSP Fund Data Mutual fund prices.
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Nasdaq Latest metadata on traded tickers.

Stooq Index 
Data

Some equity indices are not available from 
elsewhere due to licensing issues.

MOEX Moscow Exchange historical data.

The access and retrieval of data follow a similar API for all sources, as illustrated for 
Yahoo! Finance:

import pandas_datareader.data as web

from datetime import datetime

start = '2014'              # accepts strings

end = datetime(2017, 5, 24) # or datetime objects

yahoo= web.DataReader('FB', 'yahoo', start=start, end=end)

yahoo.info()

DatetimeIndex: 856 entries, 2014-01-02 to 2017-05-25

Data columns (total 6 columns):

High         856 non-null float64
Low          856 non-null float64
Open         856 non-null float64
Close        856 non-null float64
Volume       856 non-null int64

Adj Close    856 non-null float64
dtypes: float64(5), int64(1)

yfinance – scraping data from Yahoo! Finance
yfinance aims to provide a reliable and fast way to download historical market data 
from Yahoo! Finance. The library was originally named fix-yahoo-finance. The usage of 
this library is very straightforward; the notebook yfinance_demo illustrates the library's 
capabilities.

How to download end-of-day and intraday prices

The Ticker object permits the downloading of various data points scraped from Yahoo's 
website:

import yfinance as yf
symbol = 'MSFT'

ticker = yf.Ticker(symbol)

The .history method obtains historical prices for various periods, from one day to the 
maximum available, and at different frequencies, whereas intraday is only available for 
the last several days. To download adjusted OHLCV data at a one-minute frequency and 
corporate actions, use:



Chapter 2

[ 47 ]

data = ticker.history(period='5d',

                      interval='1m',

                      actions=True,

                      auto_adjust=True)

data.info()

DatetimeIndex: 1747 entries, 2019-11-22 09:30:00-05:00 to 2019-11-29 
13:00:00-05:00

Data columns (total 7 columns):

Open            1747 non-null float64
High            1747 non-null float64
Low             1747 non-null float64
Close           1747 non-null float64
Volume          1747 non-null int64

Dividends       1747 non-null int64

Stock Splits    1747 non-null int64

The notebook also illustrates how to access quarterly and annual financial statements, 
sustainability scores, analyst recommendations, and upcoming earnings dates.

How to download the option chain and prices

yfinance also provides access to the option expiration dates and prices and other 
information for various contracts. Using the ticker instance from the previous example,  
we get the expiration dates using:

ticker.options

('2019-12-05',  '2019-12-12',  '2019-12-19',..)

For any of these dates, we can access the option chain and view details for the various 
put/call contracts as follows:

options = ticker.option_chain('2019-12-05')

options.calls.info()

Data columns (total 14 columns):

contractSymbol       35 non-null object

lastTradeDate        35 non-null datetime64[ns]

strike               35 non-null float64
lastPrice            35 non-null float64
bid                  35 non-null float64
ask                  35 non-null float64
change               35 non-null float64
percentChange        35 non-null float64
volume               34 non-null float64
openInterest         35 non-null int64

impliedVolatility    35 non-null float64
inTheMoney           35 non-null bool

contractSize         35 non-null object

currency             35 non-null object



Market and Fundamental Data – Sources and Techniques

[ 48 ]

The library also permits the use of proxy servers to prevent rate limiting and facilitates 
the bulk downloading of multiple tickers. The notebook demonstrates the usage of these 
features as well.

Quantopian
Quantopian is an investment firm that offers a research platform to crowd-source trading 
algorithms. Registration is free, and members can research trading ideas using a broad 
variety of data sources. It also offers an environment to backtest the algorithm against 
historical data, as well as to forward-test it out of sample with live data. It awards 
investment allocations for top-performing algorithms whose authors are entitled to a 10 
percent (at the time of writing) profit share.

The Quantopian research platform consists of a Jupyter Notebook environment for 
research and development for alpha-factor research and performance analysis. There is 
also an interactive development environment (IDE) for coding algorithmic strategies 
and backtesting the result using historical data since 2002 with minute-bar frequency.

Users can also simulate algorithms with live data, which is known as paper trading. 
Quantopian provides various market datasets, including U.S. equity and futures price and 
volume data at a one-minute frequency, and U.S. equity corporate fundamentals, and it 
also integrates numerous alternative datasets.

We will dive into the Quantopian platform in much more detail in Chapter 4, Financial 
Feature Engineering – How to Research Alpha Factors, and rely on its functionality throughout 
the book, so feel free to open an account right away. (Refer to the GitHub repository for 
more details.)

Zipline
Zipline is the algorithmic trading library that powers the Quantopian backtesting and live-
trading platform. It is also available offline to develop a strategy using a limited number 
of free data bundles that can be ingested and used to test the performance of trading ideas 
before porting the result to the online Quantopian platform for paper and live trading.

Zipline requires a custom environment—view the instructions at the beginning of the 
notebook zipline_data_demo.ipynb The following code illustrates how Zipline permits 
us to access daily stock data for a range of companies. You can run Zipline scripts in the 
Jupyter Notebook using the magic function of the same name.

First, you need to initialize the context with the desired security symbols. We'll also use 
a counter variable. Then, Zipline calls handle_data, where we use the data.history() 
method to look back a single period and append the data for the last day to a .csv file:
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%load_ext zipline

%%zipline --start 2010-1-1 --end 2018-1-1 --data-frequency daily

from zipline.api import order_target, record, symbol

def initialize(context):

    context.i = 0

    context.assets = [symbol('FB'), symbol('GOOG'), symbol('AMZN')]

 

def handle_data(context, data):

    df = data.history(context.assets, fields=['price', 'volume'], 
                      bar_count=1, frequency="1d")

    df = df.to_frame().reset_index()

 

    if context.i == 0:

        df.columns = ['date', 'asset', 'price', 'volume']

        df.to_csv('stock_data.csv', index=False)

    else:

        df.to_csv('stock_data.csv', index=False, mode='a', header=None)

    context.i += 1

df = pd.read_csv('stock_data.csv')

df.date = pd.to_datetime(df.date)

df.set_index('date').groupby('asset').price.plot(lw=2, legend=True, 

       figsize=(14, 6));

We get the following plot for the preceding code:

Figure 2.9: Zipline data access

We will explore the capabilities of Zipline, and especially the online Quantopian platform, 
in more detail in the coming chapters.
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Quandl
Quandl provides a broad range of data sources, both free and as a subscription, using a 
Python API. Register and obtain a free API key to make more than 50 calls per day. Quandl 
data covers multiple asset classes beyond equities and includes FX, fixed income, indexes, 
futures and options, and commodities.

API usage is straightforward, well-documented, and flexible, with numerous 
methods beyond single-series downloads, for example, including bulk downloads or 
metadata searches. 

The following call obtains oil prices from 1986 onward, as quoted by the U.S. Department 
of Energy:

import quandl

oil = quandl.get('EIA/PET_RWTC_D').squeeze()

oil.plot(lw=2, title='WTI Crude Oil Price')

We get this plot for the preceding code:

Figure 2.10: Quandl oil price example

Other market data providers
A broad variety of providers offer market data for various asset classes. Examples in 
relevant categories include:

• Exchanges derive a growing share of their revenues from an ever-broader range of 
data services, typically using a subscription.

• Bloomberg and Thomson Reuters have long been the leading data aggregators 
with a combined share of over 55 percent in the $28.5 billion financial data market. 
Smaller rivals, such as FactSet, are growing or emerging, such as money.net, 
Quandl, Trading Economics, and Barchart.

• Specialist data providers abound. One example is LOBSTER, which aggregates 
Nasdaq order-book data in real time.
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• Free data providers include Alpha Vantage, which offers Python APIs for real-time 
equity, FX, and cryptocurrency market data, as well as technical indicators.

• Crowd-sourced investment firms that provide research platforms with data access 
include, in addition to Quantopian, Alpha Trading Labs, launched in March 2018, 
which provides HFT infrastructure and data. 

How to work with fundamental data
Fundamental data pertains to the economic drivers that determine the value of securities. 
The nature of the data depends on the asset class:

• For equities and corporate credit, it includes corporate financials, as well as 
industry and economy-wide data.

• For government bonds, it includes international macro data and foreign exchange.

• For commodities, it includes asset-specific supply-and-demand determinants, such 
as weather data for crops. 

We will focus on equity fundamentals for the U.S., where data is easier to access. There are 
some 13,000+ public companies worldwide that generate 2 million pages of annual reports 
and more than 30,000 hours of earnings calls. In algorithmic trading, fundamental data 
and features engineered from this data may be used to derive trading signals directly, for 
example, as value indicators, and are an essential input for predictive models, including 
ML models.

Financial statement data
The Securities and Exchange Commission (SEC) requires U.S. issuers—that is, listed 
companies and securities, including mutual funds—to file three quarterly financial 
statements (Form 10-Q) and one annual report (Form 10-K), in addition to various other 
regulatory filing requirements.

Since the early 1990s, the SEC made these filings available through its Electronic Data 
Gathering, Analysis, and Retrieval (EDGAR) system. They constitute the primary data 
source for the fundamental analysis of equity and other securities, such as corporate credit, 
where the value depends on the business prospects and financial health of the issuer.

Automated processing – XBRL

Automated analysis of regulatory filings has become much easier since the SEC introduced 
XBRL, which is a free, open, and global standard for the electronic representation and 
exchange of business reports. XBRL is based on XML; it relies on taxonomies that define 
the meaning of the elements of a report and map to tags that highlight the corresponding 
information in the electronic version of the report. One such taxonomy represents the U.S. 
Generally Accepted Accounting Principles (GAAP).

The SEC introduced voluntary XBRL filings in 2005 in response to accounting scandals 
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before requiring this format for all filers as of 2009, and it continues to expand the 
mandatory coverage to other regulatory filings. The SEC maintains a website that lists the 
current taxonomies that shape the content of different filings and can be used to extract 
specific items.

The following datasets provide information extracted from EX-101 attachments submitted 
to the commission in a flattened data format to assist users in consuming data for analysis. 
The data reflects selected information from the XBRL-tagged financial statements. It 
currently includes numeric data from the quarterly and annual financial statements, as well 
as certain additional fields, for example, Standard Industrial Classification (SIC).

There are several avenues to track and access fundamental data reported to the SEC:

• As part of the EDGAR Public Dissemination Service (PDS), electronic feeds of 
accepted filings are available for a fee.

• The SEC updates the RSS feeds, which list the structured disclosure submissions, 
every 10 minutes.

• There are public index files for the retrieval of all filings through FTP for automated 
processing.

• The financial statement (and notes) datasets contain parsed XBRL data from all 
financial statements and the accompanying notes.

The SEC also publishes log files containing the internet search traffic for EDGAR filings 
through SEC.gov, albeit with a six month delay.

Building a fundamental data time series

The scope of the data in the financial statement and notes datasets consists of numeric data 
extracted from the primary financial statements (balance sheet, income statement, cash 
flows, changes in equity, and comprehensive income) and footnotes on those statements. 
The available data is from as early as 2009.

Extracting the financial statements and notes dataset
The following code downloads and extracts all historical filings contained in the financial 
statement and notes (FSN) datasets for the given range of quarters (refer to edgar_xbrl.
ipynb for additional details):
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SEC_URL = 'https://www.sec.gov/files/dera/data/financial-statement-and-notes-
data-sets/'

first_year, this_year, this_quarter = 2014, 2018, 3
past_years = range(2014, this_year)

filing_periods = [(y, q) for y in past_years for q in range(1, 5)]
filing_periods.extend([(this_year, q) for q in range(1, this_quarter + 
                                                    1)])

for i, (yr, qtr) in enumerate(filing_periods, 1):
    filing = f'{yr}q{qtr}_notes.zip'
    path = data_path / f'{yr}_{qtr}' / 'source'

    response = requests.get(SEC_URL + filing).content
    with ZipFile(BytesIO(response)) as zip_file:
        for file in zip_file.namelist():
            local_file = path / file
            with local_file.open('wb') as output:
                for line in zip_file.open(file).readlines():
                    output.write(line)

The data is fairly large, and to enable faster access than the original text files permit, it is 
better to convert the text files into a binary, Parquet columnar format (refer to the Efficient 
data storage with pandas section later in this chapter for a performance comparison of various 
data-storage options that are compatible with pandas DataFrames):

for f in data_path.glob('**/*.tsv'):

    file_name = f.stem  + '.parquet'
    path = Path(f.parents[1]) / 'parquet'

    df = pd.read_csv(f, sep='\t', encoding='latin1', low_memory=False)

    df.to_parquet(path / file_name)

For each quarter, the FSN data is organized into eight file sets that contain information 
about submissions, numbers, taxonomy tags, presentation, and more. Each dataset consists 
of rows and fields and is provided as a tab-delimited text file:

File Dataset Description

SUB Submission Identifies each XBRL submission by company, form, date, and so on
TAG Tag Defines and explains each taxonomy tag
DIM Dimension Adds detail to numeric and plain text data

NUM Numeric One row for each distinct data point in filing
TXT Plain text Contains all non-numeric XBRL fields
REN Rendering Information for rendering on the SEC website

PRE Presentation Details of tag and number presentation in primary statements

CAL Calculation Shows the arithmetic relationships among tags
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Retrieving all quarterly Apple filings
The submission dataset contains the unique identifiers required to retrieve the filings: the 
Central Index Key (CIK) and the Accession Number (adsh). The following shows some 
of the information about Apple's 2018Q1 10-Q filing:

apple = sub[sub.name == 'APPLE INC'].T.dropna().squeeze()

key_cols = ['name', 'adsh', 'cik', 'name', 'sic', 'countryba',  

            'stprba', 'cityba', 'zipba', 'bas1', 'form', 'period', 

            'fy', 'fp', 'filed']
apple.loc[key_cols]

name                    APPLE INC

adsh                    0000320193-18-000070

cik                     320193

name                    APPLE INC

sic                     3571

countryba               US

stprba                  CA

cityba                  CUPERTINO

zipba                   95014

bas1                    ONE APPLE PARK WAY

form                    10-Q

period                  20180331

fy                      2018

fp                      Q2

filed                   20180502

Using the CIK, we can identify all of the historical quarterly filings available for Apple and 
combine this information to obtain 26 10-Q forms and 9 annual 10-K forms:

aapl_subs = pd.DataFrame()

for sub in data_path.glob('**/sub.parquet'):

    sub = pd.read_parquet(sub)

    aapl_sub = sub[(sub.cik.astype(int) == apple.cik) & 

                   (sub.form.isin(['10-Q', '10-K']))]

    aapl_subs = pd.concat([aapl_subs, aapl_sub])

aapl_subs.form.value_counts()

10-Q    15

10-K     4

With the accession number for each filing, we can now rely on the taxonomies to select 
the appropriate XBRL tags (listed in the TAG file) from the NUM and TXT files to obtain the 
numerical or textual/footnote data points of interest.
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First, let's extract all of the numerical data that is available from the 19 Apple filings:

aapl_nums = pd.DataFrame()

for num in data_path.glob('**/num.parquet'):

    num = pd.read_parquet(num).drop('dimh', axis=1)

    aapl_num = num[num.adsh.isin(aapl_subs.adsh)]

    aapl_nums = pd.concat([aapl_nums, aapl_num])

aapl_nums.ddate = pd.to_datetime(aapl_nums.ddate, format='%Y%m%d')

aapl_nums.shape

(28281, 16)

Building a price/earnings time series

In total, the 9 years of filing history provide us with over 28,000 numerical values. We can 
select a useful field, such as earnings per diluted share (EPS), that we can combine with 
market data to calculate the popular price-to-earnings (P/E) valuation ratio.

We do need to take into account, however, that Apple split its stock by 7:1 on June 4, 2014, 
and adjust the earnings per share values before the split to make the earnings comparable 
to the price data, which, in its adjusted form, accounts for these changes. The following code 
block shows you how to adjust the earnings data:

field = 'EarningsPerShareDiluted'
stock_split = 7

split_date = pd.to_datetime('20140604')

# Filter by tag; keep only values measuring 1 quarter

eps = aapl_nums[(aapl_nums.tag == 'EarningsPerShareDiluted')

                & (aapl_nums.qtrs == 1)].drop('tag', axis=1)

# Keep only most recent data point from each filing
eps = eps.groupby('adsh').apply(lambda x: x.nlargest(n=1, columns=['ddate']))

# Adjust earnings prior to stock split downward

eps.loc[eps.ddate < split_date,'value'] = eps.loc[eps.ddate < 

        split_date, 'value'].div(7)

eps = eps[['ddate', 'value']].set_index('ddate').squeeze()

# create trailing 12-months eps from quarterly data

eps = eps.rolling(4, min_periods=4).sum().dropna() 

We can use Quandl to obtain Apple stock price data since 2009:

import pandas_datareader.data as web

symbol = 'AAPL.US'

aapl_stock = web.DataReader(symbol, 'quandl', start=eps.index.min())

aapl_stock = aapl_stock.resample('D').last() # ensure dates align with 

                                               eps data
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Now we have the data to compute the trailing 12-month P/E ratio for the entire period:

pe = aapl_stock.AdjClose.to_frame('price').join(eps.to_frame('eps'))

pe = pe.fillna(method='ffill').dropna()
pe['P/E Ratio'] = pe.price.div(pe.eps)

axes = pe.plot(subplots=True, figsize=(16,8), legend=False, lw=2);

We get the following plot from the preceding code:

Figure 2.11: Trailing P/E ratio from EDGAR filings

Other fundamental data sources
There are numerous other sources for fundamental data. Many are accessible using the 
pandas_datareader module that was introduced earlier. Additional data is available from 
certain organizations directly, such as the IMF, the World Bank, or major national statistical 
agencies around the world (refer to the references section on GitHub).

pandas-datareader – macro and industry data

The pandas-datareader library facilitates access according to the conventions introduced 
at the end of the preceding section on market data. It covers APIs for numerous global 
fundamental macro- and industry-data sources, including the following:

• Kenneth French's data library: Market data on portfolios capturing returns on key 
risk factors like size, value, and momentum factors, disaggregated by industry 
(refer to Chapter 4, Financial Feature Engineering – How to Research Alpha Factors)

• St. Louis FED (FRED): Federal Reserve data on the U.S. economy and financial markets
• World Bank: Global database on long-term, lower-frequency economic and social 

development and demographics
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• OECD: Similar to the World Bank data for OECD countries

• Enigma: Various datasets, including alternative sources

• Eurostat: EU-focused economic, social, and demographic data

Efficient data storage with pandas
We'll be using many different datasets in this book, and it's worth comparing the main 
formats for efficiency and performance. In particular, we'll compare the following:

• CSV: Comma-separated, standard flat text file format.
• HDF5: Hierarchical data format, developed initially at the National Center for 

Supercomputing Applications. It is a fast and scalable storage format for numerical 
data, available in pandas using the PyTables library.

• Parquet: Part of the Apache Hadoop ecosystem, a binary, columnar storage format 
that provides efficient data compression and encoding and has been developed by 
Cloudera and Twitter. It is available for pandas through the pyarrow library, led by 
Wes McKinney, the original author of pandas.

The storage_benchmark.ipynb notebook compares the performance of the preceding 
libraries using a test DataFrame that can be configured to contain numerical or text data, 
or both. For the HDF5 library, we test both the fixed and table formats. The table format 
allows for queries and can be appended to.

The following charts illustrate the read and write performance for 100,000 rows with either 
1,000 columns of random floats and 1,000 columns of a random 10-character string, or just 
2,000 float columns (on a log scale):

Figure 2.12: Storage benchmarks

The left panel shows that, for purely numerical data, the HDF5 format performs best by 
far, and the table format also shares with CSV the smallest memory footprint at 1.6 GB. The 
fixed format uses twice as much space, while the parquet format uses 2 GB.
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For a mix of numerical and text data, Parquet is the best choice for read and write 
operations. HDF5 has an advantage with read in relation to CSV, but it is slower with write 
because it pickles text data.

The notebook illustrates how to configure, test, and collect the timing using the %%timeit 
cell magic and, at the same time, demonstrates the usage of the related pandas commands 
that are required to use these storage formats.

Summary
This chapter introduced the market and fundamental data sources that form the backbone 
of most trading strategies. You learned about the various ways to access this data and how 
to preprocess the raw information so that you can begin extracting trading signals using the 
ML techniques that we will be introducing shortly.

In the next chapter, before moving on to the design and evaluation of trading strategies and 
the use of ML models, we need to cover alternative datasets that have emerged in recent 
years and have been a significant driver of the popularity of ML for algorithmic trading.
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3
Alternative Data for Finance – 

Categories and Use Cases

The previous chapter covered working with market and fundamental data, which have 
been the traditional drivers of trading strategies. In this chapter, we'll fast-forward to 
the recent emergence of a broad range of much more diverse data sources as fuel for 
discretionary and algorithmic strategies. Their heterogeneity and novelty have inspired the 
label of alternative data and created a rapidly growing provider and service industry.

Behind this trend is a familiar story: propelled by the explosive growth of the internet 
and mobile networks, digital data continues to grow exponentially amid advances in the 
technology to process, store, and analyze new data sources. The exponential growth in the 
availability of and ability to manage more diverse digital data, in turn, has been a critical 
force behind the dramatic performance improvements of machine learning (ML) that are 
driving innovation across industries, including the investment industry.

The scale of the data revolution is extraordinary: the past 2 years alone have witnessed the 
creation of 90 percent of all data that exists in the world today, and by 2020, each of the 7.7 
billion people worldwide is expected to produce 1.7 MB of new information every second 
of every day. On the other hand, back in 2012, only 0.5 percent of all data was ever analyzed 
and used, whereas 33 percent is deemed to have value by 2020. The gap between data 
availability and usage is likely to narrow quickly as global investments in analytics are set to 
rise beyond $210 billion by 2020, while the value creation potential is a multiple higher.

This chapter explains how individuals, business processes, and sensors produce alternative 
data. It also provides a framework to navigate and evaluate the proliferating supply of 
alternative data for investment purposes. It demonstrates the workflow, from acquisition to 
preprocessing and storage, using Python for data obtained through web scraping to set the 
stage for the application of ML. It concludes by providing examples of sources, providers, 
and applications.
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This chapter will cover the following topics:

• Which new sources of information have been unleashed by the alternative data 
revolution

• How individuals, business processes, and sensors generate alternative data

• Evaluating the burgeoning supply of alternative data used for algorithmic trading

• Working with alternative data in Python, such as by scraping the internet

• Important categories and providers of alternative data

The alternative data revolution
The data deluge driven by digitization, networking, and plummeting storage costs has 
led to profound qualitative changes in the nature of information available for predictive 
analytics, often summarized by the five Vs:

• Volume: The amount of data generated, collected, and stored is orders of 
magnitude larger as the byproduct of online and offline activity, transactions, 
records, and other sources. Volumes continue to grow with the capacity for analysis 
and storage.

• Velocity: Data is generated, transferred, and processed to become available near, 
or at, real-time speed.

• Variety: Data is organized in formats no longer limited to structured, tabular forms, 
such as CSV files or relational database tables. Instead, new sources produce semi-
structured formats, such as JSON or HTML, and unstructured content, including 
raw text, "images"? and audio or video data, adding new challenges to render data 
suitable for ML algorithms.

• Veracity: The diversity of sources and formats makes it much more difficult to 
validate the reliability of the data's information content.

• Value: Determining the value of new datasets can be much more time- and 
resource-consuming, as well as more uncertain than before.

For algorithmic trading, new data sources offer an informational advantage if they provide 
access to information unavailable from traditional sources or provide access sooner. 
Following global trends, the investment industry is rapidly expanding beyond market 
and fundamental data to alternative sources to reap alpha through an informational edge. 
Annual spending on data, technological capabilities, and related talent is expected to 
increase from the current $3 billion by 12.8 percent annually through 2020.

You can find the code samples for this chapter and links to additional 
resources in the corresponding directory of the GitHub repository. The 
notebooks include color versions of the images. 
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Today, investors can access macro or company-specific data in real time that, historically, 
has been available only at a much lower frequency. Use cases for new data sources include 
the following:

• Online price data on a representative set of goods and services can be used to 
measure inflation.

• The number of store visits or purchases permits real-time estimates of company - 
or industry-specific sales or economic activity.

• Satellite images can reveal agricultural yields, or activity at mines or on oil rigs 
before this information is available elsewhere.

As the standardization and adoption of big datasets advances, the information contained in 
conventional data will likely lose most of its predictive value.

Furthermore, the capability to process and integrate diverse datasets and apply ML allows 
for complex insights. In the past, quantitative approaches relied on simple heuristics to 
rank companies using historical data for metrics such as the price-to-book ratio, whereas 
ML algorithms synthesize new metrics and learn and adapt such rules while taking into 
account evolving market data. These insights create new opportunities to capture classic 
investment themes such as value, momentum, quality, and sentiment:

• Momentum: ML can identify asset exposures to market price movements, industry 
sentiment, or economic factors.

• Value: Algorithms can analyze large amounts of economic and industry-specific 
structured and unstructured data, beyond financial statements, to predict the 
intrinsic value of a company.

• Quality: The sophisticated analysis of integrated data allows for the evaluation 
of customer or employee reviews, e-commerce, or app traffic to identify gains in 
market share or other underlying earnings quality drivers.

• Sentiment: The real-time processing and interpretation of news and social media 
content permits ML algorithms to both rapidly detect emerging sentiment and 
synthesize information from diverse sources into a more coherent big picture.

In practice, however, data containing valuable signals is often not freely available and is 
typically produced for purposes other than trading. As a result, alternative datasets require 
thorough evaluation, costly acquisition, careful management, and sophisticated analysis to 
extract tradable signals.
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Sources of alternative data
Alternative datasets are generated by many sources but can be classified at a high level as 
predominantly produced by:

• Individuals who post on social media, review products, or use search engines

• Businesses that record commercial transactions (in particular, credit card 
payments) or capture supply-chain activity as intermediaries

• Sensors that, among many other things, capture economic activity through images 
from satellites or security cameras, or through movement patterns such as cell 
phone towers

The nature of alternative data continues to evolve rapidly as new data sources become 
available and sources previously labeled "alternative" become part of the mainstream. 
The Baltic Dry Index (BDI), for instance, assembles data from several hundred shipping 
companies to approximate the supply/demand of dry bulk carriers and is now available 
on the Bloomberg Terminal.

Alternative data includes raw data as well as data that is aggregated or has been processed 
in some form to add value. For instance, some providers aim to extract tradeable signals, 
such as sentiment scores. We will address the various types of providers in Chapter 4, 
Financial Feature Engineering – How to Research Alpha Factors.

Alternative data sources differ in crucial respects that determine their value or signal 
content for algorithmic trading strategies. We will address these aspects in the next section 
after looking at the main sources in this one.

Individuals
Individuals automatically create electronic data through online activities, as well as through 
their offline activity as the latter is captured electronically and often linked to online 
identities. Data generated by individuals is frequently unstructured in text, image, or video 
formats, disseminated through multiple platforms, and includes:

• Social media posts, such as opinions or reactions on general-purpose sites such as 
Twitter, Facebook, or LinkedIn, or business-review sites such as Glassdoor or Yelp

• E-commerce activity that reflects an interest in or the perception of products on sites 
like Amazon or Wayfair

• Search engine activity using platforms such as Google or Bing

• Mobile app usage, downloads, and reviews

• Personal data such as messaging traffic
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The analysis of social media sentiment has become very popular because it can be applied 
to individual stocks, industry baskets, or market indices. The most common source is 
Twitter, followed by various news vendors and blog sites. Supply is competitive, and prices 
are lower because it is often obtained through increasingly commoditized web scraping. 
Reliable social media datasets that include blogs, tweets, or videos have typically less than 
5 years of history, given how recently consumers have adopted these tools at scale. Search 
history, in contrast, is available from 2004.

Business processes
Businesses and public entities produce and collect many valuable sources of alternative 
data. Data that results from business processes often has more structure than that generated 
by individuals. It is very effective as a leading indicator for activity that is otherwise 
available at a much lower frequency.

Data generated by business processes includes:

• Payment card transaction data possibly available for purchase from processors and 
financial institutions

• Company exhaust data produced by ordinary digitized activity or record-keeping, 
such as banking records, cashier scanner data, or supply chain orders

• Trade flow and market microstructure data (such as L2 and L3 order book data, 
illustrated by the NASDAQ ITCH tick data example in Chapter 2, Market and 
Fundamental Data – Sources and Techniques)

• Company payments monitored by credit rating agencies or financial institutions 
to assess liquidity and creditworthiness

Credit card transactions and company exhaust data, such as point-of-sale data, are among 
the most reliable and predictive datasets. Credit card data is available with around 10 
years of history and, at different lags, almost up to real time, while corporate earnings are 
reported quarterly with a 2.5-week lag. The time horizon and reporting lag for company 
exhaust data varies widely, depending on the source. Market microstructure datasets have 
over 15 years of history compared to sell-side flow data, which typically has fewer than 5 
years of consistent history.

Sensors
Networked sensors embedded in a broad range of devices are among the most rapidly 
growing data sources, driven by the proliferation of smartphones and the reduction in the 
cost of satellite technologies.
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This category of alternative data is typically very unstructured and often significantly larger 
in volume than data generated by individuals or business processes, and it poses much 
tougher processing challenges. Key alternative data sources in this category include:

• Satellite imaging to monitor economic activity, such as construction, shipping, or 
commodity supply

• Geolocation data to track traffic in retail stores, such as using volunteered 
smartphone data, or on transport routes, such as on ships or trucks

• Cameras positioned at a location of interest

• Weather and pollution sensors

The Internet of Things (IoT) will further accelerate the large-scale collection of this type of 
alternative data by embedding networked microprocessors into personal and commercial 
electronic devices, such as home appliances, public spaces, and industrial production 
processes.

Sensor-based alternative data that contains satellite images, mobile app usage, or cellular-
location tracking is typically available with a 3- to 4-year history.

Satellites

The resources and timelines required to launch a geospatial imaging satellite have dropped 
dramatically; instead of tens of millions of dollars and years of preparation, the cost has 
fallen to around $100,000 to place a small satellite as a secondary payload into a low Earth 
orbit. Hence, companies can obtain much higher-frequency coverage (currently about daily) 
of specific locations using entire fleets of satellites.

Use cases include monitoring economic activity that can be captured using aerial coverage, 
such as agricultural and mineral production and shipments, or the construction of 
commercial or residential buildings or ships; industrial incidents, such as fires; or car and 
foot traffic at locations of interest. Related sensor data is contributed by drones that are 
used in agriculture to monitor crops using infrared light.

Several challenges often need to be addressed before satellite image data can be reliably 
used in ML models. In addition to substantial preprocessing, these include accounting for 
weather conditions such as cloud cover and seasonal effects around holidays. Satellites may 
also offer only irregular coverage of specific locations that could affect the quality of the 
predictive signals.

Geolocation data

Geolocation data is another rapidly growing category of alternative data generated by 
sensors. A familiar source is smartphones, with which individuals voluntarily share their 
geographic location through an application, or from wireless signals such as GPS, CDMA, 
or Wi-Fi that measure foot traffic around places of interest, such as stores, restaurants, or 
event venues.
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Furthermore, an increasing number of airports, shopping malls, and retail stores have 
installed sensors that track the number and movements of customers. While the original 
motivation to deploy these sensors was often to measure the impact of marketing activity, 
the resulting data can also be used to estimate foot traffic or sales. Sensors to capture 
geolocation data include 3D stereo video and thermal imaging, which lowers privacy 
concerns but works well with moving objects. There are also sensors attached to ceilings, 
as well as pressure-sensitive mats. Some providers use multiple sensors in combination, 
including vision, audio, and cellphone location, for a comprehensive account of the shopper 
journey, which includes not only the count and duration of visits, but extends to the 
conversion and measurement of repeat visits.

Criteria for evaluating alternative data
The ultimate objective of alternative data is to provide an informational advantage in the 
competitive search for trading signals that produce alpha, namely positive, uncorrelated 
investment returns. In practice, the signals extracted from alternative datasets can be 
used on a standalone basis or combined with other signals as part of a quantitative 
strategy. Independent usage is viable if the Sharpe ratio generated by a strategy based on 
a single dataset is sufficiently high, but that is rare in practice. (See Chapter 4, Financial 
Feature Engineering – How to Research Alpha Factors, for details on signal measurement and 
evaluation.)

Quant firms are building libraries of alpha factors that may be weak signals individually 
but can produce attractive returns in combination. As highlighted in Chapter 1, Machine 
Learning for Trading – From Idea to Execution, investment factors should be based on 
a fundamental and economic rationale; otherwise, they are more likely the result of 
overfitting to historical data than persisting and generating alpha on new data.

Signal decay due to competition is a serious concern, and as the alternative data ecosystem 
evolves, it is unlikely that many datasets will retain meaningful Sharpe ratio signals. 
Effective strategies to extend the half-life of the signal content of an alternative dataset 
include exclusivity agreements, or a focus on datasets that pose processing challenges to 
raise the barriers to entry.

An alternative dataset can be evaluated based on the quality of its signal content, 
qualitative aspects of the data, and various technical aspects.

Quality of the signal content
The signal content can be evaluated with respect to the target asset class, the investment 
style, the relation to conventional risk premiums, and most importantly, its alpha content.
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Asset classes

Most alternative datasets contain information directly relevant to equities and commodities. 
Interesting datasets targeting investments in real estate have also multiplied after Zillow 
successfully pioneered price estimates in 2006.

Alternative data on corporate credit is growing as alternative sources for monitoring 
corporate payments, including for smaller businesses, are being developed. Data on fixed 
income and around interest-rate projections is a more recent phenomenon but continues to 
increase as more product sales and price information are being harvested at scale.

Investment style

The majority of datasets focus on specific sectors and stocks, and as such, naturally 
appeal to long-short equity investors. As the scale and scope of alternative data collection 
continues to rise, alternative data will likely also become relevant to investors in macro 
themes, such as consumer credit, activity in emerging markets, and commodity trends.

Some alternative datasets that reflect broader economic activity or consumer sentiment can 
be used as proxies for traditional measures of market risk. In contrast, signals that capture 
news may be more relevant to high-frequency traders that use quantitative strategies over a 
brief time horizon.

Risk premiums

Some alternative datasets, such as credit card payments or social media sentiment, have 
been shown to produce signals that have a low correlation (lower than 5 percent) with 
traditional risk premiums in equity markets, such as value, momentum, and quality 
of volatility. As a result, combining signals derived from such alternative data with an 
algorithmic trading strategy based on traditional risk factors can be an important building 
block toward a more diversified risk premiums portfolio.

Alpha content and quality

The signal strength required to justify the investment in an alternative dataset naturally 
depends on its costs, and alternative data prices vary widely. Data that scores social 
sentiment can be acquired for a few thousand dollars or less, while the cost of a dataset on 
comprehensive and timely credit card payments can cost several million per year.

We will explore in detail how to evaluate trading strategies driven by alternative data using 
historical data, so-called backtests, to estimate the amount of alpha contained in a dataset. In 
isolated cases, a dataset may contain sufficient alpha signal to drive a strategy on a standalone 
basis, but more typical is the combined use of various alternative and other sources of data. 
In these cases, a dataset permits the extraction of weak signals that produce a small positive 
Sharpe ratio that would not receive a capital allocation on its own but can deliver a portfolio-
level strategy when integrated with similar other signals. This is not guaranteed, however, 
as there are also many alternative datasets that do not contain any alpha content.
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Besides evaluating a dataset's alpha content, it is also important to assess to which extent 
a signal is incremental or orthogonal—that is, unique to a dataset or already captured by 
other data—and in the latter case, compare the costs for this type of signal.

Finally, it is essential to evaluate the potential capacity of a strategy that relies on a given, 
that is, the amount of capital that can be allocated without undermining its success. This is 
because a capacity limit will make it more difficult to recover the cost of the data.

Quality of the data
The quality of a dataset is another important criterion because it impacts the effort required 
to analyze and monetize it, and the reliability of the predictive signal it contains. Quality 
aspects include the data frequency and the length of its available history, the reliability 
or accuracy of the information it contains, the extent to which it complies with current or 
potential future regulations, and how exclusive its use is.

Legal and reputational risks

The use of alternative datasets may carry legal or reputational risks, especially when they 
include the following items:

• Material non-public information (MNPI), because it implies an infringement of 
insider trading regulations

• Personally identifiable information (PII), primarily since the European Union has 
enacted the General Data Protection Regulation (GDPR)

Accordingly, legal and compliance requirements need a thorough review. There could also 
be conflicts of interest when the provider of the data is also a market participant that is 
actively trading based on the dataset.

Exclusivity

The likelihood that an alternative dataset contains a signal that is sufficiently predictive to 
drive a strategy on a standalone basis, with a high Sharpe ratio for a meaningful period, 
is inversely related to its availability and ease of processing. In other words, the more 
exclusive and harder to process the data, the better the chances that a dataset with alpha 
content can drive a strategy without suffering rapid signal decay.

Public fundamental data that provides standard financial ratios contains little alpha and 
is not attractive for a standalone strategy, but it may help diversify a portfolio of risk 
factors. Large, complex datasets will take more time to be absorbed by the market, and new 
datasets continue to emerge on a frequent basis. Hence, it is essential to assess how familiar 
other investors already are with a dataset, and whether the provider is the best source for 
this type of information.
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Additional benefits to exclusivity or being an early adopter of a new dataset may arise 
when a business just begins to sell exhaust data that it generated for other purposes. This is 
because it may be possible to influence how the data is collected or curated, or to negotiate 
conditions that limit access for competitors at least for a certain time period.

Time horizon

A more extensive history is highly desirable to test the predictive power of a dataset in 
different scenarios. The availability varies greatly between several months and several 
decades, and has important implications for the scope of the trading strategy that can 
be built and tested based on the data. We mentioned some ranges for time horizons for 
different datasets when introducing the main types of sources.

Frequency

The frequency of the data determines how often new information becomes available and 
how differentiated a predictive signal can be over a given period. It also impacts the time 
horizon of the investment strategy and ranges from intra-day to daily, weekly, or an even 
lower frequency.

Reliability

Naturally, the degree to which the data accurately reflects what it intends to measure or 
how well this can be verified is of significant concern and should be validated by means 
of a thorough audit. This applies to both raw and processed data, where the methodology 
used to extract or aggregate information needs to be analyzed, taking into account the cost-
benefit ratio for the proposed acquisition.

Technical aspects
Technical aspects concern the latency, or delay of reporting, and the format in which the 
data is made available.

Latency

Data providers often provide resources in batches, and a delay can result from how the 
data is collected, subsequent processing and transmission, as well as regulatory or legal 
constraints.
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Format

The data is made available in a broad range of formats, depending on the source. Processed 
data will be in user-friendly formats and easily integrated into existing systems or queries 
via a robust API. On the other end of the spectrum are voluminous data sources, such as 
video, audio, or image data, or a proprietary format, that require more skills to prepare for 
analysis, but also provide higher barriers to entry for potential competitors.

The market for alternative data
The investment industry spent an estimated $2-3 billion on data services in 2018, and this 
number is expected to grow at a double-digit rate per year in line with other industries. 
This expenditure includes the acquisition of alternative data, investments in related 
technology, and the hiring of qualified talent.

A survey by Ernst & Young shows significant adoption of alternative data in 2017; 43 
percent of funds were using scraped web data, for instance, and almost 30 percent were 
experimenting with satellite data (see Figure 3.1). Based on the experience so far, fund 
managers considered scraped web data and credit card data to be most insightful, in 
contrast to geolocation and satellite data, which around 25 percent considered to be less 
informative:

Figure 3.1: Usefulness and usage of alternative data (Source: Ernst & Young, 2017)
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Reflecting the rapid growth of this new industry, the market for alternative data 
providers is quite fragmented. J.P. Morgan lists over 500 specialized data firms, 
while AlternativeData.org lists over 300. Providers play numerous roles, including 
intermediaries such as consultants, aggregators, and tech solutions; sell-side supports 
deliver data in various formats, ranging from raw to semi-processed data or some form of a 
signal extracted from one or more sources.

We will highlight the size of the main categories and profile a few prominent examples to 
illustrate their diversity.

Data providers and use cases
AlternativeData.org (supported by the provider YipitData) lists several categories that 
can serve as a rough proxy for activity in various data-provider segments. Social sentiment 
analysis is by far the largest category, while satellite and geolocation data have been 
growing rapidly in recent years:

Product category # Providers

Social sentiment 48

Satellite 26

Geolocation 22

Web data and traffic 22

Infrastructure and interfaces 20

Consultants 18

Credit and debit card usage 14

Data brokers 10

Public data 10

App usage 7

Email and consumer receipts 6

Sell side 6

Weather 4

Other 87

The following brief examples aim to illustrate the broad range of service providers and 
potential use cases.

Social sentiment data

Social sentiment analysis is most closely associated with Twitter data. Gnip was an early 
social-media aggregator that provided data from numerous sites using an API and was 
acquired by Twitter in 2014 for $134 million. Search engines are another source that became 
prominent when researchers published, in Nature, that investment strategies based on 
Google Trends for terms such as debt could be used for a profitable trading strategy over an 
extended period (Preis, Moat, and Stanley 2013).

http://AlternativeData.org
http://AlternativeData.org
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Dataminr

Dataminr was founded in 2009 and provides social-sentiment and news analysis based 
on an exclusive agreement with Twitter. The company is one of the larger alternative 
providers and raised an additional $391 million in funding in June 2018, led by Fidelity, at a 
$1.6 billion valuation, bringing total funding to $569 billion. It emphasizes real-time signals 
extracted from social media feeds using machine learning and serves a wide range of 
clients, including not only buy - and sell-side investment firms, but also news organizations 
and the public sector.

StockTwits

StockTwits is a social network and micro-blogging platform where several hundred 
thousand investment professionals share information and trading ideas in the form of 
StockTwits. These are viewed by a large audience across the financial web and social 
media platforms. This data can be exploited because it may reflect investor sentiment or 
itself drive trades that, in turn, impact prices. Nasseri, Tucker, and de Cesare (2015) built a 
trading strategy on selected features.

RavenPack

RavenPack analyzes a large amount of diverse, unstructured, text-based data to produce 
structured indicators, including sentiment scores, that aim to deliver information relevant 
to investors. The underlying data sources range from premium newswires and regulatory 
information to press releases and over 19,000 web publications. J.P. Morgan tested a long-short 
sovereign bond and equity strategies based on sentiment scores and achieved positive results, 
with a low correlation to conventional risk premiums (Kolanovic and Krishnamachari, 2017).

Satellite data

RS Metrics, founded in 2010, triangulates geospatial data from satellites, drones, and 
airplanes with a focus on metals and commodities, as well as real estate and industrial 
applications. The company offers signals, predictive analytics, alerts, and end-user 
applications based on its own high-resolution satellites. Use cases include the estimation 
of retail traffic at certain chains or commercial real estate, as well as the production and 
storage of certain common metals or employment at related production locations.

Geolocation data

Advan, founded in 2015, serves hedge fund clients with signals derived from mobile phone 
traffic data, targeting 1,600 tickers across various sectors in the US and EU. The company 
collects data using apps that install geolocation codes on smartphones with explicit user 
consent and track location using several channels (such as Wi-Fi, Bluetooth, and cellular 
signal) for enhanced accuracy. The use cases include estimates of customer traffic at 
physical store locations, which, in turn, can be used as input to models that predict the 
top-line revenues of traded companies.
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Email receipt data

Eagle Alpha provides, among other services, data on a large set of online transactions 
using email receipts, covering over 5,000 retailers, including SKU-level transaction data 
categorized into 53 product groups. J.P. Morgan analyzed a time series dataset, covering 
2013-16, that covered a constant group of users active throughout the entire sample period. 
The dataset contained the total aggregate spend, number of orders, and number of unique 
buyers per period (Kolanovic and Krishnamachari, 2017).

Working with alternative data
We will illustrate the acquisition of alternative data using web scraping, targeting first 
OpenTable restaurant data, and then move on to earnings call transcripts hosted by 
Seeking Alpha.

Scraping OpenTable data
Typical sources of alternative data are review websites such as Glassdoor or Yelp, which 
convey insider insights using employee comments or guest reviews. Clearly, user-
contributed content does not capture a representative view, but rather is subject to severe 
selection biases. We'll look at Yelp reviews in Chapter 14, Text Data for Trading – Sentiment 
Analysis, for example, and find many more very positive and negative ratings on the 
five-star scale than you might expect. Nonetheless, this data can be valuable input for ML 
models that aim to predict a business's prospects or market value relative to competitors or 
over time to obtain trading signals.

The data needs to be extracted from the HTML source, barring any legal obstacles. To 
illustrate the web scraping tools that Python offers, we'll retrieve information on restaurant 
bookings from OpenTable. Data of this nature can be used to forecast economic activity by 
geography, real estate prices, or restaurant chain revenues.

Parsing data from HTML with Requests and BeautifulSoup

In this section, we will request and parse HTML source code. We will be using the Requests 
library to make Hypertext Transfer Protocol (HTTP) requests and retrieve the HTML 
source code. Then, we'll rely on the Beautiful Soup library, which makes it easy to parse the 
HTML markup code and extract the text content we are interested in.

We will, however, encounter a common obstacle: websites may request certain information 
from the server only after initial page-load using JavaScript. As a result, a direct HTTP 
request will not be successful. To sidestep this type of protection, we will use a headless 
browser that retrieves the website content as a browser would:
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from bs4 import BeautifulSoup

import requests

# set and request url; extract source code

url = https://www.opentable.com/new-york-restaurant-listings

html = requests.get(url)

html.text[:500]

' <!DOCTYPE html><html lang="en"><head><meta charset="utf-8"/><meta 
http-equiv="X-UA-Compatible" content="IE=9; IE=8; IE=7; IE=EDGE"/> 
<title>Restaurant Reservation Availability</title> <meta name="robots" 
content="noindex" > </meta> <link rel="shortcut icon" href="//components.
otstatic.com/components/favicon/1.0.4/favicon/favicon.ico" type="image/
x-icon"/><link rel="icon" href="//components.otstatic.com/components/
favicon/1.0.4/favicon/favicon-16.png" sizes="16x16"/><link rel='

Now, we can use Beautiful Soup to parse the HTML content, and then look for all span tags 
with the class associated with the restaurant names that we obtain by inspecting the source 
code, rest-row-name-text (see the GitHub repository for linked instructions to examine 
website source code):

# parse raw html => soup object

soup = BeautifulSoup(html.text, 'html.parser')

# for each span tag, print out text => restaurant name

for entry in soup.find_all(name='span', attrs={'class':'rest-row-name-text'}):
    print(entry.text)

Wade Coves

Alley

Dolorem Maggio

Islands

...

Once you have identified the page elements of interest, Beautiful Soup makes it easy to 
retrieve the contained text. If you want to get the price category for each restaurant, for 
example, you can use:

# get the number of dollars signs for each restaurant

for entry in soup.find_all('div', {'class':'rest-row-pricing'}):
    price = entry.find('i').text

When you try to get the number of bookings, however, you just get an empty list because 
the site uses JavaScript code to request this information after the initial loading is complete:

soup.find_all('div', {'class':'booking'})
[]

This is precisely the challenge we mentioned earlier—rather than sending all content 
to the browser as a static page that can be easily parsed, JavaScript loads critical pieces 
dynamically. To obtain this content, we need to execute the JavaScript just like a browser—
that's what Selenium is for.
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Introducing Selenium – using browser automation

We will use the browser automation tool Selenium to operate a headless Firefox browser 
that will parse the HTML content for us.

The following code opens the Firefox browser:

from selenium import webdriver

# create a driver called Firefox

driver = webdriver.Firefox()

Let's close the browser:

# close it

driver.close()

Now, we retrieve the HTML source code, including the parts loaded dynamically, with 
Selenium and Firefox. To this end, we provide the URL to our driver and then use its page_
source attribute to get the full-page content, as displayed in the browser.

From here on, we can fall back on Beautiful Soup to parse the HTML, as follows:

import time, re

# visit the opentable listing page

driver = webdriver.Firefox()

driver.get(url)

time.sleep(1) # wait 1 second

# retrieve the html source

html = driver.page_source

html = BeautifulSoup(html, "lxml")

for booking in html.find_all('div', {'class': 'booking'}):
    match = re.search(r'\d+', booking.text)

    if match:

        print(match.group())

Building a dataset of restaurant bookings and ratings

Now, you only need to combine all the interesting elements from the website to create a 
feature that you could use in a model to predict economic activity in geographic regions, or 
foot traffic in specific neighborhoods.

With Selenium, you can follow the links to the next pages and quickly build a dataset of over 
10,000 restaurants in NYC, which you could then update periodically to track a time series. 

First, we set up a function that parses the content of the pages that we plan on crawling, 
using the familiar Beautiful Soup parse syntax:
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def parse_html(html):

    data, item = pd.DataFrame(), {}

    soup = BeautifulSoup(html, 'lxml')

    for i, resto in enumerate(soup.find_all('div',
                                           class_='rest-row-info')):

        item['name'] = resto.find('span',
                                 class_='rest-row-name-text').text

        booking = resto.find('div', class_='booking')
        item['bookings'] = re.search('\d+', booking.text).group() \

            if booking else 'NA'

        rating = resto.find('div', class_='star-rating-score')
        item['rating'] = float(rating['aria-label'].split()[0]) \
            if rating else 'NA'

        reviews = resto.find('span', class_='underline-hover')
        item['reviews'] = int(re.search('\d+', reviews.text).group()) \

            if reviews else 'NA'

        item['price'] = int(resto.find('div', class_='rest-row-pricing')
                            .find('i').text.count('$'))
        cuisine_class = 'rest-row-meta--cuisine rest-row-meta-text 
sfx1388addContent'

        item['cuisine'] = resto.find('span', class_=cuisine_class).text
        location_class = 'rest-row-meta--location rest-row-meta-text 
sfx1388addContent'

        item['location'] = resto.find('span', class_=location_class).text
        data[i] = pd.Series(item)

    return data.T

Then, we start a headless browser that continues to click on the Next button for us and 
captures the results displayed on each page:

restaurants = pd.DataFrame()

driver = webdriver.Firefox()

url = https://www.opentable.com/new-york-restaurant-listings

driver.get(url)

while True:

    sleep(1)

    new_data = parse_html(driver.page_source)

    if new_data.empty:

        break

    restaurants = pd.concat([restaurants, new_data], ignore_index=True)

    print(len(restaurants))

    driver.find_element_by_link_text('Next').click()
driver.close()
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A sample run in early 2020 yields location, cuisine, and price category information on 
10,000 restaurants. Furthermore, there are same-day booking figures for around 1,750 
restaurants (on a Monday), as well as ratings and reviews for around 3,500 establishments.

Figure 3.2 shows a quick summary: the left panel displays the breakdown by price category 
for the top 10 locations with the most restaurants. The central panel suggests that ratings 
are better, on average, for more expensive restaurants, and the right panel highlights that 
better - rated restaurants receive more bookings. Tracking this information over time could 
be informative, for example, with respect to consumer sentiment, location preferences, or 
specific restaurant chains:

 Figure 3.2: OpenTable data summary

Websites continue to change, so this code may stop working at some point. To update our 
bot, we need to identify the changes to the site navigation, such as new class or ID names, 
and correct the parser accordingly.

Taking automation one step further with Scrapy and Splash

Scrapy is a powerful library used to build bots that follow links, retrieve the content, 
and store the parsed result in a structured way. In combination with the Splash headless 
browser, it can also interpret JavaScript and becomes an efficient alternative to Selenium.

You can run the spider using the scrapy crawl opentable command in the 01_opentable 
directory, where the results are logged to spider.log:

from opentable.items import OpentableItem

from scrapy import Spider

from scrapy_splash import SplashRequest

class OpenTableSpider(Spider):

    name = 'opentable'

    start_urls = ['https://www.opentable.com/new-york-restaurant-

                   listings']

    def start_requests(self):

        for url in self.start_urls:

            yield SplashRequest(url=url,

                                callback=self.parse,

                                endpoint='render.html',
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                                args={'wait': 1},

                                )

    def parse(self, response):

        item = OpentableItem()

        for resto in response.css('div.rest-row-info'):

            item['name'] = resto.css('span.rest-row-name-

                                      text::text').extract()

            item['bookings'] = 

                  resto.css('div.booking::text').re(r'\d+')

            item['rating'] = resto.css('div.all-

                  stars::attr(style)').re_first('\d+')
            item['reviews'] = resto.css('span.star-rating-text--review-

                                         text::text').re_first(r'\d+')
            item['price'] = len(resto.css('div.rest-row-pricing > 

                                i::text').re('\$'))
            item['cuisine'] = resto.css('span.rest-row-meta—

                                         cuisine::text').extract()

            item['location'] = resto.css('span.rest-row-meta—

                               location::text').extract()

            yield item

There are numerous ways to extract information from this data beyond the reviews and 
bookings of individual restaurants or chains.

We could further collect and geo-encode the restaurants' addresses, for instance, to link 
the restaurants' physical location to other areas of interest, such as popular retail spots or 
neighborhoods to gain insights into particular aspects of economic activity. As mentioned 
previously, such data will be most valuable in combination with other information.

Scraping and parsing earnings call transcripts
Textual data is an essential alternative data source. One example of textual information is 
the transcripts of earnings calls, where executives do not only present the latest financial 
results, but also respond to questions by financial analysts. Investors utilize transcripts to 
evaluate changes in sentiment, emphasis on particular topics, or style of communication.

We will illustrate the scraping and parsing of earnings call transcripts from the popular 
trading website www.seekingalpha.com. As in the OpenTable example, we'll use Selenium 
to access the HTML code and Beautiful Soup to parse the content. To this end, we begin by 
instantiating a Selenium webdriver instance for the Firefox browser:

http://www.seekingalpha.com
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from urllib.parse import urljoin

from bs4 import BeautifulSoup

from furl import furl

from selenium import webdriver

transcript_path = Path('transcripts')

SA_URL = 'https://seekingalpha.com/'

TRANSCRIPT = re.compile('Earnings Call Transcript')

next_page = True

page = 1

driver = webdriver.Firefox()

Then, we iterate over the transcript pages, creating the URLs based on the navigation 
logic we obtained from inspecting the website. As long as we find relevant hyperlinks to 
additional transcripts, we access the webdriver's page_source attribute and call the parse_
html function to extract the content:

while next_page:

    url = f'{SA_URL}/earnings/earnings-call-transcripts/{page}'

    driver.get(urljoin(SA_URL, url))

    response = driver.page_source

    page += 1

    soup = BeautifulSoup(response, 'lxml')

    links = soup.find_all(name='a', string=TRANSCRIPT)
    if len(links) == 0:

        next_page = False

    else:

        for link in links:

            transcript_url = link.attrs.get('href')

            article_url = furl(urljoin(SA_URL, 

                           transcript_url)).add({'part': 'single'})

            driver.get(article_url.url)

            html = driver.page_source

            meta, participants, content = parse_html(html)

            meta['link'] = link

driver.close()

To collect structured data from the unstructured transcripts, we can use regular expressions 
in addition to Beautiful Soup.
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They allow us to collect detailed information not only about the earnings call company 
and timing, but also about who was present and attribute the statements to analysts and 
company representatives:

def parse_html(html):

    date_pattern = re.compile(r'(\d{2})-(\d{2})-(\d{2})')

    quarter_pattern = re.compile(r'(\bQ\d\b)')

    soup = BeautifulSoup(html, 'lxml')

    meta, participants, content = {}, [], []

    h1 = soup.find('h1', itemprop='headline').text
    meta['company'] = h1[:h1.find('(')].strip()
    meta['symbol'] = h1[h1.find('(') + 1:h1.find(')')]
    title = soup.find('div', class_='title').text
    match = date_pattern.search(title)

    if match:

        m, d, y = match.groups()

        meta['month'] = int(m)

        meta['day'] = int(d)

        meta['year'] = int(y)

    match = quarter_pattern.search(title)

    if match:

        meta['quarter'] = match.group(0)

    qa = 0

    speaker_types = ['Executives', 'Analysts']

    for header in [p.parent for p in soup.find_all('strong')]:
        text = header.text.strip()

        if text.lower().startswith('copyright'):

            continue

        elif text.lower().startswith('question-and'):

            qa = 1

            continue

        elif any([type in text for type in speaker_types]):

            for participant in header.find_next_siblings('p'):
                if participant.find('strong'):
                    break

                else:

                    participants.append([text, participant.text])

        else:

            p = []

            for participant in header.find_next_siblings('p'):
                if participant.find('strong'):
                    break

                else:

                    p.append(participant.text)

            content.append([header.text, qa, '\n'.join(p)])

    return meta, participants, content
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We'll store the result in several .csv files for easy access when we use ML to process natural 
language in Chapters 14-16:

def store_result(meta, participants, content):

    path = transcript_path / 'parsed' / meta['symbol']

    pd.DataFrame(content, columns=['speaker', 'q&a', 

              'content']).to_csv(path / 'content.csv', index=False)

    pd.DataFrame(participants, columns=['type', 'name']).to_csv(path / 

                 'participants.csv', index=False)

    pd.Series(meta).to_csv(path / 'earnings.csv')

See the README in the GitHub repository for additional details and references for further 
resources to learn how to develop web scraping applications.

Summary
In this chapter, we introduced new sources of alternative data made available as a result 
of the big data revolution, including individuals, business processes, and sensors, such 
as satellites or GPS location devices. We presented a framework to evaluate alternative 
datasets from an investment perspective and laid out key categories and providers to 
help you navigate this vast and quickly expanding area that provides critical inputs for 
algorithmic trading strategies that use ML.

We also explored powerful Python tools you can use to collect your own datasets at scale. 
We did this so that you can potentially work on getting your private informational edge as 
an algorithmic trader using web scraping.

We will now proceed, in the following chapter, to the design and evaluation of alpha 
factors that produce trading signals and look at how to combine them in a portfolio context.
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4
Financial Feature Engineering – 

How to Research Alpha Factors

Algorithmic trading strategies are driven by signals that indicate when to buy or sell assets 
to generate superior returns relative to a benchmark, such as an index. The portion of an 
asset's return that is not explained by exposure to this benchmark is called alpha, and hence 
the signals that aim to produce such uncorrelated returns are also called alpha factors.

If you are already familiar with ML, you may know that feature engineering is 
a key ingredient for successful predictions. This is no different in trading. Investment, 
however, is particularly rich in decades of research into how markets work, and which 
features may work better than others to explain or predict price movements as a result. This 
chapter provides an overview as a starting point for your own search for alpha factors.

This chapter also presents key tools that facilitate computing and testing alpha factors. We 
will highlight how the NumPy, pandas, and TA-Lib libraries facilitate the manipulation of 
data and present popular smoothing techniques like the wavelets and the Kalman filter, 
which help reduce noise in data.

We will also preview how you can use the trading simulator Zipline to evaluate the 
predictive performance of (traditional) alpha factors. We will discuss key alpha factor 
metrics like the information coefficient and factor turnover. An in-depth introduction to 
backtesting trading strategies that use machine learning follows in Chapter 6, The Machine 
Learning Process, which covers the ML4T workflow that we will use throughout this book to 
evaluate trading strategies.
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In particular, this chapter will address the following topics:

• Which categories of factors exist, why they work, and how to measure them

• Creating alpha factors using NumPy, pandas, and TA-Lib

• How to denoise data using wavelets and the Kalman filter
• Using Zipline offline and on Quantopian to test individual and multiple 

alpha factors

• How to use Alphalens to evaluate predictive performance and turnover using, 
among other metrics, the information coefficient (IC)

Alpha factors in practice – from data to signals 
Alpha factors are transformations of raw data that aim to predict asset price movements. 
They are designed to capture risks that drive asset returns. A factor may combine one or 
several inputs, but outputs a single value for each asset, every time the strategy evaluates 
the factor to obtain a signal. Trade decisions may rely on relative factor values across assets 
or patterns for a single asset.

The design, evaluation, and combination of alpha factors are critical steps during the 
research phase of the algorithmic trading strategy workflow, which is displayed in 
Figure 4.1:

Figure 4.1: Alpha factor research and execution workflow

This chapter focuses on the research phase; the next chapter covers the execution phase. 
The remainder of this book will then focus on how to leverage ML to learn new factors 
from data and effectively aggregate the signals from multiple alpha factors.

You can find the code samples for this chapter and links to 
additional resources in the corresponding directory of the GitHub 
repository. The notebooks include color versions of the images. 
The Appendix, Alpha Factor Library, contains additional information 
on financial feature engineering, including more than 100 worked 
examples that you can leverage for your own strategy..
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Alpha factors are transformations of market, fundamental, and alternative data that contain 
predictive signals. Some factors describe fundamental, economy-wide variables such as 
growth, inflation, volatility, productivity, and demographic risk. Other factors represent 
investment styles, such as value or growth, and momentum investing that can be traded 
and are thus priced by the market. There are also factors that explain price movements 
based on the economics or institutional setting of financial markets, or investor behavior, 
including known biases of this behavior.

The economic theory behind factors can be rational so that factors have high returns 
over the long run to compensate for their low returns during bad times. It can also be 
behavioral, where factor risk premiums result from the possibly biased, or not entirely 
rational, behavior of agents that is not arbitraged away.

There is a constant search for and discovery of new factors that may better capture known 
or reflect new drivers of returns. Jason Hsu, the co-founder of Research Affiliates, which 
manages close to $200 billion, identified some 250 factors that had been published with 
empirical evidence in reputable journals by 2015. He estimated that this number was likely 
to increase by 40 factors per year.

To avoid false discoveries and ensure a factor delivers consistent results, it should have 
a meaningful economic intuition based on the various established factor categories like 
momentum, value, volatility, or quality and their rationales, which we'll outline in the next 
section. This makes it more plausible that the factor reflects risks for which the market 
would compensate.

Alpha factors result from transforming raw market, fundamental, or alternative data 
using simple arithmetic, such as absolute or relative changes of a variable over time, ratios 
between data series, or aggregations over a time window like a simple or exponential 
moving average. They also include metrics that have emerged from the technical analysis 
of price and volume patterns, such as the relative strength index of demand versus supply 
and numerous metrics familiar from the fundamental analysis of securities. Kakushadze 
(2016) lists the formulas for 101 alpha factors, 80 percent of which were used in production 
at the WorldQuant hedge fund at the time of writing.

Historically, trading strategies applied simple ranking heuristics, value thresholds, or 
quantile cutoffs to one or several alpha factors computed across multiple securities in the 
investment universe. Examples include the value investing approach popularized in one of 
Warren Buffet's favorite books, Security Analysis, by Graham and Dodd (1934), which relies 
on metrics like the book-to-market ratio. 

Modern research into alpha factors that predict above-market returns has been led by 
Eugene Fama (who won the 2013 Nobel Prize in Economics) and Kenneth French, who 
provided evidence on the size and value factors (1993). This work led to the three- and five-
factor models, which we will discuss in Chapter 7, Linear Models – From Risk Factors to Return 
Forecasts, using daily data on factor returns provided by the authors on their website. An 
excellent, more recent, overview of modern factor investing has been written by Andrew 
Ang (2014), who heads this discipline at BlackRock, which manages close to $7 trillion.
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As we will see throughout this book, ML has proven quite effective in learning to extract 
signals directly from a more diverse and much larger set of input data without using 
prescribed formulas. As we will also see, however, alpha factors remain useful inputs for an 
ML model that combines their information content in a more optimal way than manually 
set rules.

As a result, algorithmic trading strategies today leverage a large number of signals, many 
of which may be weak individually but can yield reliable predictions when combined with 
other model-driven or traditional factors by an ML algorithm.

Building on decades of factor research
In an idealized world, risk factors should be independent of each other, yield positive 
risk premia, and form a complete set that spans all dimensions of risk and explains the 
systematic risks for assets in a given class. In practice, these requirements hold only 
approximately, and there are important correlations between different factors. For instance, 
momentum is often stronger among smaller firms (Hou, Xue, and Zhang, 2015). We will 
show how to derive synthetic, data-driven risk factors using unsupervised learning—in 
particular, principal and independent component analysis —in Chapter 13, Data-Driven Risk 
Factors and Asset Allocation with Unsupervised Learning.

In this section, we will review a few key factor categories prominent in financial research 
and trading applications, explain their economic rationale, and present metrics typically 
used to capture these drivers of returns. 

In the next section, we will demonstrate how to implement some of these factors using 
NumPy and pandas, use the TA-Lib library for technical analysis, and demonstrate how to 
evaluate factors using the Zipline backtesting library. We will also highlight some factors 
built into Zipline that are available on the Quantopian platform.

Momentum and sentiment – the trend is your friend
Momentum investing is among the most well-established factor strategies, underpinned 
by quantitative evidence since Jegadeesh and Titman (1993) for the US equity market. It 
follows the adage: the trend is your friend or let your winners run. Momentum factors are 
designed to go long on assets that have performed well, while going short on assets with 
poor performance over a certain period. Clifford Asness, the founder of the $200 billion 
hedge fund AQR, presented evidence for momentum effects across eight different asset 
classes and markets much more recently (Asness, Moskowitz, and Pedersen, 2013).

The premise of strategies using this factor is that asset prices exhibit a trend, reflected in 
positive serial correlation. Such price momentum defies the hypothesis of efficient markets, 
which states that past price returns alone cannot predict future performance. Despite 
theoretical arguments to the contrary, price momentum strategies have produced positive 
returns across asset classes and are an important part of many trading strategies.
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The chart in Figure 4.2 shows the historical performance of portfolios formed based on their 
exposure to various alpha factors (using data from the Fama-French website). The factor 
winner minus loser (WML) represents the difference in performance between portfolios 
containing US stocks in the top and bottom three deciles, respectively, of the prior 2-12 
months of returns:

Figure 4.2: Returns on various risk factors

The momentum factor dramatically outperformed other prominent risk factors up 
to the 2008 crisis. The other factors include the high-minus-low (HML) value factor, the 
robust-minus-weak (RMW) profitability factor, and the conservative-minus-aggressive 
(CMA) investment factor. The equity premium is the difference between the market return 
(for example, the S&P 500) and the risk-free rate.

Why might momentum and sentiment drive excess returns?

Reasons for the momentum effect point to investor behavior, persistent supply and demand 
imbalances, a positive feedback loop between risk assets and the economy, or the market 
microstructure.

The behavioral rationale reflects the biases of underreaction (Hong, Lim, and Stein, 2000) 
and over-reaction (Barberis, Shleifer, and Vishny, 1998) to market news as investors process 
new information at different speeds. After an initial under-reaction to news, investors 
often extrapolate past behavior and create price momentum. The technology stocks rally 
during the late 90s market bubble was an extreme example. A fear and greed psychology 
also motivates investors to increase exposure to winning assets and continue selling losing 
assets (Jegadeesh and Titman, 2011).
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Momentum can also have fundamental drivers such as a positive feedback loop between 
risk assets and the economy. Economic growth boosts equities, and the resulting wealth 
effect feeds back into the economy through higher spending, again fueling growth. 
Positive feedback between prices and the economy often extends momentum in equities 
and credit to longer horizons than for bonds, FOEX, and commodities, where negative 
feedback creates reversals, requiring a much shorter investment horizon. Another cause 
of momentum can be persistent demand-supply imbalances due to market frictions. One 
example is the delay of commodity production in adjusting to changing demand. Oil 
production may lag higher demand from a booming economy for years, and persistent 
supply shortages can trigger and support upward price momentum (Novy-Marx, 2015).

Over shorter, intraday horizons, market microstructure effects can also create price 
momentum as investors implement strategies that mimic their biases. For example, the 
trading wisdom to cut losses and let profits run has investors use trading strategies such 
as stop-loss, constant proportion portfolio insurance (CPPI), dynamical delta hedging, or 
option-based strategies such as protective puts. These strategies create momentum because 
they imply an advance commitment to sell when an asset underperforms and buy when it 
outperforms. 

Similarly, risk parity strategies (see the next chapter) tend to buy low-volatility assets 
that often exhibit positive performance and sell high-volatility assets that often have had 
negative performance (see the Volatility and size anomalies section later in this chapter). 
The automatic rebalancing of portfolios using these strategies tends to reinforce price 
momentum.

How to measure momentum and sentiment

Momentum factors are typically derived from changes in price time series by identifying 
trends and patterns. They can be constructed based on absolute or relative return by 
comparing a cross-section of assets or analyzing an asset's time series, within or across 
traditional asset classes, and at different time horizons.

A few popular illustrative indicators are listed in the following table (see the Appendix for 
formulas):

Factor Description

Relative strength 
index (RSI)

RSI compares the magnitude of recent price changes across stocks to identify 
stocks as overbought or oversold. A high RSI (usually above 70) indicates 
overbought and a low RSI (typically below 30) indicates oversold. It first 
computes the average price change for a given number (often 14) of prior 

trading days with rising prices ∆𝑝𝑝𝑢𝑢𝑝𝑝  and falling prices ∆𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 , respectively, to 

compute
 
RSI = 100 − 1001 + ∆𝑝𝑝𝑢𝑢𝑝𝑝∆𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

.
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Price momentum

This factor computes the total return for a given number of prior trading 
days. In academic literature, it is common to use the last 12 months except 
for the most recent month due to a short-term reversal effect that's frequently 
observed. However, shorter periods have also been widely used.

12-month price 
momentum 
volume 
adjustment

The indicator normalizes the total return over the previous 12 months by 
dividing it by the standard deviation of these returns.

Price acceleration

Price acceleration calculates the gradient of the price trend (adjusted for 
volatility) using linear regression on daily prices for a longer and a shorter 
period, for example, 1 year and 3 months of trading days, and compares the 
change in the slope as a measure of price acceleration.

Percent off  
52-week high

This factor uses the percent difference between the most recent and the 
highest price for the last 52 weeks.

Additional sentiment indicators include the following metrics; inputs like analyst estimates 
can be obtained from data providers like Quandl or Bloomberg, among others:

Factor Description

Earnings 
estimates count

This metric ranks stocks by the number of consensus estimates as a proxy for 
analyst coverage and information uncertainty. A higher value is more desirable.

N-month 
change in 
recommendation

This factor ranks stocks by the change in consensus recommendation over the 
prior N month, where improvements are desirable (regardless of whether they 
have moved from strong sell to sell or buy to strong buy and so on).

12-month 
change in shares 
outstanding

This factor measures the change in a company's split-adjusted share count 
over the last 12 months, where a negative change implies share buybacks 
and is desirable because it signals that management views the stock as cheap 
relative to its intrinsic and, hence, future value.

6-month change 
in target price

The metric tracks the 6-month change in mean analyst target price. A higher 
positive change is naturally more desirable.

Net earnings 
revisions

This factor expresses the difference between upward and downward revisions 
to earnings estimates as a percentage of the total number of revisions.

Short interest 
to shares 
outstanding

This measure is the percentage of shares outstanding currently being sold 
short, that is, sold by an investor who has borrowed the share and needs to 
repurchase it at a later day while speculating that its price will fall. Hence, 
a high level of short interest indicates negative sentiment and is expected to 
signal poor performance going forward.

There are also numerous data providers that aim to offer sentiment indicators constructed 
from social media, such as Twitter. We will create our own sentiment indicators using 
natural language processing in Part 3 of this book.
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Value factors – hunting fundamental bargains
Stocks with low prices relative to their fundamental value tend to deliver returns in 
excess of a capitalization-weighted benchmark. Value factors reflect this correlation and 
are designed to send buy signals for undervalued assets that are relatively cheap and 
sell signals for overvalued assets. Hence, at the core of any value strategy is a model that 
estimates the asset's fair or fundamental value. Fair value can be defined as an absolute 
price level, a spread relative to other assets, or a range in which an asset should trade.

Relative value strategies

Value strategies rely on the mean-reversion of prices to the asset's fair value. They assume 
that prices only temporarily move away from fair value due to behavioral effects like 
overreaction or herding, or liquidity effects such as temporary market impact or long-
term supply/demand friction. Value factors often exhibit properties opposite to those of 
momentum factors because they rely on mean-reversion. For equities, the opposite of value 
stocks is growth stocks that have a high valuation due to growth expectations.

Value factors enable a broad array of systematic strategies, including fundamental and 
market valuation and cross-asset relative value. They are often collectively labeled 
statistical arbitrage (StatArb) strategies, implemented as market-neutral long/short 
portfolios without exposure to other traditional or alternative risk factors.

Fundamental value strategies

Fundamental value strategies derive fair asset values from economic and fundamental 
indicators that depend on the target asset class. In fixed income, currencies, and 
commodities, indicators include levels and changes in the capital account balance, 
economic activity, inflation, or fund flows. For equities and corporate credit, value factors 
go back to Graham and Dodd's previously mentioned Security Analysis. Equity value 
approaches compare a stock price to fundamental metrics such as book value, top-line 
sales, bottom-line earnings, or various cash-flow metrics.

Market value strategies

Market value strategies use statistical or machine learning models to identify mispricing 
due to inefficiencies in liquidity provision. Statistical and index arbitrage are prominent 
examples that capture the reversion of temporary market impacts over short time horizons. 
(We will cover pairs trading in Chapter 9, Time-Series Models for Volatility Forecasts and 
Statistical Arbitrage). Over longer time horizons, market value trades also leverage seasonal 
effects in equities and commodities.

Cross-asset relative value strategies

Cross-asset relative value strategies focus on mispricing across asset classes. For example, 
convertible bond arbitrage involves trades on the relative value between the bond that 
can be turned into equity and the underlying stock of a single company. Relative value 
strategies also include trades between credit and equity volatility, using credit signals to 
trade equities or trades between commodities and related equities.
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Why do value factors help predict returns?

There are both rational and behavioral explanations for the existence of the value effect, 
defined as the excess return on a portfolio of value stocks relative to a portfolio of growth 
stocks, where the former have a low market value and the latter have a high market value 
relative to fundamentals. We will cite a few prominent examples from a wealth of research 
(see, for example, Fama and French, 1998, and Asness, Moskowitz, and Pedersen, 2013).

In the rational, efficient markets view, the value premium compensates for higher real or 
perceived risks. Researchers have presented evidence that value firms have less flexibility 
to adapt to the unfavorable economic environments than leaner and more flexible growth 
companies, or that value stock risks relate to high financial leverage and more uncertain 
future earnings. Value and small-cap portfolios have also been shown to be more sensitive to 
macro shocks than growth and large-cap portfolios (Lakonishok, Shleifer, and Vishny, 1994).

From a behavioral perspective, the value premium can be explained by loss aversion and 
mental accounting biases. Investors may be less concerned about losses on assets with a 
strong recent performance due to the cushions offered by prior gains. This loss aversion 
bias induces investors to perceive the stock as less risky than before and discount its future 
cash flows at a lower rate. Conversely, poor recent performance may lead investors to raise 
the asset's discount rate.

These differential return expectations can produce a value premium: growth stocks with a 
high price multiple relative to fundamentals have done well in the past, but investors will 
require a lower average return going forward due to their biased perception of lower risks, 
while the inverse is true for value stocks.

How to capture value effects
A large number of valuation proxies are computed from fundamental data. These factors 
can be combined as inputs into a machine learning valuation model to predict asset prices. 
The following examples apply to equities, and we will see how some of these factors are 
used in the following chapters:

Factor Description

Cash flow 
yield

The ratio divides the operational cash flow per share by the share price. A higher 
ratio implies better cash returns for shareholders (if paid out using dividends or 
share buybacks or profitably reinvested in the business).

Free cash 
flow yield

The ratio divides the free cash flow per share, which reflects the amount of cash 
available for distribution after necessary expenses and investments, by the share 
price. Higher and growing free cash flow yield is commonly viewed as a signal 
of outperformance.

Cash flow 
return on 
invested 
capital 
(CFROIC)

CFROIC measures a company's cash flow profitability. It divides operating 
cash flow by invested capital, defined as total debt plus net assets. A higher 
return means the business has more cash for a given amount of invested capital, 
generating more value for shareholders.
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Cash flow to 
total assets

This ratio divides operational cash flow by total assets and indicates how much 
cash a company can generate relative to its assets, where a higher ratio is better, 
as with CFROIC.

Free cash 
flow to 
enterprise 
value

This ratio measures the free cash flow that a company generates relative to its 
enterprise value, measured as the combined value of equity and debt. The debt 
and equity values can be taken from the balance sheet, but market values often 
provide a more accurate picture assuming the corresponding assets are actively 
traded.

EBITDA to 
enterprise 
value

This ratio measures a company's earnings before interest, taxes, depreciation, 
and amortization (EBITDA), which is a proxy for cash flow relative to its 
enterprise value.

Earnings 
yield

This ratio divides the sum of earnings for the past 12 months by the last market 
(close) price.

Earnings 
yield 1-year 
forward

Instead of using historical earnings, this ratio divides the average of earnings 
forecasted by stock analyst for the next 12 months by the last price.

PEG ratio

The price/earnings to growth (PEG) ratio divides a stock's price-to-earnings 
(P/E) ratio by the earnings growth rate for a given period. The ratio adjusts the 
price paid for a dollar of earnings (measured by the P/E ratio) by the company's 
earnings growth.

P/E 1-year 
forward 
relative to the 
sector

Forecasts the P/E ratio relative to the corresponding sector P/E. It aims to 
alleviate the sector bias of the generic P/E ratio by accounting for sector 
differences in valuation.

Sales yield
The ratio measures the valuation of a stock relative to its ability to generate 
revenues. All else being equal, stocks with higher historical sales to price ratios 
are expected to outperform.

Sales yield 
forward

The forward sales-to-price ratio uses analyst sales forecast, combined to a 
(weighted) average.

Book value 
yield

The ratio divides the historical book value by the share price.

Dividend 
yield

The current annualized dividend divided by the last close price. Discounted cash 
flow valuation assumes a company's market value equates to the present value of 
its future cash flows.

Chapter 2, Market and Fundamental Data – Sources and Techniques, discussed how you can 
source the fundamental data used to compute these metrics from company filings.

Volatility and size anomalies
The size effect is among the older risk factors and relates to the excess performance of 
stocks with a low market capitalization (see Figure 4.2 at the beginning of this section). 
More recently, the low-volatility factor has been shown to capture excess returns on 
stocks with below-average volatility, beta, or idiosyncratic risk. Stocks with a larger 
market capitalization tend to have lower volatility so that the traditional size factor is often 
combined with the more recent volatility factor.
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The low volatility anomaly is an empirical puzzle that is at odds with the basic principles of 
finance. The capital asset pricing model (CAPM) and other asset pricing models assert that 
higher risk should earn higher returns (as we will discuss in detail in the next chapter), but 
in numerous markets and over extended periods, the opposite has been true, with less risky 
assets outperforming their riskier peers.

Figure 4.3 plots a rolling mean of the S&P 500 returns of 1990-2019 against the VIX index, 
which measures the implied volatility of at-the-money options on the S&P 100. It illustrates 
how stock returns and this measure of volatility have moved inversely with a negative 
correlation of -.54 over this period. In addition to this aggregate effect, there is also evidence 
that stocks with a greater sensitivity to changes in the VIX perform worse (Ang et al. 2006):

Figure 4.3: Correlation between the VIX and the S&P 500

Why do volatility and size predict returns?

The low volatility anomaly contradicts the hypothesis of efficient markets and the CAPM 
assumptions. Several behavioral explanations have been advanced to explain its existence.

The lottery effect builds on empirical evidence that individuals take on bets that resemble 
lottery tickets with a small expected loss but a large potential win, even though this large 
win may have a fairly low probability. If investors perceive that the risk-return profile of a 
low price, volatile stock is like a lottery ticket, then it could be an attractive bet. As a result, 
investors may overpay for high-volatility stocks and underpay for low-volatility stocks due 
to their biased preferences.

The representativeness bias suggests that investors extrapolate the success of a few, 
well-publicized volatile stocks to all volatile stocks while ignoring the speculative nature 
of such stocks.
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Investors may also be overconfident in their ability to forecast the future, and their 
differences in opinions are higher for volatile stocks with more uncertain outcomes. Since it 
is easier to express a positive view by going long—that is, owning an asset—than a negative 
view by going short, optimists may outnumber pessimists and keep driving up the price of 
volatile stocks, resulting in lower returns.

Furthermore, investors behave differently during bull markets and crises. During bull 
markets, the dispersion of betas is much lower so that low-volatility stocks do not 
underperform much, if at all, whereas during crises, investors seek or keep low-volatility 
stocks and the beta dispersion increases. As a result, lower volatility assets and portfolios 
do better over the long term.

How to measure volatility and size

Metrics used to identify low-volatility stocks cover a broad spectrum, with 
realized volatility (standard deviation) on one end and forecast (implied) volatility and 
correlations on the other end. Some operationalize low volatility as low beta. The evidence 
in favor of the volatility anomaly appears robust for different metrics (Ang, 2014).

Quality factors for quantitative investing
Quality factors aim to capture the excess returns reaped by companies that are highly 
profitable, operationally efficient, safe, stable, and well-governed—in short, high quality. 
The markets also appear to reward relative earnings certainty and penalize stocks with high 
earnings volatility.

A portfolio tilt toward businesses with high quality has been long advocated by stock 
pickers that rely on fundamental analysis, but it is a relatively new phenomenon 
in quantitative investments. The main challenge is how to define the quality factor 
consistently and objectively using quantitative indicators, given the subjective nature of 
quality.

Strategies based on standalone quality factors tend to perform in a counter-cyclical way 
as investors pay a premium to minimize downside risks and drive up valuations. For this 
reason, quality factors are often combined with other risk factors in a multi-factor strategy, 
most frequently with value to produce the quality at a reasonable price strategy.

Long-short quality factors tend to have negative market beta because they are long quality 
stocks that are also low volatility, and short more volatile, low-quality stocks. Hence, quality 
factors are often positively correlated with low volatility and momentum factors, and 
negatively correlated with value and broad market exposure.
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Why quality matters

Quality factors may signal outperformance because superior fundamentals such as 
sustained profitability, steady growth in cash flow, prudent leveraging, a low need for 
capital market financing, or low financial risk underpin the demand for equity shares and 
support the price of such companies in the long run. From a corporate finance perspective, 
a quality company often manages its capital carefully and reduces the risk of over-
leveraging or over-capitalization.

A behavioral explanation suggests that investors under-react to information about quality, 
similar to the rationale for momentum, where investors chase winners and sell losers.

Another argument for quality premia is a herding argument, similar to growth stocks. Fund 
managers may find it easier to justify buying a company with strong fundamentals, even 
when it is getting expensive, rather than a more volatile (risky) value stock.

How to measure asset quality

Quality factors rely on metrics computed from the balance sheet and income statement, 
which indicate profitability reflected in high profit or cash flow margins, operating 
efficiency, financial strength, and competitiveness more broadly because it implies the 
ability to sustain a profitability position over time.

Hence, quality has been measured using gross profitability (which has been recently 
added to the Fama–French factor model; see Chapter 7, Linear Models – From Risk Factors 
to Return Forecasts), return on invested capital, low earnings volatility, or a combination of 
various profitability, earnings quality, and leverage metrics, with some options listed in the 
following table.

Earnings management is mainly exercised by manipulating accruals. Hence, the size of 
accruals is often used as a proxy for earnings quality: higher total accruals relative to assets 
make low earnings quality more likely. However, this is not unambiguous as accruals can 
reflect earnings manipulation just as well as accounting estimates of future business growth:

Factor Description

Asset turnover
This factor measures how efficiently a company uses its assets, which require 
capital, to produce revenue and is calculated by dividing sales by total assets. 
A higher turnover is better.

Asset turnover 
12-month 
change

This factor measures a change in management's efficiency in using assets to 
produce revenue over the last year. Stocks with the highest level of efficiency 
improvements are typically expected to outperform.

Current ratio
The current ratio is a liquidity metric that measures a company's ability to pay 
short-term obligations. It compares a company's current assets to its current 
liabilities, and a higher current ratio is better from a quality perspective.

Interest coverage
This factor measures how easily a company will be able to pay interest on its 
debt. It is calculated by dividing a company's earnings before interest and 
taxes (EBIT) by its interest expense. A higher ratio is desirable.
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Leverage
A firm with significantly more debt than equity is considered to be highly 
leveraged. The debt-to-equity ratio is typically inversely related to prospects, 
with lower leverage being better.

Payout ratio
The share of earnings paid out in dividends to shareholders. Stocks with 
higher payout ratios are ranked higher.

Return on equity 
(ROE)

ROE is computed as the ratio of net income to shareholders' equity. Equities 
with higher historical returns on equity are ranked higher.

Equipped with a high-level categorization of alpha factors that have been shown to be 
associated with abnormal returns to varying degrees, we'll now start developing our own 
financial features from market, fundamental, and alternative data.

Engineering alpha factors that predict returns
Based on a conceptual understanding of key factor categories, their rationale, and popular 
metrics, a key task is to identify new factors that may better capture the risks embodied 
by the return drivers laid out previously, or to find new ones. In either case, it will be 
important to compare the performance of innovative factors to that of known factors to 
identify incremental signal gains.

Key tools that facilitate the transformation of data into factors include the Python libraries 
for numerical computing, NumPy and pandas, as well as the Python wrapper around the 
specialized library for technical analysis, TA-Lib. Alternatives include the expression alphas 
developed in Zura Kakushadze's 2016 paper, 101 Formulaic Alphas, and implemented by the 
alphatools library. In addition, the Quantopian platform provides a large number of built-in 
factors to speed up the research process.

To apply one or more factors to an investment universe, we can use the Zipline backtesting 
library (which also includes some built-in factors) and evaluate their performance using the 
Alphalens library using metrics discussed in the following section.

How to engineer factors using pandas and NumPy
NumPy and pandas are the key tools for custom factor computations. This section 
demonstrates how they can be used to quickly compute the transformations that yield 
various alpha factors. If you are not familiar with these libraries, in particular pandas, 
which we will use throughout this book, please see the README for this chapter in the 
GitHub repo for links to documentation and tutorials.
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The notebook feature_engineering.ipynb in the alpha_factors_in_practice directory 
contains examples of how to create various factors. The notebook uses data generated by 
the create_data.ipynb notebook in the data folder in the root directory of the GitHub repo, 
which is stored in HDF5 format for faster access. See the notebook storage_benchmarks.
ipynb in the directory for Chapter 2, in the GitHub repo for a comparison of parquet, HDF5, 
and CSV storage formats for pandas DataFrames.

The NumPy library for scientific computing was created by Travis Oliphant in 2005 by 
integrating the older Numeric and Numarray libraries that had been developed since the 
mid-1990s. It is organized in a high-performance n-dimensional array data structure called 
ndarray, which enables functionality comparable to MATLAB.

The pandas library emerged in 2008 when Wes McKinney was working at AQR Capital 
Management. It provides the DataFrame data structure, which is based on NumPy's ndarray, 
but allows for more user-friendly data manipulation with label-based indexing. It includes 
a wide array of computational tools particularly well-suited to financial data, including rich 
time-series operations with automatic date alignment, which we will explore here.

The following sections illustrate some steps in transforming raw stock price data into 
selected factors. See the notebook feature_engineering.ipynb for additional detail and 
visualizations that we have omitted here to save some space. See the resources listed in the 
README for this chapter on GitHub for links to the documentation and tutorials on how to 
use pandas and NumPy.

Loading, slicing, and reshaping the data

After loading the Quandl Wiki stock price data on US equities, we select the 2000-18 time 
slice by applying pd.IndexSlice to pd.MultiIndex, which contains timestamp and ticker 
information. We then select and unpivot the adjusted close price column using the .stack() 
method to convert the DataFrame into wide format, with tickers in the columns and 
timestamps in the rows:

idx = pd.IndexSlice

with pd.HDFStore('../../data/assets.h5') as store:

    prices = (store['quandl/wiki/prices']

              .loc[idx['2000':'2018', :], 'adj_close']

              .unstack('ticker'))

prices.info()

DatetimeIndex: 4706 entries, 2000-01-03 to 2018-03-27

Columns: 3199 entries, A to ZUMZ
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Resampling – from daily to monthly frequency

To reduce training time and experiment with strategies for longer time horizons, we 
convert the business-daily data into month-end frequency using the available adjusted 
close price:

monthly_prices = prices.resample('M').last()

How to compute returns for multiple historical periods
To capture time-series dynamics like momentum patterns, we compute historical multi-
period returns using the pct_change(n_periods) method, where n_periods identifies the 
number of lags. We then convert the wide result back into long format using .stack(), use 
.pipe() to apply the .clip() method to the resulting DataFrame, and winsorize returns at 
the [1%, 99%] levels; that is, we cap outliers at these percentiles.

Finally, we normalize returns using the geometric average. After using .swaplevel() to 
change the order of the MultiIndex levels, we obtain the compounded monthly returns over 
six different periods, ranging from 1 to 12 months:

outlier_cutoff = 0.01
data = pd.DataFrame()

lags = [1, 2, 3, 6, 9, 12]

for lag in lags:

    data[f'return_{lag}m'] = (monthly_prices

                           .pct_change(lag)

                           .stack()

                           .pipe(lambda x: 

                                 x.clip(lower=x.quantile(outlier_cutoff),
                                        upper=x.quantile(1-outlier_cutoff)))
                           .add(1)

                           .pow(1/lag)

                           .sub(1)

                           )

data = data.swaplevel().dropna()

data.info()

MultiIndex: 521806 entries, (A, 2001-01-31 00:00:00) to (ZUMZ, 2018-03-

                             31 00:00:00)

Data columns (total 6 columns):

return_1m 521806 non-null float64
return_2m 521806 non-null float64
return_3m 521806 non-null float64
return_6m 521806 non-null float64
return_9m 521806 non-null float64
return_12m 521806 non-null float6
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We can use these results to compute momentum factors based on the difference between 
returns over longer periods and the most recent monthly return, as well as for the 
difference between 3- and 12-month returns, as follows:

for lag in [2,3,6,9,12]:

    data[f'momentum_{lag}'] = data[f'return_{lag}m'].sub(data.return_1m)

data[f'momentum_3_12'] = data[f'return_12m'].sub(data.return_3m)

Using lagged returns and different holding periods
To use lagged values as input variables or features associated with the current observations, 
we use the .shift() method to move historical returns up to the current period:

for t in range(1, 7):

    data[f'return_1m_t-{t}'] = data.groupby(level='ticker').return_1m.
shift(t)

Similarly, to compute returns for various holding periods, we use the normalized period 
returns computed previously and shift them back to align them with the current financial 
features:

for t in [1,2,3,6,12]:

    data[f'target_{t}m'] = (data.groupby(level='ticker')

                            [f'return_{t}m'].shift(-t))

The notebook also demonstrates how to compute various descriptive statistics for the 
different return series and visualize their correlation using the seaborn library.

Computing factor betas

We will introduce the Fama–French data to estimate the exposure of assets to common 
risk factors using linear regression in Chapter 7, Linear Models – From Risk Factors to 
Return Forecasts. The five Fama–French factors, namely market risk, size, value, operating 
profitability, and investment, have been shown empirically to explain asset returns. They 
are commonly used to assess the exposure of a portfolio to well-known drivers of risk and 
returns, where the unexplained portion is then attributed to the manager's idiosyncratic 
skill. Hence, it is natural to include past factor exposures as financial features in models that 
aim to predict future returns.

We can access the historical factor returns using the pandas-datareader and estimate 
historical exposures using the PandasRollingOLS rolling linear regression functionality in 
the pyfinance library, as follows:
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factors = ['Mkt-RF', 'SMB', 'HML', 'RMW', 'CMA']

factor_data = web.DataReader('F-F_Research_Data_5_Factors_2x3', 

              'famafrench', start='2000')[0].drop('RF', axis=1)
factor_data.index = factor_data.index.to_timestamp()
factor_data = factor_data.resample('M').last().div(100)
factor_data.index.name = 'date'
factor_data = factor_data.join(data['return_1m']).sort_index()
T = 24
betas = (factor_data
         .groupby(level='ticker', group_keys=False)
         .apply(lambda x: PandasRollingOLS(window=min(T, x.shape[0]-1), y=x.
return_1m, x=x.drop('return_1m', axis=1)).beta))

As mentioned previously, we will explore both the Fama–French factor model and linear 
regression in Chapter 7, Linear Models – From Risk Factors to Return Forecasts, in more detail. 
See the notebook feature_engineering.ipynb for additional examples, including the 
computation of lagged and forward returns.

How to add momentum factors
We can use the 1-month and 3-month results to compute simple momentum factors. The 
following code example shows how to compute the difference between returns over longer 
periods and the most recent monthly return, as well as for the difference between 3- and 
12-month returns:

for lag in [2,3,6,9,12]:

    data[f'momentum_{lag}'] = data[f'return_{lag}m'].sub(data.return_1m)

data[f'momentum_3_12'] = data[f'return_12m'].sub(data.return_3m)

Adding time indicators to capture seasonal effects
Basic factors also include seasonal anomalies like the January effect, which has been 
observed to cause higher returns for stocks during this month, possibly for tax reasons. 
This and other seasonal effects can be modeled through indicator variables that represent 
specific time periods such as the year and/or the month. These can be generated as follows:

dates = data.index.get_level_values('date')

data['year'] = dates.year

data['month'] = dates.month

How to create lagged return features

If you want to use lagged returns, that is, returns from previous periods as input variables 
or features to train a model that learns return patterns to predict future returns, you can 
use the .shift() method to move historical returns up to the current period. The following 
example moves the returns for the periods 1 to 6 months ago up by the corresponding lag 
so that they are associated with the observation for the current month:

for t in range(1, 7):

    data[f'return_1m_t-{t}'] = data.groupby(level='ticker').return_1m.shift(t)
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How to create forward returns 

Similarly, you can create forward returns for the current period, that is, returns that will 
occur in the future, using .shift() with a negative period (assuming your data is sorted in 
ascending order):

for t in [1,2,3,6,12]:

    data[f'target_{t}m'] = (data.groupby(level='ticker')

                            [f'return_{t}m'].shift(-t))

We will use forward returns when we train ML models starting in Chapter 6, The Machine 
Learning Process.

How to use TA-Lib to create technical alpha factors
TA-Lib is an open source library written in C++ with a Python interface that is widely 
used by trading software developers. It contains standardized implementations of over 
200 popular indicators for technical analysis; that is, these indicators only use market data, 
namely price and volume information.

TA-Lib is compatible with pandas and NumPy, rendering its usage very straightforward. 
The following examples demonstrate how to compute two popular indicators.

Bollinger Bands consist of a simple moving average (SMA) surrounded by bands 
two rolling standard deviations below and above the SMA. It was introduced for the 
visualization of potential overbought/oversold conditions when the price dipped outside 
the two bands on the upper or lower side, respectively. The inventor, John Bollinger, 
actually recommended a trading system of 22 rules that generate trade signals.

We can compute the Bollinger Bands and, for comparison, the relative strength index 
described earlier in this section on popular alpha factors as follows.

We load the adjusted close for a single stock—in this case, AAPL:

with pd.HDFStore(DATA_STORE) as store:

    data = (store['quandl/wiki/prices']

            .loc[idx['2007':'2010', 'AAPL'],

                 ['adj_open', 'adj_high', 'adj_low', 'adj_close', 

                  'adj_volume']]

            .unstack('ticker')

            .swaplevel(axis=1)

            .loc[:, 'AAPL']

            .rename(columns=lambda x: x.replace('adj_', '')))

Then, we pass the one-dimensional pd.Series through the relevant TA-Lib functions:

from talib import RSI, BBANDS

up, mid, low = BBANDS(data.close, timeperiod=21, nbdevup=2, nbdevdn=2, 

                      matype=0)

rsi = RSI(adj_close, timeperiod=14)
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Then, we collect the results in a DataFrame and plot the Bollinger Bands with the AAPL 
stock price and the RSI with the 30/70 lines, which suggest long/short opportunities:

data = pd.DataFrame({'AAPL': data.close, 'BB Up': up, 'BB Mid': mid, 

                     'BB down': low, 'RSI': rsi})

fig, axes= plt.subplots(nrows=2, figsize=(15, 8))
data.drop('RSI', axis=1).plot(ax=axes[0], lw=1, title='Bollinger Bands')

data['RSI'].plot(ax=axes[1], lw=1, title='Relative Strength Index')

axes[1].axhline(70, lw=1, ls='--', c='k')

axes[1].axhline(30, lw=1, ls='--', c='k')

The result, shown in Figure 4.4, is rather mixed—both indicators suggested overbought 
conditions during the early post-crisis recovery when the price continued to rise:

Figure 4.4: Bollinger Bands and relative strength index

Denoising alpha factors with the Kalman filter
The concept of noise in data relates to the domain of signal processing, which aims to 
retrieve the correct information from a signal sent, for example, through the air in the form 
of electromagnetic waves. As the waves move through space, environmental interference 
can be added to the originally pure signal in the form of noise, making it necessary to 
separate the two once received.

The Kalman filter was introduced in 1960 and has become very popular for many 
applications that require processing noisy data because it permits more accurate estimates 
of the underlying signal. 
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This technique is widely used to track objects in computer vision, to support the 
localization and navigation of aircraft and spaceships, and to control robotic motion based 
on noisy sensor data, besides its use in time series analysis.

Noise is used similarly in data science, finance, and other domains, implying that the raw 
data contains useful information, for instance, in terms of trading signals, that needs to be 
extracted and separated from irrelevant, extraneous information. Clearly, the fact that we 
do not know the true signal can make this separation rather challenging at times.

We will first review how the Kalman filter works and which assumptions it makes to 
achieve its objectives. Then, we will demonstrate how to apply it to financial data using the 
pykalman library.

How does the Kalman filter work?
The Kalman filter is a dynamic linear model of sequential data like a time series that adapts 
to new information as it arrives. Rather than using a fixed-size window like a moving 
average or a given set of weights like an exponential moving average, it incorporates new 
data into its estimates of the current value of the time series based on a probabilistic model.

More specifically, the Kalman filter is a probabilistic model of a sequence of observations 
z1, z2, …, z

T
 and a corresponding sequence of hidden states x1, x2

, …, x
T
 (with the notation 

used by the pykalman library that we will demonstrate here). This can be represented by 
the following graph:

Figure 4.5: Kalman filter as a graphical model

Technically speaking, the Kalman filter takes a Bayesian approach that propagates the 
posterior distribution of the state variables x given their measurements z over time (see 
Chapter 10, Bayesian ML – Dynamic Sharpe Ratios and Pairs Trading, for more details on 
Bayesian inference). We can also view it as an unsupervised algorithm for tracking a single 
object in a continuous state space, where we will take the object to be, for example, the 
value of or returns on a security, or an alpha factor (see Chapter 13, Data-Driven Risk Factors 
and Asset Allocation with Unsupervised Learning).
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To recover the hidden states from a sequence of observations that may become available in 
real time, the algorithm iterates between two steps:

1. Prediction step: Estimate the current state of the process.

2. Measurement step: Use noisy observations to update its estimate by averaging the 
information from both steps in a way that weighs more certain estimates higher.

The basic idea behind the algorithm is as follows: certain assumptions about a dynamic 
system and a history of corresponding measurements will allow us to estimate the system's 
state in a way that maximizes the probability of the previous measurements.

To achieve its objective of recovering the hidden state, the Kalman filter makes the 
following assumptions:

• The system that we are modeling behaves in a linear fashion.

• The hidden state process is a Markov chain so that the current hidden state x
t
 

depends only on the most recent prior hidden state xt-1.

• Measurements are subject to Gaussian, uncorrelated noise with constant covariance.

As a result, the Kalman filter is similar to a hidden Markov model, except that the state 
space of the latent variables is continuous, and both hidden and observed variables have 
normal distributions, denoted as 𝒩𝒩(𝜇𝜇𝜇 𝜇𝜇)  with mean 𝜇𝜇  and standard 

In mathematical terms, the key components of the model (and corresponding parameters in 
the pykalman implementation) are:

• The initial hidden state has a normal distribution: 𝑥𝑥0~𝒩𝒩(𝜇𝜇0, Σ0)  with initial_
state_mean, 𝜇𝜇  and initial_state_covariance, Σ .

• The hidden state xt+1 is an affine transformation of x
t
 with transition_matrix A, 

transition_offset b, and added Gaussian noise with transition_covariance Q: 𝑥𝑥𝑡𝑡𝑡𝑡 = 𝐴𝐴𝑡𝑡𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑡𝑡 + 𝜖𝜖𝑡𝑡𝑡𝑡𝑡 ,   𝜖𝜖𝑡𝑡𝑡~𝒩𝒩(0, 𝑄𝑄) .
• The observation z

t
 is an affine transformation of the hidden state x

t
 with 

observation_matrix C, observation_offset d, and added Gaussian noise with 
observation_covariance R: 𝑧𝑧𝑡𝑡 = 𝐶𝐶𝑡𝑡𝑥𝑥𝑡𝑡 + 𝑑𝑑𝑡𝑡 + 𝜖𝜖𝑡𝑡2,   𝜖𝜖𝑡𝑡2~𝒩𝒩(0, 𝑅𝑅) .

Among the advantages of a Kalman filter is that it flexibly adapts to non-stationary data 
with changing distributional characteristics (see Chapter 9, Time-Series Models for Volatility 
Forecasts and Statistical Arbitrage, for more details on stationarity).

Key disadvantages are the assumptions of linearity and Gaussian noise that financial 
data often violate. To address these shortcomings, the Kalman filter has been extended to 
systems with nonlinear dynamics in the form of the extended and the unscented Kalman 
filters. The particle filter is an alternative approach that uses sampling-based Monte Carlo 
approaches to estimate non-normal distributions.
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How to apply a Kalman filter using pykalman
The Kalman filter is particularly useful for rolling estimates of data values or model 
parameters that change over time. This is because it adapts its estimates at every time step 
based on new observations and tends to weigh recent observations more heavily.

Except for conventional moving averages, the Kalman filter does not require us to specify 
the length of a window used for the estimate. Rather, we start out with our estimate of the 
mean and covariance of the hidden state and let the Kalman filter correct our estimates 
based on periodic observations. The code examples for this section are in the notebook 
kalman_filter_and_wavelets.ipynb.

The following code example shows how to apply the Kalman filter to smoothen the S&P 
500 stock price series for the 2008-09 period:

with pd.HDFStore(DATA_STORE) as store:

    sp500 = store['sp500/stooq'].loc['2008': '2009', 'close']

We initialize the KalmanFilter with unit covariance matrices and zero means (see 
the pykalman documentation for advice on dealing with the challenges of choosing 
appropriate initial values):

from pykalman import KalmanFilter

kf = KalmanFilter(transition_matrices = [1],

                  observation_matrices = [1],

                  initial_state_mean = 0,

                  initial_state_covariance = 1,

                  observation_covariance=1,

                  transition_covariance=.01)

Then, we run the filter method to trigger the forward algorithm, which iteratively 
estimates the hidden state, that is, the mean of the time series:

state_means, _ = kf.filter(sp500)

Finally, we add moving averages for comparison and plot the result:

sp500_smoothed = sp500.to_frame('close')

sp500_smoothed['Kalman Filter'] = state_means

for months in [1, 2, 3]:

    sp500_smoothed[f'MA ({months}m)'] = (sp500.rolling(window=months * 21)

                                         .mean())

ax = sp500_smoothed.plot(title='Kalman Filter vs Moving Average',

                         figsize=(14, 6), lw=1, rot=0)
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The resulting plot in Figure 4.6 shows that the Kalman filter performs similarly to a 1-month 
moving average but is more sensitive to changes in the behavior of the time series:

Figure 4.6: Kalman filter versus moving average

How to preprocess your noisy signals using wavelets
Wavelets are related to Fourier analysis, which combines sine and cosine waves at different 
frequencies to approximate noisy signals. While Fourier analysis is particularly useful to 
translate signals from the time to the frequency domain, wavelets are useful for filtering 
out specific patterns that may occur at different scales, which, in turn, may correspond to 
a frequency range.

Wavelets are functions or wave-like patterns that decompose a discrete or continuous-
time signal into components of different scales. A wavelet transform, in turn, represents a 
function using wavelets as scaled and translated copies of a finite-length waveform. This 
transform has advantages over Fourier transforms for functions with discontinuities and 
sharp peaks, and to approximate non-periodic or non-stationary signals.

To denoise a signal, you can use wavelet shrinkage and thresholding methods. First, you 
choose a specific wavelet pattern to decompose a dataset. The wavelet transform yields 
coefficients that correspond to details in the dataset.

The idea of thresholding is simply to omit all coefficients below a particular cutoff, 
assuming that they represent minor details that are not necessary to represent the true 
signal. These remaining coefficients are then used in an inverse wavelet transformation to 
reconstruct the (denoised) dataset.

We'll now use the pywavelets library to apply wavelets to noisy stock data. The following 
code example illustrates how to denoise the S&P 500 returns using a forward and inverse 
wavelet transform with a Daubechies 6 wavelet and different threshold values.
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First, we generate daily S&P 500 returns for the 2008-09 period:

signal = (pd.read_hdf(DATA_STORE, 'sp500/stooq')

          .loc['2008': '2009']

          .close.pct_change()

          .dropna())

Then, we select one of the Daubechies wavelets from the numerous built-in wavelet 
functions:

import pywt

pywt.families(short=False)

['Haar', 'Daubechies',  'Symlets',  'Coiflets',  'Biorthogonal',  'Reverse 
biorthogonal',  'Discrete Meyer (FIR Approximation)',  'Gaussian',  'Mexican 
hat wavelet',  'Morlet wavelet',  'Complex Gaussian wavelets',   'Shannon 
wavelets',  'Frequency B-Spline wavelets',  'Complex Morlet wavelets']

The Daubechies 6 wavelet is defined by a scaling function ψ  and the wavelet function φ  itself (see the PyWavelet documentation for details and the accompanying notebook 
kalman_filter_and_wavelets.ipynb for plots of all built-in wavelet functions):

Figure 4.7: Daubechies wavelets

Given a wavelet function, we first decompose the return signal using the .wavedec function, 
which yields the coefficients for the wavelet transform. Next, we filter out all coefficients 
above a given threshold and then reconstruct the signal using only those coefficients using 
the inverse transform .waverec:

wavelet = "db6"

for i, scale in enumerate([.1, .5]):

    

    coefficients = pywt.wavedec(signal, wavelet, mode='per')
    coefficients[1:] = [pywt.threshold(i, value=scale*signal.max(), 
mode='soft') for i in coefficients[1:]]
    reconstructed_signal = pywt.waverec(coefficients, wavelet, mode='per')
    signal.plot(color="b", alpha=0.5, label='original signal', lw=2, 

                 title=f'Threshold Scale: {scale:.1f}', ax=axes[i])

    pd.Series(reconstructed_signal, index=signal.index).plot(c='k', 
label='DWT smoothing}', linewidth=1, ax=axes[i])
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The notebook shows how to apply this denoising technique with different thresholds, and 
the resulting plot, shown in Figure 4.8, clearly shows how a higher threshold value yields a 
significantly smoother series:

Figure 4.8: Wavelet denoising with different thresholds

From signals to trades – Zipline for backtests 
The open source library Zipline is an event-driven backtesting system. It generates 
market events to simulate the reactions of an algorithmic trading strategy and tracks 
its performance. A particularly important feature is that it provides the algorithm with 
historical point-in-time data that avoids look-ahead bias.

The library has been popularized by the crowd-sourced quantitative investment fund 
Quantopian, which uses it in production to facilitate algorithm development and live-
trading.

In this section, we'll provide a brief demonstration of its basic functionality. Chapter 8, The 
ML4T Workflow – From Model to Strategy Backtesting, contains a more detailed introduction 
to prepare us for more complex use cases.

How to backtest a single-factor strategy
You can use Zipline offline in conjunction with data bundles to research and evaluate 
alpha factors. When using it on the Quantopian platform, you will get access to a wider set 
of fundamental and alternative data. We will also demonstrate the Quantopian research 
environment in this chapter, and the backtesting IDE in the next chapter. The code for 
this section is in the 01_factor_research_evaluation sub-directory of the GitHub repo 
folder for this chapter, including installation instructions and an environment tailored to 
Zipline's dependencies.

For installation, please see the instructions in this chapter's README on GitHub. After 
installation and before executing the first algorithm, you need to ingest a data bundle that, 
by default, consists of Quandl's community-maintained data on stock prices, dividends, 
and splits for 3,000 US publicly traded companies. 
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You need a Quandl API key to run the following code, which stores the data in your home 
folder under ~/.zipline/data/<bundle>:

$ QUANDL_API_KEY=<yourkey> zipline ingest [-b <bundle>]

A single alpha factor from market data

We are first going to illustrate the Zipline alpha factor research workflow in an offline 
environment. In particular, we will develop and test a simple mean-reversion factor that 
measures how much recent performance has deviated from the historical average.

Short-term reversal is a common strategy that takes advantage of the weakly predictive 
pattern that stock prices are likely to revert back to a rolling mean over horizons from less 
than 1 minute to 1 month. See the notebook single_factor_zipline.ipynb for details.

To this end, the factor computes the z-score for the last monthly return relative to the rolling 
monthly returns over the last year. At this point, we will not place any orders to simply 
illustrate the implementation of a CustomFactor and record the results during the simulation.

Zipline includes numerous built-in factors for many common operations (see the 
Quantopian documentation linked on GitHub for details). While this is often convenient 
and sufficient, in other cases, we want to transform our available data differently. For this 
purpose, Zipline provides the CustomFactor class, which offers a lot of flexibility for us to 
specify a wide range of calculations. It does this using the various features available for the 
cross-section of securities and custom lookback periods using NumPy.

To this end, after some basic settings, MeanReversion subclasses CustomFactor and defines a 
compute() method. It creates default inputs of monthly returns over an also default year-
long window so that the monthly_return variable will have 252 rows and one column for 
each security in the Quandl dataset on a given day.

The compute_factors() method creates a MeanReversion factor instance and creates long, 
short, and ranking pipeline columns. The former two contain Boolean values that can be 
used to place orders, and the latter reflects that overall ranking to evaluate the overall factor 
performance. Furthermore, it uses the built-in AverageDollarVolume factor to limit the 
computation to more liquid stocks:

from zipline.api import attach_pipeline, pipeline_output, record

from zipline.pipeline import Pipeline, CustomFactor

from zipline.pipeline.factors import Returns, AverageDollarVolume

from zipline import run_algorithm

MONTH, YEAR = 21, 252

N_LONGS = N_SHORTS = 25

VOL_SCREEN = 1000

class MeanReversion(CustomFactor):

    """Compute ratio of latest monthly return to 12m average,

       normalized by std dev of monthly returns"""

    inputs = [Returns(window_length=MONTH)]
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    window_length = YEAR

    def compute(self, today, assets, out, monthly_returns):

        df = pd.DataFrame(monthly_returns)

        out[:] = df.iloc[-1].sub(df.mean()).div(df.std())

def compute_factors():

    """Create factor pipeline incl. mean reversion,

        filtered by 30d Dollar Volume; capture factor ranks"""
    mean_reversion = MeanReversion()

    dollar_volume = AverageDollarVolume(window_length=30)

    return Pipeline(columns={'longs'  : mean_reversion.bottom(N_LONGS),

                             'shorts' : mean_reversion.top(N_SHORTS),

                             'ranking': 

                          mean_reversion.rank(ascending=False)},

                          screen=dollar_volume.top(VOL_SCREEN))

The result will allow us to place long and short orders. In the next chapter, we will learn 
how to build a portfolio by choosing a rebalancing period and adjusting portfolio holdings 
as new signals arrive.

The initialize() method registers the compute_factors() pipeline, and the before_
trading_start() method ensures the pipeline runs on a daily basis. The record() function 
adds the pipeline's ranking column, as well as the current asset prices, to the performance 
DataFrame returned by the run_algorithm() function:

def initialize(context):

    """Setup: register pipeline, schedule rebalancing,

        and set trading params"""

    attach_pipeline(compute_factors(), 'factor_pipeline')

def before_trading_start(context, data):

    """Run factor pipeline"""

    context.factor_data = pipeline_output('factor_pipeline')

    record(factor_data=context.factor_data.ranking)

    assets = context.factor_data.index

    record(prices=data.current(assets, 'price'))

Finally, define the start and end Timestamp objects in UTC terms, set a capital base, and 
execute run_algorithm() with references to the key execution methods. The performance 
DataFrame contains nested data, for example, the prices column consists of a pd.Series for 
each cell. Hence, subsequent data access is easier when stored in pickle format:
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start, end = pd.Timestamp('2015-01-01', tz='UTC'), pd.Timestamp('2018-

             01-01', tz='UTC')

capital_base = 1e7

performance = run_algorithm(start=start,

                            end=end,

                            initialize=initialize,

                            before_trading_start=before_trading_start,

                            capital_base=capital_base)

performance.to_pickle('single_factor.pickle')

We will use the factor and pricing data stored in the performance DataFrame to evaluate 
the factor performance for various holding periods in the next section, but first, we'll take 
a look at how to create more complex signals by combining several alpha factors from a 
diverse set of data sources on the Quantopian platform.

Built-in Quantopian factors

The accompanying notebook factor_library_quantopian.ipynb contains numerous 
example factors that are either provided by the Quantopian platform or computed from 
data sources available using the research API from a Jupyter Notebook.

There are built-in factors that can be used in combination with quantitative Python 
libraries—in particular, NumPy and pandas—to derive more complex factors from a broad 
range of relevant data sources such as US equity prices, Morningstar fundamentals, and 
investor sentiment.

For instance, the price-to-sales ratio is available as part of the Morningstar fundamentals 
dataset. It can be used as part of a pipeline that will be further described as we introduce 
the Zipline library.

Combining factors from diverse data sources
The Quantopian research environment is tailored to the rapid testing of predictive alpha 
factors. The process is very similar because it builds on Zipline but offers much richer 
access to data sources. The following code sample illustrates how to compute alpha factors 
not only from market data, as done previously, but also from fundamental and alternative 
data. See the notebook multiple_factors_quantopian_research.ipynb for details.

Quantopian provides several hundred Morningstar fundamental variables for free and 
also includes Stocktwits signals as an example of an alternative data source. There are 
also custom universe definitions such as QTradableStocksUS, which applies several filters 
to limit the backtest universe to stocks that were likely tradeable under realistic market 
conditions:
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from quantopian.research import run_pipeline

from quantopian.pipeline import Pipeline

from quantopian.pipeline.data.builtin import USEquityPricing

from quantopian.pipeline.data.morningstar import income_statement, 

     operation_ratios, balance_sheet

from quantopian.pipeline.data.psychsignal import stocktwits

from quantopian.pipeline.factors import CustomFactor, 

     SimpleMovingAverage, Returns

from quantopian.pipeline.filters import QTradableStocksUS

We will use a custom AggregateFundamentals class to use the last reported fundamental 
data point. This aims to address the fact that fundamentals are reported quarterly, and 
Quantopian does not currently provide an easy way to aggregate historical data, say, to 
obtain the sum of the last four quarters, on a rolling basis:

class AggregateFundamentals(CustomFactor):

    def compute(self, today, assets, out, inputs):

        out[:] = inputs[0]

We will again use the custom MeanReversion factor from the preceding code. We will also 
compute several other factors for the given universe definition using the rank() method's 
mask parameter:

def compute_factors():

    universe = QTradableStocksUS()

    profitability = (AggregateFundamentals(inputs=
                     [income_statement.gross_profit],
                                           window_length=YEAR) /

                     balance_sheet.total_assets.latest).rank(mask=universe)

    roic = operation_ratios.roic.latest.rank(mask=universe)

    ebitda_yield = (AggregateFundamentals(inputs=

                             [income_statement.ebitda],

                                          window_length=YEAR) /

                    USEquityPricing.close.latest).rank(mask=universe)

    mean_reversion = MeanReversion().rank(mask=universe)

    price_momentum = Returns(window_length=QTR).rank(mask=universe)

    sentiment = SimpleMovingAverage(inputs=[stocktwits.bull_minus_bear],

                                    window_length=5).rank(mask=universe)

    factor = profitability + roic + ebitda_yield + mean_reversion + 
             price_momentum + sentiment

    return Pipeline(

            columns={'Profitability'      : profitability,
                     'ROIC'               : roic,

                     'EBITDA Yield'       : ebitda_yield,
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                     "Mean Reversion (1M)": mean_reversion,

                     'Sentiment'          : sentiment,

                     "Price Momentum (3M)": price_momentum,

                     'Alpha Factor'       : factor})

This algorithm simply averages how the six individual factors rank each asset to combine 
their information. This is a fairly naive method that does not account for the relative 
importance and incremental information each factor may provide when predicting future 
returns. The ML algorithms of the following chapters will allow us to do exactly this, using 
the same backtesting framework.

Execution also relies on run_algorithm(), but the return DataFrame on the Quantopian 
platform only contains the factor values created by the Pipeline. This is convenient 
because this data format can be used as input for Alphalens, the library that's used for the 
evaluation of the predictive performance of alpha factors.

Separating signal from noise with Alphalens
Quantopian has open sourced the Python Alphalens library for the performance analysis 
of predictive stock factors. It integrates well with the Zipline backtesting library and the 
portfolio performance and risk analysis library pyfolio, which we will explore in the next 
chapter.

Alphalens facilitates the analysis of the predictive power of alpha factors concerning the:

• Correlation of the signals with subsequent returns

• Profitability of an equal or factor-weighted portfolio based on a (subset of) the 
signals

• Turnover of factors to indicate the potential trading costs

• Factor performance during specific events
• Breakdowns of the preceding by sector

The analysis can be conducted using tearsheets or individual computations and plots. The 
tearsheets are illustrated in the online repository to save some space.

Using TA-Lib with Zipline

The TA-Lib library includes numerous technical factors. A Python 
implementation is available for local use, for example, with Zipline and 
Alphalens, and it is also available on the Quantopian platform. The 
notebook also illustrates several technical indicators available using TA-Lib.
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Creating forward returns and factor quantiles
To utilize Alphalens, we need to provide two inputs:

• Signals for a universe of assets, like those returned by the ranks of the 
MeanReversion factor 

• The forward returns that we would earn by investing in an asset for a given holding 
period 

See the notebook 06_performance_eval_alphalens.ipynb for details.

We will recover the prices from the single_factor.pickle file as follows (and proceed in 
the same way for factor_data; see the notebook):

performance = pd.read_pickle('single_factor.pickle')

prices = pd.concat([df.to_frame(d) for d, df in performance.prices.
items()],axis=1).T

prices.columns = [re.findall(r"\[(.+)\]", str(col))[0] for col in 
                  prices.columns]

prices.index = prices.index.normalize()

prices.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 755 entries, 2015-01-02 to 2017-12-29

Columns: 1661 entries, A to ZTS

dtypes: float64(1661)

We can generate the Alphalens input data, namely the factor signal and forward returns 
described previously, in the required format from the Zipline output using the get_clean_
factor_and_forward_returns utility function. This function returns the signal quintiles and 
the forward returns for the given holding periods:

HOLDING_PERIODS = (5, 10, 21, 42)

QUANTILES = 5

alphalens_data = get_clean_factor_and_forward_returns(factor=factor_data,

                                     prices=prices,

                                     periods=HOLDING_PERIODS,

                                     quantiles=QUANTILES)

Dropped 14.5% entries from factor data: 14.5% in forward returns computation 
and 0.0% in binning phase (set max_loss=0 to see potentially suppressed 
Exceptions). max_loss is 35.0%, not exceeded: OK!

The alphalens_data DataFrame contains the returns on an investment in the given asset on 
a given date for the indicated holding period, as well as the factor value—that is, the asset's 
MeanReversion ranking on that date and the corresponding quantile value:
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date asset 5D 10D 21D 42D factor factor_quantile

1/2/2015

A -1.87% -1.11% -4.61% 5.28% 2618 4

AAL -0.06% -8.03% -9.63% -10.39% 1088 2

AAP -1.32% 0.23% -1.63% -2.39% 791 1

AAPL -2.82% -0.07% 8.51% 18.07% 2917 5

ABBV -1.88% -0.20% -7.88% -8.24% 2952 5

The forward returns and the signal quantiles are the basis for evaluating the predictive 
power of the signal. Typically, a factor should deliver markedly different returns for 
distinct quantiles, such as negative returns for the bottom quintile of the factor values and 
positive returns for the top quantile.

Predictive performance by factor quantiles
As a first step, we would like to visualize the average period return by factor quantile. We 
can use the built-in function mean_return_by_quantile from the performance module and 
plot_quantile_returns_bar from the plotting module:

from alphalens.performance import mean_return_by_quantile

from alphalens.plotting import plot_quantile_returns_bar

mean_return_by_q, std_err = mean_return_by_quantile(alphalens_data)

plot_quantile_returns_bar(mean_return_by_q);

The result is a bar chart that breaks down the mean of the forward returns for the four 
different holding periods based on the quintile of the factor signal. 

As you can see in Figure 4.9, the bottom quintiles yielded markedly more negative results 
than the top quintiles, except for the longest holding period:

Figure 4.9: Mean period return by factor quantile

The 10D holding period provides slightly better results for the first and fourth quartiles on 
average across the trading period.
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We would also like to see the performance over time of investments driven by each of the 
signal quintiles. To this end, we calculate daily as opposed to average returns for the 5D 
holding period. Alphalens adjusts the period returns to account for the mismatch between 
daily signals and a longer holding period (for details, see the Alphalens documentation):

from alphalens.plotting import plot_cumulative_returns_by_quantile

mean_return_by_q_daily, std_err =

     mean_return_by_quantile(alphalens_data, by_date=True)

plot_cumulative_returns_by_quantile(mean_return_by_q_daily['5D'], 

     period='5D');

The resulting line plot in Figure 4.10 shows that, for most of this 3-year period, the top two 
quintiles significantly outperformed the bottom two quintiles. However, as suggested by 
the previous plot, the signals by the fourth quintile produced slightly better performance 
than those by the top quintile due to their relative performance during 2017:

Figure 4.10: Cumulative return by quantile for a 5-day holding period

A factor that is useful for a trading strategy shows the preceding pattern, where cumulative 
returns develop along clearly distinct paths, because this allows for a long-short strategy 
with lower capital requirements and, correspondingly, lower exposure to the overall market.

However, we also need to take the dispersion of period returns into account, rather than 
just the averages. To this end, we can rely on the built-in plot_quantile_returns_violin:

from alphalens.plotting import plot_quantile_returns_violin

plot_quantile_returns_violin(mean_return_by_q_daily);

This distributional plot, shown in Figure 4.11, highlights that the range of daily returns is 
fairly wide. Despite different means, the separation of the distributions is very limited so 
that, on any given day, the differences in performance between the different quintiles may 
be rather limited:
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Figure 4.11: Distribution of the period-wise return by factor quintile

While we focus on the evaluation of a single alpha factor, we are simplifying things by 
ignoring practical issues related to trade execution that we will relax when we address 
proper backtesting in the next chapter. Some of these include:

• The transaction costs of trading

• Slippage, or the difference between the price at decision and trade execution, for 
example, due to the market impact

The information coefficient
Most of this book is about the design of alpha factors using ML models. ML is about 
optimizing some predictive objective, and in this section, we will introduce the key metrics 
used to measure the performance of an alpha factor. We will define alpha as the average 
return in excess of a benchmark.

This leads to the information ratio (IR), which measures the average excess return per 
unit of risk taken by dividing alpha by the tracking risk. When the benchmark is the risk-
free rate, the IR corresponds to the well-known Sharpe ratio, and we will highlight crucial 
statistical measurement issues that arise in the typical case when returns are not normally 
distributed. We will also explain the fundamental law of active management, which breaks 
the IR down into a combination of forecasting skill and a strategy's ability to effectively 
leverage these forecasting skills.

The goal of alpha factors is the accurate directional prediction of future returns. Hence, a 
natural performance measure is the correlation between an alpha factor's predictions and 
the forward returns of the target assets. 

It is better to use the non-parametric Spearman rank correlation coefficient, which measures 
how well the relationship between two variables can be described using a monotonic 
function, as opposed to the Pearson correlation, which measures the strength of a 
linear relationship.
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We can obtain the information coefficient (IC) using Alphalens, which relies on scipy.
stats.spearmanr under the hood (see the repo for an example of how to use scipy directly 
to obtain p-values). The factor_information_coefficient function computes the period-wise 
correlation and plot_ic_ts creates a time-series plot with a 1-month moving average:

from alphalens.performance import factor_information_coefficient
from alphalens.plotting import plot_ic_ts

ic = factor_information_coefficient(alphalens_data)
plot_ic_ts(ic[['5D']])

The time series plot in Figure 4.12 shows extended periods with significantly positive 
moving average IC. An IC of 0.05 or even 0.1 allows for significant outperformance if there 
are sufficient opportunities to apply this forecasting skill, as the fundamental law of active 
management will illustrate:

Figure 4.12: Moving average of the IC for 5-day horizon

A plot of the annual mean IC highlights how the factor's performance was historically 
uneven:

ic = factor_information_coefficient(alphalens_data)
ic_by_year = ic.resample('A').mean()

ic_by_year.index = ic_by_year.index.year

ic_by_year.plot.bar(figsize=(14, 6))

This produces the chart shown in Figure 4.13:
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Figure 4.13: IC by year

An information coefficient below 0.05, as in this case, is low but significant and can produce 
positive residual returns relative to a benchmark, as we will see in the next section. The 
command create_summary_tear_sheet(alphalens_data) creates IC summary statistics.

The risk-adjusted IC results from dividing the mean IC by the standard deviation of the IC, 
which is also subjected to a two-sided t-test with the null hypothesis IC = 0 using scipy.
stats.ttest_1samp:

5D 10D 21D 42D

IC mean 0.021 0.025 0.015 0.001

IC std. 0.144 0.13 0.12 0.12

Risk-adjusted IC 0.145 0.191 0.127 0.01

t-stat (IC) 3.861 5.107 3.396 0.266

p-value (IC) 0 0 0.001 0.79

IC skew 0.384 0.251 0.115 0.134

IC kurtosis 0.019 -0.584 -0.353 -0.494

Factor turnover
Factor turnover measures how frequently the assets associated with a given quantile 
change, that is, how many trades are required to adjust a portfolio to the sequence of 
signals. More specifically, it measures the share of assets currently in a factor quantile 
that was not in that quantile in the last period. The following table is produced by this 
command: 

create_turnover_tear_sheet(alphalens_data)
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The share of assets that were to join a quintile-based portfolio is fairly high, suggesting that 
the trading costs pose a challenge to reaping the benefits from the predictive performance:

Mean turnover 5D 10D 21D 42D

Quantile 1 0.587 0.826 0.828 0.41

Quantile 2 0.737 0.801 0.81 0.644

Quantile 3 0.764 0.803 0.808 0.679

Quantile 4 0.737 0.803 0.808 0.641

Quantile 5 0.565 0.802 0.809 0.393

An alternative view on factor turnover is the correlation of the asset rank due to the factor 
over various holding periods, also part of the tear sheet:

5D 10D 21D 42D

Mean factor rank autocorrelation 0.713 0.454 -0.011 -0.016

Generally, more stability is preferable to keep trading costs manageable.

Alpha factor resources
The research process requires designing and selecting alpha factors with respect to the 
predictive power of their signals. An algorithmic trading strategy will typically build on 
multiple alpha factors that send signals for each asset. These factors may be aggregated 
using an ML model to optimize how the various signals translate into decisions about the 
timing and sizing of individual positions, as we will see in subsequent chapters.

Alternative algorithmic trading libraries
Additional open source Python libraries for algorithmic trading and data collection include 
the following (see GitHub for links):

• QuantConnect is a competitor to Quantopian.

• WorldQuant offers online competition and recruits community contributors  
to a crowd-sourced hedge fund.

• Alpha Trading Labs offers an s high-frequency focused testing infrastructure  
with a business model similar to Quantopian.

• The Python Algorithmic Trading Library (PyAlgoTrade) focuses on backtesting 
and offers support for paper trading and live trading. It allows you to evaluate 
an idea for a trading strategy with historical data and aims to do so with 
minimal effort.
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• pybacktest is a vectorized backtesting framework that uses pandas and aims to be 
compact, simple, and fast. (The project is currently on hold.)

• ultrafinance is an older project that combines real-time financial data collection and 
the analysis and backtesting of trading strategies.

• Trading with Python offers courses and a collection of functions and classes for 
quantitative trading.

• Interactive Brokers offers a Python API for live trading on their platform.

Summary
In this chapter, we introduced a range of alpha factors that have been used by professional 
investors to design and evaluate strategies for decades. We laid out how they work and 
illustrated some of the economic mechanisms believed to drive their performance. We did 
this because a solid understanding of how factors produce excess returns helps innovate 
new factors.

We also presented several tools that you can use to generate your own factors from various 
data sources and demonstrated how the Kalman filter and wavelets allow us to smoothen 
noisy data in the hope of retrieving a clearer signal.

Finally, we provided a glimpse of the Zipline library for the event-driven simulation of a 
trading algorithm, both offline and on the Quantopian online platform. You saw how to 
implement a simple mean reversion factor and how to combine multiple factors in a simple 
way to drive a basic strategy. We also looked at the Alphalens library, which permits the 
evaluation of the predictive performance and trading turnover of signals.

The portfolio construction process, in turn, takes a broader perspective and is aims at 
the optimal sizing of positions from a risk and return perspective. In the next chapter, 
Portfolio Optimization and Strategy Evaluation, we will turn to various strategies to balance 
risk and returns in a portfolio process. We will also look in more detail at the challenges of 
backtesting trading strategies on a limited set of historical data, as well as how to address 
these challenges.





[ 121 ]

5
Portfolio Optimization and 

Performance Evaluation

Alpha factors generate signals that an algorithmic strategy translates into trades, which, 
in turn, produce long and short positions. The returns and risk of the resulting portfolio 
determine the success of the strategy.

To test a strategy prior to implementation under market conditions, we need to simulate 
the trades that the algorithm would make and verify their performance. Strategy evaluation 
includes backtesting against historical data to optimize the strategy's parameters and 
forward-testing to validate the in-sample performance against new, out-of-sample data. 
The goal is to avoid false discoveries from tailoring a strategy to specific past circumstances.

In a portfolio context, positive asset returns can offset negative price movements. Positive 
price changes for one asset are more likely to offset losses on another, the lower the 
correlation between the two positions is. Based on how portfolio risk depends on the 
positions' covariance, Harry Markowitz developed the theory behind modern portfolio 
management based on diversification in 1952. The result is mean-variance optimization, 
which selects weights for a given set of assets to minimize risk, measured as the standard 
deviation of returns for a given expected return.

The capital asset pricing model (CAPM) introduces a risk premium, measured as the 
expected return in excess of a risk-free investment, as an equilibrium reward for holding an 
asset. This reward compensates for the exposure to a single risk factor—the market—that is 
systematic as opposed to idiosyncratic to the asset and thus cannot be diversified away.

Risk management has evolved to become more sophisticated as additional risk factors 
and more granular choices for exposure have emerged. The Kelly criterion is a popular 
approach to dynamic portfolio optimization, which is the choice of a sequence of positions 
over time; it was famously adapted from its original application in gambling to the stock 
market by Edward Thorp in 1968.
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As a result, there are several approaches to optimize portfolios, including the application of 
machine learning (ML) to learn hierarchical relationships among assets, and to treat their 
holdings as complements or substitutes with respect to the portfolio risk profile.

In this chapter, we will cover the following topics:

• How to measure portfolio risk and return

• Managing portfolio weights using mean-variance optimization and alternatives

• Using machine learning to optimize asset allocation in a portfolio context

• Simulating trades and create a portfolio based on alpha factors using Zipline

• How to evaluate portfolio performance using pyfolio

How to measure portfolio performance
To evaluate and compare different strategies or to improve an existing strategy, we need 
metrics that reflect their performance with respect to our objectives. In investment and 
trading, the most common objectives are the return and the risk of the investment portfolio.

Typically, these metrics are compared to a benchmark that represents alternative 
investment opportunities, such as a summary of the investment universe like the S&P 500 
for US equities or the risk-free interest rate for fixed income assets.

There are several metrics to evaluate these objectives. In this section, we will review the 
most common measures for comparing portfolio results. These measures will be useful 
when we look at different approaches to optimize portfolio performance, simulate the 
interaction of a strategy with the market using Zipline, and compute relevant performance 
metrics using the pyfolio library in later sections.

We'll use some simple notation: let R be the time series of one-period simple portfolio 
returns, R=(r

1
, ..., r

T
), from dates 1 to T, and Rf =(rf

1
, ..., rf

T
) be the matching time series of 

risk-free rates, so that R
e
=R-R

f
 =(r

1
-rf

1
,..., r

T
-rf

T
) is the excess return.

Capturing risk-return trade-offs in a single number
The return and risk objectives imply a trade-off: taking more risk may yield higher returns 
in some circumstances, but also implies greater downside. To compare how different 
strategies navigate this trade-off, ratios that compute a measure of return per unit of risk 
are very popular. We'll discuss the Sharpe ratio and the information ratio in turn.

You can find the code samples for this chapter and links to 
additional resources in the corresponding directory of the GitHub 
repository. The notebooks include color versions of the images..
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The Sharpe ratio

The ex ante Sharpe ratio (SR) compares the portfolio's expected excess return to the 
volatility of this excess return, measured by its standard deviation. It measures the 
compensation as the average excess return per unit of risk taken: 𝜇𝜇 𝜇 𝜇𝜇(𝑅𝑅𝑡𝑡)          𝜎𝜎𝑅𝑅𝑒𝑒2 𝜇 Var(𝑅𝑅 𝑅 𝑅𝑅𝑓𝑓)SR 𝜇   𝜇𝜇 𝑅 𝑅𝑅𝑓𝑓𝜎𝜎𝑅𝑅𝑒𝑒          

Expected returns and volatilities are not observable, but can be estimated as follows from 
historical data:

𝜇𝜇𝜇𝑅𝑅𝑒𝑒 = 1𝑇𝑇 ∑ 𝑟𝑟𝑡𝑡𝑒𝑒𝑇𝑇
𝑡𝑡𝑡𝑡                    

𝜎𝜎𝜎𝑅𝑅𝑒𝑒2 = 1𝑇𝑇 ∑(𝑟𝑟𝑡𝑡𝑒𝑒 − 𝜇𝜇𝜇𝑅𝑅𝑒𝑒)2𝑇𝑇
𝑡𝑡𝑡𝑡SR ≡   𝜇𝜇𝜇𝑅𝑅𝑒𝑒 − 𝑅𝑅𝑓𝑓𝜎𝜎𝜎𝑅𝑅𝑒𝑒2            

 

Unless the risk-free rate is volatile (as in emerging markets), the standard deviation of 
excess and raw returns will be similar.

For independently and identically distributed (IID) returns, the distribution of the SR 
estimator for tests of statistical significance follows from the application of the central limit 
theorem (CLT), according to large-sample statistical theory, to 𝜇𝜇𝜇   and 𝜎𝜎𝜎2 . The CLT implies 
that sums of IID random variables like 𝜇𝜇𝜇   and 𝜎𝜎𝜎2  converge to the normal distribution.

When you need to compare SR for different frequencies, say for monthly and annual 
data, you can multiply the higher frequency SR by the square root of the number of the 
corresponding period contained in the lower frequency. To convert a monthly SR into an 
annual SR, multiply by √12 , and from daily to monthly multiply by √12 .

However, financial returns often violate the IID assumption. Andrew Lo has derived 
the necessary adjustments to the distribution and the time aggregation for returns that 
are stationary but autocorrelated. This is important because the time-series properties 
of investment strategies (for example, mean reversion, momentum, and other forms of 
serial correlation) can have a non-trivial impact on the SR estimator itself, especially when 
annualizing the SR from higher-frequency data (Lo, 2002).

The information ratio

The information ratio (IR) is similar to the Sharpe ratio but uses a benchmark rather than 
the risk-free rate. The benchmark is usually chosen to represent the available investment 
universe such as the S&P 500 for a portfolio on large-cap US equities.
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Hence, the IR measures the excess return of the portfolio, also called alpha, relative to the 
tracking error, which is the deviation of the portfolio returns from the benchmark returns, 
that is: IR = AlphaTracking Error 

The IR has also been used to explain how excess returns depend on a manager's skill and 
the nature of her strategy, as we will see next.

The fundamental law of active management

"Diversification is protection against ignorance. It makes little sense if you know what 
you are doing."

                                                                                                                        – Warren Buffet

It's a curious fact that Renaissance Technologies (RenTec), the top-performing quant fund 
founded by Jim Simons, which we mentioned in Chapter 1, Machine Learning for Trading – 
From Idea to Execution, has produced similar returns as Warren Buffet, despite extremely 
different approaches. Warren Buffet's investment firm Berkshire Hathaway holds some 
100-150 stocks for fairly long periods, whereas RenTec may execute 100,000 trades per day. 
How can we compare these distinct strategies?

A high IR reflects an attractive out-performance of the benchmark relative to the additional 
risk taken. The Fundamental Law of Active Management explains how such a result can 
be achieved: it approximates the IR as the product of the information coefficient (IC) and 
the breadth of the strategy.

As discussed in the previous chapter, the IC measures the rank correlation between return 
forecasts, like those implied by an alpha factor, and the actual forward returns. Hence, it is 
a measure of the forecasting skill of the manager. The breadth of the strategy is measured 
by the independent number of bets (that is, trades) an investor makes in a given time 
period, and thus represents the ability to apply the forecasting skills.

The Fundamental Law states that the IR, also known as the appraisal risk (Treynor and 
Black), is the product of both values. In other words, it summarizes the importance to play 
both often (high breadth) and to play well (high IC):IR ∼ IC ∗ √breadth 

This framework has been extended to include the transfer coefficient (TC) to reflect 
portfolio constraints as an additional factor (for example, on short-selling) that may limit 
the information ratio below a level otherwise achievable given IC or strategy breadth. The 
TC proxies the efficiency with which the manager translates insights into portfolio bets: if 
there are no constraints, the TC would simply equal one; but if the manager does not short 
stocks even though forecasts suggests they should, the TC will be less than one and reduce 
the IC (Clarke et al., 2002).
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The Fundamental Law is important because it highlights the key drivers of outperformance: 
both accurate predictions and the ability to make independent forecasts and act on these 
forecasts matter. 

In practice, managers with a broad set of investment decisions can achieve significant risk-
adjusted excess returns with information coefficients between 0.05 and 0.15, as illustrated 
by the following simulation:

Figure 5.1: Information ratios for different values of breadth and information coefficient

In practice, estimating the breadth of a strategy is difficult, given the cross-sectional and 
time-series correlation among forecasts. You should view the Fundamental Law and its 
extensions as a useful analytical framework for thinking about how to improve your risk-
adjusted portfolio performance. We'll look at techniques for doing so in practice next.

How to manage portfolio risk and return
Portfolio management aims to pick and size positions in financial instruments that achieve 
the desired risk-return trade-off regarding a benchmark. As a portfolio manager, in each 
period, you select positions that optimize diversification to reduce risks while achieving 
a target return. Across periods, these positions may require rebalancing to account for 
changes in weights resulting from price movements to achieve or maintain a target risk 
profile.

The evolution of modern portfolio management
Diversification permits us to reduce risks for a given expected return by exploiting how 
imperfect correlation allows for one asset's gains to make up for another asset's losses. 
Harry Markowitz invented modern portfolio theory (MPT) in 1952 and provided the 
mathematical tools to optimize diversification by choosing appropriate portfolio weights.

Markowitz showed how portfolio risk, measured as the standard deviation of portfolio 
returns, depends on the covariance among the returns of all assets and their relative 
weights. This relationship implies the existence of an efficient frontier of portfolios that 
maximizes portfolio returns given a maximal level of portfolio risk.
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However, mean-variance frontiers are highly sensitive to the estimates of the inputs 
required for their calculation, namely expected returns, volatilities, and correlations. In 
practice, mean-variance portfolios that constrain these inputs to reduce sampling errors 
have performed much better. These constrained special cases include equal-weighted, 
minimum-variance, and risk-parity portfolios.

The capital asset pricing model (CAPM) is an asset valuation model that builds on the 
MPT risk-return relationship. It introduces the concept of a risk premium that an investor 
can expect in market equilibrium for holding a risky asset; the premium compensates for 
the time value of money and the exposure to overall market risk that cannot be eliminated 
through diversification (as opposed to the idiosyncratic risk of specific assets).

The economic rationale for non-diversifiable risk includes, for example, macro drivers of 
the business risks affecting all equity returns or bond defaults. Hence, an asset's expected 
return, E[r

i
], is the sum of the risk-free interest rate, r

f
, and a risk premium proportional to 

the asset's exposure to the expected excess return of the market portfolio, rm, over the risk-
free rate: 𝐸𝐸[𝑟𝑟𝑖𝑖] = 𝛼𝛼𝑖𝑖 + 𝑟𝑟𝑓𝑓 + 𝛽𝛽𝑖𝑖(𝐸𝐸[𝑟𝑟𝑚𝑚] − 𝑟𝑟𝑓𝑓) 
In theory, the market portfolio contains all investable assets and, in equilibrium, will be 
held by all rational investors. In practice, a broad value-weighted index approximates the 
market, for example, the S&P 500 for US equity investments.β𝑖𝑖  measures the exposure of asset, i, to the excess returns of the market portfolio. If 
the CAPM is valid, the intercept component, α𝑖𝑖 , should be zero. In reality, the CAPM 
assumptions are often not met, and alpha captures the returns left unexplained by exposure 
to the broad market.

As discussed in the previous chapter, over time, research uncovered non-traditional 
sources of risk premiums, such as the momentum or the equity value effects that explained 
some of the original alpha. Economic rationales, such as behavioral biases of under- or 
overreaction by investors to new information, justify risk premiums for exposure to these 
alternative risk factors.

These factors evolved into investment styles designed to capture these alternative betas 
that became tradable in the form of specialized index funds. Similarly, risk management 
now aims to control the exposure of numerous sources of risk beyond the market portfolio. 

After isolating contributions from these alternative risk premiums, true alpha becomes 
limited to idiosyncratic asset returns and the manager's ability to time risk exposures.

The efficient market hypothesis (EMH) has been refined over the past several decades to 
rectify many of the original shortcomings of the CAPM, including imperfect information 
and the costs associated with transactions, financing, and agency. Many behavioral biases 
have the same effect, and some frictions are modeled as behavioral biases.
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Modern portfolio theory and practice have evolved significantly over the last several 
decades. We will introduce several approaches:

• Mean-variance optimization, and its shortcomings

• Alternatives such as minimum-risk and 1/n allocation

• Risk parity approaches

• Risk factor approaches

Mean-variance optimization
Modern portfolio theory solves for the optimal portfolio weights to minimize volatility for 
a given expected return or maximize returns for a given level of volatility. The key requisite 
inputs are expected asset returns, standard deviations, and the covariance matrix.

How it works

Diversification works because the variance of portfolio returns depends on the covariance 
of the assets. It can be reduced below the weighted average of the asset variances by 
including assets with less than perfect correlation.

In particular, given a vector, 𝜔𝜔 , of portfolio weights and the covariance matrix, Σ , the 
portfolio variance, 𝜎𝜎PF , is defined as: 𝜎𝜎PF = 𝜔𝜔𝑇𝑇Σ𝜔𝜔 

Markowitz showed that the problem of maximizing the expected portfolio return subject to 
a target risk has an equivalent dual representation of minimizing portfolio risk, subject to 
a target expected return level, 𝜇𝜇PF . Hence, the optimization problem becomes:min𝜔𝜔     𝜎𝜎PF2 = 𝜔𝜔𝑇𝑇Σ𝜔𝜔s. t.   𝜔𝜔𝑇𝑇𝜇𝜇 = 𝜎𝜎PF    ‖𝜔𝜔‖ = 1  

Finding the efficient frontier in Python
We can calculate an efficient frontier using scipy.optimize.minimize and the historical 
estimates for asset returns, standard deviations, and the covariance matrix. SciPy 's 
minimize function implements a range of constrained and unconstrained optimization 
algorithms for scalar functions that output a single number from one or more input 
variables (see the SciPy documentation for more details). The code can be found in the 
strategy_evaluation subfolder of the repository for this chapter and implements the 
following sequence of steps:
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First, the simulation generates random weights using the Dirichlet distribution and 
computes the mean, standard deviation, and SR for each sample portfolio using the 
historical return data:

def simulate_portfolios(mean_ret, cov, rf_rate=rf_rate, short=True):

    alpha = np.full(shape=n_assets, fill_value=.05)
    weights = dirichlet(alpha=alpha, size=NUM_PF)

    if short:

        weights *= choice([-1, 1], size=weights.shape)

    returns = weights @ mean_ret.values + 1

    returns = returns ** periods_per_year - 1

    std = (weights @ monthly_returns.T).std(1)

    std *= np.sqrt(periods_per_year)

    sharpe = (returns - rf_rate) / std

    return pd.DataFrame({'Annualized Standard Deviation': std,

                         'Annualized Returns': returns,

                         'Sharpe Ratio': sharpe}), weights

Next, we set up the quadratic optimization problem to solve for the minimum standard 
deviation for a given return or the maximum SR. To this end, we define the functions that 
measure the key performance metrics:

def portfolio_std(wt, rt=None, cov=None):

    """Annualized PF standard deviation"""

    return np.sqrt(wt @ cov @ wt * periods_per_year)

def portfolio_returns(wt, rt=None, cov=None):

    """Annualized PF returns"""

    return (wt @ rt + 1) ** periods_per_year - 1

def portfolio_performance(wt, rt, cov):

    """Annualized PF returns & standard deviation"""

    r = portfolio_returns(wt, rt=rt)

    sd = portfolio_std(wt, cov=cov)

    return r, sd

Next, we define a target function that represents the negative SR for scipy's minimize 
function to optimize, given the constraints that the weights are bounded by, [0, 1], and sum 
to one in absolute terms:
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def neg_sharpe_ratio(weights, mean_ret, cov):

    r, sd = portfolio_performance(weights, mean_ret, cov)

    return -(r - rf_rate) / sd

weight_constraint = {'type': 'eq',

                     'fun': lambda x: np.sum(np.abs(x)) - 1}

def max_sharpe_ratio(mean_ret, cov, short=False):

    return minimize(fun=neg_sharpe_ratio,

                    x0=x0,

                    args=(mean_ret, cov),

                    method='SLSQP',

                    bounds=((-1 if short else 0, 1),) * n_assets,

                    constraints=weight_constraint,

                    options={'tol':1e-10, 'maxiter':1e4})

Then, we compute the efficient frontier by iterating over a range of target returns and 
solving for the corresponding minimum variance portfolios. To this end, we formulate the 
optimization problem using the constraints on portfolio risk and return as a function of the 
weights, as follows:

def min_vol_target(mean_ret, cov, target, short=False):

    def ret_(wt):

        return portfolio_returns(wt, mean_ret)

    constraints = [{'type': 'eq', 'fun': lambda x: ret_(x) - target},

                     weight_constraint]

    bounds = ((-1 if short else 0, 1),) * n_assets

    return minimize(portfolio_std, x0=x0, args=(mean_ret, cov),

                    method='SLSQP', bounds=bounds,

                    constraints=constraints,

                    options={'tol': 1e-10, 'maxiter': 1e4})

The solution requires iterating over ranges of acceptable values to identify optimal risk-
return combinations:

def efficient_frontier(mean_ret, cov, ret_range):
    return [min_vol_target(mean_ret, cov, ret) for ret in ret_range]

The simulation yields a subset of the feasible portfolios, and the efficient frontier identifies 
the optimal in-sample return-risk combinations that were achievable given historic data.

Figure 5.2 shows the result, including the minimum variance portfolio, the portfolio that 
maximizes the SR, and several portfolios produced by alternative optimization strategies 
that we'll discuss in the following sections:
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Figure 5.2: The efficient frontier and different optimized portfolios

The portfolio optimization can be run at every evaluation step of the trading strategy to 
optimize the positions.

Challenges and shortcomings

The preceding mean-variance frontier estimation illustrates in-sample, that is, backward-
looking optimization. In practice, portfolio optimization requires forward-looking inputs 
and outputs. However, expected returns are notoriously difficult to estimate accurately. It is 
best viewed as a starting point and benchmark for numerous improvements.

The covariance matrix can be estimated somewhat more reliably, which has given rise 
to several alternative approaches. However, covariance matrices with correlated assets 
pose computational challenges since the optimization problem requires inverting the 
matrix. The high condition number induces numerical instability, which in turn gives rise 
to the Markovitz curse: the more diversification is required (by correlated investment 
opportunities), the more unreliable the weights produced by the algorithm.

Many investors prefer to use portfolio-optimization techniques with less onerous input 
requirements. We will now introduce several alternatives that aim to address these 
shortcomings, including a more recent approach based on machine learning.
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Alternatives to mean-variance optimization
The challenges with accurate inputs for the mean-variance optimization problem have led 
to the adoption of several practical alternatives that constrain the mean, the variance, or 
both, or omit return estimates that are more challenging, such as the risk parity approach, 
which we'll discuss later in this section.

The 1/N portfolio

Simple portfolios provide useful benchmarks to gauge the added value of complex 
models that generate the risk of overfitting. The simplest strategy—an equally-weighted 
portfolio—has been shown to be one of the best performers.

Famously, de Miguel, Garlappi, and Uppal (2009) compared the out-of-sample performance 
of portfolios produced by various mean-variance optimizers, including robust Bayesian 
estimators, portfolio constraints, and optimal combinations of portfolios, to the simple 
1/N rule. They found that the 1/N portfolio produced a higher Sharpe ratio than the 
alternatives on various datasets, explained by the high cost of estimation errors that often 
outweighs the benefits of sophisticated optimization out of sample.

More specifically, they found that the estimation window required for the sample-based 
mean-variance strategy and its extensions to outperform the 1/N benchmark is around 3,000 
months for a portfolio with 25 assets and about 6,000 months for a portfolio with 50 assets.

The 1/N portfolio is also included in Figure 5.2 in the previous section.

The minimum-variance portfolio

Another alternative is the global minimum-variance (GMV) portfolio, which prioritizes 
the minimization of risk. It is shown in Figure 5.2 and can be calculated, as follows, by 
minimizing the portfolio standard deviation using the mean-variance framework:

def min_vol(mean_ret, cov, short=False):

    return minimize(fun=portfolio_std,

                    x0=x0,

                    args=(mean_ret, cov),

                    method='SLSQP',

                    bounds=bounds = ((-1 if short else 0, 1),) * 

                          n_assets,

                          constraints=weight_constraint,

                          options={'tol': 1e-10, 'maxiter': 1e4})

The corresponding minimum volatility portfolio lies on the efficient frontier, as shown 
previously in Figure 5.2.
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Global Portfolio Optimization – the Black-Litterman approach

The Global Portfolio Optimization approach of Black and Litterman (1992) combines 
economic models with statistical learning. It is popular because it generates estimates of 
expected returns that are plausible in many situations.

The technique assumes that the market is a mean-variance portfolio, as implied by the 
CAPM equilibrium model. It builds on the fact that the observed market capitalization can 
be considered as optimal weights assigned to each security by the market. Market weights 
reflect market prices that, in turn, embody the market's expectations of future returns.

The approach can thus reverse-engineer the unobservable future expected returns from 
the assumption that the market is close enough to equilibrium, as defined by the CAPM. 
Investors can adjust these estimates to their own beliefs using a shrinkage estimator. 
The model can be interpreted as a Bayesian approach to portfolio optimization. We will 
introduce Bayesian methods in Chapter 10, Bayesian ML – Dynamic Sharpe Ratios and Pairs 
Trading Strategies.

How to size your bets – the Kelly criterion

The Kelly criterion has a long history in gambling because it provides guidance on how 
much to stake on each bet in an (infinite) sequence of bets with varying (but favorable) odds 
to maximize terminal wealth. It was published in a 1956 paper, A New Interpretation of the 
Information Rate, by John Kelly, who was a colleague of Claude Shannon's at Bell Labs. He 
was intrigued by bets placed on candidates at the new quiz show "The $64,000 Question," 
where a viewer on the west coast used the three-hour delay to obtain insider information 
about the winners.

Kelly drew a connection to Shannon's information theory to solve for the bet that is optimal 
for long-term capital growth when the odds are favorable, but uncertainty remains. His 
rule maximizes logarithmic wealth as a function of the odds of success of each game and 
includes implicit bankruptcy protection since log(0) is negative infinity so that a Kelly 
gambler would naturally avoid losing everything.

The optimal size of a bet

Kelly began by analyzing games with a binary win-lose outcome. The key variables are:

• b: The odds defining the amount won for a $1 bet. Odds = 5/1 implies a $5 gain if 
the bet wins, plus recovery of the $1 capital.

• p: The probability defining the likelihood of a favorable outcome.
• f: The share of the current capital to bet.

• V: The value of the capital as a result of betting.
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The Kelly criterion aims to maximize the value's growth rate, G, of infinitely repeated bets:𝐺𝐺 𝐺 𝐺𝐺𝐺𝑁𝑁𝑁𝑁 1𝑁𝑁 𝐺og𝑉𝑉𝑁𝑁𝑉𝑉0  

When W and L are the numbers of wins and losses, then:𝑉𝑉𝑁𝑁 = (1 + 𝑏𝑏 𝑏 𝑏𝑏)𝑤𝑤(1 − 𝑏𝑏)𝐿𝐿𝑉𝑉0                                                         ⇒   𝐺𝐺 = 𝐺𝐺𝐺𝑁𝑁𝑁𝑁 [𝑊𝑊𝑁𝑁 𝐺og(1 + odds 𝑏 share) + 𝐿𝐿𝑁𝑁 𝐺og(1 − 𝑏𝑏)]            ⟺= 𝑝𝑝 𝐺og(1 + 𝑏𝑏 𝑏 𝑏𝑏) + (1 − 𝑝𝑝) 𝐺og(1 − 𝑏𝑏)                                 

We can maximize the rate of growth G by maximizing G with respect to f, as illustrated 
using SymPy, as follows (you can find this in the kelly_rule notebook):

from sympy import symbols, solve, log, diff
share, odds, probability = symbols('share odds probability')

Value = probability * log(1 + odds * share) + (1 - probability) * log(1 

        - share)

solve(diff(Value, share), share)
[(odds*probability + probability - 1)/odds]

We arrive at the optimal share of capital to bet:Kelly Criterion:       𝑓𝑓∗ = 𝑏𝑏 ∗ 𝑏𝑏 𝑏 𝑏𝑏 𝑏 𝑏𝑏𝑏  

Optimal investment – single asset

In a financial market context, both outcomes and alternatives are more complex, but the 
Kelly criterion logic does still apply. It was made popular by Ed Thorp, who first applied it 
profitably to gambling (described in the book Beat the Dealer) and later started the successful 
hedge fund Princeton/Newport Partners.

With continuous outcomes, the growth rate of capital is defined by an integrate over the 
probability distribution of the different returns that can be optimized numerically:𝐸𝐸[𝐺𝐺] = ∫ log(1 ∗ 𝑓𝑓𝑓𝑓)𝑃𝑃(𝑓𝑓)𝑑𝑑𝑓𝑓   ⇔𝑑𝑑𝑑𝑑𝑓𝑓 𝐸𝐸[𝐺𝐺] = ∫ 𝑓𝑓1 ∗ 𝑓𝑓𝑓𝑓 𝑃𝑃(𝑓𝑓)𝑑𝑑𝑓𝑓 = 0        +∞

−∞
 

We can solve this expression for the optimal f* using the scipy.optimize module. The 
quad function computes the value of a definite integral between two values a and b using 
FORTRAN's QUADPACK library (hence its name). It returns the value of the integral and 
an error estimate:



Portfolio Optimization and Performance Evaluation

[ 134 ]

def norm_integral(f, m, st):
    val, er = quad(lambda s: np.log(1+f*s)*norm.pdf(s, m, st), m-3*st, 
                   m+3*st)
    return -val

def norm_dev_integral(f, m, st):
    val, er = quad(lambda s: (s/(1+f*s))*norm.pdf(s, m, st), m-3*st, 
                   m+3*st)
    return val
m = .058
s = .216

# Option 1: minimize the expectation integral

sol = minimize_scalar(norm_integral, args=(
                m, s), bounds=[0., 2.], method='bounded')
print('Optimal Kelly fraction: {:.4f}'.format(sol.x))
Optimal Kelly fraction: 1.1974

Optimal investment – multiple assets

We will use an example with various equities. E. Chan (2008) illustrates how to arrive  
at a multi-asset application of the Kelly criterion, and that the result is equivalent to the 
(potentially levered) maximum Sharpe ratio portfolio from the mean-variance optimization.

The computation involves the dot product of the precision matrix, which is the inverse of 
the covariance matrix, and the return matrix:

mean_returns = monthly_returns.mean()

cov_matrix = monthly_returns.cov()

precision_matrix = pd.DataFrame(inv(cov_matrix), index=stocks, 
columns=stocks)

kelly_wt = precision_matrix.dot(mean_returns).values

The Kelly portfolio is also shown in the previous efficient frontier diagram (after 
normalization so that the sum of the absolute weights equals one). Many investors prefer 
to reduce the Kelly weights to reduce the strategy's volatility, and Half-Kelly has become 
particularly popular.

Risk parity
The fact that the previous 15 years have been characterized by two major crises in the 
global equity markets, a consistently upwardly sloping yield curve, and a general decline in 
interest rates, made risk parity look like a particularly compelling option. Many institutions 
carved out strategic allocations to risk parity to further diversify their portfolios.

A simple implementation of risk parity allocates assets according to the inverse of their 
variances, ignoring correlations and, in particular, return forecasts:
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var = monthly_returns.var()

risk_parity_weights = var / var.sum()

The risk parity portfolio is also shown in the efficient frontier diagram at the beginning of 
this section.

Risk factor investment
An alternative framework for estimating input is to work down to the underlying 
determinants, or factors, that drive the risk and returns of assets. If we understand how the 
factors influence returns, and we understand the factors, we will be able to construct more 
robust portfolios.

The concept of factor investing looks beyond asset class labels. It looks to the underlying 
factor risks that we discussed in the previous chapter on alpha factors to maximize the 
benefits of diversification. Rather than distinguishing investment vehicles by labels such as 
hedge funds or private equity, factor investing aims to identify distinct risk-return profiles 
based on differences in exposure to fundamental risk factors (Ang 2014).

The naive approach to mean-variance investing plugs (artificial) groupings as distinct asset 
classes into a mean-variance optimizer. Factor investing recognizes that such groupings 
share many of the same factor risks as traditional asset classes. Diversification benefits can 
be overstated, as investors discovered during the 2008 crisis when correlations among risky 
asset classes increased due to exposure to the same underlying factor risks.

In Chapter 7, Linear Models – From Risk Factors to Return Forecasts, we will show how to 
measure the exposure of a portfolio to various risk factors so that you can either adjust the 
positions to tune your factor exposure, or hedge accordingly.

Hierarchical risk parity
Mean-variance optimization is very sensitive to the estimates of expected returns and the 
covariance of these returns. The covariance matrix inversion also becomes more challenging 
and less accurate when returns are highly correlated, as is often the case in practice. 
The result has been called the Markowitz curse: when diversification is more important 
because investments are correlated, conventional portfolio optimizers will likely produce 
an unstable solution. The benefits of diversification can be more than offset by mistaken 
estimates. As discussed, even naive, equally weighted portfolios can beat mean-variance 
and risk-based optimization out of sample.

More robust approaches have incorporated additional constraints (Clarke et al., 2002)  
or Bayesian priors (Black and Litterman, 1992), or used shrinkage estimators to make  
the precision matrix more numerically stable (Ledoit and Wolf, 2003), available in 
scikit-learn (http://scikit-learn.org/stable/modules/generated/sklearn.covariance.
LedoitWolf.html).

http://scikit-learn.org/stable/modules/generated/sklearn.covariance.LedoitWolf.html
http://scikit-learn.org/stable/modules/generated/sklearn.covariance.LedoitWolf.html
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Hierarchical risk parity (HRP), in contrast, leverages unsupervised machine learning 
to achieve superior out-of-sample portfolio allocations. A recent innovation in portfolio 
optimization leverages graph theory and hierarchical clustering to construct a portfolio in 
three steps (Lopez de Prado, 2015):

1. Define a distance metric so that correlated assets are close to each other, and apply 
single-linkage clustering to identify hierarchical relationships.

2. Use the hierarchical correlation structure to quasi-diagonalize the covariance 
matrix.

3. Apply top-down inverse-variance weighting using a recursive bisectional search 
to treat clustered assets as complements, rather than substitutes, in portfolio 
construction and to reduce the number of degrees of freedom.

A related method to construct hierarchical clustering portfolios (HCP) was presented 
by Raffinot (2016). Conceptually, complex systems such as financial markets tend to have 
a structure and are often organized in a hierarchical way, while the interaction among 
elements in the hierarchy shapes the dynamics of the system. Correlation matrices also lack 
the notion of hierarchy, which allows weights to vary freely and in potentially unintended 
ways.

Both HRP and HCP have been tested by JP Morgan (2012) on various equity universes. 
The HRP, in particular, produced equal or superior risk-adjusted returns and Sharpe ratios 
compared to naive diversification, the maximum-diversified portfolios, or GMV portfolios.

We will present the Python implementation in Chapter 13, Data-Driven Risk Factors and 
Asset Allocation with Unsupervised Learning.

Trading and managing portfolios with Zipline
In the previous chapter, we introduced Zipline to simulate the computation of alpha factors 
from trailing market, fundamental, and alternative data for a cross-section of stocks. In 
this section, we will start acting on the signals emitted by alpha factors. We'll do this by 
submitting buy and sell orders so we can enter long and short positions or rebalance the 
portfolio to adjust our holdings to the most recent trade signals.

We will postpone optimizing the portfolio weights until later in this chapter and, for now, 
just assign positions of equal value to each holding. As mentioned in the previous chapter,  
an in-depth introduction to the testing and evaluation of strategies that include ML models 
will follow in Chapter 6, The Machine Learning Process. 
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Scheduling signal generation and trade execution
We will use the custom MeanReversion factor developed in the previous chapter (see the 
implementation in 01_backtest_with_trades.ipynb).

The Pipeline created by the compute_factors() method returns a table with columns 
containing the 50 longs and shorts. It selects the equities according to the largest negative 
and positive deviations, respectively, of their last monthly return from the annual average, 
normalized by the standard deviation:

def compute_factors():

    """Create factor pipeline incl. mean reversion,

        filtered by 30d Dollar Volume; capture factor ranks"""
    mean_reversion = MeanReversion()

    dollar_volume = AverageDollarVolume(window_length=30)

    return Pipeline(columns={'longs'  : mean_reversion.bottom(N_LONGS),

                             'shorts' : mean_reversion.top(N_SHORTS),

                             'ranking': mean_reversion.rank(ascending=False)},

                    screen=dollar_volume.top(VOL_SCREEN))

It also limited the universe to the 1,000 stocks with the highest average trading volume 
over the last 30 trading days. before_trading_start() ensures the daily execution of the 
Pipeline and the recording of the results, including the current prices:

def before_trading_start(context, data):

    """Run factor pipeline"""

    context.factor_data = pipeline_output('factor_pipeline')

    record(factor_data=context.factor_data.ranking)

    assets = context.factor_data.index

    record(prices=data.current(assets, 'price'))

The new rebalance() method submits trade orders to the exec_trades() method for the 
assets flagged for long and short positions by the Pipeline with equal positive and negative 
weights. It also divests any current holdings that are no longer included in the factor 
signals:

def exec_trades(data, assets, target_percent):

    """Place orders for assets using target portfolio percentage"""

    for asset in assets:

        if data.can_trade(asset) and not get_open_orders(asset):

            order_target_percent(asset, target_percent)
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def rebalance(context, data):

    """Compute long, short and obsolete holdings; place trade orders"""

    factor_data = context.factor_data

    assets = factor_data.index

    longs = assets[factor_data.longs]

    shorts = assets[factor_data.shorts]

    divest = context.portfolio.positions.keys() - longs.union(shorts)

    exec_trades(data, assets=divest, target_percent=0)

    exec_trades(data, assets=longs, target_percent=1 / N_LONGS if N_LONGS 

                else 0)

    exec_trades(data, assets=shorts, target_percent=-1 / N_SHORTS if N_SHORTS 

                else 0)

The rebalance() method runs according to date_rules and time_rules set by the schedule_
function() utility at the beginning of the week, right after market_open, as stipulated by the 
built-in US_EQUITIES calendar (see the Zipline documentation for details on rules).

You can also specify a trade commission both in relative terms and as a minimum amount. 
There is also an option to define slippage, which is the cost of an adverse change in price 
between trade decision and execution:

def initialize(context):

    """Setup: register pipeline, schedule rebalancing,

        and set trading params"""

    attach_pipeline(compute_factors(), 'factor_pipeline')

    schedule_function(rebalance,

                      date_rules.week_start(),

                      time_rules.market_open(),

                      calendar=calendars.US_EQUITIES)

    set_commission(us_equities=commission.PerShare(cost=0.00075, 

                                                   min_trade_cost=.01))

    set_slippage(us_equities=slippage.VolumeShareSlippage(volume_
limit=0.0025, price_impact=0.01))

The algorithm continues to execute after calling the run_algorithm() function and returns 
the same backtest performance DataFrame that we saw in the previous chapter.

Implementing mean-variance portfolio optimization
We demonstrated in the previous section how to find the efficient frontier using scipy.
optimize. In this section, we will leverage the PyPortfolioOpt library, which offers portfolio 
optimization (using SciPy under the hood), including efficient frontier techniques and more 
recent shrinkage approaches that regularize the covariance matrix (see Chapter 7, Linear 
Models – From Risk Factors to Return Forecasts, on shrinkage for linear regression). The code 
example lives in 02_backtest_with_pf_optimization.ipynb.
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We'll use the same setup with 50 long and short positions derived from the MeanReversion 
factor ranking. The rebalance() function receives the suggested long and short positions 
and passes each subset on to a new optimize_weights() function to obtain dictionaries with 
asset: target_percent pairs:

def rebalance(context, data):

    """Compute long, short and obsolete holdings; place orders"""

    factor_data = context.factor_data

    assets = factor_data.index

    longs = assets[factor_data.longs]

    shorts = assets[factor_data.shorts] 

    divest = context.portfolio.positions.keys() - longs.union(shorts)

    exec_trades(data, positions={asset: 0 for asset in divest})

    # get price history

    prices = data.history(assets, fields='price',
                          bar_count=252+1, # 1 yr of returns 

                          frequency='1d')

    if len(longs) > 0:

        long_weights = optimize_weights(prices.loc[:, longs])

        exec_trades(data, positions=long_weights)

    if len(shorts) > 0:

        short_weights = optimize_weights(prices.loc[:, shorts], short=True)

        exec_trades(data, positions=short_weights)

The optimize_weights() function uses the EfficientFrontier object, provided by 
PyPortfolioOpt, to find the weights that maximize the Sharpe ratio based on the last year 
of returns and the covariance matrix, both of which the library also computes:

def optimize_weights(prices, short=False):

    returns = expected_returns.mean_historical_return(prices=prices, 

                                                      frequency=252)

    cov = risk_models.sample_cov(prices=prices, frequency=252)

    # get weights that maximize the Sharpe ratio

    ef = EfficientFrontier(expected_returns=returns, 
                           cov_matrix=cov, 

                           weight_bounds=(0, 1), 

                           gamma=0)

    

    weights = ef.max_sharpe()

    if short:
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        return {asset: -weight for asset, weight in ef.clean_weights().
items()}

    else:

        return ef.clean_weights()

It returns normalized weights that sum to 1, set to negative values for the short positions.

Figure 5.3 shows that, for this particular set of strategies and time frame, the mean-variance 
optimized portfolio performs significantly better:

Figure 5.3: Mean-variance vs equal-weighted portfolio performance

PyPortfolioOpt also finds the minimum volatility portfolio. More generally speaking, this 
example illustrates how you can add logic to tweak portfolio weights using the methods 
presented in the previous section, or any other of your choosing.

We will now turn to common measures of portfolio return and risk, and how to compute 
them using the pyfolio library.

Measuring backtest performance with pyfolio
Pyfolio facilitates the analysis of portfolio performance, both in and out of sample using a rich 
set of metrics and visualizations. It produces tear sheets that cover the analysis of returns, 
positions, and transactions, as well as event risk during periods of market stress using several 
built-in scenarios. It also includes Bayesian out-of-sample performance analysis.

Pyfolio relies on portfolio returns and position data and can also take into account the 
transaction costs and slippage losses of trading activity. It uses the empyrical library, 
which can also be used on a standalone basis to compute performance metrics.
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Creating the returns and benchmark inputs
The library is part of the Quantopian ecosystem and is compatible with Zipline and 
Alphalens. We will first demonstrate how to generate the requisite inputs from Alphalens 
and then show how to extract them from a Zipline backtest performance DataFrame. The 
code samples for this section are in the notebook 03_pyfolio_demo.ipynb.

Getting pyfolio input from Alphalens

Pyfolio also integrates with Alphalens directly and permits the creation of pyfolio input 
data using create_pyfolio_input:

from alphalens.performance import create_pyfolio_input

qmin, qmax = factor_data.factor_quantile.min(), 

             factor_data.factor_quantile.max()

input_data = create_pyfolio_input(alphalens_data,

                                  period='1D',

                                  capital=100000,

                                  long_short=False,

                                  equal_weight=False,

                                  quantiles=[1, 5],

                                  benchmark_period='1D')

returns, positions, benchmark = input_data

There are two options to specify how portfolio weights will be generated:

• long_short: If False, weights will correspond to factor values divided by their 
absolute value so that negative factor values generate short positions. If True, factor 
values are first demeaned so that long and short positions cancel each other out, 
and the portfolio is market neutral.

• equal_weight: If True and long_short is True, assets will be split into two equal-
sized groups, with the top/bottom half making up long/short positions.

Long-short portfolios can also be created for groups if factor_data includes, for example, 
sector information for each asset.

Getting pyfolio input from a Zipline backtest

The result of a Zipline backtest can also be converted into the required pyfolio input using 
extract_rets_pos_txn_from_zipline:

returns, positions, transactions = 

         extract_rets_pos_txn_from_zipline(backtest)
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Walk-forward testing – out-of-sample returns
Testing a trading strategy involves back- and forward testing. The former involves 
historical data and often refers to the sample period used to fine-tune alpha factor 
parameters. Forward-testing simulates the strategy on new market data to validate 
that it performs well out of sample and is not too closely tailored to specific historical 
circumstances.

Pyfolio allows for the designation of an out-of-sample period to simulate walk-forward 
testing. There are numerous aspects to take into account when testing a strategy to obtain 
statistically reliable results. We will address this in more detail in Chapter 8, The ML4T 
Workflow – From Model to Strategy Backtesting. 

The plot_rolling_returns function displays cumulative in- and out-of-sample returns 
against a user-defined benchmark (we are using the S&P 500). Pyfolio computes cumulative 
returns as the product of simple returns after adding 1 to each:

from pyfolio.plotting import plot_rolling_returns

plot_rolling_returns(returns=returns,

                     factor_returns=benchmark_rets,

                     live_start_date='2016-01-01',

                     cone_std=(1.0, 1.5, 2.0))

The plot in Figure 5.4 includes a cone that shows expanding confidence intervals to indicate 
when out-of-sample returns appear unlikely, given random-walk assumptions. Here, our 
toy strategy did not perform particularly well against the S&P 500 benchmark during the 
simulated 2016 out-of-sample period:

Figure 5.4: Pyfolio cumulative performance plot
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Summary performance statistics

Pyfolio offers several analytic functions and plots. The perf_stats summary displays the 
annual and cumulative returns, volatility, skew, and kurtosis of returns and the SR.

The following additional metrics (which can also be calculated individually) are 
most important:

• Max drawdown: Highest percentage loss from the previous peak

• Calmar ratio: Annual portfolio return relative to maximal drawdown

• Omega ratio: Probability-weighted ratio of gains versus losses for a return target, 
zero per default

• Sortino ratio: Excess return relative to downside standard deviation

• Tail ratio: Size of the right tail (gains, the absolute value of the 95th percentile) 
relative to the size of the left tail (losses, absolute value of the 5th percentile) 

• Daily value at risk (VaR): Loss corresponding to a return two standard deviations 
below the daily mean

• Alpha: Portfolio return unexplained by the benchmark return

• Beta: Exposure to the benchmark

The plot_perf_stats function bootstraps estimates of parameter variability and displays 
the result as a box plot:

Figure 5.5: Pyfolio performance statistic plot

The show_perf_stats function computes numerous metrics for the entire period, as well as 
separately, for in- and out-of-sample periods:

from pyfolio.timeseries import show_perf_stats

show_perf_stats(returns=returns, 

                factor_returns=benchmark_rets, 

                positions=positions, 

                transactions=transactions, 

                live_start_date=oos_date)



Portfolio Optimization and Performance Evaluation

[ 144 ]

For the simulated long-short portfolio derived from the MeanReversion factor, we obtain the 
following performance statistics:

Metric All In-sample Out-of-sample

Annual return 2.80% 2.10% 4.70%

Cumulative returns 11.60% 6.60% 4.70%

Annual volatility 8.50% 8.80% 7.60%

Sharpe ratio 0.37 0.29 0.64

Calmar ratio 0.21 0.16 0.57

Stability 0.26 0.01 0.67

Max drawdown -13.10% -13.10% -8.30%

Omega ratio 1.07 1.06 1.11

Sortino ratio 0.54 0.42 0.96

Skew 0.33 0.35 0.25

Kurtosis 7.2 8.04 2

Tail ratio 1.04 1.06 1.01

Daily value at risk -1.10% -1.10% -0.90%

Gross leverage 0.69 0.68 0.72

Daily turnover 8.10% 8.00% 8.40%

Alpha 0 -0.01 0.03

Beta 0.25 0.27 0.17

See the appendix for details on the calculation and interpretation of portfolio risk and 
return metrics.

Drawdown periods and factor exposure

The plot_drawdown_periods(returns) function plots the principal drawdown periods for 
the portfolio, and several other plotting functions show the rolling SR and rolling factor 
exposures to the market beta or the Fama-French size, growth, and momentum factors:

fig, ax = plt.subplots(nrows=2, ncols=2, figsize=(16, 10))
axes = ax.flatten()
plot_drawdown_periods(returns=returns, ax=axes[0])

plot_rolling_beta(returns=returns, factor_returns=benchmark_rets, 

                  ax=axes[1])

plot_drawdown_underwater(returns=returns, ax=axes[2])

plot_rolling_sharpe(returns=returns)
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The plots in Figure 5.6, which highlights a subset of the visualization contained in the 
various tear sheets, illustrate how pyfolio allows us to drill down into the performance 
characteristics and gives us exposure to fundamental drivers of risk and returns:

Figure 5.6: Various pyfolio plots of performance over time

Modeling event risk

Pyfolio also includes timelines for various events that you can use to compare the 
performance of a portfolio to a benchmark during this period. Pyfolio uses the S&P 500 by 
default, but you can also provide benchmark returns of your choice. The following example 
compares the performance to the S&P 500 during the fall 2015 selloff, following the Brexit 
vote:

interesting_times = extract_interesting_date_ranges(returns=returns)

interesting_times['Fall2015'].to_frame('pf') \

 .join(benchmark_rets) \

 .add(1).cumprod().sub(1) \

 .plot(lw=2, figsize=(14, 6), title='Post-Brexit Turmoil')
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Figure 5.7 shows the resulting plot:

Figure 5.7: Pyfolio event risk analysis

Summary
In this chapter, we covered the important topic of portfolio management, which involves 
the combination of investment positions with the objective of managing risk-return trade-
offs. We introduced pyfolio to compute and visualize key risk and return metrics, as well as 
to compare the performance of various algorithms.

We saw how important accurate predictions are for optimizing portfolio weights and 
maximizing diversification benefits. We also explored how machine learning can facilitate 
more effective portfolio construction by learning hierarchical relationships from the asset-
returns covariance matrix.

We will now move on to the second part of this book, which focuses on the use of machine 
learning models. These models will produce more accurate predictions by making more 
effective use of more diverse information. They do this to capture more complex patterns 
than the simpler alpha factors that were most prominent so far.

We will begin by training, testing, and tuning linear models for regression and classification 
using cross-validation to achieve robust out-of-sample performance. We will also embed 
these models within the framework for defining and backtesting algorithmic trading 
strategies, which we covered in the previous two chapters.
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6
The Machine Learning Process

This chapter starts Part 2 of this book, where we'll illustrate how you can use a range of 
supervised and unsupervised machine learning (ML) models for trading. We will explain 
each model's assumptions and use cases before we demonstrate relevant applications using 
various Python libraries. The categories of models that we will cover in Parts 2-4 include:

• Linear models for the regression and classification of cross-section, time series,  
and panel data

• Generalized additive models, including nonlinear tree-based models, such as 
decision trees

• Ensemble models, including random forest and gradient-boosting machines

• Unsupervised linear and nonlinear methods for dimensionality reduction 
and clustering

• Neural network models, including recurrent and convolutional architectures

• Reinforcement learning models

We will apply these models to the market, fundamental, and alternative data sources 
introduced in the first part of this book. We will build on the material covered so far by 
demonstrating how to embed these models in a trading strategy that translates model 
signals into trades, how to optimize portfolio, and how to evaluate strategy performance.

There are several aspects that many of these models and their applications have in 
common. This chapter covers these common aspects so that we can focus on model-specific 
usage in the following chapters. They include the overarching goal of learning a functional 
relationship from data by optimizing an objective or loss function. They also include the 
closely related methods of measuring model performance.

We'll distinguish between unsupervised and supervised learning and outline use cases for 
algorithmic trading. We'll contrast supervised regression and classification problems and 
the use of supervised learning for statistical inference of relationships between input and 
output data, along with its use for the prediction of future outputs. 
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We'll also illustrate how prediction errors are due to the model's bias or variance, or 
because of a high noise-to-signal ratio in the data. Most importantly, we'll present methods 
to diagnose sources of errors like overfitting and improve your model's performance.

In this chapter, we will cover the following topics relevant to applying the ML workflow 
in practice:

• How supervised and unsupervised learning from data works

• Training and evaluating supervised learning models for regression and 
classification tasks

• How the bias-variance trade-off impacts predictive performance

• How to diagnose and address prediction errors due to overfitting
• Using cross-validation to optimize hyperparameters with a focus on time-series data

• Why financial data requires additional attention when testing out-of-sample

How machine learning from data works
Many definitions of ML revolve around the automated detection of meaningful patterns in 
data. Two prominent examples include:

• AI pioneer Arthur Samuelson defined ML in 1959 as a subfield of computer science 
that gives computers the ability to learn without being explicitly programmed.

• Tom Mitchell, one of the current leaders in the field, pinned down a well-posed 
learning problem more specifically in 1998: a computer program learns from 
experience with respect to a task and a performance measure of whether the 
performance of the task improves with experience (Mitchell 1997).

Experience is presented to an algorithm in the form of training data. The principal 
difference from previous attempts of building machines that solve problems is that the 
rules that an algorithm uses to make decisions are learned from the data, as opposed to 
being programmed by humans as was the case, for example, for expert systems prominent 
in the 1980s.

Recommended textbooks that cover a wide range of algorithms and general applications 
include James et al (2013), Hastie, Tibshirani, and Friedman (2009), Bishop (2006), and 
Mitchell (1997).

If you are already quite familiar with ML, feel free to skip ahead 
and dive right into learning how to use ML models to produce 
and combine alpha factors for an algorithmic trading strategy. 
This chapter's directory in the GitHub repository contains the code 
examples and lists additional resources.
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The challenge – matching the algorithm to the task
The key challenge of automated learning is to identify patterns in the training data that are 
meaningful when generalizing the model's learning to new data. There are a large number 
of potential patterns that a model could identify, while the training data only constitutes a 
sample of the larger set of phenomena that the algorithm may encounter when performing 
the task in the future.

The infinite number of functions that could have generated the observed outputs from the 
given input makes the search process for the true function impossible, without restricting 
the eligible set of candidates. The types of patterns that an algorithm is capable of learning 
are limited by the size of its hypothesis space that contains the functions it can possibly 
represent. It is also limited by the amount of information provided by the sample data. 

The size of the hypothesis space varies significantly between algorithms, as we will see in 
the following chapters. On the one hand, this limitation enables a successful search, and on 
the other hand, it implies an inductive bias that may lead to poor performance when the 
algorithm generalizes from the training sample to new data.

Hence, the key challenge becomes how to choose a model with a hypothesis space large 
enough to contain a solution to the learning problem, yet small enough to ensure reliable 
learning and generalization given the size of the training data. With more informative data, 
a model with a larger hypothesis space has a better chance of being successful.

The no-free-lunch theorem states that there is no universal learning algorithm. Instead, 
a learner's hypothesis space has to be tailored to a specific task using prior knowledge 
about the task domain in order for the search for meaningful patterns that generalize well 
to succeed (Gómez and Rojas 2015).

We will pay close attention to the assumptions that a model makes about data relationships 
for a specific task throughout this chapter and emphasize the importance of matching these 
assumptions with empirical evidence gleaned from data exploration.

There are several categories of machine learning tasks that differ by purpose, available 
information, and, consequently, the learning process itself. The main categories are 
supervised, unsupervised, and reinforcement learning, and we will review their key 
differences next.

Supervised learning – teaching by example
Supervised learning is the most commonly used type of ML. We will dedicate most of 
the chapters in this book to applications in this category. The term supervised implies the 
presence of an outcome variable that guides the learning process—that is, it teaches the 
algorithm the correct solution to the task at hand. Supervised learning aims to capture a 
functional input-output relationship from individual samples that reflect this relationship 
and to apply its learning by making valid statements about new data.
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Depending on the field, the output variable is also interchangeably called the label, target, 
or outcome, as well as the endogenous or left-hand side variable. We will use y

i
 for outcome 

observations i = 1, ..., N, or y for a (column) vector of outcomes. Some tasks come with 
several outcomes and are called multilabel problems.

The input data for a supervised learning problem is also known as features, as well as 
exogenous or right-hand side variables. We use x

i
 for a vector of features with observations 

i = 1, ..., N, or X in matrix notation, where each column contains a feature and each row an 
observation.

The solution to a supervised learning problem is a function 𝑓𝑓(X)  that represents what the 
model learned about the input-output relationship from the sample and approximates the 

true relationship, represented by 𝒴𝒴 𝒴 𝒴𝒴(X) . This function can potentially be used to infer 
statistical associations or even causal relationships among variables of interest beyond the 
sample, or it can be used to predict outputs for new input data.

The task of learning an input-outcome relationship from data that permits accurate 
predictions of outcomes for new inputs faces important trade-offs. More complex models 
have more moving parts that are capable of representing more nuanced relationships. 
However, they are also more likely to learn random noise particular to the training sample, 
as opposed to a systematic signal that represents a general pattern. When this happens, we 
say the model is overfitting to the training data. In addition, complex models may also be 
more difficult to inspect, making it more difficult to understand the nature of the learned 
relationship or the drivers of specific predictions.

Overly simple models, on the other hand, will miss complex signals and deliver biased 
results. This trade-off is known as the bias-variance trade-off in supervised learning, but 
conceptually, this also applies to the other forms of ML where too simple or too complex 
models may perform poorly beyond the training data.

Unsupervised learning – uncovering useful patterns
When solving an unsupervised learning problem, we only observe the features and have 
no measurements of the outcome. Instead of predicting future outcomes or inferring 
relationships among variables, unsupervised algorithms aim to identify structure in the 
input that permits a new representation of the information contained in the data.

Frequently, the measure of success is the contribution of the result to the solution of some 
other problem. This includes identifying commonalities, or clusters, among observations, or 
transforming features to obtain a compressed summary that captures relevant information.

The key challenge is that unsupervised algorithms have to accomplish their mission without 
the guidance provided by outcome information. As a consequence, we are often unable 
to evaluate the result against a ground truth as in the supervised case, and its quality may 
be in the eye of the beholder. However, sometimes, we can evaluate its contribution to a 
downstream task, for example when dimensionality reduction enables better predictions.
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There are numerous approaches, from well-established cluster algorithms to cutting-edge 
deep learning models, and several relevant use cases for our purposes.

Use cases – from risk management to text processing

There are numerous trading use cases for unsupervised learning that we will cover in 
later chapters:

• Grouping securities with similar risk and return characteristics (see hierarchical 

risk parity in Chapter 13, Data-Driven Risk Factors and Asset Allocation with 
Unsupervised Learning)

• Finding a small number of risk factors driving the performance of a much larger 
number of securities using principal component analysis (Chapter 13, Data-
Driven Risk Factors and Asset Allocation with Unsupervised Learning) or autoencoders 
(Chapter 19, RNN for Multivariate Time Series and Sentiment Analysis)

• Identifying latent topics in a body of documents (for example, earnings call 
transcripts) that comprise the most important aspects of those documents (Chapter 

14, Text Data for Trading – Sentiment Analysis)

At a high level, these applications rely on methods to identify clusters and methods to 
reduce the dimensionality of the data.

Cluster algorithms – seeking similar observations

Cluster algorithms apply a concept of similarity to identify observations or data attributes 
that contain comparable information. They summarize a dataset by assigning a large 
number of data points to a smaller number of clusters. They do this so that the cluster 
members are more closely related to each other than to members of other clusters.

Cluster algorithms differ in what they assume about how the various groupings were 
generated and what makes them alike. As a result, they tend to produce alternative types 
of clusters and should thus be selected based on the characteristics of the data. Some 
prominent examples are:

• K-means clustering: Data points belong to one of the k clusters of equal size that 
take an elliptical form.

• Gaussian mixture models: Data points have been generated by any of the various 
multivariate normal distributions.

• Density-based clusters: Clusters are of arbitrary shape and defined only by the 
existence of a minimum number of nearby data points.

• Hierarchical clusters: Data points belong to various supersets of groups that are 
formed by successively merging smaller clusters.
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Dimensionality reduction – compressing information

Dimensionality reduction produces new data that captures the most important 
information contained in the source data. Rather than grouping data into clusters while 
retaining the original data, these algorithms transform the data with the goal of using fewer 
features to represent the original information.

Algorithms differ with respect to how they transform data and, thus, the nature of the 
resulting compressed dataset, as shown in the following list:

• Principal component analysis (PCA): Finds the linear transformation that captures 
most of the variance in the existing dataset

• Manifold learning: Identifies a nonlinear transformation that yields a lower-
dimensional representation of the data

• Autoencoders: Uses a neural network to compress data nonlinearly with minimal 
loss of information

We will dive deeper into these unsupervised learning models in several of the following 
chapters, including important applications to natural language processing (NLP) in the 
form of topic modeling and Word2vec feature extraction.

Reinforcement learning – learning by trial and error
Reinforcement learning (RL) is the third type of ML. It centers on an agent that needs to 
pick an action at each time step, based on information provided by the environment. The 
agent could be a self-driving car, a program playing a board game or a video game, or a 
trading strategy operating in a certain security market. You find an excellent introduction 
in Sutton and Barto (2018).

The agent aims to choose the action that yields the highest reward over time, based on a set 
of observations that describes the current state of the environment. It is both dynamic and 
interactive: the stream of positive and negative rewards impacts the algorithm's learning, 
and actions taken now may influence both the environment and future rewards.

The agent needs to take action right from start and learns in an "online" fashion, one 
example at a time as it goes along. The learning process follows a trial-and-error approach. 
This is because the agent needs to manage the trade-off between exploiting a course of 
action that has yielded a certain reward in the past and exploring new actions that may 
increase the reward in the future. RL algorithms optimize the agent's learning using 
dynamical systems theory and, in particular, the optimal control of Markov decision 
processes with incomplete information.

RL differs from supervised learning, where the training data lays out both the context 
and the correct decision for the algorithm. It is tailored to interactive settings where the 
outcomes only become available over time and learning must proceed in a continuous 
fashion as the agent acquires new experience. 



Chapter 6

[ 153 ]

However, some of the most notable progress in artificial intelligence (AI) involves 
RL, which uses deep learning to approximate functional relationships between actions, 
environments, and future rewards. It also differs from unsupervised learning because 
feedback on the actions will be available, albeit with a delay.

RL is particularly suitable for algorithmic trading because the model of a return-
maximizing agent in an uncertain, dynamic environment has much in common with an 
investor or a trading strategy that interacts with financial markets. We will introduce RL 
approaches to building an algorithmic trading strategy in Chapter 21, Generative Adversarial 
Networks for Synthetic Time-Series Data.

The machine learning workflow
Developing an ML solution for an algorithmic trading strategy requires a systematic 
approach to maximize the chances of success while economizing on resources. It is also 
very important to make the process transparent and replicable in order to facilitate 
collaboration, maintenance, and later refinements.

The following chart outlines the key steps, from problem definition to the deployment of a 
predictive solution:

Figure 6.1: Key steps of the machine learning workflow

The process is iterative throughout, and the effort required at different stages will vary 
according to the project. Generally, however, this process should include the following 
steps:

1. Frame the problem, identify a target metric, and define success.
2. Source, clean, and validate the data.

3. Understand your data and generate informative features.

4. Pick one or more machine learning algorithms suitable for your data.

5. Train, test, and tune your models.

6. Use your model to solve the original problem.

We will walk through these steps in the following sections using a simple example to 
illustrate some of the key points.
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Basic walkthrough – k-nearest neighbors
The machine_learning_workflow.ipynb notebook in this chapter's folder of this book's 
GitHub repository contains several examples that illustrate the machine learning workflow 
using a dataset of house prices.

We will use the fairly straightforward k-nearest neighbors (KNN) algorithm, which 
allows us to tackle both regression and classification problems. In its default scikit-learn 
implementation, it identifies the k nearest data points (based on the Euclidean distance) to 
make a prediction. It predicts the most frequent class among the neighbors or the average 
outcome in the classification or regression case, respectively.

The README for this chapter on GitHub links to additional resources; see Bhatia and 
Vandana (2010) for a brief survey.

Framing the problem – from goals to metrics
The starting point for any machine learning project is the use case it ultimately aims to 
address. Sometimes, this goal will be statistical inference in order to identify an association 
or even a causal relationship between variables. Most frequently, however, the goal will be 
the prediction of an outcome to yield a trading signal.

Both inference and prediction tasks rely on metrics to evaluate how well a model achieves 
its objective. Due to their prominence in practice, we will focus on common objective 
functions and the corresponding error metrics for predictive models.

We distinguish prediction tasks by the nature of the output: a continuous output variable 
poses a regression problem, a categorical variable implies classification, and the special 
case of ordered categorical variables represents a ranking problem.

You can often frame a given problem in different ways. The task at hand may be how 
to efficiently combine several alpha factors. You could frame this task as a regression 
problem that aims to predict returns, a binary classification problem that aims to predict the 
direction of future price movements, or a multiclass problem that aims to assign stocks to 
various performance classes such as return quintiles.

In the following section, we will introduce these objectives and look at how to measure and 
interpret related error metrics.

Prediction versus inference

The functional relationship produced by a supervised learning algorithm can be used for 
inference—that is, to gain insights into how the outcomes are generated. Alternatively, you 
can use it to predict outputs for unknown inputs.

For algorithmic trading, we can use inference to estimate the statistical association of the 
returns of an asset with a risk factor. This implies, for instance, assessing how likely this 
observation is due to noise, as opposed to an actual influence of the risk factor. Prediction, 
in turn, can be used to forecast the risk factor, which can help predict the asset return and 
price and be translated into a trading signal.
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Statistical inference is about drawing conclusions from sample data about the parameters 
of the underlying probability distribution or the population. Potential conclusions include 
hypothesis tests about the characteristics of the distribution of an individual variable, or 
the existence or strength of numerical relationships among variables. They also include the 
point or interval estimates of metrics.

Inference depends on the assumptions about the process that originally generated the data. 
We will review these assumptions and the tools that are used for inference with linear 
models where they are well established. More complex models make fewer assumptions 
about the structural relationship between input and output. Instead, they approach the 
task of function approximation with fewer restrictions, while treating the data-generating 
process as a black box.

These models, including decision trees, ensemble models, and neural networks, have 
gained in popularity because they often outperform on prediction tasks. However, we will 
see that there have been numerous recent efforts to increase the transparency of complex 
models. Random forests, for example, have recently gained a framework for statistical 
inference (Wager and Athey 2019).

Causal inference – correlation does not imply causation

Causal inference aims to identify relationships where certain input values imply certain 
outputs—for example, a certain constellation of macro variables causing the price of a given 
asset to move in a certain way, while assuming all other variables remain constant.

Statistical inference about relationships among two or more variables produces measures 
of correlation. Correlation can only be interpreted as a causal relationship when several 
other conditions are met—for example, when alternative explanations or reverse causality 
has been ruled out.

Meeting these conditions requires an experimental setting where all relevant variables 
of interest can be fully controlled to isolate causal relationships. Alternatively, quasi-
experimental settings expose units of observations to changes in inputs in a randomized 
way. It does this to rule out that other observable or unobservable features are responsible 
for the observed effects of the change in the environment.

These conditions are rarely met, so inferential conclusions need to be treated with care. 
The same applies to the performance of predictive models that also rely on the statistical 
association between features and outputs, which may change with other factors that are not 
part of the model.

The non-parametric nature of the KNN model does not lend itself well to inference, so 
we'll postpone this step in the workflow until we encounter linear models in Chapter 7, 
Linear Models – From Risk Factors to Return Forecasts.
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Regression – popular loss functions and error metrics

Regression problems aim to predict a continuous variable. The root-mean-square 
error (RMSE) is the most popular loss function and error metric, not least because it is 
differentiable. The loss is symmetric, but larger errors weigh more in the calculation.  
Using the square root has the advantage that we can measure the error in the units of the 
target variable.

The root-mean-square of the log of the error (RMSLE) is appropriate when the target is 
subject to exponential growth. Its asymmetric penalty weighs negative errors less than 
positive errors. You can also log-transform the target prior to training the model and then 
use the RMSE, as we'll do in the example later in this section.

The mean of the absolute errors (MAE) and median of the absolute errors (MedAE) are 
symmetric but do not give more weight to larger errors. The MedAE is robust to outliers. 

The explained variance score computes the proportion of the target variance that the 
model accounts for and varies between 0 and 1. The R2 score is also called the coefficient 
of determination and yields the same outcome if the mean of the residuals is 0, but can 
differ otherwise. In particular, it can be negative when calculated on out-of-sample data (or 
for a linear regression without intercept).

The following table defines the formulas used for calculation and the corresponding scikit-
learn function that can be imported from the metrics module. The scoring parameter is 
used in combination with automated train-test functions (such as cross_val_score and 
GridSearchCV), which we'll will introduce later in this section, and which are illustrated in 
the accompanying notebook:

Name Formula scikit-learn function Scoring parameter

Mean squared 
error

1𝑁𝑁∑(𝒴𝒴𝑖𝑖 − �̂�𝒴𝑖𝑖)2𝑁𝑁
𝑖𝑖𝑖𝑖  mean_squared_error

neg_mean_squared_
error

Mean squared 
log error

1𝑁𝑁∑(ln(1 + 𝒴𝒴𝑖𝑖) − ln(1 + �̂�𝒴𝑖𝑖))2𝑁𝑁
𝑖𝑖𝑖𝑖  mean_squared_log_

error
neg_mean_squared_
log_error

Mean 
absolute error

1𝑁𝑁∑|𝒴𝒴𝑖𝑖 − �̂�𝒴𝑖𝑖|𝑁𝑁
𝑖𝑖=1  mean_absolute_

error
neg_mean_absolute_
error

Median 
absolute error median(|𝒴𝒴1 − �̂�𝒴1|, … . , |𝒴𝒴𝑁𝑁 − �̂�𝒴𝑁𝑁|) median_absolute_error

neg_median_
absolute_error

Explained 
variance

1 − (𝒴𝒴 − �̂�𝒴)(𝒴𝒴)  explained_
variance_score

explained_variance

R2 score 1 − ∑ (𝒴𝒴𝑖𝑖 − �̂�𝒴𝑖𝑖)2𝑁𝑁𝑖𝑖𝑖𝑖∑ (𝒴𝒴𝑖𝑖 − �̅�𝒴𝑖𝑖)2𝑁𝑁𝑖𝑖𝑖𝑖  r2_score r2
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Figure 6.2 shows the various error metrics for the house price regression that we'll compute 
in the notebook:

Figure 6.2: In-sample regression errors

The sklearn function also supports multilabel evaluation—that is, assigning multiple 
outcome values to a single observation; see the documentation referenced on GitHub for 
more details.

Classification – making sense of the confusion matrix
Classification problems have categorical outcome variables. Most predictors will output a 
score to indicate whether an observation belongs to a certain class. In the second step, these 
scores are then translated into actual predictions using a threshold value.

In the binary case, with a positive and a negative class label, the score typically varies 
between zero and one or is normalized accordingly. Once the scores are converted into 
predictions of one class or the other, there can be four outcomes, since each of the two 
classes can be either correctly or incorrectly predicted. With more than two classes, there 
can be more cases if you differentiate between the several potential mistakes.

All error metrics are computed from the breakdown of predictions across the four fields of 
the 2×2 confusion matrix that associates actual and predicted classes. 
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The metrics listed in the following table, such as accuracy, evaluate a model for a 
given threshold:

Figure 6.3: Confusion matrix and related error metrics

The classifier usually doesn't output calibrated probabilities. Instead, the threshold used 
to distinguish positive from negative cases is itself a decision variable that should be 
optimized, taking into account the costs and benefits of correct and incorrect predictions. 

All things equal, a lower threshold tends to imply more positive predictions, with a 
potentially rising false positive rate, whereas for a higher threshold, the opposite is likely 
to be true.

Receiver operating characteristics the area under the curve

The receiver operating characteristics (ROC) curve allows us to visualize, compare, and 
select classifiers based on their performance. It computes the pairs of true positive rates 
(TPR) and false positive rates (FPR) that result from using all predicted scores as a threshold 
to produce class predictions. It visualizes these pairs inside a square with unit side length.

Random predictions (weighted to take into account class imbalance), on average, yield 
equal TPR and FPR that appear on the diagonal, which becomes the benchmark case. 
Since an underperforming classifier would benefit from relabeling the predictions, this 
benchmark also becomes the minimum.

The area under the curve (AUC) is defined as the area under the ROC plot that varies 
between 0.5 and the maximum of 1. It is a summary measure of how well the classifier's 
scores are able to rank data points with respect to their class membership. More specifically, 
the AUC of a classifier has the important statistical property of representing the probability 
that the classifier will rank a randomly chosen positive instance higher than a randomly 
chosen negative instance, which is equivalent to the Wilcoxon ranking test (Fawcett 2006). 
In addition, the AUC has the benefit of not being sensitive to class imbalances.
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Precision-recall curves – zooming in on one class

When predictions for one of the classes are of particular interest, precision and recall curves 
visualize the trade-off between these error metrics for different thresholds. Both measures 
evaluate the quality of predictions for a particular class. The following list shows how they 
are applied to the positive class:

• Recall measures the share of actual positive class members that a classifier predicts as 
positive for a given threshold. It originates from information retrieval and measures 
the share of relevant documents successfully identified by a search algorithm.

• Precision, in contrast, measures the share of positive predictions that are correct.

Recall typically increases with a lower threshold, but precision may decrease. Precision-
recall curves visualize the attainable combinations and allow for the optimization of the 
threshold, given the costs and benefits of missing a lot of relevant cases or producing lower-
quality predictions.

The F1 score is a harmonic mean of precision and recall for a given threshold, and can 
be used to numerically optimize the threshold, all while taking into account the relative 
weights that these two metrics should assume.

Figure 6.4 illustrates the ROC curve and corresponding AUC, alongside the precision-recall 
curve and the F1 score, which, using equal weights for precision and recall, yields an optimal 
threshold of 0.37. The chart has been taken from the accompanying notebook, where you can 
find the code for the KNN classifier that operates on binarized housing prices:

Figure 6.4: Receiver-Operating Characteristics, Precision-Recall Curve, and F1 Scores charts

Collecting and preparing the data
We already addressed important aspects of how to source market, fundamental, and 
alternative data in Chapter 2, Market and Fundamental Data – Sources and Techniques, and 
Chapter 3, Alternative Data for Finance – Categories and Use Cases. We will continue to work 
with various examples of these sources as we illustrate the application of the various models.
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In addition to market and fundamental data, we will also acquire and transform text data as 
we explore natural language processing and image data when we look at image processing 
and recognition. Besides obtaining, cleaning, and validating the data, we may need to 
assign labels such as sentiment for news articles or timestamps to align it with trading data 
typically available in a time-series format.

It is also important to store it in a format that enables quick exploration and iteration. We 
recommend the HDF and parquet formats (see Chapter 2, Market and Fundamental Data – 
Sources and Techniques). For data that does not fit into memory and requires distributed 
processing on several machines, Apache Spark is often the best solution for interactive 
analysis and machine learning.

Exploring, extracting, and engineering features
Understanding the distribution of individual variables and the relationships among 
outcomes and features is the basis for picking a suitable algorithm. This typically starts 
with visualizations such as scatter plots, as illustrated in the accompanying notebook and 
shown in Figure 6.5:

Figure 6.5: Pairwise scatter plots of outcome and features

It also includes numerical evaluations ranging from linear metrics like correlation to 
nonlinear statistics, such as the Spearman rank correlation coefficient that we encountered 
when we introduced the information coefficient in Chapter 4, Financial Feature Engineering 
– How to Research Alpha Factors. There are also information-theoretic measures, such as 
mutual information, which we'll illustrate in the next subsection.

A systematic exploratory analysis is also the basis of what is often the single most 
important ingredient of a successful predictive model: the engineering of features that 
extract information contained in the data, but which are not necessarily accessible to the 
algorithm in their raw form. Feature engineering benefits from domain expertise, the 
application of statistics and information theory, and creativity.

It relies on smart data transformations that effectively tease out the systematic relationship 
between input and output data. There are many choices that include outlier detection and 
treatment, functional transformations, and the combination of several variables, including 
unsupervised learning. We will illustrate examples throughout, but will emphasize that 
this central aspect of the ML workflow is best learned through experience. Kaggle is a great 
place to learn from other data scientists who share their experiences with the community.
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Using information theory to evaluate features

The mutual information (MI) between a feature and the outcome is a measure of the 
mutual dependence between the two variables. It extends the notion of correlation to 
nonlinear relationships. More specifically, it quantifies the information obtained about one 
random variable through the other random variable.

The concept of MI is closely related to the fundamental notion of entropy of a random 
variable. Entropy quantifies the amount of information contained in a random variable. 
Formally, the mutual information—I(X, Y)—of two random variables, X and Y, is defined 
as the following: 𝐼𝐼(𝑋𝑋𝑋 𝑋𝑋) = ∫   𝑌𝑌 ∫ 𝑝𝑝(𝑝𝑝𝑋 𝑝𝑝) log ( 𝑝𝑝(𝑝𝑝𝑋 𝑝𝑝)𝑝𝑝(𝑝𝑝)𝑝𝑝(𝑝𝑝)) 

𝑋𝑋  

The sklearn function implements feature_selection.mutual_info_regression, which 
computes the mutual information between all features and a continuous outcome to 
select the features that are most likely to contain predictive information. There is also 
a classification version (see the sklearn documentation for more details). The mutual_
information.ipynb notebook contains an application for the financial data we created in 
Chapter 4, Financial Feature Engineering – How to Research Alpha Factors.

Selecting an ML algorithm
The remainder of this book will introduce several model families, ranging from linear 
models, which make fairly strong assumptions about the nature of the functional 
relationship between input and output variables, to deep neural networks, which make 
very few assumptions. As mentioned in the introductory section, fewer assumptions will 
require more data with significant information about the relationship so that the learning 
process can be successful.

We will outline the key assumptions and how to test them where applicable as we 
introduce these models.

Design and tune the model
The ML process includes steps to diagnose and manage model complexity based on 
estimates of the model's generalization error. An important goal of the ML process is to 
obtain an unbiased estimate of this error using a statistically sound and efficient procedure. 
Key to managing the model design and tuning process is an understanding of how the bias-
variance tradeoff relates to under- and overfitting.



The Machine Learning Process

[ 162 ]

The bias-variance trade-off
The prediction errors of an ML model can be broken down into reducible and irreducible 
parts. The irreducible part is due to random variation (noise) in the data due to, for example, 
the absence of relevant variables, natural variation, or measurement errors. The reducible part 
of the generalization error, in turn, can be broken down into errors due to bias and variance.

Both result from discrepancies between the true functional relationship and the 
assumptions made by the machine learning algorithm, as detailed in the following list:

• Error due to bias: The hypothesis is too simple to capture the complexity of the 
true functional relationship. As a result, whenever the model attempts to learn the 
true function, it makes systematic mistakes and, on average, the predictions will be 
similarly biased. This is also called underfitting.

• Error due to variance: The algorithm is overly complex in view of the true 
relationship. Instead of capturing the true relationship, it overfits the data 
and extracts patterns from the noise. As a result, it learns different functional 
relationships from each sample, and out-of-sample predictions will vary widely.

Underfitting versus overfitting – a visual example
Figure 6.6 illustrates overfitting by measuring the in-sample error of approximations of a 
sine function by increasingly complex polynomials. More specifically, we draw a random 
sample with some added noise (n = 30) to learn a polynomial of varying complexity (see the 
code in the notebook, bias_variance.ipynb). The model predicts new data points, and we 
capture the mean-squared error for these predictions.

The left-hand panel of Figure 6.6 shows a polynomial of degree 1; a straight line clearly 
underfits the true function. However, the estimated line will not differ dramatically from 
one sample drawn from the true function to the next.

The middle panel shows that a degree 5 polynomial approximates the true relationship 
reasonably well on the interval from about −𝜋𝜋  until 2𝜋𝜋 . On the other hand, a polynomial 
of degree 15 fits the small sample almost perfectly, but provides a poor estimate of the true 
relationship: it overfits to the random variation in the sample data points, and the learned 
function will vary strongly as a function of the sample:

Figure 6.6: A visual example of overfitting with polynomials
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How to manage the bias-variance trade-off
To further illustrate the impact of overfitting versus underfitting, we'll try to learn a Taylor 
series approximation of the sine function of the ninth degree with some added noise. 
Figure 6.7 shows the in- and-out-of-sample errors and the out-of-sample predictions for 
polynomials that underfit, overfit, and provide an approximately correct level of flexibility 
with degrees 1, 15, and 9, respectively, to 100 random samples of the true function.

The left-hand panel shows the distribution of the errors that result from subtracting the 
true function values from the predictions. The high bias but low variance of an underfit 
polynomial of degree 1 compares to the low bias but exceedingly high variance of the errors 
for an overfitting polynomial of degree 15. The underfit polynomial produces a straight line 
with a poor in-sample fit that is significantly off-target out of sample. The overfit model 
shows the best fit in-sample with the smallest dispersion of errors, but the price is a large 
variance out-of-sample. The appropriate model that matches the functional form of the true 
model performs, on average, by far the best on out-of-sample data. 

The right-hand panel of Figure 6.7 shows the actual predictions rather than the errors to 
visualize the different types of fit in practice:

Figure 6.7: Errors and out-of-sample predictions for polynomials of different degrees

Learning curves

A learning curve plots the evolution of train and test errors against the size of the dataset 
used to learn the functional relationship. It helps to diagnose the bias-variance trade-off for 
a given model, and also answer the question of whether increasing the sample size might 
improve predictive performance. A model with a high bias will have a high but similar 
training error, both in-sample and out-of-sample. An overfit model will have a very low 
training but much higher test errors.

Figure 6.8 shows how the out-of-sample error for the overfitted model declines as the 
sample size increases, suggesting that it may benefit from additional data or tools to limit 
the model's complexity, such as regularization. Regularization adds data-driven constraints 
to the model's complexity; we'll introduce this technique in Chapter 7, Linear Models – From 
Risk Factors to Return Forecasts. 
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Underfit models, in contrast, require either more features or need to increase their capacity 
to capture the true relationship:

Figure 6.8: Learning curves and bias-variance tradeoff

How to select a model using cross-validation
There are usually several candidate models for your use case, and the task of choosing one 
of them is known as the model selection problem. The goal is to identify the model that 
will produce the lowest prediction error when given new data.

A good choice requires an unbiased estimate of this generalization error, which, in turn, 
requires testing the model on data that was not part of model training. Otherwise, the 
model would have already been able to peek at the "solution" and learn something about 
the prediction task ahead of time that will inflate its performance.

To avoid this, we only use part of the available data to train the model and set aside another 
part of the data to validate its performance. The resulting estimate of the model's prediction 
error on new data will only be unbiased if absolutely no information about the validation 
set leaks into the training set, as shown in Figure 6.9:
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Figure 6.9: Training and test set

Cross-validation (CV) is a popular strategy for model selection. The main idea behind 
CV is to split the data one or several times. This is done so that each split is used once as 
a validation set and the remainder as a training set: part of the data (the training sample) 
is used to train the algorithm, and the remaining part (the validation sample) is used to 
estimate the algorithm's predictive performance. Then, CV selects the algorithm with the 
smallest estimated error or risk.

Several methods can be used to split the available data. They differ in terms of the amount 
of data used for training, the variance of the error estimates, the computational intensity, 
and whether structural aspects of the data are taken into account when splitting the data, 
such as maintaining the ratio between class labels.

While the data-splitting heuristic is very general, a key assumption of CV is that the data is 
independently and identically distributed (IID). In the following section and throughout 
this book, we will emphasize that time-series data requires a different approach because it 
usually does not meet this assumption. Moreover, we need to ensure that splits respect the 
temporal order to avoid lookahead bias. We'll do this by including some information from 
the future that we aim to predict in the historical training set.

Model selection often involves hyperparameter tuning, which may result in many CV 
iterations. The resulting validation score of the best-performing model will be subject to 
multiple testing bias, which reflects the sampling noise inherent in the CV process. As a 
result, it is no longer a good estimate of the generalization error. For an unbiased estimate 
of the error rate, we have to estimate the score from a fresh dataset.

For this reason, we use a three-way split of the data, as shown in Figure 6.10: one part 
is used in cross-validation and is repeatedly split into a training and validation set. The 
remainder is set aside as a hold-out set that is only used once after, cross-validation is 
complete to generate an unbiased test error estimate. 
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We will illustrate this method as we start building ML models in the next chapter:

Figure 6.10: Train, validation, and hold-out test set

How to implement cross-validation in Python
We will illustrate various options for splitting data into training and test sets. We'll do this 
by showing how the indices of a mock dataset with 10 observations are assigned to the train 
and test set (see cross_validation.py for details), as shown in following code:

data = list(range(1, 11))

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Scikit-learn's CV functionality, which we'll demonstrate in this section, can be imported 
from sklearn.model_selection.

For a single split of your data into a training and a test set, use train_test_split, where 
the shuffle parameter, by default, ensures the randomized selection of observations. You 
can ensure replicability by seeding the random number generator by setting random_state. 
There is also a stratify parameter, which ensures for a classification problem that the train 
and test sets will contain approximately the same proportion of each class. The result looks 
as follows:

train_test_split(data, train_size=.8)

[[8, 7, 4, 10, 1, 3, 5, 2], [6, 9]]

In this case, we train a model using all data except row numbers 6 and 9, which will be 
used to generate predictions and measure the errors given on the known labels. This 
method is useful for quick evaluation but is sensitive to the split, and the standard error of 
the performance measure estimate will be higher.
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KFold iterator

The KFold iterator produces several disjunct splits and assigns each of these splits once to 
the validation set, as shown in the following code:

kf = KFold(n_splits=5)

for train, validate in kf.split(data):

    print(train, validate)

[2 3 4 5 6 7 8 9] [0 1]

[0 1 4 5 6 7 8 9] [2 3]

[0 1 2 3 6 7 8 9] [4 5]

[0 1 2 3 4 5 8 9] [6 7]

[0 1 2 3 4 5 6 7] [8 9]

In addition to the number of splits, most CV objects take a shuffle argument that ensures 
randomization. To render results reproducible, set the random_state as follows:

kf = KFold(n_splits=5, shuffle=True, random_state=42)
for train, validate in kf.split(data):

    print(train, validate)

[0 2 3 4 5 6 7 9] [1 8]

[1 2 3 4 6 7 8 9] [0 5]

[0 1 3 4 5 6 8 9] [2 7]

[0 1 2 3 5 6 7 8] [4 9]

[0 1 2 4 5 7 8 9] [3 6]

Leave-one-out CV

The original CV implementation used a leave-one-out method that used each observation 
once as the validation set, as shown in the following code:

loo = LeaveOneOut()
for train, validate in loo.split(data):
    print(train, validate)
[1 2 3 4 5 6 7 8 9] [0]
[0 2 3 4 5 6 7 8 9] [1]
...
[0 1 2 3 4 5 6 7 9] [8]
[0 1 2 3 4 5 6 7 8] [9]

This maximizes the number of models that are trained, which increases computational 
costs. While the validation sets do not overlap, the overlap of training sets is maximized, 
driving up the correlation of models and their prediction errors. As a result, the variance of 
the prediction error is higher for a model with a larger number of folds.
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Leave-P-Out CV

A similar version to leave-one-out CV is leave-P-out CV, which generates all possible 
combinations of p data rows, as shown in the following code:

lpo = LeavePOut(p=2)
for train, validate in lpo.split(data):
    print(train, validate)
[2 3 4 5 6 7 8 9] [0 1]
[1 3 4 5 6 7 8 9] [0 2]
...
[0 1 2 3 4 5 6 8] [7 9]
[0 1 2 3 4 5 6 7] [8 9]

ShuffleSplit
The ShuffleSplit class creates independent splits with potentially overlapping validation 
sets, as shown in the following code:

ss = ShuffleSplit(n_splits=3, test_size=2, random_state=42)
for train, validate in ss.split(data):
    print(train, validate)
[4 9 1 6 7 3 0 5] [2 8]
[1 2 9 8 0 6 7 4] [3 5]
[8 4 5 1 0 6 9 7] [2 3]

Challenges with cross-validation in finance
A key assumption for the cross-validation methods discussed so far is the IID distribution 
of the samples available for training.

For financial data, this is often not the case. On the contrary, financial data is neither 
independently nor identically distributed because of serial correlation and time-varying 
standard deviation, also known as heteroskedasticity (see Chapter 7, Linear Models – From 
Risk Factors to Return Forecasts, and Chapter 9, Time Series Models for Volatility Forecasts and 
Statistical Arbitrage, for more details). TimeSeriesSplit in the sklearn.model_selection 
module aims to address the linear order of time-series data.

Time series cross-validation with scikit-learn

The time-series nature of the data implies that cross-validation produces a situation where 
data from the future will be used to predict data from the past. This is unrealistic at best 
and data snooping at worst, to the extent that future data reflects past events.

To address time dependency, the TimeSeriesSplit object implements a walk-forward 
test with an expanding training set, where subsequent training sets are supersets of past 
training sets, as shown in the following code:

tscv = TimeSeriesSplit(n_splits=5)
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for train, validate in tscv.split(data):

    print(train, validate)

[0 1 2 3 4] [5]

[0 1 2 3 4 5] [6]

[0 1 2 3 4 5 6] [7]

[0 1 2 3 4 5 6 7] [8]

[0 1 2 3 4 5 6 7 8] [9]

You can use the max_train_size parameter to implement walk-forward cross-validation, 
where the size of the training set remains constant over time, similar to how Zipline tests 
a trading algorithm. Scikit-learn facilitates the design of custom cross-validation methods 
using subclassing, which we will implement in the following chapters.

Purging, embargoing, and combinatorial CV

For financial data, labels are often derived from overlapping data points because returns 
are computed from prices across multiple periods. In the context of trading strategies, the 
result of a model's prediction, which may imply taking a position in an asset, can only be 
known later when this decision is evaluated—for example, when a position is closed out.

The risks include the leakage of information from the test into the training set, which would 
very likely artificially inflate performance. We need to address this risk by ensuring that all 
data is point-in-time—that is, truly available and known at the time it is used as the input 
for a model. For example, financial disclosures may refer to a certain time period but only 
become available later. If we include this information too early, our model might do much 
better in hindsight than it would have under realistic circumstances.

Marcos Lopez de Prado, one of the leading practitioners and academics in the field, has 
proposed several methods to address these challenges in his book, Advances in Financial 
Machine Learning (2018). Techniques to adapt cross-validation to the context of financial 
data and trading include:

• Purging: Eliminate training data points where the evaluation occurs after the 
prediction of a point-in-time data point in the validation set to avoid look-ahead 
bias.

• Embargoing: Further eliminate training samples that follow a test period.

• Combinatorial cross-validation: Walk-forward CV severely limits the historical 
paths that can be tested. Instead, given T observations, compute all possible train/
test splits for N<T groups that each maintain their order, and purge and embargo 
potentially overlapping groups. Then, train the model on all combinations of N-k 
groups while testing the model on the remaining k groups. The result is a much 
larger number of possible historical paths.

Prado's Advances in Financial Machine Learning contains sample code to implement these 
approaches; the code is also available via the new Python library, timeseriescv.
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Parameter tuning with scikit-learn and Yellowbrick
Model selection typically involves repeated cross-validation of the out-of-sample 
performance of models using different algorithms (such as linear regression and random 
forest) or different configurations. Different configurations may involve changes to 
hyperparameters or the inclusion or exclusion of different variables.

The Yellowbrick library extends the scikit-learn API to generate diagnostic visualization 
tools to facilitate the model-selection process. These tools can be used to investigate 
relationships among features, analyze classification or regression errors, monitor cluster 
algorithm performance, inspect the characteristics of text data, and help with model 
selection. We will demonstrate validation and learning curves that provide valuable 
information during the parameter-tuning phase—see the machine_learning_workflow.ipynb 
notebook for implementation details.

Validation curves – plotting the impact of hyperparameters

Validation curves (see the left-hand panel in Figure 6.11) visualize the impact of a single 
hyperparameter on a model's cross-validation performance. This is useful to determine 
whether the model underfits or overfits the given dataset.

In our example of KNeighborsRegressor, which only has a single hyperparameter, the 
number of neighbors is k. Note that model complexity increases as the number of neighbors 
drop because the model can now make predictions for more distinct areas in the feature 
space.

We can see that the model underfits for values of k above 20. The validation error drops as 
we reduce the number of neighbors and make our model more complex. For values below 
20, the model begins to overfit as training and validation errors diverge and average out-of-
sample performance quickly deteriorates:

Figure 6.11: Validation and learning curves
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Learning curves – diagnosing the bias-variance trade-off
The learning curve (see the right-hand panel of Figure 6.11 for our house price regression 
example) helps determine whether a model's cross-validation performance would benefit 
from additional data, and whether the prediction errors are more driven by bias or 
by variance.

More data is unlikely to improve performance if training and cross-validation scores 
converge. At this point, it is important to evaluate whether the model performance meets 
expectations, determined by a human benchmark. If this is not the case, then you should 
modify the model's hyperparameter settings to better capture the relationship between 
the features and the outcome, or choose a different algorithm with a higher capacity to 
capture complexity.

In addition, the variation of train and test errors shown by the shaded confidence intervals 
provides clues about the bias and variance sources of the prediction error. Variability 
around the cross-validation error is evidence of variance, whereas variability for the 
training set suggests bias, depending on the size of the training error.

In our example, the cross-validation performance has continued to drop, but the 
incremental improvements have shrunk, and the errors have plateaued, so there are 
unlikely to be many benefits from a larger training set. On the other hand, the data is 
showing substantial variance given the range of validation errors compared to that shown 
for the training errors.

Parameter tuning using GridSearchCV and pipeline

Since hyperparameter tuning is a key ingredient of the machine learning workflow, there 
are tools to automate this process. The scikit-learn library includes a GridSearchCV interface 
that cross-validates all combinations of parameters in parallel, captures the result, and 
automatically trains the model using the parameter setting that performed best during 
cross-validation on the full dataset.

In practice, the training and validation set often requires some processing prior to cross-
validation. Scikit-learn offers the Pipeline to also automate any feature-processing steps 
while using GridSearchCV.

You can look at the implementation examples in the included machine_learning_workflow.
ipynb notebook to see these tools in action.
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Summary
In this chapter, we introduced the challenge of learning from data and looked at 
supervised, unsupervised, and reinforcement models as the principal forms of learning that 
we will study in this book to build algorithmic trading strategies. We discussed the need for 
supervised learning algorithms to make assumptions about the functional relationships that 
they attempt to learn. They do this to limit the search space while incurring an inductive 
bias that may lead to excessive generalization errors.

We presented key aspects of the machine learning workflow, introduced the most common 
error metrics for regression and classification models, explained the bias-variance trade-off, 
and illustrated the various tools for managing the model selection process using cross-
validation.

In the following chapter, we will dive into linear models for regression and classification to 
develop our first algorithmic trading strategies that use machine learning.
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7
Linear Models – From Risk  

Factors to Return Forecasts

The family of linear models represents one of the most useful hypothesis classes. Many 
learning algorithms that are widely applied in algorithmic trading rely on linear predictors 
because they can be efficiently trained, are relatively robust to noisy financial data, and 
have strong links to the theory of finance. Linear predictors are also intuitive, easy to 
interpret, and often fit the data reasonably well or at least provide a good baseline.

Linear regression has been known for over 200 years, since Legendre and Gauss applied 
it to  astronomy and began to analyze its statistical properties. Numerous extensions have 
since adapted the linear regression model and the baseline ordinary least squares (OLS) 
method to learn its parameters:

• Generalized linear models (GLM) expand the scope of applications by allowing 
for response variables that imply an error distribution other than the normal 
distribution. GLMs include the probit or logistic models for categorical response 
variables that appear in classification problems.

• More robust estimation methods enable statistical inference where the data 
violates baseline assumptions due to, for example, correlation over time or 
across observations. This is often the case with panel data that contains repeated 
observations on the same units, such as historical returns on a universe of assets.

• Shrinkage methods aim to improve the predictive performance of linear models. 
They use a complexity penalty that biases the coefficients learned by the model, 
with the goal of reducing the model's variance and improving out-of-sample 
predictive performance.

In practice, linear models are applied to regression and classification problems with the 
goals of inference and prediction. Numerous asset pricing models have been developed by 
academic and industry researchers that leverage linear regression. Applications include the 
identification of significant factors that drive asset returns for better risk and performance 
management, as well as the prediction of returns over various time horizons. Classification 
problems, on the other hand, include directional price forecasts.
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In this chapter, we will cover the following topics:

• How linear regression works and which assumptions it makes

• Training and diagnosing linear regression models

• Using linear regression to predict stock returns

• Use regularization to improve predictive performance

• How logistic regression works

• Converting a regression into a classification problem

From inference to prediction
As the name suggests, linear regression models assume that the output is the result of 
a linear combination of the inputs. The model also assumes a random error that allows for 
each observation to deviate from the expected linear relationship. The reasons that the model 
does not perfectly describe the relationship between inputs and output in a deterministic 
way include, for example, missing variables, measurement, or data collection issues.

If we want to draw statistical conclusions about the true (but not observed) linear 
relationship in the population based on the regression parameters estimated from the 
sample, we need to add assumptions about the statistical nature of these errors. The 
baseline regression model makes the strong assumption that the distribution of the errors is 
identical across observations. It also assumes that errors are independent of each other—in 
other words, knowing one error does not help to forecast the next error. The assumption of 
independent and identically distributed (IID) errors implies that their covariance matrix 
is the identity matrix multiplied by a constant representing the error variance.

These assumptions guarantee that the OLS method delivers estimates that are not only 
unbiased but also efficient, which means that OLS estimates achieve the lowest sampling 
error among all linear learning algorithms. However, these assumptions are rarely met 
in practice.

In finance, we often encounter panel data with repeated observations on a given cross 
section. The attempt to estimate the systematic exposure of a universe of assets to a set of 
risk factors over time typically reveals correlation along the time axis, in the cross-sectional 
dimension, or both. Hence, alternative learning algorithms have emerged that assume error 
covariance matrices that are more complex than multiples of the identity matrix.

On the other hand, methods that learn biased parameters for a linear model may yield 
estimates with lower variance and, hence, improve their predictive performance. Shrinkage 
methods reduce the model's complexity by applying regularization, which adds a penalty 
term to the linear objective function. 

You can find the code samples for this chapter and links to 
additional resources in the corresponding directory of the GitHub 
repository. The notebooks include color versions of the images. 
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This penalty is positively related to the absolute size of the coefficients so that they are 
shrunk relative to the baseline case. Larger coefficients imply a more complex model that 
reacts more strongly to variations in the inputs. When properly calibrated, the penalty can 
limit the growth of the model's coefficients beyond what is optimal from a bias-variance 
perspective.

First, we will introduce the baseline techniques for cross-section and panel data for linear 
models, as well as important enhancements that produce accurate estimates when key 
assumptions are violated. We will then illustrate these methods by estimating factor models 
that are ubiquitous in the development of algorithmic trading strategies. Finally, we will 
turn our attention to how shrinkage methods apply regularization and demonstrate how to 
use them to predict asset returns and generate trading signals.

The baseline model – multiple linear regression
We will begin with the model's specification and objective function, the methods we can 
use to learn its parameters, and the statistical assumptions that allow the inference and 
diagnostics of these assumptions. Then, we will present extensions that we can use to adapt 
the model to situations that violate these assumptions. Useful references for additional 
background include Wooldridge (2002 and 2008).

How to formulate the model
The multiple regression model defines a linear functional relationship between one 
continuous outcome variable and p input variables that can be of any type but may require 
preprocessing. Multivariate regression, in contrast, refers to the regression of multiple 
outputs on multiple input variables.

In the population, the linear regression model has the following form for a single instance 
of the output y, an input vector 𝐗𝐗𝑇𝑇 = [𝑥𝑥1, , 𝑥𝑥𝑝𝑝] , and the error 𝜖𝜖 :

𝑦𝑦 𝑦 𝑦𝑦(x) + 𝜖𝜖 𝑦 𝜖𝜖0 + 𝜖𝜖1𝑥𝑥1…+ 𝜖𝜖𝑝𝑝𝑥𝑥𝑝𝑝 + 𝜖𝜖 𝑦 𝜖𝜖0 +∑𝜖𝜖𝑗𝑗𝑥𝑥𝑗𝑗 + 𝜖𝜖𝑝𝑝
𝑗𝑗𝑗1  

The interpretation of the coefficients is straightforward: the value of a coefficient 𝛽𝛽𝑖𝑖  is the 
partial, average effect of the variable x

i
 on the output, holding all other variables constant.

We can also write the model more compactly in matrix form. In this case, y is a vector of N 
output observations, X is the design matrix with N rows of observations on the p variables 
plus a column of 1s for the intercept, and 𝛽𝛽  is the vector containing the P = p+1 coefficients:𝒚𝒚(𝑁𝑁 𝑁 𝑁𝑁 = 𝑿𝑿(𝑁𝑁 𝑁 𝑁𝑁𝑁 𝜷𝜷(𝑁𝑁 𝑁 𝑁𝑁 + 𝝐𝝐(𝑁𝑁 𝑁 𝑁𝑁 
The model is linear in its p +1 parameters but can represent nonlinear relationships if 
we choose or transform variables accordingly, for example, by including a polynomial 
basis expansion or logarithmic terms. You can also use categorical variables with dummy 
encoding, and include interactions between variables by creating new inputs of the form x

i
xj.
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To complete the formulation of the model from a statistical point of view so that we can 
test hypotheses about its parameters, we need to make specific assumptions about the error 
term. We'll do this after introducing the most important methods to learn the parameters.

How to train the model
There are several methods we can use to learn the model parameters from the data: 
ordinary least squares (OLS), maximum likelihood estimation (MLE), and stochastic 
gradient descent (SGD). We will present each method in turn.

Ordinary least squares – how to fit a hyperplane to the data
The method of least squares is the original method that learns the parameters of the 
hyperplane that best approximates the output from the input data. As the name suggests, 
it takes the best approximation to minimize the sum of the squared distances between the 
output value and the hyperplane represented by the model.

The difference between the model's prediction and the actual outcome for a given data 
point is the residual (whereas the deviation of the true model from the true output in the 
population is called error). Hence, in formal terms, the least-squares estimation method 
chooses the coefficient vector to minimize the residual sum of squares (RSS):

RSS(𝜷𝜷) = ∑ 𝜖𝜖𝑖𝑖2𝑁𝑁
𝑖𝑖𝑖𝑖

 = ∑(𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖))2𝑁𝑁
𝑖𝑖𝑖𝑖

 = ∑ (𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖𝑝𝑝
𝑖𝑖𝑖𝑖 )2𝑁𝑁

𝑖𝑖𝑖𝑖
 = (𝒚𝒚 − 𝒚𝒚𝛽𝛽)𝑇𝑇(𝒚𝒚 − 𝒚𝒚𝛽𝛽)

 

Thus, the least-squares coefficients 𝛽𝛽LS  are computed as:argmin   𝛽𝛽𝐿𝐿𝐿𝐿 RSS(𝜷𝜷) = (𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦)𝑇𝑇(𝑦𝑦 𝑦 𝑦𝑦𝑦𝑦) 

The optimal parameter vector that minimizes the RSS results from setting the derivatives 
with respect to 𝛃𝛃  of the preceding expression to zero. Assuming X has full column rank, 
which requires that the input variables are not linearly dependent, it is thus invertible, and 
we obtain a unique solution, as follows:�̂�𝛽 = (𝑿𝑿𝑇𝑇𝑋𝑋)−1𝑿𝑿𝑇𝑇𝒚𝒚 
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When y and X have means of zero, which can be achieved by subtracting their respective 
means, 𝛃𝛃  represents the ratio of the covariance between the inputs and the outputs 𝑿𝑿𝑇𝑇𝒚𝒚  and 
the output variance 𝑿𝑿𝑇𝑇𝑿𝑿 

There is also a geometric interpretation: the coefficients that minimize RSS ensure that the 
vector of residuals 𝒚𝒚 𝒚 �̂�𝒚  is orthogonal to the subspace of ℝ𝑃𝑃  spanned by the P columns of 
X, and the estimates �̂�𝒚  are orthogonal projections into that subspace.

Maximum likelihood estimation

MLE is an important general method used to estimate the parameters of a statistical model. 
It relies on the likelihood function, which computes how likely it is to observe the sample 
of outputs when given the input data as a function of the model parameters. The likelihood 
differs from probabilities in that it is not normalized to a range from 0 to 1.

We can set up the likelihood function for the multiple linear regression example by 
assuming a distribution for the error term, such as the standard normal distribution:𝜖𝜖𝑖𝑖~𝑁𝑁(0,1)    ∀ 𝑖𝑖 𝑖 1, 𝑖 , 𝑖𝑖 

This allows us to compute the conditional probability of observing a given output y
i
 given 

the corresponding input vector x
i
 and the parameters 𝛃𝛃 , 𝑝𝑝(𝑦𝑦𝑖𝑖|𝒙𝒙𝑖𝑖 , 𝜷𝜷) :𝑝𝑝(𝑦𝑦𝑖𝑖|𝒙𝒙𝑖𝑖, 𝜷𝜷) = 1𝜎𝜎√2𝜋𝜋 𝑒𝑒−𝜖𝜖𝑖𝑖22𝜎𝜎 = 1𝜎𝜎√2𝜋𝜋 𝑒𝑒−(𝑦𝑦𝑖𝑖−𝒙𝒙𝑖𝑖𝛽𝛽)22𝜎𝜎  

Assuming the output values are conditionally independent, given the inputs, the likelihood 
of the sample is proportional to the product of the conditional probabilities of the 
individual output data points. Since it is easier to work with sums than with products, we 
apply the logarithm to obtain the log-likelihood function:

log ℒ(𝒚𝒚𝒚 𝒚𝒚𝒚 𝒚𝒚) =∑ 1𝜎𝜎√2𝜋𝜋 𝑒𝑒−(𝑦𝑦𝑖𝑖−𝒚𝒚𝑖𝑖𝛽𝛽)22𝜎𝜎𝑛𝑛
𝑖𝑖𝑖𝑖  

The goal of MLE is to choose the model parameters that maximize the probability of the 
observed output sample, taking the inputs as given. Hence, the MLE parameter estimate 
results from maximizing the log-likelihood function:𝛽𝛽MLE =  argmin𝛽𝛽     ℒ 

Due to the assumption of normally distributed errors, maximizing the log-likelihood 
function produces the same parameter solution as least squares. This is because the only 
expression that depends on the parameters is the squared residual in the exponent.

For other distributional assumptions and models, MLE will produce different results, 
as we will see in the last section on binary classification, where the outcome follows a 
Bernoulli distribution. Furthermore, MLE is a more general estimation method because, 
in many cases, the least-squares method is not applicable, as we will see later for logistic 
regression.
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Gradient descent

Gradient descent is a general-purpose optimization algorithm that will find stationary 
points of smooth functions. The solution will be a global optimum if the objective function 
is convex. Variations of gradient descent are widely used in training complex neural 
networks, but also to compute solutions for MLE problems.

The algorithm uses the gradient of the objective function. The gradient contains the partial 
derivatives of the objective with respect to the parameters. These derivatives indicate how 
much the objective changes for an infinitesimal (infinitely small) step in the direction of 
the corresponding parameters. It turns out that the maximal change of the function value 
results from a step in the direction of the gradient itself.

Figure 7.1 sketches the process for a single variable x and a convex function f(x), where we 
are looking for the minimum, x

0
 . Where the function has a negative slope, gradient descent 

increases the target value for x
0
, and decreases the values otherwise:

Figure 7.1: Gradient descent

When we minimize a function that describes, for example, the cost of a prediction error, the 
algorithm computes the gradient for the current parameter values using the training data. 
Then, it modifies each parameter in proportion to the negative value of its corresponding 
gradient component. As a result, the objective function will assume a lower value and move 
the parameters closer to the solution. The optimization stops when the gradient becomes 
small, and the parameter values change very little.

The size of these steps is determined by the learning rate, which is a critical parameter 
that may require tuning. Many implementations include the option for this learning rate 
to gradually decrease with the number of iterations. Depending on the size of the data, 
the algorithm may iterate many times over the entire dataset. Each such iteration is called 
an epoch. The number of epochs and the tolerance used to stop further iterations are 
additional hyperparameters you can tune.
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Stochastic gradient descent randomly selects a data point and computes the gradient for 
this data point, as opposed to an average over a larger sample to achieve a speedup. There 
are also batch versions that use a certain number of data points for each step.

The Gauss–Markov theorem
To assess the statistical properties of the model and run inference, we need to make 
assumptions about the residuals that represent the part of the input data the model is 
unable to correctly fit or "explain."

The Gauss–Markov theorem (GMT) defines the assumptions required for OLS to produce 
unbiased estimates of the model parameters 𝛃𝛃 , and for these estimates to have the lowest 
standard error among all linear models for cross-sectional data.

The baseline multiple regression model makes the following GMT assumptions  
(Wooldridge 2008):

• In the population, linearity holds so that 𝑦𝑦 𝑦 𝑦𝑦0 + 𝑦𝑦1𝑥𝑥𝑥𝑥 + ⋯ +  𝑦𝑦𝑘𝑘𝑥𝑥𝑥𝑥 + 𝜖𝜖 , where 𝛃𝛃i  
are unknown but constant and 𝝐𝝐  is a random error.

• The data for the input variables 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘  is a random sample from the population.

• No perfect collinearity—there are no exact linear relationships among the input 
variables.

• The error 𝝐𝝐  has a conditional mean of zero given any of the inputs: 𝐸𝐸[𝜖𝜖1, … , 𝑥𝑥𝑘𝑘] = 0 .
• Homoskedasticity—the error term 𝝐𝝐  has constant variance given the inputs: 𝐸𝐸[𝜖𝜖|𝑥𝑥1, … , 𝑥𝑥𝑘𝑘] = 𝜎𝜎2 

The fourth assumption implies that no missing variable exists that is correlated with any of 
the input variables.

Under the first four assumptions (GMT 1-4), the OLS method delivers unbiased estimates. 
Including an irrelevant variable does not bias the intercept and slope estimates, but 
omitting a relevant variable will result in biased parameter estimates.

Under GMT 1-4, OLS is then also consistent: as the sample size increases, the estimates 
converge to the true value as the standard errors become arbitrary. The converse is, 
unfortunately, also true: if the conditional expectation of the error is not zero because the 
model misses a relevant variable or the functional form is wrong (for example, quadratic 
or log terms are missing), then all parameter estimates are biased. If the error is correlated 
with any of the input variables, then OLS is also not consistent and adding more data will 
not remove the bias.

http://Wooldridge 2008
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If we add the fifth assumption, then OLS also produces the best linear unbiased estimates 
(BLUE). Best means that the estimates have the lowest standard error among all linear 
estimators. Hence, if the five assumptions hold and the goal is statistical inference, then 
the OLS estimates are the way to go. If the goal, however, is to predict, then we will see 
that other estimators exist that trade some bias for a lower variance to achieve superior 
predictive performance in many settings.

Now that we have introduced the basic OLS assumptions, we can take a look at inference in 
small and large samples.

How to conduct statistical inference
Inference in the linear regression context aims to draw conclusions from the sample data 
about the true relationship in the population. This includes testing hypotheses about the 
significance of the overall relationship or the values of particular coefficients, as well as 
estimates of confidence intervals.

The key ingredient for statistical inference is a test statistic with a known distribution, 
typically computed from a quantity of interest like a regression coefficient. We can 
formulate a null hypothesis about this statistic and compute the probability of observing 
the actual value for this statistic, given the sample under the assumption that the 
hypothesis is correct. This probability is commonly referred to as the p-value: if it drops 
below a significance threshold (typically 5 percent), then we reject the hypothesis because 
it makes the value that we observed for the test statistic in the sample very unlikely. On the 
flip side, the p-value reflects the probability that we are wrong in rejecting what is, in fact, a 
correct hypothesis.

In addition to the five GMT assumptions, the classical linear model assumes normality—
that the population error is normally distributed and independent of the input variables. 
This strong assumption implies that the output variable is normally distributed, conditional 
on the input variables. It allows for the derivation of the exact distribution of the 
coefficients, which, in turn, implies exact distributions of the test statistics that are needed 
for exact hypotheses tests in small samples. This assumption often fails in practice—asset 
returns, for instance, are not normally distributed.
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Fortunately, however, the test statistics used under normality are also approximately valid 
when normality does not hold. More specifically, the following distributional characteristics 
of the test statistics hold approximately under GMT assumptions 1–5 and exactly when 
normality holds:

• The parameter estimates follow a multivariate normal distribution: �̂�𝛽~𝑁𝑁𝑁𝛽𝛽𝑁 (𝑿𝑿𝑻𝑻𝑿𝑿)−1𝜎𝜎 .
• Under GMT 1–5, the parameter estimates are unbiased, and we can get an unbiased 

estimate of 𝜎𝜎 , the constant error variance, using 𝜎𝜎𝜎 𝜎 1𝑁𝑁 𝑁 𝑁𝑁 𝑁 1∑(𝑦𝑦𝑖𝑖 𝑁 𝑦𝑦𝜎𝑖𝑖)2𝑁𝑁
𝑖𝑖𝑖𝑖  .

• The t-statistic for a hypothesis test about an individual coefficient 𝛽𝛽𝑗𝑗  is 𝑡𝑡𝑗𝑗 = �̂�𝛽𝑗𝑗𝜎𝜎𝜎√𝑣𝑣𝑗𝑗 ~𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑁 
  

and follows a t distribution with N-p-1 degrees of freedom, where 𝑣𝑣𝑗𝑗  is the j's 
element of the diagonal of (𝑿𝑿𝑻𝑻𝑿𝑿)−1 .

• The t distribution converges to the normal distribution. Since the 97.5 quantile 
of the normal distribution is about 1.96, a useful rule of thumb for a 95 percent 
confidence interval around a parameter estimate is  �̂�𝛽 ± 2 ∙ se(�̂�𝛽) , where se means standard error. An interval that includes zero implies 
that we can't reject the null hypothesis that the true parameter is zero and, hence, 
irrelevant for the model.

• The F-statistic allows for tests of restrictions on several parameters, including 
whether the entire regression is significant. It measures the change (reduction) in 
the RSS that results from additional variables.

• Finally, the Lagrange multiplier (LM) test is an alternative to the F-test for testing 
multiple restrictions.

How to diagnose and remedy problems
Diagnostics validate the model assumptions and help us prevent wrong conclusions when 
interpreting the result and conducting statistical inference. They include goodness of fit 
measures and various tests of the assumptions about the error term, including how closely 
the residuals match a normal distribution.

Furthermore, diagnostics evaluate whether the residual variance is indeed constant or 
exhibits heteroskedasticity (covered later in this section). They also test if the errors are 
conditionally uncorrelated or exhibit serial correlation, that is, if knowing one error helps to 
predict consecutive errors.

In addition to conducting the following diagnostic tests, you should always visually inspect 
the residuals. This helps to detect whether they reflect systematic patterns, as opposed to 
random noise that suggests the model is missing one or more factors that drive the outcome.
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Goodness of fit
Goodness-of-fit measures assess how well a model explains the variation in the outcome. 
They help to evaluate the quality of the model specification, for instance, when selecting 
among different model designs. 

Goodness-of-fit metrics differ in how they measure the fit. Here, we will focus on in-
sample metrics; we will use out-of-sample testing and cross-validation when we focus on 
predictive models in the next section.

Prominent goodness-of-fit measures include the (adjusted) R2, which should be maximized 
and is based on the least-squares estimate:

• R2 measures the share of the variation in the outcome data explained by the model 

and is computed as 𝑅𝑅2 = 1 − RSSTSS , where TSS is the sum of squared deviations of the 

outcome from its mean. It also corresponds to the squared correlation coefficient 
between the actual outcome values and those estimated by the model. The implicit 
goal is to maximize R2. However, it never decreases as we add more variables. One 
of the shortcomings of R2, therefore, is that it encourages overfitting.

• The adjusted R2 penalizes R2 for adding more variables; each additional variable 
needs to reduce the RSS significantly to produce better goodness of fit.

Alternatively, the Akaike information criterion (AIC) and the Bayesian information 
criterion (BIC) are to be minimized and are based on the maximum-likelihood estimate:

• AIC = −2 log(ℒ∗) + 2𝑘𝑘 , where ℒ∗  is the value of the maximized likelihood function 
and k is the number of parameters.

• BIC = −2 log(ℒ∗) + log(𝑁𝑁)𝑘𝑘 , where N is the sample size.

Both metrics penalize for complexity. BIC imposes a higher penalty, so it might underfit 
relative to AIC and vice versa.

Conceptually, AIC aims to find the model that best describes an unknown data-generating 
process, whereas BIC tries to find the best model among the set of candidates. In practice, 
both criteria can be used jointly to guide model selection when the goal is an in-sample 
fit; otherwise, cross-validation and selection based on estimates of generalization error are 
preferable.

Heteroskedasticity

GMT assumption 5 requires the residual covariance to take the shape Σ = 𝜎𝜎2𝑰𝑰 , that 
is, a diagonal matrix with entries equal to the constant variance of the error term. 
Heteroskedasticity occurs when the residual variance is not constant but differs across 
observations. If the residual variance is positively correlated with an input variable, that 
is, when errors are larger for input values that are far from their mean, then OLS standard 
error estimates will be too low; consequently, the t-statistic will be inflated, leading to false 
discoveries of relationships where none actually exist.
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Diagnostics starts with a visual inspection of the residuals. Systematic patterns in the 
(supposedly random) residuals suggest statistical tests of the null hypothesis that errors 
are homoscedastic against various alternatives. These tests include the Breusch–Pagan and 
White tests.

There are several ways to correct OLS estimates for heteroskedasticity:

• Robust standard errors (sometimes called White standard errors) take 
heteroskedasticity into account when computing the error variance using a so-
called sandwich estimator.

• Clustered standard errors assume that there are distinct groups in your data that 
are homoscedastic, but the error variance differs between groups. These groups 
could be different asset classes or equities from different industries.

Several alternatives to OLS estimate the error covariance matrix using different 
assumptions when Σ ≠ 𝜎𝜎2𝑰𝑰 . The following are available in statsmodels:

• Weighted least squares (WLS): For heteroskedastic errors where the covariance 
matrix has only diagonal entries, as for OLS, but now the entries are allowed to vary.

• Feasible generalized least squares (GLSAR): For autocorrelated errors that follow 
an autoregressive AR(p) process (see Chapter 9, Time-Series Models for Volatility 
Forecasts and Statistical Arbitrage).

• Generalized least squares (GLS): For arbitrary covariance matrix structure;  
yields efficient and unbiased estimates in the presence of heteroskedasticity  
or serial correlation.

Serial correlation

Serial correlation means that consecutive residuals produced by linear regression are 
correlated, which violates the fourth GMT assumption. Positive serial correlation implies 
that the standard errors are underestimated and that the t-statistics will be inflated, 
leading to false discoveries if ignored. However, there are procedures to correct for serial 
correlation when calculating standard errors.

The Durbin–Watson statistic diagnoses serial correlation. It tests the hypothesis that the OLS 
residuals are not autocorrelated against the alternative that they follow an autoregressive 
process (which we will explore in the next chapter). The test statistic ranges from 0 to 4; 
values near 2 indicate non-autocorrelation, lower values suggest positive autocorrelation, and 
higher values indicate negative autocorrelation. The exact threshold values depend on the 
number of parameters and observations and need to be looked up in tables.
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Multicollinearity

Multicollinearity occurs when two or more independent variables are highly correlated. 
This poses several challenges:

• It is difficult to determine which factors influence the dependent variable.
• The individual p-values can be misleading—a p-value can be high, even if the 

variable is, in fact, important.

• The confidence intervals for the regression coefficients will be too wide, possibly 
even including zero. This complicates the determination of an independent 
variable's effect on the outcome.

There is no formal or theory-based solution that corrects for multicollinearity. Instead, 
try to remove one or more of the correlated input variables, or increase the sample size.

How to run linear regression in practice
The accompanying notebook, linear_regression_intro.ipynb, illustrates a simple and 
then a multiple linear regression, the latter using both OLS and gradient descent. For the 
multiple regression, we generate two random input variables x

1
 and x

2
 that range from -50 

to +50, and an outcome variable that's calculated as a linear combination of the inputs, plus 
random Gaussian noise, to meet the normality assumption GMT 6:𝑦𝑦 𝑦 50 + 𝑥𝑥1 + 3𝑥𝑥2 + 𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖𝜖0𝜖50) 

OLS with statsmodels
We use statsmodels to estimate a multiple regression model that accurately reflects the 
data-generating process, as follows:

import statsmodels.api as sm

X_ols = sm.add_constant(X)

model = sm.OLS(y, X_ols).fit()
model.summary()

This yields the following OLS Regression Results summary:
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Figure 7.2: OLS Regression Results summary

The upper part of the summary displays the dataset characteristics—namely, the estimation 
method and the number of observations and parameters—and indicates that standard error 
estimates do not account for heteroskedasticity. The middle panel shows the coefficient 
values that closely reflect the artificial data-generating process. We can confirm that the 
estimates displayed in the middle of the summary result can be obtained using the OLS 
formula derived previously:

beta = np.linalg.inv(X_ols.T.dot(X_ols)).dot(X_ols.T.dot(y))

pd.Series(beta, index=X_ols.columns)

const   53.29

X_1      0.99

X_2      2.96

The following code visualizes how the model fitted by the model to the randomly 
generated data points:

three_dee = plt.figure(figsize=(15, 5)).gca(projection='3d')
three_dee.scatter(data.X_1, data.X_2, data.Y, c='g')

data['y-hat'] = model.predict()

to_plot = data.set_index(['X_1', 'X_2']).unstack().loc[:, 'y-hat']

three_dee.plot_surface(X_1, X_2, to_plot.values, color='black', alpha=0.2, 
linewidth=1, antialiased=True)

for _, row in data.iterrows():

    plt.plot((row.X_1, row.X_1), (row.X_2, row.X_2), (row.Y, row['y-hat']), 
              'k-');

three_dee.set_xlabel('$X_1$');three_dee.set_ylabel('$X_2$');three_dee.set_
zlabel('$Y, \hat{Y}$')
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Figure 7.3 displays the resulting hyperplane and original data points:

Figure 7.3: Regression hyperplane

The upper right part of the panel displays the goodness-of-fit measures we just discussed, 
alongside the F-test, which rejects the hypothesis that all coefficients are zero and 
irrelevant. Similarly, the t-statistics indicate that intercept and both slope coefficients are, 
unsurprisingly, highly significant.

The bottom part of the summary contains the residual diagnostics. The left panel displays 
skew and kurtosis, which are used to test the normality hypothesis. Both the Omnibus 
and the Jarque–Bera tests fail to reject the null hypothesis that the residuals are normally 
distributed. The Durbin–Watson statistic tests for serial correlation in the residuals and 
has a value near 2, which, given two parameters and 625 observations, fails to reject the 
hypothesis of no serial correlation, as outlined in the previous section on this topic.

Lastly, the condition number provides evidence about multicollinearity: it is the ratio 
of the square roots of the largest and the smallest eigenvalue of the design matrix that 
contains the input data. A value above 30 suggests that the regression may have significant 
multicollinearity.

statsmodels includes additional diagnostic tests that are linked in the notebook.

Stochastic gradient descent with sklearn
The sklearn library includes an SGDRegressor model in its linear_models module. To learn 
the parameters for the same model using this method, we need to standardize the data 
because the gradient is sensitive to the scale. 

We use the StandardScaler() for this purpose: it computes the mean and the standard 
deviation for each input variable during the fit step, and then subtracts the mean and 
divides by the standard deviation during the transform step, which we can conveniently 
conduct in a single fit_transform() command:

scaler = StandardScaler()

X_ = scaler.fit_transform(X)
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Then, we instantiate SGDRegressor using the default values except for a random_state 
setting to facilitate replication:

sgd = SGDRegressor(loss='squared_loss', 

                   fit_intercept=True,
                   shuffle=True, # shuffle data for better estimates
                   random_state=42,

                   learning_rate='invscaling', # reduce rate over time

                   eta0=0.01, # parameters for learning rate path

                   power_t=0.25)

Now, we can fit the sgd model, create the in-sample predictions for both the OLS and the 
sgd models, and compute the root mean squared error for each:

sgd.fit(X=X_, y=y)
resids = pd.DataFrame({'sgd': y - sgd.predict(X_),

                      'ols': y - model.predict(sm.add_constant(X))})

resids.pow(2).sum().div(len(y)).pow(.5)

ols   48.22

sgd   48.22

As expected, both models yield the same result. We will now take on a more ambitious 
project using linear regression to estimate a multi-factor asset pricing model.

How to build a linear factor model
Algorithmic trading strategies use factor models to quantify the relationship between the 
return of an asset and the sources of risk that are the main drivers of these returns. Each 
factor risk carries a premium, and the total asset return can be expected to correspond to a 
weighted average of these risk premia.

There are several practical applications of factor models across the portfolio management 
process, from construction and asset selection to risk management and performance 
evaluation. The importance of factor models continues to grow as common risk factors are 
now tradeable:

• A summary of the returns of many assets, by a much smaller number of factors, 
reduces the amount of data required to estimate the covariance matrix when 
optimizing a portfolio.

• An estimate of the exposure of an asset or a portfolio to these factors allows for the 
management of the resulting risk, for instance, by entering suitable hedges when 
risk factors are themselves traded or can be proxied.

• A factor model also permits the assessment of the incremental signal content of new 
alpha factors.
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• A factor model can also help assess whether a manager's performance, relative 
to a benchmark, is indeed due to skillful asset selection and market timing, or if 
the performance can instead be explained by portfolio tilts toward known return 
drivers. These drivers can, today, be replicated as low-cost, passively managed 
funds that do not incur active management fees.

The following examples apply to equities, but risk factors have been identified for all asset 
classes (Ang 2014).

From the CAPM to the Fama–French factor models
Risk factors have been a key ingredient to quantitative models since the capital asset 
pricing model (CAPM) explained the expected returns of all N assets 𝑟𝑟𝑖𝑖,   𝑖𝑖 𝑖 𝑖, 𝑖 , 𝑖𝑖   using 
their respective exposure 𝛽𝛽𝑖𝑖  to a single factor, the expected excess return of the overall 
market over the risk-free rate 𝑟𝑟𝑓𝑓 . The CAPM model takes the following linear form:𝐸𝐸[𝑟𝑟𝑖𝑖] = 𝛼𝛼𝑖𝑖 + 𝑟𝑟𝑓𝑓 + 𝛽𝛽𝑖𝑖(𝐸𝐸[𝑟𝑟𝑚𝑚] − 𝑟𝑟𝑓𝑓 

This differs from the classic fundamental analysis, à la Dodd and Graham, where returns 
depend on firm characteristics. The rationale is that, in the aggregate, investors cannot 
eliminate this so-called systematic risk through diversification. Hence, in equilibrium, 
they require compensation for holding an asset commensurate with its systematic risk. 
The model implies that, given efficient markets where prices immediately reflect all public 
information, there should be no superior risk-adjusted returns. In other words, the value of 𝛼𝛼  should be zero.

Empirical tests of the model use linear regression and have consistently failed, for example, 
by identifying anomalies in the form of superior risk-adjusted returns that do not depend 
on overall market exposure, such as higher returns for smaller firms (Goyal 2012).

These failures have prompted a lively debate about whether the efficient markets or the 
single factor aspect of the joint hypothesis is to blame. It turns out that both premises are 
probably wrong:

• Joseph Stiglitz earned the 2001 Nobel Prize in economics in part for showing that 
markets are generally not perfectly efficient: if markets are efficient, there is no 
value in collecting data because this information is already reflected in prices. 
However, if there is no incentive to gather information, it is hard to see how it 
should be already reflected in prices.

• On the other hand, theoretical and empirical improvements of the CAPM suggest 
that additional factors help explain some of the anomalies mentioned previously, 
which result in various multi-factor models.
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Stephen Ross proposed the arbitrage pricing theory (APT) in 1976 as an alternative that 
allows for several risk factors while eschewing market efficiency. In contrast to the CAPM, 
it assumes that opportunities for superior returns due to mispricing may exist but will 
quickly be arbitraged away. The theory does not specify the factors, but research suggests 
that the most important are changes in inflation and industrial production, as well as 
changes in risk premia or the term structure of interest rates.

Kenneth French and Eugene Fama (who won the 2013 Nobel Prize) identified additional 
risk factors that depend on firm characteristics and are widely used today. In 1993, the 
Fama–French three-factor model added the relative size and value of firms to the single 
CAPM source of risk. In 2015, the five-factor model further expanded the set to include 
firm profitability and level of investment, which had been shown to be significant in the 
intervening years. In addition, many factor models include a price momentum factor.

The Fama–French risk factors are computed as the return difference on diversified 
portfolios with high or low values, according to metrics that reflect a given risk factor. 
These returns are obtained by sorting stocks according to these metrics and then going 
long stocks above a certain percentile, while shorting stocks below a certain percentile. 
The metrics associated with the risk factors are defined as follows:

• Size: Market equity (ME) 

• Value: Book value of equity (BE) divided by ME

• Operating profitability (OP): Revenue minus cost of goods sold/assets

• Investment: Investment/assets

There are also unsupervised learning techniques for the data-driven discovery of 
risk factors that use factors and principal component analysis. We will explore this in 
Chapter 13, Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning.

Obtaining the risk factors
Fama and French make updated risk factors and research portfolio data available through 
their website, and you can use the pandas_datareader library to obtain the data. For this 
application, refer to the fama_macbeth.ipynb notebook for the following code examples and 
additional detail.

In particular, we will be using the five Fama–French factors that result from sorting stocks, 
first into three size groups and then into two, for each of the remaining three firm-specific 
factors. Hence, the factors involve three sets of value-weighted portfolios formed as 3 × 2  
sorts on size and book-to-market, size and operating profitability, and size and investment. 
The risk factor values computed as the average returns of the portfolios (PF) are outlined in 
the following table:
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Concept Label Name Risk factor calculation

Size SMB Small minus big Nine small stock PF minus nine large stock PF.

Value HML High minus low
Two value PF minus two growth (with low BE/
ME value) PF.

Profitability RMW Robust minus weak Two robust OP PF minus two weak OP PF.

Investment CMA
Conservative minus 
aggressive

Two conservative investment portfolios, minus 
two aggressive investment portfolios.

Market Rm-Rf
Excess return on the 
market

Value-weight return of all firms incorporated in 
and listed on major US exchanges with good data, 
minus the one-month Treasury bill rate.

We will use returns at a monthly frequency that we will obtain for the period 2010–2017, 
as follows:

import pandas_datareader.data as web

ff_factor = 'F-F_Research_Data_5_Factors_2x3'
ff_factor_data = web.DataReader(ff_factor, 'famafrench', start='2010', 
                               end='2017-12')[0]

ff_factor_data.info()
PeriodIndex: 96 entries, 2010-01 to 2017-12

Freq: M

Data columns (total 6 columns):

Mkt-RF 96 non-null float64
SMB    96 non-null float64
HML    96 non-null float64
RMW    96 non-null float64
CMA    96 non-null float64
RF     96 non-null float64

Fama and French also made numerous portfolios available that we can use to illustrate 
the estimation of the factor exposures, as well as the value of the risk premia available in 
the market for a given time period. We will use a panel of the 17 industry portfolios at a 
monthly frequency. We will subtract the risk-free rate from the returns because the factor 
model works with excess returns:

ff_portfolio = '17_Industry_Portfolios'
ff_portfolio_data = web.DataReader(ff_portfolio, 'famafrench', start='2010', 
                                  end='2017-12')[0]

ff_portfolio_data = ff_portfolio_data.sub(ff_factor_data.RF, axis=0)
ff_factor_data = ff_factor_data.drop('RF', axis=1)
ff_portfolio_data.info()
PeriodIndex: 96 entries, 2010-01 to 2017-12

Freq: M

Data columns (total 17 columns):

Food     96 non-null float64
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Mines    96 non-null float64
Oil      96 non-null float64
...

Rtail    96 non-null float64
Finan    96 non-null float64
Other    96 non-null float64

We will now build a linear factor model based on this panel data using a method that 
addresses the failure of some basic linear regression assumptions.

Fama–Macbeth regression
Given data on risk factors and portfolio returns, it is useful to estimate the portfolio's 
exposure to these returns to learn how much they drive the portfolio's returns. It is also of 
interest to understand the premium that the market pays for the exposure to a given factor, 
that is, how much taking this risk is worth. The risk premium then permits to estimate the 
return for any portfolio provide we know or can assume its factor exposure.

More formally, we will have i=1, ..., N asset or portfolio returns over t=1, ..., T periods, and 
each asset's excess period return will be denoted. The goal is to test whether the j=1, ..., M 
factors explain the excess returns and the risk premium associated with each factor. In our 
case, we have N=17 portfolios and M=5 factors, each with 96 periods of data.

Factor models are estimated for many stocks in a given period. Inference problems will 
likely arise in such cross-sectional regressions because the fundamental assumptions 
of classical linear regression may not hold. Potential violations include measurement 
errors, covariation of residuals due to heteroskedasticity and serial correlation, and 
multicollinearity (Fama and MacBeth 1973).

To address the inference problem caused by the correlation of the residuals, Fama and 
MacBeth proposed a two-step methodology for a cross-sectional regression of returns on 
factors. The two-stage Fama–Macbeth regression is designed to estimate the premium 
rewarded for the exposure to a particular risk factor by the market. The two stages consist of:

• First stage: N time-series regression, one for each asset or portfolio, of its excess 
returns on the factors to estimate the factor loadings. In matrix form, for each asset:𝒓𝒓𝑖𝑖𝑇𝑇 𝑇 𝑇 = 𝑭𝑭𝑇𝑇 𝑇 𝑇𝑇𝑇 𝑇 𝑇𝑇 𝜷𝜷𝑖𝑖𝑇𝑇𝑇 𝑇 𝑇𝑇 𝑇 𝑇 𝑇 𝝐𝝐𝑖𝑖𝑇𝑇 𝑇 𝑇 

• Second stage: T cross-sectional regression, one for each time period, to estimate the 
risk premium. In matrix form, we obtain a vector of risk premia for each period:𝒓𝒓𝑡𝑡𝑁𝑁 𝑁 𝑁𝑁𝑁 𝑁 𝑁𝑁 = �̂�𝜷𝑁𝑁 𝑁 𝑁𝑁𝑁 𝑁 𝑁𝑁 𝝀𝝀𝒕𝒕𝑁𝑁𝑁 𝑁 𝑁𝑁 𝑁 𝑁 
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Now, we can compute the factor risk premia as the time average and get a t-statistic to 
assess their individual significance, using the assumption that the risk premia estimates are 
independent over time: 𝑡𝑡 𝑡 λ𝑗𝑗𝜎𝜎𝜎λ𝑗𝑗)/√𝜎𝑇𝑇) 
If we had a very large and representative data sample on traded risk factors, we could 
use the sample mean as a risk premium estimate. However, we typically do not have a 
sufficiently long history to, and the margin of error around the sample mean could be quite 
large. The Fama–Macbeth methodology leverages the covariance of the factors with other 
assets to determine the factor premia. 

The second moment of asset returns is easier to estimate than the first moment, and 
obtaining more granular data improves estimation considerably, which is not true of mean 
estimation.

We can implement the first stage to obtain the 17 factor loading estimates as follows:

betas = []

for industry in ff_portfolio_data:
    step1 = OLS(endog=ff_portfolio_data.loc[ff_factor_data.index, industry],
                exog=add_constant(ff_factor_data)).fit()
    betas.append(step1.params.drop('const'))

betas = pd.DataFrame(betas,

                     columns=ff_factor_data.columns,
                     index=ff_portfolio_data.columns)
betas.info()

Index: 17 entries, Food  to Other

Data columns (total 5 columns):

Mkt-RF    17 non-null float64
SMB       17 non-null float64
HML       17 non-null float64
RMW       17 non-null float64
CMA       17 non-null float64

For the second stage, we run 96 regressions of the period returns for the cross section of 
portfolios on the factor loadings:

lambdas = []

for period in ff_portfolio_data.index:
    step2 = OLS(endog=ff_portfolio_data.loc[period, betas.index],
                exog=betas).fit()
    lambdas.append(step2.params)

lambdas = pd.DataFrame(lambdas,

                       index=ff_portfolio_data.index,
                       columns=betas.columns.tolist())

lambdas.info()
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PeriodIndex: 96 entries, 2010-01 to 2017-12

Freq: M

Data columns (total 5 columns):

Mkt-RF    96 non-null float64
SMB       96 non-null float64
HML       96 non-null float64
RMW       96 non-null float64
CMA       96 non-null float64

Finally, we compute the average for the 96 periods to obtain our factor risk premium 
estimates:

lambdas.mean()

Mkt-RF    1.243632

SMB      -0.004863

HML      -0.688167

RMW      -0.237317

CMA      -0.318075

RF       -0.013280

The linearmodels library extends statsmodels with various models for panel data and also 
implements the two-stage Fama–MacBeth procedure:

model = LinearFactorModel(portfolios=ff_portfolio_data, 
                          factors=ff_factor_data)
res = model.fit()

This provides us with the same result:

Figure 7.4: LinearFactorModel estimation summary

The accompanying notebook illustrates the use of categorical variables by using industry 
dummies when estimating risk premia for a larger panel of individual stocks.
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Regularizing linear regression using shrinkage
The least-squares method to train a linear regression model will produce the best linear and 
unbiased coefficient estimates when the Gauss–Markov assumptions are met. Variations 
like GLS fare similarly well, even when OLS assumptions about the error covariance matrix 
are violated. However, there are estimators that produce biased coefficients to reduce 
the variance and achieve a lower generalization error overall (Hastie, Tibshirani, and 
Friedman 2009).

When a linear regression model contains many correlated variables, their coefficients will 
be poorly determined. This is because the effect of a large positive coefficient on the RSS 
can be canceled by a similarly large negative coefficient on a correlated variable. As a result, 
the risk of prediction errors due to high variance increases because this wiggle room for the 
coefficients makes the model more likely to overfit to the sample.

How to hedge against overfitting
One popular technique to control overfitting is that of regularization, which involves the 
addition of a penalty term to the error function to discourage the coefficients from reaching 
large values. In other words, size constraints on the coefficients can alleviate the potentially 
negative impact on out-of-sample predictions. We will encounter regularization methods 
for all models since overfitting is such a pervasive problem.

In this section, we will introduce shrinkage methods that address two motivations to 
improve on the approaches to linear models discussed so far:

• Prediction accuracy: The low bias but high variance of least-squares estimates 
suggests that the generalization error could be reduced by shrinking or setting 
some coefficients to zero, thereby trading off a slightly higher bias for a reduction in 
the variance of the model.

• Interpretation: A large number of predictors may complicate the interpretation or 
communication of the big picture of the results. It may be preferable to sacrifice some 
detail to limit the model to a smaller subset of parameters with the strongest effects.

Shrinkage models restrict the regression coefficients by imposing a penalty on their size. 
They achieve this goal by adding a term 𝑆𝑆(𝛃𝛃)  to the objective function. This term implies 
that the coefficients of a shrinkage model minimize the RSS, plus a penalty that is positively 
related to the (absolute) size of the coefficients.

The added penalty thus turns the linear regression coefficients into the solution to a 
constrained minimization problem that, in general, takes the following Lagrangian form:

�̂�𝜷𝑺𝑺 = argmin𝜷𝜷𝑆𝑆 ∑ [(𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − ∑ 𝛽𝛽𝑗𝑗𝑥𝑥𝑗𝑗𝑝𝑝
𝑗𝑗𝑗𝑗 )2 + 𝜆𝜆 𝜆𝜆(𝜷𝜷)]𝑁𝑁

𝑖𝑖𝑗𝑗 = argmin𝜷𝜷𝑆𝑆 𝒚𝒚 − 𝑿𝑿𝜷𝜷 − 𝜆𝜆 𝜆𝜆(𝜷𝜷)  
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The regularization parameter λ  determines the size of the penalty effect, that is, the 
strength of the regularization. As soon as λ  is positive, the coefficients will differ from the 
unconstrained least squared parameters, which implies a biased estimate. You should 
choose hyperparameter λ  adaptively via cross-validation to minimize an estimate of the 
expected prediction error. We will illustrate how to do so in the next section.

Shrinkage models differ by how they calculate the penalty, that is, the functional form of 
S. The most common versions are the ridge regression, which uses the sum of the squared 
coefficients, and the lasso model, which bases the penalty on the sum of the absolute values 
of the coefficients. 

Elastic net regression, which is not explicitly covered here, uses a combination of both. 
Scikit-learn includes an implementation that works very similarly to the examples we 
will demonstrate here.

How ridge regression works
Ridge regression shrinks the regression coefficients by adding a penalty to the objective 
function that equals the sum of the squared coefficients, which in turn corresponds to the 
L2 norm of the coefficient vector (Hoerl and Kennard 1970):

𝑆𝑆(𝜷𝜷) =∑𝛽𝛽𝑖𝑖2 = ‖𝜷𝜷‖2𝑝𝑝
𝑖𝑖𝑖𝑖  

Hence, the ridge coefficients are defined as:

�̂�𝜷Ridge = argmin𝜷𝜷Ridge ∑ [(𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − ∑ 𝛽𝛽𝑗𝑗𝑥𝑥𝑗𝑗𝑝𝑝
𝑗𝑗𝑗𝑗 )2 + 𝜆𝜆 ∑ 𝜷𝜷𝑗𝑗2𝑝𝑝

𝑗𝑗𝑗𝑗 ]𝑁𝑁
𝑖𝑖𝑗𝑗 = argmin𝜷𝜷Ridge (𝒚𝒚 − 𝑿𝑿𝜷𝜷)𝑇𝑇(𝒚𝒚 − 𝑿𝑿𝜷𝜷) + 𝜆𝜆𝜷𝜷𝑻𝑻𝜷𝜷  

The intercept 𝛽𝛽0  has been excluded from the penalty to make the procedure independent of 
the origin chosen for the output variable—otherwise, adding a constant to all output values 
would change all slope parameters, as opposed to a parallel shift.

It is important to standardize the inputs by subtracting from each input the corresponding 
mean and dividing the result by the input's standard deviation. This is because the ridge 
solution is sensitive to the scale of the inputs. There is also a closed solution for the ridge 
estimator that resembles the OLS case:�̂�𝜷Ridge = (𝑿𝑿𝑇𝑇𝑿𝑿𝑿 𝜆𝜆𝜆𝜆)−1𝑿𝑿𝑇𝑇𝒚𝒚 
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The solution adds the scaled identity matrix 𝜆𝜆𝜆𝜆  to XTX before inversion, which guarantees 
that the problem is non-singular, even if XTX does not have full rank. This was one of the 
motivations for using this estimator when it was originally introduced.

The ridge penalty results in the proportional shrinkage of all parameters. In the case 
of orthonormal inputs, the ridge estimates are just a scaled version of the least-squares 
estimates, that is: �̂�𝜷Ridge = �̂�𝜷LS1 + λ 

Using the singular value decomposition (SVD) of the input matrix X, we can gain 
insight into how the shrinkage affects inputs in the more common case where they are not 
orthonormal. The SVD of a centered matrix represents the principal components of a matrix 
(see Chapter 13, Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning) 
that capture uncorrelated directions in the column space of the data in descending order 
of variance.

Ridge regression shrinks the coefficients relative to the alignment of input variables with 
the directions in the data that exhibit most variance. More specifically, it shrinks those 
coefficients the most that represent inputs aligned with the principal components that 
capture less variance. Hence, the assumption that's implicit in ridge regression is that the 
directions in the data that vary the most will be most influential or most reliable when 
predicting the output.

How lasso regression works
The lasso (Hastie, Tibshirani, and Wainwright 2015), known as basis pursuit in signal 
processing, also shrinks the coefficients by adding a penalty to the sum of squares of the 
residuals, but the lasso penalty has a slightly different effect. The lasso penalty is the sum of 
the absolute values of the coefficient vector, which corresponds to its L1 norm. Hence, the 
lasso estimate is defined by:

�̂�𝜷Lasso = argmin𝜷𝜷Lasso ∑ [(𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − ∑ 𝛽𝛽𝑗𝑗𝑥𝑥𝑗𝑗𝑝𝑝
𝑗𝑗𝑗𝑗 )2 + 𝜆𝜆 ∑|𝛽𝛽𝑗𝑗|𝑝𝑝

𝑗𝑗𝑗𝑗 ]𝑁𝑁
𝑖𝑖𝑗𝑗 = argmin𝜷𝜷Lasso (𝒚𝒚 − 𝑿𝑿𝜷𝜷)𝑇𝑇(𝒚𝒚 − 𝑿𝑿𝜷𝜷) + 𝜆𝜆𝜷𝜷|  

Similar to ridge regression, the inputs need to be standardized. The lasso penalty makes 
the solution nonlinear, and there is no closed-form expression for the coefficients, as in 
ridge regression. Instead, the lasso solution is a quadratic programming problem, and 
there are efficient algorithms that compute the entire path of coefficients, which results in 
different values of λ  with the same computational cost as ridge regression.

The lasso penalty had the effect of gradually reducing some coefficients to zero as the 
regularization increases. For this reason, the lasso can be used for the continuous selection 
of a subset of features.



Chapter 7

[ 197 ]

Let's now move on and put the various linear regression models to practical use and 
generate predictive stock trading signals.

How to predict returns with linear regression
In this section, we will use linear regression with and without shrinkage to predict returns 
and generate trading signals.

First, we need to create the model inputs and outputs. To this end, we'll create features 
along the lines we discussed in Chapter 4, Financial Feature Engineering – How to Research 
Alpha Factors, as well as forward returns for various time horizons, which we will use as 
outcomes for the models.

Then, we will apply the linear regression models discussed in the previous section 
to illustrate their usage with statsmodels and sklearn and evaluate their predictive 
performance. In the next chapter, we will use the results to develop a trading strategy  
and demonstrate the end-to-end process of backtesting a strategy driven by a machine 
learning model.

Preparing model features and forward returns
To prepare the data for our predictive model, we need to:

• Select a universe of equities and a time horizon 

• Build and transform alpha factors that we will use as features 

• Calculate forward returns that we aim to predict

• And (potentially) clean our data

The notebook preparing_the_model_data.ipynb contains the code examples for this section.

Creating the investment universe

We will use daily equity data from the Quandl Wiki US Stock Prices dataset for the years 
2013 to 2017. See the instructions in the data directory in the root folder of the GitHub 
repository for this book on how to obtain the data.

We start by loading the daily (adjusted) open, high, low, close, and volume (OHLCV) 
prices and metadata, which includes sector information. Use the path to DATA_STORE, where 
you originally saved the Quandl Wiki data:

START = '2013-01-01'

END = '2017-12-31'

idx = pd.IndexSlice # to select from pd.MultiIndex

DATA_STORE = '../data/assets.h5'

with pd.HDFStore(DATA_STORE) as store:
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    prices = (store['quandl/wiki/prices']

              .loc[idx[START:END, :],

                   ['adj_open', 'adj_close', 'adj_low', 

                    'adj_high', 'adj_volume']]

              .rename(columns=lambda x: x.replace('adj_', ''))

              .swaplevel()

              .sort_index())

    stocks = (store['us_equities/stocks']

              .loc[:, ['marketcap', 'ipoyear', 'sector']])

We remove tickers that do not have at least 2 years of data:

MONTH = 21

YEAR = 12 * MONTH

min_obs = 2 * YEAR

nobs = prices.groupby(level='ticker').size()

keep = nobs[nobs > min_obs].index

prices = prices.loc[idx[keep, :], :]

Next, we clean up the sector names and ensure that we only use equities with both price 
and sector information:

stocks = stocks[~stocks.index.duplicated() & stocks.sector.notnull()]

# clean up sector names

stocks.sector = stocks.sector.str.lower().str.replace(' ', '_')

stocks.index.name = 'ticker'

shared = (prices.index.get_level_values('ticker').unique()

          .intersection(stocks.index))

stocks = stocks.loc[shared, :]

prices = prices.loc[idx[shared, :], :]

For now, we are left with 2,265 tickers with daily price data for at least 2 years. First, there's 
the prices DataFrame:

prices.info(null_counts=True)

MultiIndex: 2748774 entries, (A, 2013-01-02) to (ZUMZ, 2017-12-29)

Data columns (total 5 columns):

open      2748774 non-null float64
close     2748774 non-null float64
low       2748774 non-null float64
high      2748774 non-null float64
volume    2748774 non-null float64
memory usage: 115.5+ MB
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Next, there's the stocks DataFrame:

stocks.info()

Index: 2224 entries, A to ZUMZ

Data columns (total 3 columns):

marketcap    2222 non-null float64
ipoyear      962 non-null float64
sector       2224 non-null object

memory usage: 69.5+ KB

We will use a 21-day rolling average of the (adjusted) dollar volume traded to select the 
most liquid stocks for our model. Limiting the number of stocks also has the benefit of 
reducing training and backtesting time; excluding stocks with low dollar volumes can also 
reduce the noise of price data.

The computation requires us to multiply the daily close price with the corresponding 
volume and then apply a rolling mean to each ticker using .groupby(), as follows:

prices['dollar_vol'] = prices.loc[:, 'close'].mul(prices.loc[:, 'volume'], 
axis=0)

prices['dollar_vol'] = (prices

                        .groupby('ticker',

                                 group_keys=False,

                                 as_index=False)

                        .dollar_vol

                        .rolling(window=21)

                        .mean()

                        .reset_index(level=0, drop=True))

We then use this value to rank stocks for each date so that we can select, for example, 
the 100 most-traded stocks for a given date:

prices['dollar_vol_rank'] = (prices

                             .groupby('date')

                             .dollar_vol

                             .rank(ascending=False))

Selecting and computing alpha factors using TA-Lib

We will create a few momentum and volatility factors using TA-Lib, as described in 
Chapter 4, Financial Feature Engineering – How to Research Alpha Factors.

First, we add the relative strength index (RSI), as follows:

prices['rsi'] = prices.groupby(level='ticker').close.apply(RSI)
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A quick evaluation shows that, for the 100 most-traded stocks, the mean and median 5-day 
forward returns are indeed decreasing in the RSI values, grouped to reflect the commonly 
30/70 buy/sell thresholds:

(prices[prices.dollar_vol_rank<100]

 .groupby('rsi_signal')['target_5d'].describe())

rsi_signal count Mean std min 25% 50% 75% max

(0, 30] 4,154 0.12% 1.01% -5.45% -0.34% 0.11% 0.62% 4.61%

(30, 70] 107,329 0.05% 0.76% -16.48% -0.30% 0.06% 0.42% 7.57%

(70, 100] 10,598 0.00% 0.63% -8.79% -0.28% 0.01% 0.31% 5.86%

Then, we compute Bollinger Bands. The TA-Lib BBANDS function returns three values so 
that we set up a function that returns a DataFrame with the higher and lower bands for use 
with groupby() and apply():

def compute_bb(close):

    high, mid, low = BBANDS(close)

    return pd.DataFrame({'bb_high': high, 'bb_low': low}, index=close.index)

prices = (prices.join(prices

                      .groupby(level='ticker')

                      .close

                      .apply(compute_bb)))

We take the percentage difference between the stock price and the upper or lower Bollinger 
Band and take logs to compress the distribution. The goal is to reflect the current value, 
relative to the recent volatility trend:

prices['bb_high'] = prices.bb_high.sub(prices.close).div(prices.bb_high).
apply(np.log1p)

prices['bb_low'] = prices.close.sub(prices.bb_low).div(prices.close).
apply(np.log1p)

Next, we compute the average true range (ATR), which takes three inputs, namely, the 
high, low, and close prices. We standardize the result to make the metric more comparable 
across stocks:

def compute_atr(stock_data):

    df = ATR(stock_data.high, stock_data.low, 

             stock_data.close, timeperiod=14)

    return df.sub(df.mean()).div(df.std())

prices['atr'] = (prices.groupby('ticker', group_keys=False)

                 .apply(compute_atr))
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Finally, we generate the moving average convergence/divergence (MACD) indicator, which 
reflects the difference between a shorter and a longer-term exponential moving average:

def compute_macd close:

   macd = MACD(close)[0]

    return (macd - np.mean(macd))/np.std(macd)

prices['macd'] = (prices

                  .groupby('ticker', group_keys=False)

                  .close

                  .apply(lambda x: MACD(x)[0]))

Adding lagged returns

To capture the price trend for various historical lags, we compute the corresponding 
returns and transform the result into the daily geometric mean. We'll use lags for 1 day; 1 
and 1 weeks; and 1, 2, and 3 months. We'll also winsorize the returns by clipping the values 
at the 0.01st and 99.99th percentile:

q = 0.0001

lags = [1, 5, 10, 21, 42, 63]

for lag in lags:

    prices[f'return_{lag}d'] = (prices.groupby(level='ticker').close

                                .pct_change(lag)

                                .pipe(lambda x: x.clip(lower=x.quantile(q),

                                                       upper=x.quantile(1 - q)

                                                       ))

                                .add(1)

                                .pow(1 / lag)

                                .sub(1)

                                )

We then shift the daily, (bi-)weekly, and monthly returns to use them as features for the 
current observations. In other words, in addition to the latest returns for these periods, 
we also use the prior five results. For example, we shift the weekly returns for the prior 
5 weeks so that they align with the current observations and can be used to predict the 
current forward return:

for t in [1, 2, 3, 4, 5]:

    for lag in [1, 5, 10, 21]:

        prices[f'return_{lag}d_lag{t}'] = (prices.groupby(level='ticker')

                                           [f'return_{lag}d'].shift(t * lag))
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Generating target forward returns

We will test predictions for various lookahead periods. The goal is to identify the holding 
period that produces the best predictive accuracy, as measured by the information 
coefficient (IC).

More specifically, we shift returns for time horizon t back by t days to use them as forward 
returns. For instance, we shift the 5-day return from t

0
 to t

5
 back by 5 days so that this value 

becomes the model target for t
0
. We can generate daily, (bi-)weekly, and monthly forward 

returns as follows:

for t in [1, 5, 10, 21]:

    prices[f'target_{t}d'] = prices.groupby(level='ticker')[f'return_{t}d'].
shift(-t)

Dummy encoding of categorical variables

We need to convert any categorical variable into a numeric format so that the linear 
regression can process it. For this purpose, we will use a dummy encoding that creates 
individual columns for each category level and flags the presence of this level in the 
original categorical column with an entry of 1, and 0 otherwise. The pandas function get_
dummies() automates dummy encoding. It detects and properly converts columns of type 
objects, as illustrated here. If you need dummy variables for columns containing integers, 
for instance, you can identify them using the keyword columns:

df = pd.DataFrame({'categories': ['A','B', 'C']})

  categories

0          A

1          B

2          C

pd.get_dummies(df)

   categories_A  categories_B  categories_C

0             1             0             0

1             0             1             0

2             0             0             1

When converting all categories into dummy variables and estimating the model with an 
intercept (as you typically would), you inadvertently create multicollinearity: the matrix 
now contains redundant information, no longer has full rank, and instead becomes 
singular.

It is simple to avoid this by removing one of the new indicator columns. The coefficient 
on the missing category level will now be captured by the intercept (which is always 1, 
including when every remaining category dummy is 0). 
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Use the drop_first keyword to correct the dummy variables accordingly: 

pd.get_dummies(df, drop_first=True)
   categories_B  categories_C

0             0             0

1             1             0

2             0             1

To capture seasonal effects and changing market conditions, we create time indictor 
variables for the year and month:

prices['year'] = prices.index.get_level_values('date').year

prices['month'] = prices.index.get_level_values('date').month

Then, we combine our price data with the sector information and create dummy variables 
for the time and sector categories:

prices = prices.join(stocks[['sector']])

prices = pd.get_dummies(prices,

                        columns=['year', 'month', 'sector'],

                        prefix=['year', 'month', ''],
                        prefix_sep=['_', '_', ''],
                        drop_first=True)

We obtain some 50 features as a result that we can now use with the various regression 
models discussed in the previous section.

Linear OLS regression using statsmodels
In this section, we will demonstrate how to run statistical inference with stock return data 
using statsmodels and interpret the results. The notebook 04_statistical_inference_of_
stock_returns_with_statsmodels.ipynb contains the code examples for this section.

Selecting the relevant universe

Based on our ranked rolling average of the dollar volume, we select the top 100 stocks for 
any given trading day in our sample:

data = data[data.dollar_vol_rank<100]

We then create our outcome variables and features, as follows:

y = data.filter(like='target')
X = data.drop(y.columns, axis=1)
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Estimating the vanilla OLS regression

We can estimate a linear regression model using OLS with statsmodels, as demonstrated 
previously. We select a forward return, for example, for a 5-day holding period, and fit the 
model accordingly:

target = 'target_5d'

model = OLS(endog=y[target], exog=add_constant(X))

trained_model = model.fit()
trained_model.summary()

Diagnostic statistics

You can view the full summary output in the notebook. We will omit it here to save some 
space, given the large number of features, and only display the diagnostic statistics:

=====================================================================

Omnibus:               33104.830   Durbin-Watson:               0.436

Prob(Omnibus):             0.000   Jarque-Bera (JB):      1211101.670

Skew:                     -0.780   Prob(JB):                     0.00

Kurtosis:                 19.205   Cond. No.                     79.8

=====================================================================

The diagnostic statistics show a low p-value for the Jarque–Bera statistic, suggesting that 
the residuals are not normally distributed: they exhibit negative skew and high kurtosis. 
The left panel of Figure 7.5 plots the residual distribution versus the normal distribution 
and highlights this shortcoming. In practice, this implies that the model is making more 
large errors than "normal":

Figure 7.5: Residual distribution and autocorrelation plots

Furthermore, the Durbin–Watson statistic is low at 0.43 so that we comfortably reject the 
null hypothesis of "no autocorrelation" at the 5 percent level. Hence, the residuals are likely 
positively correlated. The right panel of the preceding figure plots the autocorrelation 
coefficients for the first 10 lags, pointing to a significant positive correlation up to lag 4. This 
result is due to the overlap in our outcomes: we are predicting 5-day returns for each day so 
that outcomes for consecutive days contain four identical returns.
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If our goal were to understand which factors are significantly associated with forward 
returns, we would need to rerun the regression using robust standard errors (a parameter 
in statsmodels' .fit() method) or use a different method altogether, such as a panel model 
that allows for more complex error covariance.

Linear regression using scikit-learn
Since sklearn is tailored toward prediction, we will evaluate the linear regression model 
based on its predictive performance using cross-validation. You can find the code samples for 
this section in the notebook 05_predicting_stock_returns_with_linear_regression.ipynb.

Selecting features and targets

We will select the universe for our experiment, as we did previously in the OLS case, 
limiting tickers to the 100 most traded in terms of the dollar value on any given date. The 
sample still contains 5 years of data from 2013-2017.

Cross-validating the model

Our data consists of numerous time series, one for each security. As discussed in Chapter 6, 
The Machine Learning Process, sequential data like time series requires careful cross-validation 
to be set up so that we do not inadvertently introduce look-ahead bias or leakage.

We can achieve this using the MultipleTimeSeriesCV class that we introduced in Chapter 6, 
The Machine Learning Process. We initialize it with the desired lengths for the train and test 
periods, the number of test periods that we would like to run, and the number of periods in 
our forecasting horizon. The split() method returns a generator yielding pairs of train and 
test indices, which we can then use to select outcomes and features. The number of pairs 
depends on the parameter n_splits.

The test periods do not overlap and are located at the end of the period available in the 
data. After a test period is used, it becomes part of the training data that rolls forward and 
remains constant in size.

We will test this using 63 trading days, or 3 months, to train the model and then predict 
1-day returns for the following 10 days. As a result, we can use around 75 10-day splits 
during the 3 years, starting in 2015. We will begin by defining the basic parameters and 
data structures, as follows:

train_period_length = 63

test_period_length = 10

n_splits = int(3 * YEAR/test_period_length)

lookahead =1 

cv = MultipleTimeSeriesCV(n_splits=n_splits,

                          test_period_length=test_period_length,

                          lookahead=lookahead,

                          train_period_length=train_period_length)
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The cross-validation loop iterates over the train and test indices provided by TimeSeriesCV, 
selects features and outcomes, trains the model, and predicts the returns for the test 
features. We also capture the root mean squared error and the Spearman rank correlation 
between the actual and predicted values:

target = f'target_{lookahead}d'

lr_predictions, lr_scores = [], []

lr = LinearRegression()

for i, (train_idx, test_idx) in enumerate(cv.split(X), 1):

    X_train, y_train, = X.iloc[train_idx], y[target].iloc[train_idx]

    X_test, y_test = X.iloc[test_idx], y[target].iloc[test_idx]

    lr.fit(X=X_train, y=y_train)
    y_pred = lr.predict(X_test)

    preds_by_day = (y_test.to_frame('actuals').assign(predicted=y_pred)

                    .groupby(level='date'))

    ic = preds_by_day.apply(lambda x: spearmanr(x.predicted,

                                                x.actuals)[0] * 100)

    rmese = preds_by_day.apply(lambda x: np.sqrt(

                               mean_squared_error(x.predicted, x.actuals)))

    scores = pd.concat([ic.to_frame('ic'), rmse.to_frame('rmse')], axis=1)

                        

    lr_scores.append(scores)

    lr_predictions.append(preds)

The cross-validation process takes 2 seconds. We'll evaluate the results in the next section.

Evaluating the results – information coefficient and RMSE
We have captured 3 years of daily test predictions for our universe. To evaluate the model's 
predictive performance, we can compute the information coefficient for each trading day, 
as well as for the entire period by pooling all forecasts.

The left panel of Figure 7.6 (see the code in the notebook) shows the distribution of the rank 
correlation coefficients computed for each day and displays their mean and median, which 
are close to 1.95 and 2.56, respectively.

The figure's right panel shows a scatterplot of the predicted and actual 1-day returns across 
all test periods. The seaborn jointplot estimates a robust regression that assigns lower 
weights to outliers and shows a small positive relationship. The rank correlation of actual 
and predicted returns for the entire 3-year test period is positive but low at 0.017 and 
statistically significant:
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Figure 7.6: Daily and pooled IC for linear regression

In addition, we can track how predictions performed in terms of the IC on a daily basis. 
Figure 7.7 displays a 21-day rolling average for both the daily information coefficient and 
the RMSE, as well as their respective means for the validation period. This perspective 
highlights that the small positive IC for the entire period hides substantial variation that 
ranges from -10 to +10:

Figure 7.7: 21-day rolling average for the daily IC and RMSE for the linear regression model
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Ridge regression using scikit-learn
We will now move on to the regularized ridge model, which we will use to evaluate 
whether parameter constraints improve on the linear regression's predictive performance. 
Using the ridge model allows us to select the hyperparameter that determines the weight 
of the penalty term in the model's objective function, as discussed previously in the section 
Shrinkage methods: regularization for linear regression.

Tuning the regularization parameters using cross-validation

For ridge regression, we need to tune the regularization parameter with the keyword alpha, 
which corresponds to the λ  we used previously. We will try 18 values from 10-4 to 104, 
where larger values imply stronger regularization:

ridge_alphas = np.logspace(-4, 4, 9)

ridge_alphas = sorted(list(ridge_alphas) + list(ridge_alphas * 5))

We will apply the same cross-validation parameters as in the linear regression case, training 
for 3 months to predict 10 days of daily returns.

The scale sensitivity of the ridge penalty requires us to standardize the inputs using 
StandardScaler. Note that we always learn the mean and the standard deviation from the 
training set using the .fit_transform() method and then apply these learned parameters 
to the test set using the .transform() method. To automate the preprocessing, we create a 
Pipeline, as illustrated in the following code example. We also collect the ridge coefficients. 
Otherwise, cross-validation resembles the linear regression process:

for alpha in ridge_alphas:

    model = Ridge(alpha=alpha,

                  fit_intercept=False,
                  random_state=42)

    pipe = Pipeline([

        ('scaler', StandardScaler()),

        ('model', model)])

    for i, (train_idx, test_idx) in enumerate(cv.split(X), 1):

        X_train, y_train = X.iloc[train_idx], y[target].iloc[train_idx]

        X_test, y_test = X.iloc[test_idx], y[target].iloc[test_idx]

        pipe.fit(X=X_train, y=y_train)
        y_pred = pipe.predict(X_test)
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        preds = y_test.to_frame('actuals').assign(predicted=y_pred)

        preds_by_day = preds.groupby(level='date')

        scores = pd.concat([preds_by_day.apply(lambda x: 

                                               spearmanr(x.predicted, 

                                                   x.actuals)[0] * 100)

                            .to_frame('ic'),

                            preds_by_day.apply(lambda x: np.sqrt(

                                                    mean_squared_error(

                                                    y_pred=x.predicted, 

                                                    y_true=x.actuals)))

                            .to_frame('rmse')], axis=1)

        ridge_scores.append(scores.assign(alpha=alpha))

        ridge_predictions.append(preds.assign(alpha=alpha))

        coeffs.append(pipe.named_steps['model'].coef_)

Cross-validation results and ridge coefficient paths
We can now plot the IC for each hyperparameter value to visualize how it evolves as the 
regularization increases. The results show that we get the highest mean and median IC 
value for λ = 100 .

For these levels of regularization, the right panel of Figure 7.8 shows that the coefficients 
have been slightly shrunk compared to the (almost) unconstrained model with λ = 10−4 :

Figure 7.8: Ridge regression cross-validation results

The left panel of the figure shows that the predictive accuracy increases only slightly in 
terms of the mean and median IC values for optimal regularization values.
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Top 10 coefficients
The standardization of the coefficients allows us to draw conclusions about their relative 
importance by comparing their absolute magnitude. Figure 7.9 displays the 10 most relevant 
coefficients for regularization using λ = 100 , averaged over all trained models:

Figure 7.9: Daily IC distribution and most important coefficients

For this simple model and sample period, lagged monthly returns and various sector 
indicators played the most important role.

Lasso regression using sklearn
The lasso implementation looks very similar to the ridge model we just ran. The main 
difference is that lasso needs to arrive at a solution using iterative coordinate descent, 
whereas ridge regression can rely on a closed-form solution. This can lead to longer 
training times.

Cross-validating the lasso model

The cross-validation code only differs with respect to the Pipeline setup. The Lasso object 
lets you set the tolerance and the maximum number of iterations it uses to determine 
whether it has converged or should abort, respectively. You can also rely on a warm_start 
so that the next training starts from the last optimal coefficient values. Please refer to the 
sklearn documentation and the notebook for additional detail.

We will use eight alpha values in the range 10-10 to 10-3:

lasso_alphas = np.logspace(-10, -3, 8)

for alpha in lasso_alphas:

    model = Lasso(alpha=alpha,

                  fit_intercept=False,
                  random_state=42,

                  tol=1e-4,

                  max_iter=1000,
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                  warm_start=True,

                  selection='random')

    pipe = Pipeline([

        ('scaler', StandardScaler()),

        ('model', model)])

Evaluating the results – IC and lasso path

As we did previously, we can plot the average information coefficient for all test sets used 
during cross-validation. We can see once more that regularization improves the IC over the 
unconstrained model, delivering the best out-of-sample result at a level of λ = 10−4 .

The optimal regularization value is different from ridge regression because the penalty 
consists of the sum of the absolute, not the squared values of the relatively small coefficient 
values. We can also see in Figure 7.10 that for this regularization level, the coefficients have 
been similarly shrunk, as in the ridge regression case:

Figure 7.10: Lasso cross-validation results

The mean and median IC coefficients are slightly higher for lasso regression in this case, 
and the best-performing models use, on average, a different set of coefficients:

Figure 7.11: Lasso daily IC distribution and top 10 coefficients
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Comparing the quality of the predictive signals
In sum, ridge and lasso regression often produce similar results. Ridge regression often 
computes faster, but lasso regression also offers continuous feature subset selection by 
gradually reducing coefficients to zero, hence eliminating features. 

In this particular setting, lasso regression produces the best mean and median IC values, as 
displayed in Figure 7.12:

Figure 7.12: Mean and median daily IC for the three models

Furthermore, we can use Alphalens to compute various metrics and visualizations that 
reflect the signal quality of the model's predictions, as introduced in Chapter 4, Financial 
Feature Engineering – How to Research Alpha Factors. The notebook 06_evaluating_signals_
using_alphalens.ipynb contains the code examples that combine the model predictions 
with price information to generate the alpha factor input needed by Alphalens.

The following table shows the alpha and beta values for portfolios invested in, according 
to different quintiles of the model predictions. In this simple example, the differences in 
performance are very small:

Metric Alpha Beta

Model 1D 5D 10D 21D 1D 5D 10D 21D

Linear 
regression

0.03 0.02 0.007 0.004 -0.012 -0.081 -0.059 0.019

Ridge regression 0.029 0.022 0.012 0.008 -0.01 -0.083 -0.060 0.021

Lasso regression 0.03 0.021 0.009 0.006 -0.011 -0.081 -0.057 0.02

Linear classification
The linear regression model discussed so far assumes a quantitative response variable. 
In this section, we will focus on approaches to modeling qualitative output variables for 
inference and prediction, a process that is known as classification and that occurs even 
more frequently than regression in practice.
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Predicting a qualitative response for a data point is called classifying that observation 
because it involves assigning the observation to a category, or class. In practice, 
classification methods often predict probabilities for each of the categories of a qualitative 
variable and then use this probability to decide on the proper classification.

We could approach this classification problem by ignoring the fact that the output variable 
assumes discrete values, and then applying the linear regression model to try to predict a 
categorical output using multiple input variables. However, it is easy to construct examples 
where this method performs very poorly. Furthermore, it doesn't make intuitive sense for 
the model to produce values larger than 1 or smaller than 0 when we know that y ∈ [0,1] .
There are many different classification techniques, or classifiers, that are available to predict 
a qualitative response. In this section, we will introduce the widely used logistic regression, 
which is closely related to linear regression. We will address more complex methods in 
the following chapters on generalized additive models, which includes decision trees and 
random forests, as well as gradient boosting machines and neural networks.

The logistic regression model
The logistic regression model arises from the desire to model the probabilities of the output 
classes, given a function that is linear in x, just like the linear regression model, while at 
the same time ensuring that they sum to one and remain in [0, 1], as we would expect from 
probabilities.

In this section, we will introduce the objective and functional form of the logistic regression 
model and describe the training method. We will then illustrate how to use logistic 
regression for statistical inference with macro data using statsmodels, as well as how to 
predict price movements using the regularized logistic regression implemented by sklearn.

The objective function

To illustrate the objective function, we'll use the output variable y, which takes on the 
value 1 if a stock return is positive over a given time horizon d, and 0 otherwise:𝑦𝑦𝑡𝑡 = {1     𝑟𝑟𝑡𝑡𝑡𝑡𝑡 > 00  otherwise 

We could easily extend y to three categories, where 0 and 2 reflect negative and positive 
price moves beyond a certain threshold, and 1 otherwise. 

Rather than modeling the output variable y directly, logistic regression models the 
probability that y belongs to either of the categories, given a vector of alpha factors or 
features x

t
. In other words, logistic regression models the probability that the stock price 

goes up, depending on the values of the variables included in the model:𝑃𝑃𝑃𝑃𝑃𝑡𝑡) = 𝑃𝑃𝑟𝑟𝑃𝑦𝑦𝑡𝑡 = 1|𝑃𝑃𝑡𝑡 
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The logistic function

To prevent the model from producing values outside the [0, 1] interval, we must model p(x) 
using a function that only gives outputs between 0 and 1 over the entire domain of x. The 
logistic function meets this requirement and always produces an S-shaped curve and so, 
regardless of the value of x, we will obtain a prediction that makes sense in probability terms:𝑝𝑝(𝑥𝑥) = 𝑒𝑒𝛽𝛽0+∑ 𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖1 + 𝑒𝑒𝛽𝛽0+∑ 𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑒𝑒𝒙𝒙𝒙𝒙1 + 𝑒𝑒𝒙𝒙𝒙𝒙 

Here, the vector x includes a 1 for the intercept captured by the first component of 𝛃𝛃𝛃 𝛃𝛃0 . We 
can transform this expression to isolate the part that looks like a linear regression to arrive 
at: 𝑝𝑝𝑝𝑝𝑝𝑝1 − 𝑝𝑝𝑝𝑝𝑝𝑝⏟      =odds 𝑒𝑒𝛽𝛽0+∑ 𝛽𝛽𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖 ⟺ log( 𝑝𝑝𝑝𝑝𝑝𝑝1 − 𝑝𝑝𝑝𝑝𝑝𝑝)⏟          logit = 𝛽𝛽0 +∑ 𝛽𝛽𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖  

The quantity p(x)/[1−p(x)] is called the odds, an alternative way to express probabilities 
that may be familiar from gambling. This can take on any value odds between 0 and ∞ , 
where low values also imply low probabilities and high values imply high probabilities.

The logit is also called log-odds (since it is the logarithm of the odds). Hence, logistic 
regression represents a logit that is linear in x and looks a lot like the preceding 
linear regression.

Maximum likelihood estimation

The coefficient vector 𝛃𝛃  must be estimated using the available training data. Although we 
could use (nonlinear) least squares to fit the logistic regression model, the more general 
method of maximum likelihood is preferred, since it has better statistical properties. As 
we have just discussed, the basic intuition behind using maximum likelihood to fit a 
logistic regression model is to seek estimates for 𝛃𝛃  such that the predicted probability 𝑝𝑝𝑝  
corresponds as closely as possible to the actual outcome. In other words, we try to find �̂�𝛽  
such that these estimates yield a number close to 1 for all cases where the stock price went 
up, and a number close to 0 otherwise. More formally, we are seeking to maximize the 
likelihood function: max𝛽𝛽 ℒ(𝜷𝜷) = ∏ 𝑝𝑝(𝑝𝑝𝑖𝑖) ∏ (1 − 𝑝𝑝(𝑝𝑝𝑖𝑖′))𝑖𝑖′:𝑦𝑦𝑖𝑖′=0𝑖𝑖:𝑦𝑦𝑖𝑖=1  

It is easier to work with sums than with products, so let's take logs on both sides 
to get the log-likelihood function and the corresponding definition of the logistic 
regression coefficients:

𝜷𝜷ML = argmax logℒ(𝜷𝜷) =∑(𝑦𝑦𝑖𝑖 log 𝑝𝑝(𝒙𝒙𝑖𝑖, 𝜷𝜷) + (1 − 𝑦𝑦𝑖𝑖 log(1 − 𝑝𝑝 (𝒙𝒙𝑖𝑖, 𝜷𝜷)))𝑁𝑁
𝑖𝑖𝑖𝑖  
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To maximize this equation, we set the derivatives of ℒ  with respect to 𝛃𝛃  to zero. This yields 
p+1 so-called score equations, which are nonlinear in the parameters and can be solved 
using iterative numerical methods.

How to conduct inference with statsmodels
We will illustrate how to use logistic regression with statsmodels based on a simple built-in 
dataset containing quarterly US macro data from 1959 to 2009 (see the notebook logistic_
regression_macro_data for details).

The variables and their transformations are listed in the following table:

Variable Description Transformation

realgdp Real gross domestic product Annual Growth Rate

realcons Real personal consumption expenditures Annual Growth Rate

realinv Real gross private domestic investment Annual Growth Rate

realgovt Real federal expenditures and gross investment Annual Growth Rate

realdpi Real private disposable income Annual Growth Rate

m1 M1 nominal money stock Annual Growth Rate

tbilrate Monthly Treasury bill rate Level

unemp Seasonally adjusted unemployment rate (%) Level

infl Inflation rate Level

realint Real interest rate Level

To obtain a binary target variable, we compute the 20-quarter rolling average of the annual 
growth rate of quarterly real GDP. We then assign 1 if the current growth exceeds the 
moving average and 0 otherwise. Finally, we shift the indicator variables to align the next 
quarter's outcome with the current quarter.

We use an intercept and convert the quarter values into dummy variables and train the 
logistic regression model, as follows:

import statsmodels.api as sm

data = pd.get_dummies(data.drop(drop_cols, axis=1), columns=['quarter'], 
drop_first=True).dropna()
model = sm.Logit(data.target, sm.add_constant(data.drop('target', axis=1)))

result = model.fit()
result.summary()
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This produces the following summary for our model, which shows 198 observations and 
13 variables, including an intercept:

Figure 7.13: Logit regression results

The summary indicates that the model has been trained using maximum likelihood and 
provides the maximized value of the log-likelihood function at -67.9.

The LL-Null value of -136.42 is the result of the maximized log-likelihood function when 
only an intercept is included. It forms the basis for the pseudo-R2 statistic and the log-
likelihood ratio (LLR) test.

The pseudo-R2 statistic is a substitute for the familiar R2 available under least squares. It is 
computed based on the ratio of the maximized log-likelihood function for the null model m

0
 

and the full model m
1
, as follows: 𝜌𝜌2 = 1 − logℒ(𝑚𝑚1∗)log ℒ(𝑚𝑚0∗) 

The values vary from 0 (when the model does not improve the likelihood) to 1, where the 
model fits perfectly and the log-likelihood is maximized at 0. Consequently, higher values 
indicate a better fit.

The LLR test generally compares a more restricted model and is computed as:LLR = −2 log(ℒ(𝑚𝑚0∗)/ℒ(𝑚𝑚1∗)) = 2(log ℒ(𝑚𝑚1∗) − logℒ(𝑚𝑚0∗)) 
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The null hypothesis is that the restricted model performs better, but the low p-value 
suggests that we can reject this hypothesis and prefer the full model over the null model. 
This is similar to the F-test for linear regression (where we can also use the LLR test when 
we estimate the model using MLE).

The z-statistic plays the same role as the t-statistic in the linear regression output and 
is equally computed as the ratio of the coefficient estimate and its standard error. The 
p-values also indicate the probability of observing the test statistic, assuming the null 
hypothesis 𝐻𝐻0 ∶  𝛽𝛽 𝛽 𝛽  that the population coefficient is zero. We can reject this hypothesis 
for the intercept, realcons, realinv, realgovt, realdpi, and unemp.

Predicting price movements with logistic regression 
The lasso L1 penalty and the ridge L2 penalty can both be used with logistic regression. 
They have the same shrinkage effect that we have just discussed, and the lasso can again be 
used for variable selection with any linear regression model.

Just as with linear regression, it is important to standardize the input variables as the 
regularized models are scale sensitive. The regularization hyperparameter also requires 
tuning using cross-validation, as in the case of linear regression.

How to convert a regression into a classification problem
We will continue with the price prediction example, but now we will binarize the outcome 
variable so that it takes on the value 1 whenever the 1-day return is positive and 0 
otherwise (see the notebook predicting_price_movements_with_logistic_regression.
ipynb for the code examples given in this section):

target = 'target_1d'

y['label'] = (y[target] > 0).astype(int)

The outcomes are slightly unbalanced, with more positive than negative moves:

y.label.value_counts()

1    56443

0    53220

With this new categorical outcome variable, we can now train a logistic regression using the 
default L2 regularization.
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Cross-validating the logistic regression hyperparameters

For logistic regression, the regularization is formulated inversely to linear regression: 
higher values for λ  imply less regularization and vice versa.

We will cross-validate 11 options for the regularization hyperparameter using our custom 
TimeSeriesCV, as follows:

n_splits = 4*252

cv = TimeSeriesCV(n_splits=n_splits,

                  test_period_length=1,

                  train_period_length=252)

Cs = np.logspace(-5, 5, 11)

The train-test loop now uses sklearn's LogisticRegression and computes the roc_auc_
score (see the notebook for details):

for C in Cs:

    model = LogisticRegression(C=C, fit_intercept=True)

    pipe = Pipeline([

        ('scaler', StandardScaler()),

        ('model', model)])

    for i, (train_idx, test_idx) in enumerate(cv.split(X), 1):

        X_train, y_train, = X.iloc[train_idx], y.label.iloc[train_idx]

        pipe.fit(X=X_train, y=y_train)
        X_test, y_test = X.iloc[test_idx], y.label.iloc[test_idx]

        y_score = pipe.predict_proba(X_test)[:, 1]

        auc = roc_auc_score(y_score=y_score, y_true=y_test)

In addition, we can also compute the IC based on the predicted probabilities and the actual 
returns:

        actuals = y[target].iloc[test_idx]

        ic, pval = spearmanr(y_score, actuals)
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Evaluating the results using AUC and IC

We can again plot the AUC result for the range of hyperparameter values. In Figure 7.14, 
the left panel shows that the best median AUC results for C=0.1, whereas the best mean 
AUC corresponds to C=10-3. The right panel displays the distribution of the information 
coefficients for the model with C=104. This also highlights that we obtain somewhat higher 
values for the mean and the median compared to the regression models shown previously:

Figure 7.14: Logistic regression

In the next chapter, we will use the predictions produced by these basic models to generate 
signals for trading strategies and demonstrate how to backtest their performance.

Summary
In this chapter, we introduced the first of our machine learning models using the important 
baseline case of linear models for regression and classification. We explored the formulation 
of the objective functions for both tasks, learned about various training methods, and 
learned how to use the model for both inference and prediction.

We applied these new machine learning techniques to estimate linear factor models that 
are very useful to manage risks, assess new alpha factors, and attribute performance. We 
also applied linear regression and classification to accomplish the first predictive task of 
predicting stock returns in absolute and directional terms.

In the next chapter, we will put together what we have covered so far in the form of the 
machine learning for trading workflow. This process starts with sourcing and preparing the 
data about a specific investment universe and the computation of useful features, continues 
with the design and evaluation of machine learning models to extract actionable signals 
from these features, and culminates in the simulated execution and evaluation of a strategy 
that translates these signals into optimized portfolios.
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8
The ML4T Workflow –  

From Model to Strategy Backtesting

Now, it's time to integrate the various building blocks of the machine learning for trading 
(ML4T) workflow that we have so far discussed separately. The goal of this chapter is to 
present an end-to-end perspective of the process of designing, simulating, and evaluating 
a trading strategy driven by an ML algorithm. To this end, we will demonstrate in more 
detail how to backtest an ML-driven strategy in a historical market context using the 
Python libraries backtrader and Zipline.

The ultimate objective of the ML4T workflow is to gather evidence from historical data. 
This helps us decide whether to deploy a candidate strategy in a live market and put 
financial resources at risk. This process builds on the skills you developed in the previous 
chapters because it relies on your ability to:

• Work with a diverse set of data sources to engineer informative factors

• Design ML models that generate predictive signals to inform your trading strategy

• Optimize the resulting portfolio from a risk-return perspective

A realistic simulation of your strategy also needs to faithfully represent how security 
markets operate and how trades are executed. Therefore, the institutional details of 
exchanges, such as which order types are available and how prices are determined, also 
matter when you design a backtest or evaluate whether a backtesting engine includes 
the requisite features for accurate performance measurements. Finally, there are several 
methodological aspects that require attention to avoid biased results and false discoveries 
that will lead to poor investment decisions.
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More specifically, after working through this chapter, you will be able to:

• Plan and implement end-to-end strategy backtesting

• Understand and avoid critical pitfalls when implementing backtests

• Discuss the advantages and disadvantages of vectorized versus event-driven 
backtesting engines

• Identify and evaluate the key components of an event-driven backtester

• Design and execute the ML4T workflow using data sources at both minute and 
daily frequencies, with ML models trained separately or as part of the backtest

• Use Zipline and backtrader

How to backtest an ML-driven strategy
In a nutshell, the ML4T workflow, illustrated in Figure 8.1, is about backtesting a trading 
strategy that leverages machine learning to generate trading signals, select and size 
positions, or optimize the execution of trades. It involves the following steps, with a specific 
investment universe and horizon in mind:

1. Source and prepare market, fundamental, and alternative data

2. Engineer predictive alpha factors and features

3. Design, tune, and evaluate ML models to generate trading signals

4. Decide on trades based on these signals, for example, by applying rules

5. Size individual positions in the portfolio context

6. Simulate the resulting trades triggered using historical market data

7. Evaluate how the resulting positions would have performed

You can find the code samples for this chapter and links to 
additional resources in the corresponding directory of the GitHub 
repository. The notebooks include color versions of the images.
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Figure 8.1: The ML4T workflow

When we discussed the ML process in Chapter 6, The Machine Learning Process, we 
emphasized that the model's learning should generalize well to new applications. In other 
words, the predictions of an ML model trained on a given set of data should perform 
equally well when provided new input data. Similarly, the (relative) backtest performance 
of a strategy should be indicative of future market performance.

Before we take a look at how backtesting engines run historical simulations, we need 
to review several methodological challenges. Failing to properly address them will render 
results unreliable and lead to poor decisions about the strategy's live implementation.

Backtesting pitfalls and how to avoid them
Backtesting simulates an algorithmic strategy based on historical data, with the goal of 
producing performance results that generalize to new market conditions. In addition to the 
generic uncertainty around predictions in the context of ever-changing markets, several 
implementation aspects can bias the results and increase the risk of mistaking in-sample 
performance for patterns that will hold out-of-sample.
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These aspects are under our control and include the selection and preparation of data, 
unrealistic assumptions about the trading environment, and the flawed application and 
interpretation of statistical tests. The risks of false backtest discoveries multiply with 
increasing computing power, bigger datasets, and more complex algorithms that facilitate 
the misidentification of apparent signals in a noisy sample.

In this section, we will outline the most serious and common methodological mistakes. Please 
refer to the literature on multiple testing for further detail, in particular, a series of articles by 
Marcos Lopez de Prado collected in Advances in Financial Machine Learning (2018). We will 
also introduce the deflated Sharpe ratio (SR), which illustrates how to adjust metrics that 
result from repeated trials when using the same set of financial data for your analysis.

Getting the data right
Data issues that undermine the validity of a backtest include look-ahead bias, survivorship 
bias, outlier control, as well as the selection of the sample period. We will address each of 
these in turn.

Look-ahead bias – use only point-in-time data

At the heart of an algorithmic strategy are trading rules that trigger actions based on data. 
Look-ahead bias emerges when we develop or evaluate trading rules using historical 
information before it was known or available. The resulting performance measures will 
be misleading and not representative of the future when data availability differs during live 
strategy execution.

A common cause of this bias is the failure to account for corrections or restatements of 
reported financials after their initial publication. Stock splits or reverse splits can also 
generate look-ahead bias. For example, when computing the earnings yield, earnings-
per-share (EPS) data is usually reported on a quarterly basis, whereas market prices are 
available at a much higher frequency. Therefore, adjusted EPS and price data need to be 
synchronized, taking into account when the available data was, in fact, released to market 
participants.

The solution involves the careful validation of the timestamps of all data that enters a 
backtest. We need to guarantee that conclusions are based only on point-in-time data that 
does not inadvertently include information from the future. High-quality data providers 
ensure that these criteria are met. When point-in-time data is not available, we need to 
make (conservative) assumptions about the lag in reporting.

Survivorship bias – track your historical universe

Survivorship bias arises when the backtest data contains only securities that are currently 
active while omitting assets that have disappeared over time, due to, for example, 
bankruptcy, delisting, or acquisition. Securities that are no longer part of the investment 
universe often did not perform well, and failing to include these cases positively skew the 
backtest result.
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The solution, naturally, is to verify that datasets include all securities available over time, 
as opposed to only those that are still available when running the test. In a way, this is 
another way of ensuring the data is truly point-in-time.

Outlier control – do not exclude realistic extremes

Data preparation typically includes some treatment of outliers such as winsorizing, 
or clipping, extreme values. The challenge is to identify outliers that are truly not 
representative of the period under analysis, as opposed to any extreme values that are 
an integral part of the market environment at that time. Many market models assume 
normally distributed data when extreme values are observed more frequently, as suggested 
by fat-tailed distributions.

The solution involves a careful analysis of outliers with respect to the probability of 
extreme values occurring and adjusting the strategy parameters to this reality.

Sample period – try to represent relevant future scenarios

A backtest will not yield representative results that generalize to the future if the sample 
data does not reflect the current (and likely future) environment. A poorly chosen 
sample data might lack relevant market regime aspects, for example, in terms of volatility 
or volumes, fail to include enough data points, or contain too many or too few extreme 
historical events.

The solution involves using sample periods that include important market phenomena 
or generating synthetic data that reflects the relevant market characteristics.

Getting the simulation right
Practical issues related to the implementation of the historical simulation include:

• Failure to mark to market to accurately reflect market prices and account 
for drawdowns

• Unrealistic assumptions about the availability, cost, or market impact of trades

• Incorrect timing of signals and trade execution

Let's see how to identify and address each of these issues.

Mark-to-market performance – track risks over time

A strategy needs to meet investment objectives and constraints at all times. If it performs 
well over the course of the backtest but leads to unacceptable losses or volatility over time, 
this will (obviously) not be practical. Portfolio managers need to track and report the value 
of their positions, called mark to market, on a regular basis and possibly in real time.

The solution involves plotting performance over time or calculating (rolling) risk metrics, 
such as the value at risk (VaR) or the Sortino ratio.
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Transaction costs – assume a realistic trading environment

Markets do not permit the execution of all trades at all times or at the targeted price. A 
backtest that assumes trades that may not actually be available or would have occurred at 
less favorable terms will produce biased results.

Practical shortcomings include a strategy that assumes short sales when there may be no 
counterparty, or one that underestimates the market impact of trades (slippage) that are 
large or deal in less liquid assets, or the costs that arise due to broker fees.

The solution includes a limitation to a liquid universe and/or realistic parameter 
assumptions for trading and slippage costs. This also safeguards against misleading 
conclusions from unstable factor signals that decay fast and produce a high portfolio 
turnover.

Timing of decisions – properly sequence signals and trades

Similar to look-ahead bias, the simulation could make unrealistic assumptions about 
when it receives and trades on signals. For instance, signals may be computed from close 
prices when trades are only available at the next open, with possibly quite different prices. 
When we evaluate performance using the close price, the backtest results will not represent 
realistic future outcomes.

The solution involves careful orchestration of the sequence of signal arrival, trade 
execution, and performance evaluation.

Getting the statistics right
The most prominent challenge when backtesting validity, including published results, is 
the discovery of spurious patterns due to multiple testing. Selecting a strategy based on the 
tests of different candidates on the same data will bias the choice. This is because a positive 
outcome is more likely caused by the stochastic nature of the performance measure itself. 
In other words, the strategy overfits the test sample, producing deceptively positive results 
that are unlikely to generalize to future data that's encountered during live trading.

Hence, backtest performance is only informative if the number of trials is reported to allow 
for an assessment of the risk of selection bias. This is rarely the case in practical or academic 
research, inviting doubts about the validity of many published claims.

Furthermore, the risk of backtest overfitting does not only arise from running numerous 
tests but also affects strategies designed based on prior knowledge of what works and 
doesn't. Since the risks include the knowledge of backtests run by others on the same data, 
backtest-overfitting is very hard to avoid in practice.

Proposed solutions include prioritizing tests that can be justified using investment or 
economic theory, rather than arbitrary data-mining efforts. It also implies testing in a 
variety of contexts and scenarios, including possibly on synthetic data.
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The minimum backtest length and the deflated SR
Marcos Lopez de Prado (http://www.quantresearch.info/) has published extensively on 
the risks of backtesting and how to detect or avoid it. This includes an online simulator of 
backtest-overfitting (http://datagrid.lbl.gov/backtest/, Bailey, et al. 2015).

Another result includes an estimate of the minimum length of the backtest period that an 
investor should require to avoid selecting a strategy that achieves a certain SR for a given 
number of in-sample trials, but has an expected out-of-sample SR of zero. The result implies 
that, for example, 2 years of daily backtesting data does not support conclusions about 
more than seven strategies. 5 years of data expands this number to 45 strategy variations. 
See Bailey, Borwein, and Prado (2016) for implementation details.

Bailey and Prado (2014) also derived a deflated SR to compute the probability that the SR is 
statistically significant while controlling for the inflationary effect of multiple testing, non-
normal returns, and shorter sample lengths. (See the multiple_testing subdirectory for the 
Python implementation of deflated_sharpe_ratio.py and references for the derivation of 
the related formulas.)

Optimal stopping for backtests

In addition to limiting backtests to strategies that can be justified on theoretical grounds 
as opposed to mere data-mining exercises, an important question is when to stop running 
additional tests.

One way to answer this question relies on the solution to the secretary problem from the 
optimal stopping theory. This problem assumes we are selecting an applicant based on 
interview results and need to decide whether to hold an additional interview or choose 
the most recent candidate. In this context, the optimal rule is to always reject the first n/e 
candidates and then select the first candidate that surpasses all the previous options. Using 
this rule results in a 1/e probability of selecting the best candidate, irrespective of the size n 
of the candidate pool.

Translating this rule directly to the backtest context produces the following 
recommendation: test a random sample of 1/e (roughly 37 percent) of reasonable strategies 
and record their performance. Then, continue with the tests until a strategy outperforms 
those tested before. This rule applies to tests of several alternatives, with the goal of 
choosing a near-best as soon as possible while minimizing the risk of a false positive. See 
the resources listed on GitHub for additional information.

How a backtesting engine works
Put simply, a backtesting engine iterates over historical prices (and other data), passes the 
current values to your algorithm, receives orders in return, and keeps track of the resulting 
positions and their value.

http://www.quantresearch.info/
http://datagrid.lbl.gov/backtest/
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In practice, there are numerous requirements for creating a realistic and robust simulation 
of the ML4T workflow that was depicted in Figure 8.1 at the beginning of this chapter. The 
difference between vectorized and event-driven approaches illustrates how the faithful 
reproduction of the actual trading environment adds significant complexity.

Vectorized versus event-driven backtesting
A vectorized backtest is the most basic way to evaluate a strategy. It simply multiplies 
a signal vector that represents the target position size with a vector of returns for the 
investment horizon to compute the period performance.

Let's illustrate the vectorized approach using the daily return predictions that we created 
using ridge regression in the previous chapter. Using a few simple technical factors, we 
predicted the returns for the next day for the 100 stocks with the highest recent dollar trading 
volume (see Chapter 7, Linear Models – From Risk Factors to Return Forecasts, for details).

We'll transform the predictions into signals for a very simple strategy: on any given trading 
day, we will go long on the 10 highest positive predictions and go short on the lowest 10 
negative predictions. If there are fewer positive or negative predictions, we'll hold fewer 
long or short positions. The notebook vectorized_backtest contains the following code 
example, and the script data.py creates the input data stored in backtest.h5.

First, we load the data for our strategy, as well as S&P 500 prices (which we convert into 
daily returns) to benchmark the performance:

sp500 = web.DataReader('SP500', 'fred', '2014', '2018').pct_change()

data = pd.read_hdf('00_data/backtest.h5', 'data')
data.info()
MultiIndex: 187758 entries, ('AAL', Timestamp('2014-12-09 00:00:00')) to 
('ZTS', Timestamp('2017-11-30 00:00:00'))
Data columns (total 6 columns):
 #   Column     Non-Null Count   Dtype  
---  ------     --------------   -----  
 0   predicted  74044 non-null   float64
 1   open       187758 non-null  float64
 2   high       187758 non-null  float64
 3   low        187758 non-null  float64
 4   close      187758 non-null  float64
 5   volume     187758 non-null  float64

The data combines daily return predictions and OHLCV market data for 253 distinct stocks 
over the 2014-17 period, with 100 equities for each day. Now, we can compute the daily 
forward returns and convert these and the predictions into wide format, with one ticker 
per column:

daily_returns = data.open.unstack('ticker').sort_index().pct_change()

fwd_returns = daily_returns.shift(-1)

predictions = data.predicted.unstack('ticker')
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The next step is to select positive and negative predictions, rank them in descending and 
ascending fashion, and create long and short signals using an integer mask that identifies the 
top 10 on each side with identifies the predictions outside the top 10 with a one, and a zero:

long_signals = (predictions.where(predictions>0).rank(axis=1, 
ascending=False) > 10).astype(int)

short_signals = (predictions.where(predictions<0).rank(axis=1) > 10).
astype(int)

We can then multiply the binary DataFrames with the forward returns (using their negative 
inverse for the shorts) to get the daily performance of each position, assuming equal-sized 
investments. The daily average of these returns corresponds to the performance of equal-
weighted long and short portfolios, and the sum reflects the overall return of a market-
neutral long-short strategy:

long_returns = long_signals.mul(fwd_returns).mean(axis=1)

short_returns = short_signals.mul(-fwd_returns).mean(axis=1)

strategy = long_returns.add(short_returns).to_frame('strategy')

When we compare the results, as shown in Figure 8.2, our strategy performed well 
compared to the S&P 500 for the first 2 years of the period – that is, until the benchmark 
catches up and our strategy underperforms during 2017.

The strategy returns are also less volatile with a standard deviation of 0.002 compared to 
0.008 for the S&P 500; the correlation is low and negative at -0.093:

Figure 8.2: Vectorized backtest results

While this approach permits a quick back-of-the-envelope evaluation, it misses important 
features of a robust, realistic, and user-friendly backtest engine; for example:

• We need to manually align the timestamps of predictions and returns (using 
pandas' built-in capabilities) and do not have any safeguards against inadvertent  
look-ahead bias.
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• There is no explicit position sizing and representation of the trading process that 
accounts for costs and other market realities, or an accounting system that tracks 
positions and their performance.

• There is also no performance measurement other than what we compute after the 
fact, and risk management rules like stop-loss are difficult to simulate.

That's where event-driven backtesting comes in. An event-driven backtesting engine 
explicitly simulates the time dimension of the trading environment and imposes 
significantly more structure on the simulation. This includes the use of historical calendars 
that define when trades can be made and when quotes are available. The enforcement of 
timestamps also helps to avoid look-ahead bias and other implementation errors mentioned 
in the previous section (but there is no guarantee).

Generally, event-driven systems aim to capture the actions and constraints encountered by 
a strategy more closely and, ideally, can readily be converted into a live trading engine that 
submits actual orders.

Key implementation aspects
The requirements for a realistic simulation may be met by a single platform that supports 
all steps of the process in an end-to-end fashion, or by multiple tools that each specialize 
in different aspects.

For instance, you could handle the design and testing of ML models that generate signals 
using generic ML libraries like scikit-learn, or others that we will encounter in this book, and 
feed the model outputs into a separate backtesting engine. Alternatively, you could run the 
entire ML4T workflow end-to-end on a single platform like Quantopian or QuantConnect.

The following sections highlight key items and implementation details that need to be 
addressed to put this process into action.

Data ingestion – format, frequency, and timing

The first step in the process concerns the sources of data. Traditionally, algorithmic trading 
strategies focused on market data, namely the OHLCV price and volume data that we 
discussed in Chapter 2, Market and Fundamental Data – Sources and Techniques. Today, data 
sources are more diverse and raise the question of how many different storage formats and 
data types to support, and whether to use a proprietary or custom format or rely on third-
party or open source formats.

Another aspect is the frequency of data sources that can be used and whether sources 
at different frequencies can be combined. Common options in increasing order of 
computational complexity and memory and storage requirements include daily, minute, 
and tick frequency. Intermediate frequencies are also possible. Algorithmic strategies tend 
to perform better at higher frequencies, even though quantamental investors are gaining 
ground, as discussed in Chapter 1, Machine Learning for Trading – From Idea to Execution. 
Regardless, institutional investors will certainly require tick frequency.
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Finally, data ingestion should also address point-in-time constraints to avoid look-ahead 
bias, as outlined in the previous section. The use of trading calendars helps limit data to 
legitimate dates and times; adjustments to reflect corporate actions like stock splits and 
dividends or restatements that impact prices revealed at specific times need to be made 
prior to ingestion.

Factor engineering – built-in factors versus libraries

To facilitate the engineering of alpha factors for use in ML models, many backtesting 
engines include computational tools suitable for numerous standard transformations like 
moving averages and various technical indicators. A key advantage of built-in factor 
engineering is the easy conversion of the backtesting pipeline into a live trading engine 
that applies the same computations to the input data.

The numerical Python libraries (pandas, NumPy, TA-Lib) presented in Chapter 4, Financial 
Feature Engineering – How to Research Alpha Factors, are an alternative to pre-compute 
factors. This can be efficient when the goal is to reuse factors in various backtests that 
amortize the computational cost.

ML models, predictions, and signals

As mentioned earlier, the ML workflow discussed in Chapter 6, The Machine Learning Process, 
can be embedded in an end-to-end platform that integrates the model design and evaluation 
part into the backtesting process. While convenient, this is also costly because model training 
becomes part of the backtest when the goal is perhaps to fine-tune trading rules.

Similar to factor engineering, you can decouple these aspects and design, train, and 
evaluate ML models using generic libraries for this purpose, and also provide the relevant 
predictions as inputs to the backtester. We will mostly use this approach in this book 
because it makes the exposition more concise and less repetitive.

Trading rules and execution

A realistic strategy simulation requires a faithful representation of the trading environment. 
This includes access to relevant exchanges, the availability of the various order types 
discussed in Chapter 2, Market and Fundamental Data – Sources and Techniques, and the 
accounting for transaction costs. Costs include broker commissions, bid-ask spreads, and 
slippage, giving us the difference between the target execution price and the price that's 
eventually obtained. It is also important to ensure trades execute with delays that reflect 
liquidity and operating hours.
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Performance evaluation

Finally, a backtesting platform needs to facilitate performance evaluation. It can provide 
standard metrics derived from its accounting of transactions, or provide an output of the 
metrics that can be used with a library like pyfolio that's suitable for this purpose.

In the next two sections, we will explore two of the most popular backtesting libraries, 
namely backtrader and Zipline.

backtrader – a flexible tool for local backtests
backtrader is a popular, flexible, and user-friendly Python library for local backtests with 
great documentation, developed since 2015 by Daniel Rodriguez. In addition to a large and 
active community of individual traders, there are several banks and trading houses that use 
backtrader to prototype and test new strategies before porting them to a production-ready 
platform using, for example, Java. You can also use backtrader for live trading with several 
brokers of your choice (see the backtrader documentation and Chapter 23, Conclusions and 
Next Steps).

We'll first summarize the key concepts of backtrader to clarify the big picture of the 
backtesting workflow on this platform, and then demonstrate its usage for a strategy driven 
by ML predictions.

Key concepts of backtrader's Cerebro architecture
backtrader's Cerebro (Spanish for "brain") architecture represents the key components of 
the backtesting workflow as (extensible) Python objects. These objects interact to facilitate 
processing input data and the computation of factors, formulate and execute a strategy, 
receive and execute orders, and track and measure performance. A Cerebro instance 
orchestrates the overall process from collecting inputs, executing the backtest bar by bar, 
and providing results.

The library uses conventions for these interactions that allow you to omit some detail and 
streamline the backtesting setup. I highly recommend browsing the documentation to dive 
deeper if you plan on using backtrader to develop your own strategies.

Figure 8.3 outlines the key elements in the Cerebro architecture, and the following 
subsections summarize their most important functionalities:
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Figure 8.3: The backtrader Cerebro architecture

Data feeds, lines, and indicators

Data feeds are the raw material for a strategy and contain information about individual 
securities, such as OHLCV market data with a timestamp for each observation, but you can 
customize the available fields. backtrader can ingest data from various sources, including 
CSV files and pandas DataFrames, and from online sources like Yahoo Finance. There are 
also extensions you can use to connect to online trading platforms like Interactive Brokers 
to ingest live data and execute transactions. The compatibility with DataFrame objects 
implies that you can load data from accessible by pandas, ranging from databases to HDF5 
files. (See the demonstration in the How to use backtrader in practice section; also, see the I/O 
section of the pandas documentation.)

Once loaded, we add the data feeds to a Cerebro instance, which, in turn, makes it available 
to one or more strategies in the order received. Your strategy's trading logic can access each 
data feed by name (for example, the ticker) or sequence number and retrieve the current 
and past values of any field of the data feed. Each field is called a line.

backtrader comes with over 130 common technical indicators that allow you to compute 
new values from lines or other indicators for each data feed to drive your strategy. You can 
also use standard Python operations to derive new values. Usage is fairly straightforward 
and well explained in the documentation.
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From data and signals to trades – strategy

The Strategy object contains your trading logic that places orders based on data feed 
information that the Cerebro instance presents at every bar during backtest execution. You 
can easily test variations by configuring a Strategy to accept arbitrary parameters that you 
define when adding an instance of your Strategy to your Cerebro.

For every bar of a backtest, the Cerebro instance calls either the .prenext() or .next() 
method of your Strategy instance. The role of .prenext() is to address bars that do not yet 
have complete data for all feeds, for example, before there are enough periods to compute 
an indicator like a built-in moving average or if there is otherwise missing data. The default 
is to do nothing, but you can add trading logic of your choice or call next() if your main 
Strategy is designed to handle missing values (see the How to use backtrader in practice 
section).

You can also use backtrader without defining an explicit Strategy and instead use a 
simplified Signals interface. The Strategy API gives you more control and flexibility, 
though; see the backtrader documentation for details on how to use the Signals API.

A Strategy outputs orders: let's see how backtrader handles these next.

Commissions instead of commission schemes

Once your Strategy has evaluated current and past data points at each bar, it needs to 
decide which orders to place. backtrader lets you create several standard order types that 
Cerebro passes to a Broker instance for execution and provides a notification of the result at 
each bar.

You can use the Strategy methods buy() and sell() to place market, close, and limit orders, 
as well as stop and stop-limit orders. Execution works as follows:

• Market order: Fills at the next open bar

• Close order: Fills at the next close bar 

• Limit order: Executes only if a price threshold is met (for example, only buy up to a 
certain price) during an (optional) period of validity

• Stop order: Becomes a market order if the price reaches a given threshold

• Stop limit order: Becomes a limit order once the stop is triggered
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In practice, stop orders differ from limit orders because they cannot be seen by the market 
prior to the price trigger. backtrader also provides target orders that compute the required 
size, taking into account the current position to achieve a certain portfolio allocation in 
terms of the number of shares, the value of the position, or the percentage of portfolio 
value. Furthermore, there are bracket orders that combine, for a long order, a buy with two 
limit sell orders that activate as the buy executes. Should one of the sell orders fill or cancel, 
the other sell order also cancels.

The Broker handles order execution, tracks the portfolio, cash value, and notifications and 
implements transaction costs like commission and slippage. The Broker may reject trades if 
there is not enough cash; it can be important to sequence buys and sells to ensure liquidity. 
backtrader also has a cheat_on_open feature that permits looking ahead to the next bar, 
to avoid rejected trades due to adverse price moves by the next bar. This feature will, of 
course, bias your results.

In addition to commission schemes like a fixed or percentage amount of the absolute 
transaction value, you can implement your own logic, as demonstrated later, for a flat fee 
per share.

Making it all happen – Cerebro

The Cerebro control system synchronizes the data feeds based on the bars represented by 
their timestamp, and runs the trading logic and broker actions on an event-by-event basis 
accordingly. backtrader does not impose any restrictions on the frequency or the trading 
calendar and can use multiple time frames in parallel. 

It also vectorizes the calculation for indicators if it can preload source data. There are 
several options you can use to optimize operations from a memory perspective (see the 
Cerebro documentation for details).

How to use backtrader in practice
We are going to demonstrate backtrader using the daily return predictions from the ridge 
regression from Chapter 7, Linear Models – From Risk Factors to Return Forecasts, as we did for 
the vectorized backtest earlier in this chapter. We will create the Cerebro instance, load the 
data, formulate and add the Strategy, run the backtest, and review the results.

The notebook backtesting_with_backtrader contains the following code examples and 
some additional details.
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How to load price and other data

We need to ensure that we have price information for all the dates on which we would 
like to buy or sell stocks, not only for the days with predictions. To load data from a 
pandas DataFrame, we subclass backtrader's PandasData class to define the fields that we 
will provide:

class SignalData(PandasData):

    """

    Define pandas DataFrame structure
    """

    cols = OHLCV + ['predicted']

    # create lines

    lines = tuple(cols)

    # define parameters
    params = {c: -1 for c in cols}

    params.update({'datetime': None})

    params = tuple(params.items())

We then instantiate a Cerebro class and use the SignalData class to add one data feed for 
each ticker in our dataset that we load from HDF5:

cerebro = bt.Cerebro()  # create a "Cerebro" instance

idx = pd.IndexSlice

data = pd.read_hdf('00_data/backtest.h5', 'data').sort_index()

tickers = data.index.get_level_values(0).unique()

for ticker in tickers:

    df = data.loc[idx[ticker, :], :].droplevel('ticker', axis=0)

    df.index.name = 'datetime'

    bt_data = SignalData(dataname=df)

    cerebro.adddata(bt_data, name=ticker)

Now, we are ready to define our Strategy.

How to formulate the trading logic

Our MLStrategy subclasses backtrader's Strategy class and defines parameters that we can 
use to modify its behavior. We also create a log file to create a record of the transactions:

class MLStrategy(bt.Strategy):
    params = (('n_positions', 10),
              ('min_positions', 5),
              ('verbose', False),
              ('log_file', 'backtest.csv'))
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    def log(self, txt, dt=None):

        """ Logger for the strategy"""

        dt = dt or self.datas[0].datetime.datetime(0)

        with Path(self.p.log_file).open('a') as f:
            log_writer = csv.writer(f)

            log_writer.writerow([dt.isoformat()] + txt.split(','))

The core of the strategy resides in the .next() method. We go long/short on the n_position 
stocks with the highest positive/lowest negative forecast, as long as there are at least min_
positions positions. We always sell any existing positions that do not appear in the new 
long and short lists and use order_target_percent to build equal-weights positions in the 
new targets (log statements are omitted to save some space):

    def prenext(self):

        self.next()

    def next(self):

        today = self.datas[0].datetime.date()

        positions = [d._name for d, pos in self.getpositions().items() if pos]

        up, down = {}, {}

        missing = not_missing = 0

        for data in self.datas:

            if data.datetime.date() == today:

                if data.predicted[0] > 0:

                    up[data._name] = data.predicted[0]

                elif data.predicted[0] < 0:

                    down[data._name] = data.predicted[0]

        # sort dictionaries ascending/descending by value

        # returns list of tuples

        shorts = sorted(down, key=down.get)[:self.p.n_positions]

        longs = sorted(up, key=up.get, reverse=True)[:self.p.n_positions]

        n_shorts, n_longs = len(shorts), len(longs)

        # only take positions if at least min_n longs and shorts

        if n_shorts < self.p.min_positions or n_longs < self.p.min_positions:

            longs, shorts = [], []

        for ticker in positions:

            if ticker not in longs + shorts:

                self.order_target_percent(data=ticker, target=0)

         short_target = -1 / max(self.p.n_positions, n_short)

        long_target = 1 / max(self.p.top_positions, n_longs)

        for ticker in shorts:

            self.order_target_percent(data=ticker, target=short_target)

        for ticker in longs:

            self.order_target_percent(data=ticker, target=long_target)

Now, we need to configure our Cerebro instance and add our Strategy.
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How to configure the Cerebro instance
We use a custom commission scheme that assumes we pay a fixed amount of $0.02 per 
share that we buy or sell:

class FixedCommisionScheme(bt.CommInfoBase):

    """

    Simple fixed commission scheme for demo
    """

    params = (

        ('commission', .02),

        ('stocklike', True),

        ('commtype', bt.CommInfoBase.COMM_FIXED),

    )

    def _getcommission(self, size, price, pseudoexec):

        return abs(size) * self.p.commission

Then, we define our starting cash amount and configure the broker accordingly:

cash = 10000

cerebro.broker.setcash(cash)

comminfo = FixedCommisionScheme()

cerebro.broker.addcommissioninfo(comminfo)

Now, all that's missing is adding the MLStrategy to our Cerebro instance, providing 
parameters for the desired number of positions and the minimum number of long/shorts. 
We'll also add a pyfolio analyzer so we can view the performance tearsheets we presented 
in Chapter 5, Portfolio Optimization and Performance Evaluation:

cerebro.addanalyzer(bt.analyzers.PyFolio, _name='pyfolio')

cerebro.addstrategy(MLStrategy, n_positions=10, min_positions=5, 

                    verbose=True, log_file='bt_log.csv')
results = cerebro.run()

ending_value = cerebro.broker.getvalue()

f'Final Portfolio Value: {ending_value:,.2f}'

Final Portfolio Value: 10,502.32

The backtest uses 869 trading days and takes around 45 seconds to run. The following 
figure shows the cumulative return and the evolution of the portfolio value, as well as the 
daily value of long and short positions.

Performance looks somewhat similar to the preceding vectorized test, with outperformance 
relative to the S&P 500 benchmark during the first half and poor performance thereafter. 
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The backtesting_with_backtrader notebook contains the complete pyfolio results:

Figure 8.4: backtrader results

backtrader summary and next steps
backtrader is a very straightforward yet flexible and performant backtesting engine for 
local backtesting. You can load any dataset at the frequency you desire from a broad range 
of sources due to pandas compatibility. Strategy lets you define arbitrary trading logic; you 
just need to ensure you access the distinct data feeds as needed. It also integrates well with 
pyfolio for quick yet comprehensive performance evaluation.

In the demonstration, we applied our trading logic to predictions from a pre-trained model. 
We can also train a model during backtesting because we can access data prior to the 
current bar. Often, however, it is more efficient to decouple model training from strategy 
selection and avoid duplicating model training.

One of the reasons for backtrader's popularity is the ability to use it for live trading with a 
broker of your choosing. The community is very lively, and code to connect to brokers or 
additional data sources, including for cryptocurrencies, is readily available online.

Zipline – scalable backtesting by Quantopian
The backtesting engine Zipline powers Quantopian's online research, backtesting, and live 
(paper) trading platform. As a hedge fund, Quantopian aims to identify robust algorithms 
that outperform, subject to its risk management criteria. To this end, they use competitions 
to select the best strategies and allocate capital to share profits with the winners.

Quantopian first released Zipline in 2012 as version 0.5, and the latest version, 1.3, dates 
from July 2018. Zipline works well with its sister libraries Alphalens, pyfolio, and empyrical 
that we introduced in Chapter 4, Financial Feature Engineering – How to Research Alpha Factors 
and Chapter 5, Portfolio Optimization and Performance Evaluation, and integrates well with 
NumPy, pandas, and numeric libraries, but may not always support the latest version.
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Zipline is designed to operate at the scale of thousands of securities, and each can be 
associated with a large number of indicators. It imposes more structure on the backtesting 
process than backtrader to ensure data quality by eliminating look-ahead bias, for example, 
and optimize computational efficiency while executing a backtest. We'll take a look at the 
key concepts and elements of the architecture, shown in Figure 8.5, before we demonstrate 
how to use Zipline to backtest ML-driven models on the data of your choice.

Calendars and the Pipeline for robust simulations
Key features that contribute to the goals of scalability and reliability are data bundles that 
store OHLCV market data with on-the-fly adjustments for splits and dividends, trading 
calendars that reflect operating hours of exchanges around the world, and the powerful 
Pipeline API (see the following diagram). We will discuss their usage in the following 
sections to complement the brief Zipline introduction we gave in earlier chapters:

Figure 8.5: The Zipline architecture

Bundles – point-in-time data with on-the-fly adjustments
The principal data store is a bundle that resides on disk in compressed, columnar bcolz 
format for efficient retrieval, combined with metadata stored in an SQLite database. Bundles 
are designed to contain only OHLCV data and are limited to daily and minute frequency. 
A great feature is that bundles store split and dividend information, and Zipline computes 
point-in-time adjustments, depending on the time period you pick for your backtest. 
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Zipline relies on the TradingCalendar library (also maintained by Quantopian) for 
operational details on exchanges around the world, such as time zone, market open and 
closing times, or holidays. Data sources have domains (for now, these are countries) and 
need to conform to the assigned exchange calendar. Quantopian is actively developing 
support for international securities, and these features may evolve.

After installation, the command zipline ingest -b bundle lets you install the Quandl Wiki 
dataset (daily frequency) right away. The result ends up in the .zipline directory, which, 
by default, resides in your home folder. In addition, you can design your own bundles, as 
we'll see. 

In addition to bundles, you can provide OHCLV data to an algorithm as a pandas 
DataFrame or Panel. (Panel is recently deprecated, but Zipline is a few pandas versions 
behind.) However, bundles are more convenient and efficient.

A shortcoming of bundles is that they do not let you store data other than price and volume 
information. However, two alternatives let you accomplish this: the fetch_csv() function 
downloads DataFrames from a URL and was designed for other Quandl data sources, for 
example, fundamentals. Zipline reasonably expects the data to refer to the same securities 
for which you have provided OHCLV data and aligns the bars accordingly. It's very easy 
to patch the library to load a local CSV or HDF5 using pandas, and the GitHub repository 
provides some guidance on how to do so. 

In addition, DataFrameLoader and BlazeLoader permit you to feed additional attributes to 
a Pipeline (see the DataFrameLoader demo later in this chapter). BlazeLoader can interface 
with numerous sources, including databases. However, since the Pipeline API is limited to 
daily data, fetch_csv() will be critical to adding features at a minute frequency, as we will 
do in later chapters.

The Algorithm API – backtests on a schedule

The TradingAlgorithm class implements the Zipline Algorithm API and operates on 
BarData that has been aligned with a given trading calendar. After the initial setup, the 
backtest runs for a specified period and executes its trading logic as specific events occur. 
These events are driven by the daily or minutely trading frequency, but you can also 
schedule arbitrary functions to evaluate signals, place orders, and rebalance your portfolio, 
or log information about the ongoing simulation.

You can execute an algorithm from the command line, in a Jupyter Notebook, or by using 
the run_algorithm() method of the underlying TradingAlgorithm class. The algorithm 
requires an initialize() method that is called once when the simulation starts. It keeps 
state through a context dictionary and receives actionable information through a data 
variable containing point-in-time current and historical data. 

You can add properties to the context dictionary, which is available to all other 
TradingAlgorithm methods, or register pipelines that perform more complex data 
processing, such as computing alpha factors and filtering securities accordingly.
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Algorithm execution occurs through optional methods that are either scheduled 
automatically by Zipline or at user-defined intervals. The method before_trading_start() 
is called daily before the market opens and primarily serves to identify a set of securities 
the algorithm may trade during the day. The method handle_data() is called at the given 
trading frequency, for example, every minute.

Upon completion, the algorithm returns a DataFrame containing portfolio performance 
metrics if there were any trades, as well as user-defined metrics. As demonstrated in 
Chapter 5, Portfolio Optimization and Performance Evaluation, the output is compatible with 
pyfolio so that you can quickly create performance tearsheets.

Known issues

Zipline currently requires the presence of Treasury curves and the S&P 500 returns for 
benchmarking (https://github.com/quantopian/zipline/issues/2480). The latter relies 
on the IEX API, which now requires registration to obtain a key. It is easy to patch Zipline 
to circumvent this and download data from the Federal Reserve, for instance. The GitHub 
repository describes how to go about this. Alternatively, you can move the SPY returns 
provided in zipline/resources/market_data/SPY_benchmark.csv to your .zipline folder, 
which usually lives in your home directory, unless you changed its location.

Live trading (https://github.com/zipline-live/zipline) your own systems is only 
available with Interactive Brokers and is not fully supported by Quantopian.

Ingesting your own bundles with minute data
We will use the NASDAQ100 2013-17 sample provided by AlgoSeek that we introduced 
in Chapter 2, Market and Fundamental Data – Sources and Techniques, to demonstrate how to 
write your own custom bundle. There are four steps:

1. Divide your OHCLV data into one file per ticker and store metadata and split and 
dividend adjustments.

2. Write a script to pass the result to an ingest() function, which, in turn, takes care of 
writing the bundle to bcolz and SQLite format.

3. Register the bundle in an extension.py script that lives in your .zipline directory in 
your home folder, and symlink the data sources.

4. For AlgoSeek data, we also provide a custom TradingCalendar because it includes 
trading activity outside NYSE market hours.

The directory custom_bundles contains the code examples for this section.

https://github.com/quantopian/zipline/issues/2480
https://github.com/zipline-live/zipline
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Getting your data ready to be bundled

In Chapter 2, Market and Fundamental Data – Sources and Techniques, we parsed the daily 
files containing the AlgoSeek NASDAQ 100 OHLCV data to obtain a time series for each 
ticker. We will use this result because Zipline also stores each security individually.

In addition, we obtain equity metadata using the pandas DataReader get_nasdaq_
symbols() function. Finally, since the Quandl Wiki data covers the NASDAQ 100 tickers 
for the relevant period, we extract the split and dividend adjustments from that bundle's 
SQLite database.

The result is an HDF5 store containing price and volume data on some 135 tickers, as well 
as the corresponding meta and adjustment data. The script algoseek_preprocessing.py 
illustrates this process.

Writing your custom bundle ingest function

The Zipline documentation outlines the required parameters for an ingest() function, 
which kicks off the I/O process, but does not provide a lot of practical detail. The script 
algoseek_1min_trades.py shows how to get this part to work for minute data.

There is a load_equities() function that provides the metadata, a ticker_generator() 
function that feeds symbols to a data_generator(), which, in turn, loads and format each 
symbol's market data, and an algoseek_to_bundle() function, which integrates all the 
pieces and returns the desired ingest() function.

Time zone alignment matters because Zipline translates all data series to UTC; we add 
US/Eastern time zone information to the OHCLV data and convert it to UTC. To facilitate 
execution, we create symlinks for this script and the algoseek.h5 data in the custom_data 
folder in the .zipline directory, which we'll add to the PATH in the next step so Zipline can 
find this information.

Registering your bundle

Before we can run zipline ingest -b algoseek, we need to register our custom bundle so 
Zipline knows what we are talking about. To this end, we'll add the following lines to an 
extension.py script in the .zipline file, which you may have to create first, alongside some 
inputs and settings (see the extension.py example).

The registration itself is fairly straightforward but highlights a few important details. First, 
Zipline needs to be able to import the algoseek_to_bundle() function, so its location needs 
to be on the search path, for example, by using sys.path.append(). Second, we reference a 
custom calendar that we will create and register in the next step. Third, we need to inform 
Zipline that our trading days are longer than the default 6 and a half hours of NYSE days to 
avoid misalignments:
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register('algoseek',

        algoseek_to_bundle(),

        calendar_name='AlgoSeek',

        minutes_per_day=960

        )

Creating and registering a custom TradingCalendar

As mentioned previously, Quantopian also provides a TradingCalendar library to support 
trading around the world. The package contains numerous examples, and it is fairly 
straightforward to subclass one of the examples. Based on the NYSE calendar, we only 
need to override the open/close times and change the name:

class AlgoSeekCalendar(XNYSExchangeCalendar):

    """

    A calendar for trading assets before and after market hours

    Open Time: 4AM, US/Eastern

    Close Time: 19:59PM, US/Eastern

    """

    @property

    def name(self):

        return "AlgoSeek"

    @property

    def open_time(self):

        return time(4, 0)

    @property

    def close_time(self):

        return time(19, 59)

We put the definition into extension.py and add the following registration:

register_calendar(

        'AlgoSeek',

        AlgoSeekCalendar())

And now, we can refer to this trading calendar to ensure a backtest includes off-market 
hour activity.
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The Pipeline API – backtesting an ML signal
The Pipeline API facilitates the definition and computation of alpha factors for a cross-
section of securities from historical data. Pipeline significantly improves efficiency because 
it optimizes computations over the entire backtest period, rather than tackling each 
event separately. In other words, it continues to follow an event-driven architecture but 
vectorizes the computation of factors where possible. 

A pipeline uses factors, filters, and classifiers classes to define computations that produce 
columns in a table with point-in-time values for a set of securities. Factors take one or more 
input arrays of historical bar data and produce one or more outputs for each security. 
There are numerous built-in factors, and you can also design your own CustomFactor 
computations.

The following diagram depicts how loading the data using DataFrameLoader, computing 
the predictive MLSignal using the Pipeline API, and various scheduled activities integrate 
with the overall trading algorithm that's executed via the run_algorithm() function. We'll 
go over the details and the corresponding code in this section:

Figure 8.6: ML signal backtest using Zipline's Pipeline API

You need to register your pipeline with the initialize() method and execute it at each 
time step or on a custom schedule. Zipline provides numerous built-in computations, such 
as moving averages or Bollinger Bands, that can be used to quickly compute standard 
factors, but it also allows for the creation of custom factors, as we will illustrate next.

Most importantly, the Pipeline API renders alpha factor research modular because it 
separates the alpha factor computation from the remainder of the algorithm, including the 
placement and execution of trade orders and the bookkeeping of portfolio holdings, values, 
and so on.

We'll now illustrate how to load the lasso model daily return predictions, together with 
price data for our universe, into a pipeline and use a CustomFactor to select the top and 
bottom 10 predictions as long and short positions, respectively. The notebook backtesting_
with_zipline contains the following code examples.

Our goal is to combine the daily return predictions with the OHCLV data from our Quandl 
bundle, and then to go long on up to 10 equities with the highest predicted returns and 
short on those with the lowest predicted returns, requiring at least five stocks on either side, 
similar to the backtrader example above.
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Enabling the DataFrameLoader for our Pipeline

First, we load our predictions for the 2015-17 period and extract the Zipline IDs for the ~250 
stocks in our universe during this period using the bundle.asset_finder.lookup_symbols() 
method, as shown in the following code:

def load_predictions(bundle):

    predictions = pd.read_hdf('../00_data/backtest.h5', 'data')
[['predicted']].dropna()

    tickers = predictions.index.get_level_values(0).unique().tolist()

    assets = bundle.asset_finder.lookup_symbols(tickers, as_of_date=None)
    predicted_sids = pd.Int64Index([asset.sid for asset in assets])

    ticker_map = dict(zip(tickers, predicted_sids))

    return (predictions

            .unstack('ticker')

            .rename(columns=ticker_map)

            .predicted

            .tz_localize('UTC')), assets

bundle_data = bundles.load('quandl')

predictions, assets = load_predictions(bundle_data)

To make the predictions available to the Pipeline API, we need to define a Column with a 
suitable data type for a DataSet with an appropriate domain, like so:

class SignalData(DataSet):

    predictions = Column(dtype=float)
    domain = US_EQUITIES

While the bundle's OHLCV data can rely on the built-in USEquityPricingLoader, we need 
to define our own DataFrameLoader, as follows:

signal_loader = {SignalData.predictions:

                     DataFrameLoader(SignalData.predictions, predictions)}

In fact, we need to slightly modify the Zipline library's source code to bypass the 
assumption that we will only load price data. To this end, we add a custom_loader 
parameter to the run_algorithm method and ensure that this loader is used when the 
pipeline needs one of SignalData's Column instances.
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Creating a pipeline with a custom ML factor

Our pipeline is going to have two Boolean columns that identify the assets we would like 
to trade as long and short positions. To get there, we first define a CustomFactor called 
MLSignal that just receives the current return predictions. The motivation is to allow us to 
use some of the convenient Factor methods designed to rank and filter securities:

class MLSignal(CustomFactor):

    """Converting signals to Factor

        so we can rank and filter in Pipeline"""
    inputs = [SignalData.predictions]

    window_length = 1

    def compute(self, today, assets, out, preds):

        out[:] = preds

Now, we can set up our actual pipeline by instantiating CustomFactor, which requires no 
arguments other than the defaults provided. We combine its top() and bottom() methods  
with a filter to select the highest positive and lowest negative predictions:

def compute_signals():

    signals = MLSignal()

    return Pipeline(columns={

        'longs' : signals.top(N_LONGS, mask=signals > 0),

        'shorts': signals.bottom(N_SHORTS, mask=signals < 0)},

            screen=StaticAssets(assets))

The next step is to initialize our algorithm by defining a few context variables, setting 
transaction cost parameters, performing schedule rebalancing and logging, and attaching 
our pipeline:

def initialize(context):

    """

    Called once at the start of the algorithm.

    """

    context.n_longs = N_LONGS

    context.n_shorts = N_SHORTS

    context.min_positions = MIN_POSITIONS

    context.universe = assets

    set_slippage(slippage.FixedSlippage(spread=0.00))

    set_commission(commission.PerShare(cost=0, min_trade_cost=0))
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    schedule_function(rebalance,

                      date_rules.every_day(),

                      time_rules.market_open(hours=1, minutes=30))

    schedule_function(record_vars, 
                      date_rules.every_day(),

                      time_rules.market_close())

    pipeline = compute_signals()

    attach_pipeline(pipeline, 'signals')

Every day before the market opens, we run our pipeline to obtain the latest predictions:

def before_trading_start(context, data):

    """

    Called every day before market open.

    """

    output = pipeline_output('signals')

    context.trades = (output['longs'].astype(int)

                      .append(output['shorts'].astype(int).mul(-1))

                      .reset_index()

                      .drop_duplicates()

                      .set_index('index')

                      .squeeze())

After the market opens, we place orders for our long and short targets and close all other 
positions:

def rebalance(context, data):

    """

    Execute orders according to schedule_function() date & time rules.

    """

    trades = defaultdict(list)

    for stock, trade in context.trades.items():

        if not trade:

            order_target(stock, 0)

        else:

            trades[trade].append(stock)

    context.longs, context.shorts = len(trades[1]), len(trades[-1])

    if context.longs > context.min_positions and context.shorts > context.
min_positions:

        for stock in trades[-1]:

            order_target_percent(stock, -1 / context.shorts)

        for stock in trades[1]:

            order_target_percent(stock, 1 / context.longs)
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Now, we are ready to execute our backtest and pass the results to pyfolio:

results = run_algorithm(start=start_date,

                       end=end_date,

                       initialize=initialize,

                       before_trading_start=before_trading_start,

                       capital_base=1e6,

                       data_frequency='daily',

                       bundle='quandl',

                       custom_loader=signal_loader) # need to modify zipline

returns, positions, transactions = pf.utils.extract_rets_pos_txn_from_
zipline(results)

Figure 8.7 shows the plots for the strategy's cumulative returns (left panel) and the rolling 
Sharpe ratio, which are comparable to the previous backtrader example. 

The backtest only takes around half the time, though:

Figure 8.7: Zipline backtest results

The notebook backtesting_with_zipline contains the full pyfolio tearsheet with additional 
metrics and plots.
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How to train a model during the backtest
We can also integrate the model training into our backtest. You can find the code for the 
following end-to-end example of our ML4T workflow in the ml4t_with_zipline notebook:

Figure 8.8: Flowchart of Zipline backtest with model training

The goal is to roughly replicate the ridge regression daily return predictions we used earlier 
and generated in Chapter 7, Linear Models – From Risk Factors to Return Forecasts. We will, 
however, use a few additional pipeline factors to illustrate their usage. The principal new 
element is a CustomFactor that receives features and returns them as inputs to train a model 
and produce predictions.

Preparing the features – how to define pipeline factors
To create a pipeline factor, we need one or more input variables, a window_length that 
indicates the number of most recent data points for each input and security, and the 
computation we want to conduct.

A linear price trend that we estimate using linear regression (see Chapter 7, Linear Models – 
From Risk Factors to Return Forecasts) works as follows: we use the 252 latest close prices to 
compute the regression coefficient on a linear time trend:

class Trendline(CustomFactor):

    # linear 12-month price trend regression

    inputs = [USEquityPricing.close]

    window_length = 252

    def compute(self, today, assets, out, close):

        X = np.arange(self.window_length).reshape(-1, 1).astype(float)
        X -= X.mean()

        Y = close - np.nanmean(close, axis=0)

        out[:] = (X.T @ Y / np.var(X)) / self.window_length

We will use 10 custom and built-in factors as features for our model to capture risk factors 
like momentum and volatility (see notebook ml4t_with_zipline for details). Next, we'll 
come up with a CustomFactor that trains our model.
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How to design a custom ML factor

Our CustomFactor, called ML, will have StandardScaler and a stochastic gradient descent 
(SGD) implementation of ridge regression as instance attributes, and we will train the 
model 3 days a week:

class LinearModel(CustomFactor):

    """Obtain model predictions"""

    train_on_weekday = [0, 2, 4]

    def __init__(self, *args, **kwargs):

        super().__init__(self, *args, **kwargs)

        self._scaler = StandardScaler()

        self._model = SGDRegressor(penalty='L2')

        self._trained = False

The compute method generates predictions (addressing potential missing values), but first 
checks if the model should be trained:

    def _maybe_train_model(self, today, returns, inputs):

        if (today.weekday() in self.train_on_weekday) or not self._trained:

            self._train_model(today, returns, inputs)

    def compute(self, today, assets, out, returns, *inputs):

        self._maybe_train_model(today, returns, inputs)

        # Predict most recent feature values

        X = np.dstack(inputs)[-1]

        missing = np.any(np.isnan(X), axis=1)

        X[missing, :] = 0

        X = self._scaler.transform(X)

        preds = self._model.predict(X)

        out[:] = np.where(missing, np.nan, preds)

The _train_model method is the centerpiece of the puzzle. It shifts the returns and aligns 
the resulting forward returns with the factor features, removing missing values in the 
process. It scales the remaining data points and trains the linear SGDRegressor:

    def _train_model(self, today, returns, inputs):

        scaler = self._scaler

        model = self._model

        shift_by = N_FORWARD_DAYS + 1

        outcome = returns[shift_by:].flatten()
        features = np.dstack(inputs)[:-shift_by]
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        n_days, n_stocks, n_features = features.shape

        features = features.reshape(-1, n_features)

        features = features[~np.isnan(outcome)]

        outcome = outcome[~np.isnan(outcome)]

        outcome = outcome[np.all(~np.isnan(features), axis=1)]

        features = features[np.all(~np.isnan(features), axis=1)]

        features = scaler.fit_transform(features)

        model.fit(X=features, y=outcome)
        self._trained = True

The make_ml_pipeline() function preprocesses and combines the outcome, feature, and 
model parts into a pipeline with a column for predictions:

def make_ml_pipeline(universe, window_length=21, n_forward_days=5):
    pipeline_columns = OrderedDict()

    # ensure that returns is the first input
    pipeline_columns['Returns'] = Returns(inputs=[USEquityPricing.open],
                                          mask=universe,
                                          window_length=n_forward_days + 1)

    # convert factors to ranks; append to pipeline
    pipeline_columns.update({k: v.rank(mask=universe) 
                             for k, v in features.items()})

    # Create ML pipeline factor.
    # window_length = length of the training period
    pipeline_columns['predictions'] = LinearModel(
        inputs=pipeline_columns.values(),
        window_length=window_length + n_forward_days,
        mask=universe)

    return Pipeline(screen=universe, columns=pipeline_columns)

Tracking model performance during a backtest

We obtain new predictions using the before_trading_start() function, which runs every 
morning before the market opens:

def before_trading_start(context, data):
    output = pipeline_output('ml_model')
    context.predicted_returns = output['predictions']
    context.predicted_returns.index.rename(['date', 'equity'], inplace=True)

    evaluate_predictions(output, context)
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evaluate_predictions does exactly this: it tracks the past predictions of our model and 
evaluates them once returns for the relevant time horizon materialize (in our example, the 
next day):

def evaluate_predictions(output, context):
    # Look at past predictions to evaluate model performance out-of-sample
    # A day has passed, shift days and drop old ones
    context.past_predictions = {
        k - 1: v for k, v in context.past_predictions.items() if k > 0}

    if 0 in context.past_predictions:
        # Use today's forward returns to evaluate predictions
        returns, predictions = (output['Returns'].dropna()
                                .align(context.past_predictions[0].dropna(),
                                       join='inner'))
        if len(returns) > 0 and len(predictions) > 0:
            context.ic = spearmanr(returns, predictions)[0]
            context.rmse = np.sqrt(
                mean_squared_error(returns, predictions))
            context.mae = mean_absolute_error(returns, predictions)

            long_rets = returns[predictions > 0].mean()
            short_rets = returns[predictions < 0].mean()
            context.returns_spread_bps = (
                long_rets - short_rets) * 10000

    # Store current predictions
    context.past_predictions[N_FORWARD_DAYS] = context.predicted_returns

We also record the evaluation on a daily basis so we can review it after the backtest:

Figure 8.9: Model out-of-sample performance
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The following plots summarize the backtest performance in terms of the cumulative returns 
and the rolling SR. The results have improved relative to the previous example (due to a 
different feature set), yet the model still underperforms the benchmark since mid-2016:

Figure 8.10: Zipline backtest performance with model training

Please see the notebook for additional details on how we define a universe, run the 
backtest, and rebalance and analyze the results using pyfolio.

Instead of how to use
The notebook ml4t_quantopian contains an example of how to backtest a strategy that 
uses a simple ML model in the Quantopian research environment. The key benefit of 
using Zipline in the Quantopian cloud is access to many additional datasets, including 
fundamental and alternative data. See the notebook for more details on the various factors 
that we can derive in this context.

Summary
In this chapter, we took a much closer look at how backtesting works, what challenges there 
are, and how to manage them. We demonstrated how to use the two popular backtesting 
libraries, backtrader and Zipline.

Most importantly, however, we walked through the end-to-end process of designing and 
testing an ML model, showed you how to implement trading logic that acts on the signals 
provided by the model's predictions, and saw how to conduct and evaluate backtests. Now, 
we are ready to continue exploring a much broader and more sophisticated array of ML 
models than the linear regressions we started with.

The next chapter will cover how to incorporate the time dimension into our models.
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9
Time-Series Models for Volatility 

Forecasts and Statistical Arbitrage

In Chapter 7, Linear Models – From Risk Factors to Asset Return Forecasts, we introduced linear 
models for inference and prediction, starting with static models for a contemporaneous 
relationship with cross-sectional inputs that have an immediate effect on the output. We 
presented the ordinary least squares (OLS) learning algorithm, and saw that it produces 
unbiased coefficients for a correctly specified model with residuals that are not correlated 
with the input variables. Adding the assumption that the residuals have constant variance 
guarantees that OLS produces the smallest mean squared prediction error among unbiased 
estimators.

We also encountered panel data that had both cross-sectional and time-series dimensions, 
when we learned how the Fama-Macbeth regressions estimate the value of risk factors over 
time and across assets. However, the relationship between returns across time is typically 
fairly low, so this procedure could largely ignore the time dimension.

Furthermore, we covered the regularized ridge and lasso regression models, which produce 
biased coefficient estimates but can reduce the mean squared prediction error. These 
predictive models took a more dynamic perspective and combined historical returns with 
other inputs to predict forward returns.

In this chapter, we will build dynamic linear models to explicitly represent time and 
include variables observed at specific intervals or lags. A key characteristic of time-series 
data is their sequential order: rather than random samples of individual observations, as in 
the case of cross-sectional data, our data is a single realization of a stochastic process that 
we cannot repeat.
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Our goal is to identify systematic patterns in time series that help us predict how the time 
series will behave in the future. More specifically, we will focus on models that extract 
signals from a historical sequence of the output and, optionally, other contemporaneous or 
lagged input variables to predict future values of the output. For example, we might try to 
predict future returns for a stock using past returns, combined with historical returns of a 
benchmark or macroeconomic variables. We will focus on linear time-series models before 
turning to nonlinear models like recurrent or convolutional neural networks in Part 4.

Time-series models are very popular given the time dimension inherent to trading. 
Key applications include the prediction of asset returns and volatility, as well as the 
identification of the co-movements of asset price series. Time-series data is likely to 
become more prevalent as an ever-broader array of connected devices collects regular 
measurements with potential signal content.

We will first introduce the tools we can use to diagnose time-series characteristics and to 
extract features that capture potential patterns. Then, we will cover how to diagnose and 
achieve time-series stationarity. Next, we will introduce univariate and multivariate time-
series models and apply them in order to forecast macro data and volatility patterns. We 
will conclude with the concept of cointegration and how to apply it to develop a pairs 
trading strategy.

In particular, we will cover the following topics:

• How to use time-series analysis to prepare and inform the modeling process

• Estimating and diagnosing univariate autoregressive and moving-average models

• Building autoregressive conditional heteroskedasticity (ARCH) models to predict 
volatility

• How to build multivariate vector autoregressive models

• Using cointegration to develop a pairs trading strategy

Tools for diagnostics and feature extraction
A time series is a sequence of values separated by discrete intervals that are typically even 
spaced (except for missing values). A time series is often modeled as a stochastic process 
consisting of a collection of random variables, 𝑦𝑦(𝑡𝑡1),… , 𝑦𝑦(𝑡𝑡𝑇𝑇) , with one variable for each 
point in time, 𝑡𝑡𝑖𝑖 , 𝑖𝑖 𝑖 𝑖,𝑖 , 𝑖𝑖 . A univariate time series consists of a single value, y, at each 
point in time, whereas a multivariate time series consists of several observations that can be 
represented by a vector.

You can find the code samples for this chapter and links to additional resources 
in the corresponding directory of the GitHub repository. The notebooks 
include color versions of the images. For a thorough introduction to the topics 
of this chapter from an investment perspective, see Tsay (2005) and Fabozzi, 
Focardi, and Kolm (2010).
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The number of periods, ∆𝑡𝑡 𝑡 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑗𝑗 , between distinct points in time, t
i
, tj, is called lag, with 

T-1 distinct lags for each time series. Just as relationships between different variables at 
a given point in time is key for cross-sectional models, relationships between data points 
separated by a given lag are fundamental to analyzing and exploiting patterns in time series.

For cross-sectional models, we distinguished between input and output variables, or target 
and predictors, with the labels y and x, respectively. In a time-series context, some or all of 
the lagged values 𝑦𝑦𝑡𝑡𝑡𝑡, 𝑦𝑦𝑡𝑡𝑡𝑡, … , 𝑦𝑦𝑡𝑡𝑇𝑇  of the outcome y play the role of the input or x values in 
the cross-section context.

A time series is called white noise if it is a sequence of independent and identically 
distributed (IID) random variables, 𝜖𝜖𝑡𝑡 , with finite mean and variance. In particular, the 
series is called a Gaussian white noise if the random variables are normally distributed 
with a mean of zero and a constant variance of 𝜎𝜎 .

A time series is linear if it can be written as a weighted sum of past disturbances, 𝜖𝜖𝑡𝑡 , that are 
also called innovations and are here assumed to represent white noise, and the mean of the 
series, 𝜇𝜇 : 𝑦𝑦𝑡𝑡 = 𝜇𝜇 𝜇 𝜇 𝜇𝜇𝑖𝑖𝜖𝜖𝑡𝑡𝑡𝑖𝑖∞

𝑖𝑖𝑖𝑖 ,   𝜇𝜇𝑖 = 1, 𝜖𝜖𝜖𝜖𝜖 𝜖𝜖 𝜖 

A key goal of time-series analysis is to understand the dynamic behavior that is driven by 
the coefficients, 𝑎𝑎𝑖𝑖  . The analysis of time series offers methods tailored to this type of data 
with the goal of extracting useful patterns that, in turn, help us build predictive models.

We will introduce the most important tools for this purpose, including the decomposition 
into key systematic elements, the analysis of autocorrelation, and rolling window statistics 
such as moving averages.

For most of the examples in this chapter, we will work with data provided by the Federal 
Reserve that you can access using pandas-datareader, which we introduced in Chapter 2, 
Market and Fundamental Data – Sources and Techniques. The code examples for this section are 
available in the notebook tsa_and_stationarity.

How to decompose time-series patterns
Time-series data typically contains a mix of patterns that can be decomposed into several 
components. In particular, a time series often combines systematic components like trend, 
seasonality, and cycles with unsystematic noise. These components can be modeled as a 
linear combination (for example, when fluctuations do not depend on the level of the series) 
or in a nonlinear, multiplicative form.

Based on the model assumptions, they can also be split up automatically. Statsmodels 
includes a simple method to split the time series into separate trend, seasonal, and residual 
components using moving averages. We can apply it to monthly data on industrial 
manufacturing that contain both a strong trend component and a seasonality component, 
as follows:
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import statsmodels.tsa.api as tsa

industrial_production = web.DataReader('IPGMFN', 'fred', '1988', '2017-12').
squeeze()

components = tsa.seasonal_decompose(industrial_production, model='additive')

ts = (industrial_production.to_frame('Original')

      .assign(Trend=components.trend)

      .assign(Seasonality=components.seasonal)

      .assign(Residual=components.resid))

ts.plot(subplots=True, figsize=(14, 8));

Figure 9.1 shows the resulting charts that display the additive components. The residual 
component would be the focus of subsequent modeling efforts, assuming that the trend and 
seasonality components are more deterministic and amenable to simple extrapolation:

Figure 9.1: Time-series decomposition into trend, seasonality, and residuals

There are more sophisticated model-based approaches—see, for example, Chapter 6, The 
Machine  Learning Process, in Hyndman and Athanasopoulos (2018).

Rolling window statistics and moving averages
Given the sequential ordering of time-series data, it is natural to compute familiar 
descriptive statistics for periods of a given length. The goal is to detect whether the series is 
stable or changes over time and obtain a smoothed representation that captures systematic 
aspects while filtering out the noise.
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Rolling window statistics serve this process: they produce a new time series where each 
data point represents a summary statistic computed for a certain period of the original 
data. Moving averages are the most familiar example. The original data points can enter 
the computation with weights that are equal or, for example, emphasize more recent data 
points. Exponential moving averages recursively compute weights that decay for data 
points further in the past. The new data points are typically a summary of all preceding 
data points, but they can also be computed from a surrounding window.

The pandas library includes rolling or expanding windows and allows for various weight 
distributions. In a second step, you can apply computations to each set of data captured 
by a window. These computations include built-in functions for individual series, such as 
the mean or the sum, and the correlation or covariance for several series, as well as user-
defined functions. 

We used this functionality to engineer features in Chapter 4, Financial Feature Engineering 
– How to Research Alpha Factors, and Chapter 7, Linear Models – From Risk Factors to Return 
Forecasts, for example. The moving average and exponential smoothing examples in the 
following section will also apply these tools.

Early forecasting models included moving-average models with exponential weights 
called exponential smoothing models. We will encounter moving averages again as key 
building blocks for linear time series. Forecasts that rely on exponential smoothing methods 
use weighted averages of past observations, where the weights decay exponentially as 
the observations get older. Hence, a more recent observation receives a higher associated 
weight. These methods are popular for time series that do not have very complicated or 
abrupt patterns.

How to measure autocorrelation
Autocorrelation (also called serial correlation) adapts the concept of correlation to the 
time-series context: just as the correlation coefficient measures the strength of a linear 
relationship between two variables, the autocorrelation coefficient, 𝜌𝜌𝑘𝑘 , measures the extent 
of a linear relationship between time-series values separated by a given lag, k:𝜌𝜌𝑘𝑘 = ∑ (𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑦)(𝑦𝑦𝑡𝑡𝑡𝑘𝑘 − 𝑦𝑦𝑦)𝑇𝑇𝑡𝑡𝑡𝑘𝑘𝑡𝑡∑ (𝑦𝑦𝑡𝑡 − 𝑦𝑦𝑦)2𝑇𝑇𝑡𝑡𝑡𝑡  

Hence, we can calculate one autocorrelation coefficient for each of the T-1 lags in a time 
series of length T. The autocorrelation function (ACF) computes the correlation coefficients 
as a function of the lag.
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The autocorrelation for a lag larger than 1 (that is, between observations more than one 
timestep apart) reflects both the direct correlation between these observations and the 
indirect influence of the intervening data points. The partial autocorrelation removes this 
influence and only measures the linear dependence between data points at the given lag 
distance, T. Removing means using the residuals of a linear regression with the outcome 
x

t
 and the lagged values x

t-1
, x

t-2
, …, x

T-1
 as features (also known as an AR(T-1) model, 

which we'll discuss in the next section on univariate time-series models). The partial 
autocorrelation function (PACF) provides all the correlations that result once the effects of 
a correlation at shorter lags have been removed, as described previously.

There are also algorithms that estimate the partial autocorrelation from the sample 
autocorrelation based on the exact theoretical relationship between the PACF and the ACF.

A correlogram is simply a plot of the ACF or PACF for sequential lags, k=0,1,...,n. It 
allows us to inspect the correlation structure across lags at one glance (see Figure 9.3 for an 
example). The main usage of correlograms is to detect any autocorrelation after the removal 
of a deterministic trend or seasonality. Both the ACF and the PACF are key diagnostic tools 
for the design of linear time-series models, and we will review examples of ACF and PACF 
plots in the following section on time-series transformations.

How to diagnose and achieve stationarity
The statistical properties, such as the mean, variance, or autocorrelation, of a stationary 
time series are independent of the period—that is, they don't change over time. 
Thus, stationarity implies that a time series does not have a trend or seasonal effects. 
Furthermore, it requires that descriptive statistics, such as the mean or the standard 
deviation, when computed for different rolling windows, are constant or do not change 
significantly over time. A stationary time series reverts to its mean, and the deviations have 
a constant amplitude, while short-term movements are always alike in a statistical sense.

More formally, strict stationarity requires the joint distribution of any subset of time-
series observations to be independent of time with respect to all moments. So, in addition 
to the mean and variance, higher moments such as skew and kurtosis also need to be 
constant, irrespective of the lag between different observations. In most applications, such 
as most time-series models in this chapter that we can use to model asset returns, we limit 
stationarity to first and second moments so that the time series is covariance stationary 
with constant mean, variance, and autocorrelation. However, we abandon this assumption 
when building modeling volatility and explicitly assume the variance to change over time 
in predictable ways.

Note that we specifically allow for dependence between output values at different lags, 
just like we want the input data for linear regression to be correlated with the outcome. 
Stationarity implies that these relationships are stable. Stationarity is a key assumption 
of classical statistical models. The following two subsections introduce transformations 
that can help make a time series stationary, as well as how to address the special case of a 
stochastic trend caused by a unit root.
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Transforming a time series to achieve stationarity
To satisfy the stationarity assumption of many time-series models, we need to transform the 
original series, often in several steps. Common transformations include the (natural) logarithm 
to convert an exponential growth pattern into a linear trend and stabilize the variance. 
Deflation implies dividing a time series by another series that causes trending behavior, for 
example, dividing a nominal series by a price index to convert it into a real measure.

A series is trend-stationary if it reverts to a stable long-run linear trend. It can often be 
made stationary by fitting a trend line using linear regression and using the residuals. This 
implies including the time index as an independent variable in a linear regression model, 
possibly combined with logging or deflating.

In many cases, detrending is not sufficient to make the series stationary. Instead, we need 
to transform the original data into a series of period-to-period and/or season-to-season 
differences. In other words, we use the result of subtracting neighboring data points or values at 
seasonal lags from each other. Note that when such differencing is applied to a log-transformed 
series, the results represent instantaneous growth rates or returns in a financial context. 

If a univariate series becomes stationary after differencing d times, it is said to be integrated 
of the order of d, or simply integrated if d=1. This behavior is due to unit roots, which we 
will explain next.

Handling instead of how to handle
Unit roots pose a particular problem for determining the transformation that will render 
a time series stationary. We will first explain the concept of a unit root before discussing 
diagnostics tests and solutions.

On unit roots and random walks

Time series are often modeled as stochastic processes of the following autoregressive form 
so that the current value is a weighted sum of past values, plus a random disturbance:𝑦𝑦𝑡𝑡 = 𝑎𝑎1𝑦𝑦𝑡𝑡𝑡1 + 𝑎𝑎2𝑦𝑦𝑡𝑡𝑡2+ . . . +𝑎𝑎𝑝𝑝𝑦𝑦𝑡𝑡𝑡𝑝𝑝 + 𝜖𝜖𝑡𝑡 

We will explore these models in more detail as the AR building block for ARIMA models 
in the next section on univariate time-series models. Such a process has a characteristic 
equation of the following form:𝑚𝑚𝑝𝑝 − 𝑚𝑚𝑝𝑝𝑝𝑝𝑎𝑎𝑝 − 𝑚𝑚𝑝𝑝𝑝𝑝𝑎𝑎𝑝− . . . −𝑎𝑎𝑝𝑝 = 0 

If one of the (up to) p roots of this polynomial equals 1, then the process is said to have a 
unit root. It will be non-stationary but will not necessarily have a trend. If the remaining 
roots of the characteristic equation are less than 1 in absolute terms, the first difference 
of the process will be stationary, and the process is integrated of order 1 or I(1). With 
additional roots larger than 1 in absolute terms, the order of integration is higher and 
additional differencing will be required.



Time-Series Models for Volatility Forecasts and Statistical Arbitrage

[ 262 ]

In practice, time series of interest rates or asset prices are often not stationary because 
there isn't a price level to which the series reverts. The most prominent example of a non-
stationary series is the random walk. Given a time series of prices p

t
 with starting price 

p
0
(for example, a stock's IPO price) and a white-noise disturbance 𝜖𝜖𝑡𝑡 , then a random walk 

satisfies the following autoregressive relationship:

𝑝𝑝𝑡𝑡 = 𝑝𝑝𝑡𝑡𝑡𝑡 + 𝜖𝜖𝑡𝑡 =∑𝜖𝜖𝑠𝑠𝑡𝑡
𝑠𝑠𝑡𝑠 + 𝑝𝑝𝑠 

Repeated substitution shows that the current value, p
t
, is the sum of all prior disturbances 

or innovations, 𝜖𝜖𝑡𝑡 , and the initial price, p
0
. If the equation includes a constant term, then the 

random walk is said to have drift.

The random walk is thus an autoregressive stochastic process of the following form:𝑦𝑦𝑡𝑡 = 𝑎𝑎1𝑦𝑦𝑡𝑡𝑡1 + 𝜖𝜖𝑡𝑡,   𝑎𝑎1 = 1 

It has the characteristic equation 𝑚𝑚 𝑚 𝑚𝑚1 = 0  with a unit root and is both non-stationary 
and integrated of order 1. On the one hand, given the IID nature of ε , the variance of 
the time series equals 𝑡𝑡𝑡2 , which is not second-order stationary, and implies that, in 
principle, the series could assume any value over time. On the other hand, taking the 
first difference, ∆𝑝𝑝𝑡𝑡 = 𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡𝑡𝑡𝑡 , leaves ∆𝑝𝑝𝑡𝑡 = 𝜀𝜀𝑡𝑡 , which is stationary, given the statistical 
assumption about ε .
The defining characteristic of a non-stationary series with a unit-root is long memory: since 
current values are the sum of past disturbances, large innovations persist for much longer 
than for a mean-reverting, stationary series.

How to diagnose a unit root

Statistical unit root tests are a common way to determine objectively whether (additional) 
differencing is necessary. These are statistical hypothesis tests of stationarity that are 
designed to determine whether differencing is required.

The augmented Dickey-Fuller test (ADF test) evaluates the null hypothesis that a 
time-series sample has a unit root against the alternative of stationarity. It regresses 
the differenced time series on a time trend, the first lag, and all lagged differences, and 
computes a test statistic from the value of the coefficient on the lagged time-series value. 
statsmodels makes it easy to implement (see the notebook tsa_and_stationarity).

Formally, the ADF test for a time series, 𝑦𝑦𝑡𝑡 , runs the linear regression where α  is a constant, 𝛽𝛽  is a coefficient on a time trend, and p refers to the number of lags used in the model:∆𝑦𝑦𝑡𝑡 = 𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼 𝛼 𝛼𝛼𝑦𝑦𝑡𝑡𝑡𝑡 𝛼 𝛿𝛿𝑡∆𝑦𝑦𝑡𝑡𝑡𝑡𝛼. . . 𝛼𝛿𝛿𝑝𝑝𝑡𝑡∆𝑦𝑦𝑡𝑡𝑡𝑝𝑝𝑡𝑡 𝛼 𝜖𝜖𝑡𝑡 
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The constraint 𝛼𝛼 𝛼 𝛼𝛼 𝛼 𝛼  implies a random walk, whereas only 𝛽𝛽 𝛽 𝛽  implies a random 
walk with drift. The lag order is usually decided using the Akaike information criterion 
(AIC) and Bayesian information criterion (BIC) information criteria introduced in 
Chapter 7, Linear Models – From Risk Factors to Return Forecasts.

The ADF test statistic uses the sample coefficient γ , which, under the null hypothesis of 
unit-root non-stationarity, equals zero and is negative otherwise. It intends to demonstrate 
that, for an integrated series, the lagged series value should not provide useful information 
in predicting the first difference above and beyond lagged differences.

How to remove unit roots and work with the resulting series

In addition to using the difference between neighboring data points to remove a constant 
pattern of change, we can apply seasonal differencing to remove patterns of seasonal 
change. This involves taking the difference of values at a lag distance that represents the 
length of the seasonal pattern. For monthly data, this usually involves differences at lag 12, 
and for quarterly data, it involves differences at lag 4 to remove both seasonality and 
linear trend.

Identifying the correct transformation and, in particular, the appropriate number and lags 
for differencing is not always clear-cut. Some heuristics have been suggested, which can be 
summarized as follows:

• Lag-1 autocorrelation close to zero or negative, or autocorrelation generally small 
and patternless: there is no need for higher-order differencing

• Positive autocorrelations up to 10+ lags: the series probably needs higher-order 
differencing

• Lag-1 autocorrelation < -0.5: the series may be over-differenced

• Slightly over- or under-differencing can be corrected with AR or MA terms (see the 
next section on univariate time-series models)

Some authors recommend fractional differencing as a more flexible approach to rendering 
an integrated series stationary, and may be able to keep more information or signal than 
simple or seasonal differences at discrete intervals. See, for example, Chapter 5, Portfolio 
Optimization and Performance Evaluation, in Marcos Lopez de Prado (2018).

Time-series transformations in practice
The charts in Figure 9.2 shows time series for the NASDAQ stock index and industrial 
production for the 30 years through 2017 in their original form, as well as the transformed 
versions after applying the logarithm and subsequently applying the first and seasonal 
differences (at lag 12), respectively.

The charts also display the ADF p-value, which allows us to reject the hypothesis of unit-
root non-stationarity after all transformations in both cases:
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Figure 9.2: Time-series transformations and unit-root test results 

We can further analyze the relevant time-series characteristics for the transformed 
series using a Q-Q plot that compares the quantiles of the distribution of the time-series 
observation to the quantiles of the normal distribution and the correlograms based on the 
ACF and PACF.

For the NASDAQ plots in Figure 9.3, we can see that while there is no trend, the variance is 
not constant but rather shows clustered spikes around periods of market turmoil in the late 
1980s, 2001, and 2008. The Q-Q plot highlights the fat tails of the distribution with extreme 
values that are more frequent than the normal distribution would suggest. 

The ACF and the PACF show similar patterns, with autocorrelation at several lags 
appearing to be significant:

Figure 9.3: Descriptive statistics for transformed NASDAQ Composite index
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For the monthly time series on industrial manufacturing production, we can see a large 
negative outlier following the 2008 crisis, as well as the corresponding skew in the Q-Q 
plot (see Figure 9.4). The autocorrelation is much higher than for the NASDAQ returns and 
declines smoothly. The PACF shows distinct positive autocorrelation patterns at lags 1 and 
13 and significant negative coefficients at lags 3 and 4:

Figure 9.4: Descriptive statistics for transformed industrial production data

Univariate time-series models
Multiple linear-regression models expressed the variable of interest as a linear combination 
of the inputs, plus a random disturbance. In contrast, univariate time-series models relate 
the current value of the time series to a linear combination of lagged values of the series, 
current noise, and possibly past noise terms.

While exponential smoothing models are based on a description of the trend and 
seasonality in the data, ARIMA models aim to describe the autocorrelations in the data. 
ARIMA(p, d, q) models require stationarity and leverage two building blocks:

• Autoregressive (AR) terms consisting of p lagged values of the time series

• Moving average (MA) terms that contain q lagged disturbances

The I stands for integrated because the model can account for unit-root non-stationarity by 
differentiating the series d times. The term autoregression underlines that ARIMA models 
imply a regression of the time series on its own values.
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We will introduce the ARIMA building blocks, AR and MA models, and explain how to 
combine them in autoregressive moving-average (ARMA) models that may account for 
series integration as ARIMA models or include exogenous variables as AR(I)MAX models. 
Furthermore, we will illustrate how to include seasonal AR and MA terms to extend the 
toolbox so that it also includes SARMAX models.

How to build autoregressive models
An AR model of order p aims to capture the linear dependence between time-series values 
at different lags and can be written as follows:AR(𝑝𝑝):  𝑦𝑦𝑡𝑡 = ∅0 + ∅1𝑦𝑦𝑡𝑡𝑡1 + ∅2𝑦𝑦𝑡𝑡𝑡2+. . . +∅𝑝𝑝𝑦𝑦𝑡𝑡𝑡𝑝𝑝 + 𝜖𝜖𝑡𝑡 ,   𝜖𝜖𝜖𝜖. 𝜖. 𝜖 

This closely resembles a multiple linear regression on lagged values of y
t
. This model has 

the following characteristic equation:1 − ∅1𝑥𝑥 − ∅2𝑥𝑥2−. . . −∅𝑝𝑝𝑥𝑥𝑝𝑝 = 0 

The inverses of the solution to this polynomial of degree p in x are the characteristic 
roots, and the AR(p) process is stationary if all roots are less than 1 in absolute terms, and 
unstable otherwise. For a stationary series, multistep forecasts will converge to the mean of 
the series.

We can estimate the model parameters with the familiar least squares method using the 
p+1, ..., T observations to ensure there is data for each lagged term and the outcome.

How to identify the number of lags

In practice, the challenge consists of deciding on the appropriate order p of lagged terms. 
The time-series analysis tools for serial correlation, which we discussed in the How to 
measure autocorrelation section, play a key role in making this decision. 

More specifically, a visual inspection of the correlogram often provides helpful clues:

• The ACF estimates the autocorrelation between observations at different lags, 
which, in turn, results from both direct and indirect linear dependence. Hence, if 
an AR model of order k is the correct model, the ACF will show a significant serial 
correlation up to lag k and, due to the inertia caused by the indirect effects of the 
linear relationship, will extend to subsequent lags until it eventually trails off as the 
effect weakens.

• The PACF, in turn, only measures the direct linear relationship between 
observations a given lag apart so that it will not reflect correlation for lags beyond k.

How to diagnose model fit
If the model properly captures the linear dependence across lags, then the residuals 
should resemble white noise, and the ACF should highlight the absence of significant 
autocorrelation coefficients.
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In addition to a residual plot, the Ljung-Box Q-statistic allows us to test the hypothesis that 
the residual series follows white noise. The null hypothesis is that all m serial correlation 
coefficients are zero against the alternative that some coefficients are not. The test statistic is 
computed from the sample autocorrelation coefficients 𝜌𝜌𝑘𝑘 for different lags k and follows a 
X2 distribution:

𝑄𝑄(𝑚𝑚) = 𝑇𝑇(𝑇𝑇 𝑇 𝑇)∑ 𝜌𝜌𝑙𝑙2𝑇𝑇 𝑇 𝑇𝑇𝑚𝑚
𝑡𝑡𝑡𝑡  

As we will see, statsmodels provides information about the significance of coefficients for 
different lags, and insignificant coefficients should be removed. If the Q-statistic rejects the 
null hypothesis of no autocorrelation, you should consider additional AR terms.

How to build moving-average models
An MA(q) model uses q past disturbances rather than lagged values of the time series in a 
regression-like model, as follows:MA(𝑞𝑞):  𝑦𝑦𝑡𝑡 = 𝑐𝑐 𝑐 𝑐𝑐𝑡𝑡 𝑐 𝜃𝜃1𝑐𝑐𝑡𝑡𝑡1 𝑐 𝜃𝜃2𝑐𝑐𝑡𝑡𝑡2𝑐. . . 𝑐𝜃𝜃𝑝𝑝𝑐𝑐𝑡𝑡𝑡𝑝𝑝,   𝑐𝑐𝜖𝜖. 𝜖. 𝜖 

Since we do not observe the white-noise disturbance values, 𝜖𝜖𝑡𝑡 , MA(q) is not a regression 
model like the ones we have seen so far. Rather than using least squares, MA(q) models are 
estimated using maximum likelihood (MLE), alternatively initializing or estimating the 
disturbances at the beginning of the series and then recursively and iteratively computing 
the remainder.

The MA(q) model gets its name from representing each value of y
t
 as a weighted moving 

average of the past q innovations. In other words, current estimates represent a correction 
relative to past errors made by the model. The use of moving averages in MA(q) models 
differs from that of exponential smoothing, or the estimation of seasonal time-series 
components, because an MA(q) model aims to forecast future values, as opposed to 
denoising or estimating the trend cycle of past values.

MA(q) processes are always stationary because they are the weighted sum of white noise 
variables that are, themselves, stationary.

How to identify the number of lags

A time series generated by an MA(q) process is driven by the residuals of the prior q model 
predictions. Hence, the ACF for the MA(q) process will show significant coefficients for 
values up to lag q and then decline sharply because this is how the model assumes the 
series values have been generated.

Note how this differs from the AR case we just described, where the PACF would show a 
similar pattern.
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The relationship between the AR and MA models

An AR(p) model can always be expressed as an MA(∞)  process using repeated substitution, 
as in the random walk example in the How to handle stochastic trends caused by unit roots 
section.

When the coefficients of the MA(q) process meet certain size constraints, it also becomes 
invertible and can be expressed as an AR(∞)  process (see Tsay, 2005, for details).

How to build ARIMA models and extensions
Autoregressive integrated moving-average—ARIMA(p, d, q)—models combine AR(p) and 
MA(q) processes to leverage the complementarity of these building blocks and simplify 
model development. They do this using a more compact form and reducing the number of 
parameters, in turn reducing the risk of overfitting.

The models also take care of eliminating unit-root non-stationarity by using the dth 
difference of the time-series values. An ARIMA(p, 1, q) model is the same as using an 
ARMA(p, q) model with the first differences of the series. Using y' to denote the original 
series after non-seasonal differencing d times, the ARIMA(p, d, q) model is simply:ARIMA(𝑝𝑝𝑝 𝑝𝑝𝑝 𝑝𝑝) ∶    𝑦𝑦𝑡𝑡′ = AR(𝑝𝑝) + MA(𝑝𝑝)  = 𝜙𝜙0 + 𝜙𝜙1𝑦𝑦𝑡𝑡𝑡1′ +. . . +𝜙𝜙𝑝𝑝𝑦𝑦𝑡𝑡𝑡𝑝𝑝′ + 𝜖𝜖𝑡𝑡 + 𝜃𝜃1𝜖𝜖𝑡𝑡𝑡1+. . . +𝜃𝜃𝑞𝑞𝜖𝜖𝑡𝑡𝑡𝑞𝑞 𝑝   𝜖𝜖 𝜖 𝜖.𝜖.𝜖. 
ARIMA models are also estimated using MLE. Depending on the implementation, higher-
order models may generally subsume lower-order models.

For example, up to version 0.11, statsmodels includes all lower-order p and q terms and 
does not permit removing coefficients for lags below the highest value. In this case, higher-
order models will always fit better. Be careful not to overfit your model to the data by using 
too many terms. The most recent version, which is 0.11 at the time of writing, added an 
experimental new ARIMA model with more flexible configuration options.

How to model differenced series
There are also guidelines for designing the univariate times-series models when using data:

• A model without differencing assumes that the original series is stationary, 
including mean-reverting. It normally includes a constant term to allow for a non-
zero mean.

• A model with one order of differencing assumes that the original series has a 
constant trend and should thus include a constant term.

• A model with two orders of differencing assumes that the original series has a time-
varying trend and should not include a constant.
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How to identify the number of AR and MA terms

Since AR(p) and MA(q) terms interact, the information provided by the ACF and PACF is 
no longer reliable and can only be used as a starting point.

Traditionally, the AIC and BIC information criteria have been used to rely on in-sample fit 
when selecting the model design. Alternatively, we can rely on out-of-sample tests to cross-
validate multiple parameter choices.

The following summary provides some guidance on how to choose the model order in the 
case of considering AR and MA models in isolation:

• The lag beyond which the PACF cuts off is the indicated number of AR terms. If the 
PACF of the differenced series cuts off sharply and/or the lag-1 autocorrelation is 
positive, add one or more AR terms.

• The lag beyond which the ACF cuts off is the indicated number of MA terms. 
If the ACF of the differenced series displays a sharp cutoff and/or the lag-1 
autocorrelation is negative, consider adding an MA term to the model.

• AR and MA terms may cancel out each other's effects, so always try to reduce the 
number of AR and MA terms by 1 if your model contains both to avoid overfitting, 
especially if the more complex model requires more than 10 iterations to converge.

• If the AR coefficients sum to nearly one and suggest a unit root in the AR part of the 
model, eliminate one AR term and difference the model once (more).

• If the MA coefficients sum to nearly one and suggest a unit root in the MA part of 
the model, eliminate one MA term and reduce the order of differencing by one.

• Unstable long-term forecasts suggest there may be a unit root in the AR or MA part 
of the model.

Adding features – ARMAX

An autoregressive moving-average model with exogenous inputs (ARMAX) model 
adds input variables or covariate on the right-hand side of the ARMA time-series model 
(assuming the series is stationary, so we can skip differencing):ARIMA(𝑝𝑝𝑝 𝑝𝑝𝑝 𝑝𝑝) ∶    𝑦𝑦𝑡𝑡 = 𝛽𝛽𝛽𝛽𝑡𝑡 + AR(𝑝𝑝) + MA(𝑝𝑝)  = 𝛽𝛽𝛽𝛽𝑡𝑡 + 𝜙𝜙0 + 𝜙𝜙1𝑦𝑦𝑡𝑡𝑡1 + ⋯ + 𝜙𝜙𝑝𝑝𝑦𝑦𝑡𝑡𝑡𝑝𝑝 + 𝜖𝜖𝑡𝑡 + 𝜃𝜃1𝜖𝜖𝑡𝑡𝑡1 + ⋯ + 𝜃𝜃𝑞𝑞𝜖𝜖𝑡𝑡𝑡𝑞𝑞 𝑝   𝜖𝜖 𝜖 𝜖𝜖𝜖𝜖𝜖𝜖 
This resembles a linear regression model but is quite difficult to interpret. This is because 
the effect of β  on y

t
 is not the effect of an increase in x

t
 by one unit as in linear regression. 

Instead, the presence of lagged values of y
t
 on the right-hand side of the equation implies 

that the coefficient can only be interpreted, given the lagged values of the response variable, 
which is hardly intuitive.
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Adding seasonal differencing – SARIMAX
For time series with seasonal effects, we can include AR and MA terms that capture the 
seasonality's periodicity. For instance, when using monthly data and the seasonal effect 
length is 1 year, the seasonal AR and MA terms would reflect this particular lag length.

The ARIMAX(p, d, q) model then becomes a SARIMAX(p, d, q) × (P, D, Q) model, which is a 
bit more complicated to write out, but the statsmodels documentation (see link on GitHub) 
provides this information in detail.

We will now build a seasonal ARMA model using macro-data to illustrate its 
implementation.

How to forecast macro fundamentals
We will build a SARIMAX model for monthly data on an industrial production time series 
for the 1988-2017 period. As illustrated in the first section on analytical tools, the data 
has been log-transformed, and we are using seasonal (lag-12) differences. We estimate 
the model for a range of both ordinary and conventional AR and MA parameters using 
a rolling window of 10 years of training data, and evaluate the root mean square error 
(RMSE) of the 1-step-ahead forecast, as shown in the following simplified code (see the 
notebook arima_models for details):

for p1 in range(4):                # AR order

    for q1 in range(4):            # MA order

        for p2 in range(3):        # seasonal AR order

            for q2 in range(3):    # seasonal MA order

                y_pred = []

                for i, T in enumerate(range(train_size, len(data))):

                    train_set = data.iloc[T - train_size:T]

                    model = tsa.SARIMAX(endog=train_set, # model specification
                                        order=(p1, 0, q1),

                                        seasonal_order=(p2, 0, q2, 12)).fit()
                    preds.iloc[i, 1] = model.forecast(steps=1)[0]

                mse = mean_squared_error(preds.y_true, preds.y_pred)

                results[(p1, q1, p2, q2)] = [np.sqrt(mse),

                    preds.y_true.sub(preds.y_pred).std(),

                    np.mean(aic)]

We also collect the AIC and BIC criteria, which show a very high rank correlation 
coefficient of 0.94, with BIC favoring models with slightly fewer parameters than AIC. The 
best five models by RMSE are:
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                 RMSE         AIC         BIC

p1 q1 p2 q2                                  

2  3  1  0   0.009323 -772.247023 -752.734581

3  2  1  0   0.009467 -768.844028 -749.331586

2  2  1  0   0.009540 -770.904835 -754.179884

   3  0  0   0.009773 -760.248885 -743.523935

   2  0  0   0.009986 -758.775827 -744.838368

We reestimate a SARIMA(2, 0 ,3) × (1, 0, 0) model, as follows:

best_model = tsa.SARIMAX(endog=industrial_production_log_diff, order=(2, 0, 
                                                                     3),

                         seasonal_order=(1, 0, 0, 12)).fit()
print(best_model.summary())

We obtain the following summary:

Figure 9.5: SARMAX model results

The coefficients are significant, and the Q-statistic rejects the hypothesis of further 
autocorrelation. The correlogram similarly indicates that we have successfully eliminated 
the series' autocorrelation:
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Figure 9.6: SARIMAX model diagnostics

How to use time-series models to forecast volatility
A particularly important application for univariate time-series models in finance is the 
prediction of volatility. This is because it is usually not constant over time, with bouts 
of volatility clustering together. Changes in variance create challenges for time-series 
forecasting using the classical ARIMA models that assume stationarity. To address this 
challenge, we will now model volatility so that we can predict changes in variance.

Heteroskedasticity is the technical term for changes in a variable's variance. The ARCH 
model expresses the variance of the error term as a function of the errors in previous 
periods. More specifically, it assumes that the error variance follows an AR(p) model.

The generalized autoregressive conditional heteroskedasticity (GARCH) model broadens 
the scope of ARCH to allow for ARMA models. Time-series forecasting often combines 
ARIMA models for the expected mean and ARCH/GARCH models for the expected 
variance of a time series. The 2003 Nobel Prize in Economics was awarded to Robert Engle 
and Clive Granger for developing this class of models. The former also runs the Volatility 
Lab at New York University's Stern School (vlab.stern.nyu.edu), which has numerous 
online examples and tools concerning the models we will discuss.

The ARCH model

The ARCH(p) model is simply an AR(p) model that's applied to the variance of the 
residuals of a time-series model, which makes this variance at time t conditional on lagged 
observations of the variance. 

http://vlab.stern.nyu.edu
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More specifically, the error terms, 𝜀𝜀𝑡𝑡 , are residuals of a linear model, such as ARIMA, on 
the original time series and are split into a time-dependent standard deviation, 𝜎𝜎𝑡𝑡 , and a 
disturbance, z

t
, as follows:ARCH(𝑝𝑝) ∶    var(𝑥𝑥𝑡𝑡) = 𝜎𝜎𝑡𝑡2  = 𝜔𝜔 𝜔 𝜔𝜔1𝜖𝜖𝑡𝑡𝑡12 𝜔 ⋯ 𝜔 𝜔𝜔𝑝𝑝𝜖𝜖𝑡𝑡𝑡𝑝𝑝2 𝜖𝜖𝑡𝑡 = 𝜎𝜎𝑡𝑡𝑧𝑧𝑡𝑡 𝑧𝑧𝑡𝑡 ∼ i.i.d.  

An ARCH(p) model can be estimated using OLS. Engle proposed a method to identify 
the appropriate ARCH order using the Lagrange multiplier test, which corresponds to 
the F-test of the hypothesis that all coefficients in linear regression are zero (see Chapter 7, 
Linear Models – From Risk Factors to Return Forecasts).

A key strength of the ARCH model is that it produces volatility estimates with positive 
excess kurtosis — that is, fat tails relative to the normal distribution — which, in turn, is in 
line with empirical observations about returns. Weaknesses include the assumption of the 
same effect for positive and negative volatility shocks, whereas asset prices tend to respond 
differently. It also does not explain the variations in volatility and is likely to overpredict 
volatility because they respond slowly to large, isolated shocks to the return series.

For a properly specified ARCH model, the standardized residuals (divided by the model 
estimate for the period of standard deviation) should resemble white noise and can be 
subjected to a Ljung-Box Q test.

Generalizing ARCH – the GARCH model

The ARCH model is relatively simple but often requires many parameters to capture the 
volatility patterns of an asset-return series. The GARCH model applies to a log-return 
series, r

t
, with disturbances, 𝜖𝜖𝑡𝑡 = 𝑟𝑟𝑡𝑡 − 𝜇𝜇 , that follow a GARCH(p, q) model if:

𝜖𝜖𝑡𝑡 = 𝜎𝜎𝑡𝑡𝑧𝑧𝑡𝑡 ,   𝜎𝜎𝑡𝑡2 = 𝜔𝜔 𝜔 𝜔 𝜔𝜔𝑖𝑖𝜖𝜖𝑡𝑡𝑡𝑖𝑖2𝑝𝑝
𝑖𝑖𝑖𝑖 𝜔 𝜔 𝛽𝛽𝑖𝑖𝜎𝜎𝑡𝑡𝑡𝑡𝑡2𝑞𝑞

𝑡𝑡𝑖𝑖 ,   𝑧𝑧𝑡𝑡~i. i. d 

The GARCH(p, q) model assumes an ARMA(p, q) model for the variance of the error term, 𝜀𝜀𝑡𝑡 .
Similar to ARCH models, the tail distribution of a GARCH(1,1) process is heavier than that 
of a normal distribution. The model encounters the same weaknesses as the ARCH model. 
For instance, it responds equally to positive and negative shocks.

To configure the lag order for ARCH and GARCH models, use the squared residuals of the 
time series trained to predict the mean of the original series. The residuals are zero-centered 
so that their squares are also the variance. Then, inspect the ACF and PACF plots of the 
squared residuals to identify autocorrelation patterns in the variance of the time series.
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How to build a model that forecasts volatility

The development of a volatility model for an asset-return series consists of four steps:

1. Build an ARMA time-series model for the financial time series based on the serial 
dependence revealed by the ACF and PACF

2. Test the residuals of the model for ARCH/GARCH effects, again relying on the 
ACF and PACF for the series of the squared residual

3. Specify a volatility model if serial correlation effects are significant, and jointly 
estimate the mean and volatility equations

4. Check the fitted model carefully and refine it if necessary

When applying volatility forecasting to return series, the serial dependence may be limited 
so that a constant mean may be used instead of an ARMA model.

The arch library (see link to the documentation on GitHub) provides several options to 
estimate volatility-forecasting models. You can model the expected mean as a constant, as 
an AR(p) model, as discussed in the How to build autoregressive models, section or as more 
recent heterogeneous autoregressive processes (HAR), which use daily (1 day), weekly (5 
days), and monthly (22 days) lags to capture the trading frequencies of short-, medium-, 
and long-term investors.

The mean models can be jointly defined and estimated with several conditional 
heteroskedasticity models that include, in addition to ARCH and GARCH, the exponential 
GARCH (EGARCH) model, which allows for asymmetric effects between positive and 
negative returns, and the heterogeneous ARCH (HARCH) model, which complements the 
HAR mean model.

We will use daily NASDAQ returns from 2000-2020 to demonstrate the usage of a GARCH 
model (see the notebook arch_garch_models for details):

nasdaq = web.DataReader('NASDAQCOM', 'fred', '2000', '2020').squeeze()

nasdaq_returns = np.log(nasdaq).diff().dropna().mul(100) # rescale to 
facilitate optimization

The rescaled daily return series exhibits only limited autocorrelation, but the squared 
deviations from the mean do have substantial memory reflected in the slowly decaying 
ACF and the PACF, which are high for the first two and cut off only after the first six lags:

plot_correlogram(nasdaq_returns.sub(nasdaq_returns.mean()).pow(2), lags=120,  
                 title='NASDAQ Daily Volatility')
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The function plot_correlogram produces the following output:

Figure 9.7: Daily NASDAQ composite volatility

Hence, we can estimate a GARCH model to capture the linear relationship of past 
volatilities. We will use rolling 10-year windows to estimate a GARCH(p, q) model with p 
and q ranging from 1-4 to generate one-step out-of-sample forecasts.

We then compare the RMSE of the predicted volatility relative to the actual squared 
deviation of the return from its mean to identify the most predictive model. We are using 
winsorized data to limit the impact of extreme return values being reflected in the very 
high positive skew of the volatility:

trainsize = 10 * 252  # 10 years

data = nasdaq_returns.clip(lower=nasdaq_returns.quantile(.05),

                           upper=nasdaq_returns.quantile(.95))

T = len(nasdaq_returns)

results = {}

for p in range(1, 5):

    for q in range(1, 5):

        print(f'{p} | {q}')

        result = []

        for s, t in enumerate(range(trainsize, T-1)):

            train_set = data.iloc[s: t]

            test_set = data.iloc[t+1]  # 1-step ahead forecast

            model = arch_model(y=train_set, p=p, q=q).fit(disp='off')
            forecast = model.forecast(horizon=1)

            mu = forecast.mean.iloc[-1, 0]

            var = forecast.variance.iloc[-1, 0]

            result.append([(test_set-mu)**2, var])
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        df = pd.DataFrame(result, columns=['y_true', 'y_pred'])

        results[(p, q)] = np.sqrt(mean_squared_error(df.y_true, df.y_pred))

The GARCH(2, 2) model achieves the lowest RMSE (same value as GARCH(4, 2) but with 
fewer parameters), so we go ahead and estimate this model to inspect the summary:

am = ConstantMean(nasdaq_returns.clip(lower=nasdaq_returns.quantile(.05),

                                      upper=nasdaq_returns.quantile(.95)))

am.volatility = GARCH(2, 0, 2)

am.distribution = Normal()

best_model = am.fit(update_freq=5)
print(best_model.summary())

The output shows the maximized log-likelihood, as well as the AIC and BIC criteria, which 
are commonly minimized when selecting models based on in-sample performance (see 
Chapter 7, Linear Models – From Risk Factors to Return Forecasts). It also displays the result 
for the mean model, which, in this case, is just a constant estimate, as well as the GARCH 
parameters for the constant omega, the AR parameters, α , and the MA parameters, β , all of 
which are statistically significant:

Figure 9.8: GARCH Model results

Let's now explore models for multiple time series and the concept of cointegration, which 
will enable a new trading strategy.

Multivariate time-series models
Multivariate time-series models are designed to capture the dynamic of multiple time series 
simultaneously and leverage dependencies across these series for more reliable predictions. 
The most comprehensive introduction to this subject is Lütkepohl (2005).
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Systems of equations
Univariate time-series models, like the ARMA approach we just discussed, are limited to 
statistical relationships between a target variable and its lagged values or lagged disturbances 
and exogenous series, in the case of ARMAX. In contrast, multivariate time-series models also 
allow for lagged values of other time series to affect the target. This effect applies to all series, 
resulting in complex interactions, as illustrated in the following diagram:

Figure 9.9: Interactions in univariate and multivariate time-series models

In addition to potentially better forecasting, multivariate time series are also used to gain 
insights into cross-series dependencies. For example, in economics, multivariate time series 
are used to understand how policy changes to one variable, such as an interest rate, may 
affect other variables over different horizons. 

The impulse-response function produced by the multivariate model serves this purpose 
and allows us to simulate how one variable responds to a sudden change in other variables. 
The concept of Granger causality analyzes whether one variable is useful in forecasting 
another (in the least-squares sense). Furthermore, multivariate time-series models allow for 
a decomposition of the prediction error variance to analyze how other series contribute.

The vector autoregressive (VAR) model
We will see how the vector autoregressive VAR(p) model extends the AR(p) model to 
k series by creating a system of k equations, where each contains p lagged values of all k 
series. In the simplest case, a VAR(1) model for k=2 takes the following form:𝑦𝑦1,𝑡𝑡 = 𝑐𝑐1 + 𝛼𝛼1,1𝑦𝑦1,𝑡𝑡𝑡1 + 𝛼𝛼1,2𝑦𝑦2,𝑡𝑡𝑡1 + 𝜖𝜖1,𝑡𝑡𝑦𝑦2,𝑡𝑡 = 𝑐𝑐2 + 𝛼𝛼2,1𝑦𝑦1,𝑡𝑡𝑡1 + 𝛼𝛼2,2𝑦𝑦2,𝑡𝑡𝑡1 + 𝜖𝜖2,𝑡𝑡 
This model can be expressed somewhat more concisely in matrix form:[𝑦𝑦1,𝑡𝑡𝑦𝑦2,𝑡𝑡] = [𝑐𝑐1𝑐𝑐2] + [𝑎𝑎1,1 𝑎𝑎1,2𝑎𝑎2,1 𝑎𝑎2,2] [𝑦𝑦1,𝑡𝑡𝑡1𝑦𝑦2,𝑡𝑡𝑡2] + [𝜖𝜖1,𝑡𝑡𝜖𝜖2,𝑡𝑡] 
The coefficients on the lagged values of the output provide information about the dynamics 
of the series itself, whereas the cross-variable coefficients offer some insight into the 
interactions across the series. This notation extends to k time series and order p, as follows:𝒚𝒚𝑡𝑡𝑘𝑘 𝑘 𝑘 = 𝒄𝒄𝑘𝑘 𝑘 𝑘 + 𝑨𝑨1𝑘𝑘 𝑘 𝑘𝑘 𝒚𝒚𝑡𝑡𝑡1𝑘𝑘 𝑘 𝑘+. . . + 𝑨𝑨𝑝𝑝𝑘𝑘 𝑘 𝑘𝑘 𝒚𝒚𝑡𝑡𝑡𝑝𝑝𝑘𝑘 𝑘 𝑘 + 𝝐𝝐𝑡𝑡𝑘𝑘 𝑘 𝑘 
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VAR(p) models also require stationarity so that the initial steps from univariate time-series 
modeling carry over. First, explore the series and determine the necessary transformations. 
Then, apply the augmented Dickey-Fuller test to verify that the stationarity criterion is met 
for each series and apply further transformations otherwise. It can be estimated with an 
OLS conditional on initial information or with MLE, which is the equivalent for normally 
distributed errors but not otherwise.

If some or all of the k series are unit-root non-stationary, they may be cointegrated (see the 
next section). This extension of the unit root concept to multiple time series means that a 
linear combination of two or more series is stationary and, hence, mean-reverting.

The VAR model is not equipped to handle this case without differencing; instead, use the 
vector error correction model (VECM, Johansen and Juselius 1990). We will further explore 
cointegration because, if present and assumed to persist, it can be leveraged for a pairs-
trading strategy.

The determination of the lag order also takes its cues from the ACF and PACF for each 
series, but is constrained by the fact that the same lag order applies to all series. After 
model estimation, residual diagnostics also call for a result resembling white noise, and 
model selection can use in-sample information criteria or, if the goal is to use the model for 
prediction, out-of-sample predictive performance to cross-validate alternative model designs.

As mentioned in the univariate case, predictions of the original time series require us to reverse 
the transformations applied to make a series stationary before training the model.

Using the VAR model for macro forecasts
We will extend the univariate example of using a single time series of monthly data on 
industrial production and add a monthly time series on consumer sentiment, both of 
which are provided by the Federal Reserve's data service. We will use the familiar pandas-
datareader library to retrieve data from 1970 through 2017:

df = web.DataReader(['UMCSENT', 'IPGMFN'],  
                    'fred', '1970', '2017-12').dropna()

df.columns = ['sentiment', 'ip']

Log-transforming the industrial production series and seasonal differencing using a lag of 
12 for both series yields stationary results:

df_transformed = pd.DataFrame({'ip': np.log(df.ip).diff(12),
                              'sentiment': df.sentiment.diff(12)}).dropna()
test_unit_root(df_transformed) # see notebook for details and additional 
plots

          p-value

ip          0.0003

sentiment   0.0000
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This leaves us with the following series:

Figure 9.10: Transformed time series: industrial production and consumer sentiment

To limit the size of the output, we will just estimate a VAR(1) model using the statsmodels 
VARMAX implementation (which allows for optional exogenous variables) with a constant 
trend using the first 480 observations:

model = VARMAX(df_transformed.loc[:'2017'], order=(1,1),  
               trend='c').fit(maxiter=1000)

This produces the following summary:

Figure 9.11: VAR(1) model results



Time-Series Models for Volatility Forecasts and Statistical Arbitrage

[ 280 ]

The output contains the coefficients for both time-series equations, as outlined in the 
preceding VAR(1) illustration. statsmodels provides diagnostic plots to check whether 
the residuals meet the white noise assumptions. This is not exactly the case in this simple 
example because the variance does not appear to be constant (upper left) and the quantile 
plot shows differences in the distribution, namely fat tails (lower left):

Figure 9.12: statsmodels VAR model diagnostic plot

You can generate out-of-sample predictions as follows:

preds = model.predict(start=480, end=len(df_transformed)-1)

The following visualization of actual and predicted values shows how the prediction lags 
the actual values and does not capture nonlinear, out-of-sample patterns well:

Figure 9.13: VAR model predictions versus actuals
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Cointegration – time series with a shared trend
We briefly mentioned cointegration in the previous section on multivariate time-series 
models. Let's now explain this concept and how to diagnose its presence in more detail 
before leveraging it for a statistical arbitrage trading strategy.

We have seen how a time series can have a unit root that creates a stochastic trend and 
makes the time series highly persistent. When we use such an integrated time series in 
their original, rather than in differenced, form as a feature in a linear regression model, its 
relationship with the outcome will often appear statistically significant, even though it is 
not. This phenomenon is called spurious regression (for details, see Chapter 18, CNNs for 
Financial Time Series and Satellite Images, in Wooldridge, 2008). Therefore, the recommended 
solution is to difference the time series so they become stationary before using them in a 
model.

However, there is an exception when there are cointegration relationships between the 
outcome and one or more input variables. To understand the concept of cointegration, 
let's first remember that the residuals of a regression model are a linear combination of the 
inputs and the output series.

Usually, the residuals of the regression of one integrated time series on one or more 
such series yields non-stationary residuals that are also integrated, and thus behave 
like a random walk. However, for some time series, this is not the case: the regression 
produces coefficients that yield a linear combination of the time series in the form of the 
residuals that are stationary, even though the individual series are not. Such time series are 
cointegrated.

A non-technical example is that of a drunken man on a random walk accompanied by 
his dog (on a leash). Both trajectories are non-stationary but cointegrated because the dog 
will occasionally revert to his owner. In the trading context, arbitrage constraints imply 
cointegration between spot and futures prices.

In other words, a linear combination of two or more cointegrated series has a stable 
mean to which this linear combination reverts. This also applies when the individual series 
are integrated of a higher order and the linear combination reduces the overall order of 
integration.

Cointegration differs from correlation: two series can be highly correlated but need not be 
cointegrated. For example, if two growing series are constant multiples of each other, their 
correlation will be high, but any linear combination will also grow rather than revert to a 
stable mean.

Cointegration is very useful: if two or more asset price series tend to revert to a common 
mean, we can leverage deviations from the trend because they should imply future price 
moves in the opposite direction. The mathematics behind cointegration is more involved, so 
we will only focus on the practical aspects; for an in-depth treatment, see Lütkepohl (2005).
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In this section, we will address how we can identify pairs with such a long-term stationary 
relationship, estimate the expected time for any disequilibrium to correct, and how to 
utilize these tools to implement and backtest a long-short pairs trading strategy.

There are two approaches to testing for cointegration:

• The Engle-Granger two-step method

• The Johansen test

We'll discuss each in turn before we show how they help identify cointegrated securities 
that tend to revert to a common trend, a fact that we can leverage for a statistical arbitrage 
strategy.

The Engle-Granger two-step method
The Engle-Granger method is used to identify cointegration relationships between two 
series. It involves both of the following:

1. Regressing one series on another to estimate the stationary long-term relationship

2. Applying an ADF unit-root test to the regression residual

The null hypothesis is that the residuals have a unit root and are integrated; if we can reject 
it, then we assume that the residuals are stationary and, thus, the series are cointegrated 
(Engle and Granger 1987).

A key benefit of this approach is that the regression coefficient represents the multiplier 
that renders the combination stationary, that is, mean-reverting. Unfortunately, the test 
results will differ, depending on which variable we consider independent, so that we try 
both ways and then pick the relation with the more negative test statistic that has the lower 
p-value.

Another downside is that this test is limited to pairwise relationships. The more complex 
Johansen procedure can identify significant cointegration among up to a dozen time series.

The Johansen likelihood-ratio test
The Johansen procedure, in contrast, tests the restrictions imposed by cointegration on a 
VAR model, as discussed in the previous section. More specifically, after subtracting the 
target vector from both sides of a generic VAR(p) model, we obtain the error correction 
model (ECM) formulation:∆𝒚𝒚𝒕𝒕 = 𝒄𝒄 𝒄 𝒄𝒄𝒚𝒚𝒕𝒕𝒕𝒕𝒕 𝒄 𝚪𝚪𝒕𝒕∆𝒚𝒚𝒕𝒕𝒕𝒕𝒕𝒄. . . 𝒄𝚪𝚪𝒑𝒑∆𝒚𝒚𝒕𝒕𝒕𝒑𝒑 𝒄 𝝐𝝐𝒕𝒕 
The resulting modified VAR(p) equation has only one vector term in levels (y

t-1
) that is not 

expressed as a difference using the ∆  operator. The nature of cointegration depends on the 
rank of the coefficient matrix Π  of this term (Johansen 1991).
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While this equation appears structurally similar to the ADF test setup, there are now 
several potential constellations of common trends because there are multiple series 
involved. To identify the number of cointegration relationships, the Johansen test 
successively tests for an increasing rank of Π , starting at 0 (no cointegration). We will 
explore the application to the case of two series in the following section.

Gonzalo and Lee (1998) discuss practical challenges due to misspecified model dynamics 
and other implementation aspects, including how to combine both test procedures that we 
will rely on for our sample statistical arbitrage strategy in the next section.

Statistical arbitrage with cointegration
Statistical arbitrage refers to strategies that employ some statistical model or method to take 
advantage of what appears to be relative mispricing of assets, while maintaining a level of 
market neutrality.

Pairs trading is a conceptually straightforward strategy that has been employed by 
algorithmic traders since at least the mid-eighties (Gatev, Goetzmann, and Rouwenhorst 
2006). The goal is to find two assets whose prices have historically moved together, track 
the spread (the difference between their prices), and, once the spread widens, buy the 
loser that has dropped below the common trend and short the winner. If the relationship 
persists, the long and/or the short leg will deliver profits as prices converge and the 
positions are closed.

This approach extends to a multivariate context by forming baskets from multiple securities 
and trading one asset against a basket of two baskets against each other.

In practice, the strategy requires two steps: 

1. Formation phase: Identify securities that have a long-term mean-reverting 
relationship. Ideally, the spread should have a high variance to allow for frequent 
profitable trades while reliably reverting to the common trend.

2. Trading phase: Trigger entry and exit trading rules as price movements cause the 
spread to diverge and converge.

Several approaches to the formation and trading phases have emerged from increasingly 
active research in this area, across multiple asset classes, over the last several years. The 
next subsection outlines the key differences before we dive into an example application.

How to select and trade comoving asset pairs
A recent comprehensive survey of pairs trading strategies (Krauss 2017) identified four 
different methodologies, plus a number of other more recent approaches, including ML-
based forecasts:
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• Distance approach: The oldest and most-studied method identifies candidate 
pairs with distance metrics like correlation and uses non-parametric thresholds 
like Bollinger Bands to trigger entry and exit trades. Its computational simplicity 
allows for large-scale applications with demonstrated profitability across markets 
and asset classes for extended periods of time since Gatev, et al. (2006). However, 
performance has decayed more recently.

• Cointegration approach: As outlined previously, this approach relies on an 
econometric model of a long-term relationship among two or more variables, 
and allows for statistical tests that promise more reliability than simple distance 
metrics. Examples in this category use the Engle-Granger and Johansen procedures 
to identify pairs and baskets of securities, as well as simpler heuristics that aim to 
capture the concept (Vidyamurthy 2004). Trading rules often resemble the simple 
thresholds used with distance metrics.

• Time-series approach: With a focus on the trading phase, strategies in this category 
aim to model the spread as a mean-reverting stochastic process and optimize entry 
and exit rules accordingly (Elliott, Hoek, and Malcolm 2005). It assumes promising 
pairs have already been identified.

• Stochastic control approach: Similar to the time-series approach, the goal is to 
optimize trading rules using stochastic control theory to find value and policy 
functions to arrive at an optimal portfolio (Liu and Timmermann 2013). We will 
address this type of approach in Chapter 21, Generative Adversarial Networks for 
Synthetic Time-Series Data.

• Other approaches: Besides pair identification based on unsupervised learning like 
principal component analysis (see Chapter 13, Data-Driven Risk Factors and Asset 
Allocation with Unsupervised Learning) and statistical models like copulas (Patton 
2012), machine learning has become popular more recently to identify pairs based 
on their relative price or return forecasts (Huck 2019). We will cover several 
ML algorithms that can be used for this purpose and illustrate corresponding 
multivariate pairs trading strategies in the coming chapters.

This summary of the various approaches offers barely a glimpse at the flexibility afforded 
by the design of a pairs trading strategy. In addition to higher-level questions about pair 
selection and trading rule logic, there are numerous parameters that we need to define for 
implementation. These parameters include the following:

• Investment universe to screen for potential pairs or baskets

• Length of the formation period

• Strength of the relationship used to pick tradeable candidates

• Degree of deviation from and convergence to their common means to trigger entry 
or exit trades or to adjust existing positions as spreads fluctuate
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Pairs trading in practice
The distance approach identifies pairs using the correlation of (normalized) asset prices or 
their returns, and is simple and orders of magnitude less computationally intensive than 
cointegration tests. The notebook cointegration_test illustrates this for a sample of ~150 
stocks with 4 years of daily data: it takes ~30ms to compute the correlation with the returns 
of an ETF, compared to 18 seconds for a suite of cointegration tests (using statsmodels) – 
600x slower.

The speed advantage is particularly valuable. This is because the number of potential 
pairs is the product of the number of candidates to be considered on either side so that 
evaluating combinations of 100 stocks and 100 ETFs requires comparing 10,000 tests (we'll 
discuss the challenge of multiple testing bias later).

On the other hand, distance metrics do not necessarily select the most profitable pairs: 
correlation is maximized for perfect co-movement, which, in turn, eliminates actual 
trading opportunities. Empirical studies confirm that the volatility of the price spread of 
cointegrated pairs is almost twice as high as the volatility of the price spread of distance 
pairs (Huck and Afawubo 2015).

To balance the tradeoff between computational cost and the quality of the resulting 
pairs, Krauss (2017) recommends a procedure that combines both approaches based on his 
literature review:

1. Select pairs with a stable spread that shows little drift to reduce the number of 
candidates

2. Test the remaining pairs with the highest spread variance for cointegration

This process aims to select cointegrated pairs with lower divergence risk while ensuring 
more volatile spreads that, in turn, generate higher profit opportunities.

A large number of tests introduce data snooping bias, as discussed in Chapter 6, The 
Machine Learning Process: multiple testing is likely to increase the number of false positives 
that mistakenly reject the null hypothesis of no cointegration. While statistical significance 
may not be necessary for profitable trading (Chan 2008), a study of commodity pairs 
(Cummins and Bucca 2012) shows that controlling the familywise error rate to improve the 
tests' power, according to Romano and Wolf (2010), can lead to better performance.

In the following subsection, we'll take a closer look at how predictive various heuristics for 
the degree of comovement of asset prices are for the result of cointegration tests.

The example code uses a sample of 172 stocks and 138 ETFs traded on the NYSE and 
NASDAQ, with daily data from 2010 - 2019 provided by Stooq.

The securities represent the largest average dollar volume over the sample period in 
their respective class; highly correlated and stationary assets have been removed. See the 
notebook create_datasets in the data folder of the GitHub repository for instructions on 
how to obtain the data, and the notebook cointegration_tests for the relevant code and 
additional preprocessing and exploratory details.



Time-Series Models for Volatility Forecasts and Statistical Arbitrage

[ 286 ]

Distance-based heuristics to find cointegrated pairs
compute_pair_metrics() computes the following distance metrics for over 23,000 pairs of 
stocks and Exchange Traded Funds (ETFs) for 2010-14 and 2015-19: 

• The drift of the spread, defined as a linear regression of a time trend on the spread
• The spread's volatility

• The correlations between the normalized price series and between their returns

Low drift and volatility, as well as high correlation, are simple proxies for cointegration.

To evaluate the predictive power of these heuristics, we also run Engle-Granger and 
Johansen cointegration tests using statsmodels for the preceding pairs. This takes place in 
the loop in the second half of compute_pair_metrics().

We first estimate the optimal number of lags that we need to specify for the Johansen test. 
For both tests, we assume that the cointegrated series (the spread) may have an intercept 
different from zero but no trend:

def compute_pair_metrics(security, candidates):

    security = security.div(security.iloc[0])

    ticker = security.name

    candidates = candidates.div(candidates.iloc[0])

    # compute heuristics

    spreads = candidates.sub(security, axis=0)

    n, m = spreads.shape

    X = np.ones(shape=(n, 2))

    X[:, 1] = np.arange(1, n + 1)

    drift = ((np.linalg.inv(X.T @ X) @ X.T @ spreads).iloc[1]

             .to_frame('drift'))

    vol = spreads.std().to_frame('vol')

    corr_ret = (candidates.pct_change()

                .corrwith(security.pct_change())

                .to_frame('corr_ret'))

    corr = candidates.corrwith(security).to_frame('corr')

    metrics = drift.join(vol).join(corr).join(corr_ret).assign(n=n)

    tests = []

    # compute cointegration tests

    for candidate, prices in candidates.items():

        df = pd.DataFrame({'s1': security, 's2': prices})

        var = VAR(df)

        lags = var.select_order() # select VAR order

        k_ar_diff = lags.selected_orders['aic']



Chapter 9

[ 287 ]

        # Johansen Test with constant Term and estd. lag order

        cj0 = coint_johansen(df, det_order=0, k_ar_diff=k_ar_diff)
        # Engle-Granger Tests

        t1, p1 = coint(security, prices, trend='c')[:2]

        t2, p2 = coint(prices, security, trend='c')[:2]

        tests.append([ticker, candidate, t1, p1, t2, p2, 

                      k_ar_diff, *cj0.lr1])
 

    return metrics.join(tests)

To check for the significance of the cointegration tests, we compare the Johansen trace 
statistic for rank 0 and 1 to their respective critical values and obtain the Engle-Granger 
p-value. 

We follow the recommendation by Gonzalo and Lee (1998), mentioned at the end of the 
previous section, to apply both tests and accept pairs where they agree. The authors suggest 
additional due diligence in case of disagreement, which we are going to skip:

spreads['trace_sig'] = ((spreads.trace0 > trace0_cv) &

                        (spreads.trace1 > trace1_cv)).astype(int)

spreads['eg_sig'] = (spreads.p < .05).astype(int)

For the over 46,000 pairs across both sample periods, the Johansen test considers 3.2 percent 
of the relationships as significant, while the Engle-Granger considers 6.5 percent. They 
agree on 366 pairs (0.79 percent).

How well do the heuristics predict significant cointegration?
When we compare the distributions of the heuristics for series that are cointegrated 
according to both tests with the remainder that is not, volatility and drift are indeed lower 
(in absolute terms). Figure 9.14 shows that the picture is less clear for the two correlation 
measures:

Figure 9.14: The distribution of heuristics, broken down by the significance of both cointegration tests

To evaluate the predictive accuracy of the heuristics, we first run a logistic regression model 
with these features to predict significant cointegration. It achieves an  
area-under-the-curve (AUC) cross-validation score of 0.815; excluding the correlation 
metrics, it still scores 0.804. A decision tree does slightly better at AUC=0.821, with or 
without the correlation features.
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Not least due to the strong class imbalance, there are large numbers of false positives: 
correctly identifying 80 percent of the 366 cointegrated pairs implies over 16,500 false 
positives, but eliminates almost 30,000 of the candidates. See the notebook cointegration_
tests for additional detail.

The key takeaway is that distance heuristics can help screen a large universe more 
efficiently, but this comes at a cost of missing some cointegrated pairs and still requires 
substantial testing.

Preparing the strategy backtest
In this section, we are going to implement a statistical arbitrage strategy based on 
cointegration for the sample of stocks and ETFs and the 2017-2019 period. Some aspects are 
simplified to streamline the presentation. See the notebook statistical_arbitrage_with_
cointegrated_pairs for the code examples and additional detail.

We first generate and store the cointegration tests for all candidate pairs and the 
resulting trading signals. Then, we backtest a strategy based on these signals, given the 
computational intensity of the process.

Precomputing the cointegration tests

First, we run quarterly cointegration tests over a 2-year lookback period on each of the 
23,000 potential pairs, Then, we select pairs where both the Johansen and the Engle-
Granger tests agree for trading. We should exclude assets that are stationary during the 
lookback period, but we eliminated assets that are stationary for the entire period, so we 
skip this step to simplify it.

This procedure follows the steps outlined previously; please see the notebook for details.

Figure 9.15 shows the original stock and ETF series of the two different pairs selected for 
trading; note the clear presence of a common trend over the sample period:

Figure 9.15: Price series for two selected pairs over the sample period
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Getting entry and exit trades

Now, we can compute the spread for each candidate pair based on a rolling hedge ratio. 
We also calculate a Bollinger Band because we will consider moves of the spread larger 
than two rolling standard deviations away from its moving average as long and short entry 
signals, and crossings of the moving average in reverse as exit signals.

Smoothing prices with the Kalman filter
To this end, we first apply a rolling Kalman filter (KF) to remove some noise, as 
demonstrated in Chapter 4, Financial Feature Engineering – How to Research Alpha Factors:

def KFSmoother(prices):

    """Estimate rolling mean"""

    

    kf = KalmanFilter(transition_matrices=np.eye(1),

                      observation_matrices=np.eye(1),

                      initial_state_mean=0,

                      initial_state_covariance=1,

                      observation_covariance=1,

                      transition_covariance=.05)

    state_means, _ = kf.filter(prices.values)
    return pd.Series(state_means.flatten(),
                     index=prices.index)

Computing the rolling hedge ratio using the Kalman filter
To obtain a dynamic hedge ratio, we use the KF for rolling linear regression, as follows:

def KFHedgeRatio(x, y):

    """Estimate Hedge Ratio"""

    delta = 1e-3

    trans_cov = delta / (1 - delta) * np.eye(2)

    obs_mat = np.expand_dims(np.vstack([[x], [np.ones(len(x))]]).T, axis=1)

    kf = KalmanFilter(n_dim_obs=1, n_dim_state=2,

                      initial_state_mean=[0, 0],

                      initial_state_covariance=np.ones((2, 2)),

                      transition_matrices=np.eye(2),

                      observation_matrices=obs_mat,

                      observation_covariance=2,

                      transition_covariance=trans_cov)

    state_means, _ = kf.filter(y.values)
    return -state_means
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Estimating the half-life of mean reversion

If we view the spread as a mean-reverting stochastic process in continuous time, we can 
model it as an Ornstein-Uhlenbeck process. The benefit of this perspective is that we gain 
a formula for the half-life of mean reversion, as an approximation of the time required for 
the spread to converge again after a deviation (see Chapter 2, Market and Fundamental Data – 
Sources and Techniques, in Chan 2013 for details):

def estimate_half_life(spread):

    X = spread.shift().iloc[1:].to_frame().assign(const=1)

    y = spread.diff().iloc[1:]
    beta = (np.linalg.inv(X.T@X)@X.T@y).iloc[0]

    halflife = int(round(-np.log(2) / beta, 0))
    return max(halflife, 1)

Computing spread and Bollinger Bands

The following function orchestrates the preceding computations and expresses the spread 
as a z-score that captures deviations from the moving average with a window equal to two 
half-lives in terms of the rolling standard deviations:

def get_spread(candidates, prices):

    pairs, half_lives = [], []

    periods = pd.DatetimeIndex(sorted(candidates.test_end.unique()))

    start = time()

    for p, test_end in enumerate(periods, 1):

        start_iteration = time()

        period_candidates = candidates.loc[candidates.test_end == test_end, 

                                          ['y', 'x']]

        trading_start = test_end + pd.DateOffset(days=1)
        t = trading_start - pd.DateOffset(years=2)
        T = trading_start + pd.DateOffset(months=6) - pd.DateOffset(days=1)
        max_window = len(prices.loc[t: test_end].index)

        print(test_end.date(), len(period_candidates))

        for i, (y, x) in enumerate(zip(period_candidates.y, 

                                       period_candidates.x), 1):

            pair = prices.loc[t: T, [y, x]]

            pair['hedge_ratio'] = KFHedgeRatio(

                y=KFSmoother(prices.loc[t: T, y]),

                x=KFSmoother(prices.loc[t: T, x]))[:, 0]

            pair['spread'] = pair[y].add(pair[x].mul(pair.hedge_ratio))

            half_life = estimate_half_life(pair.spread.loc[t: test_end])

            spread = pair.spread.rolling(window=min(2 * half_life, 

                                                    max_window))

            pair['z_score'] = pair.spread.sub(spread.mean()).div(spread.
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std())

            pairs.append(pair.loc[trading_start: T].assign(s1=y, s2=x, 
period=p, pair=i).drop([x, y], axis=1))

            half_lives.append([test_end, y, x, half_life])

    return pairs, half_lives

Getting entry and exit dates for long and short positions

Finally, we use the set of z-scores to derive trading signals: 

1. We enter a long (short) position if the z-score is below (above) two, which implies the 
spread has moved two rolling standard deviations below (above) the moving average

2. We exit trades when the spread crosses the moving average again

We derive rules on a quarterly basis for the set of pairs that passed the cointegration tests 
during the prior lookback period but allow pairs to exit during the subsequent 3 months. 

We again simplify this by dropping pairs that do not close during this 6-month period. 
Alternatively, we could have handled this using the stop-loss risk management that we 
included in the strategy (see the next section on backtesting):

def get_trades(data):

    pair_trades = []

    for i, ((period, s1, s2), pair) in enumerate( 
             data.groupby(['period', 's1', 's2']), 1):

        if i % 100 == 0:

            print(i)

        first3m = pair.first('3M').index
        last3m = pair.last('3M').index

        entry = pair.z_score.abs() > 2

        entry = ((entry.shift() != entry)

                 .mul(np.sign(pair.z_score))

                 .fillna(0)
                 .astype(int)

                 .sub(2))

        exit = (np.sign(pair.z_score.shift().fillna(method='bfill'))
                != np.sign(pair.z_score)).astype(int) - 1

        trades = (entry[entry != -2].append(exit[exit == 0])

                  .to_frame('side')

                  .sort_values(['date', 'side'])

                  .squeeze())
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        trades.loc[trades < 0] += 2

        trades = trades[trades.abs().shift() != trades.abs()]

        window = trades.loc[first3m.min():first3m.max()]
        extra = trades.loc[last3m.min():last3m.max()]

        n = len(trades)

        if window.iloc[0] == 0:

            if n > 1:

                print('shift')

                window = window.iloc[1:]

        if window.iloc[-1] != 0:

            extra_exits = extra[extra == 0].head(1)

            if extra_exits.empty:

                continue

            else:

                window = window.append(extra_exits)

        trades = (pair[['s1', 's2', 'hedge_ratio', 'period', 'pair']]

                  .join(window. to_frame('side'), how='right'))

        trades.loc[trades.side == 0, 'hedge_ratio'] = np.nan

        trades.hedge_ratio = trades.hedge_ratio.ffill()
        pair_trades.append(trades)

    return pair_trades

Backtesting the strategy using backtrader
Now, we are ready to formulate our strategy on our backtesting platform, execute it, and 
evaluate the results. To do so, we need to track our pairs, in addition to individual portfolio 
positions, and monitor the spread of active and inactive pairs to apply our trading rules.

Tracking pairs with a custom DataClass

To account for active pairs, we define a dataclass (introduced in Python 3.7—see the 
Python documentation for details). This data structure, called Pair, allows us to store the 
pair components, their number of shares, and the hedge ratio, and compute the current 
spread and the return, among other things. See a simplified version in the following code:

@dataclass

class Pair:

    period: int

    s1: str

    s2: str

    size1: float
    size2: float
    long: bool

    hr: float
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    p1: float
    p2: float
    entry_date: date = None

    exit_date: date = None

    entry_spread: float = np.nan
    exit_spread: float = np.nan

    def compute_spread(self, p1, p2):

        return p1 * self.size1 + p2 * self.size2

    def compute_spread_return(self, p1, p2):

        current_spread = self.compute_spread(p1, p2)

        delta = self.entry_spread - current_spread

        return (delta / (np.sign(self.entry_spread) *

                         self.entry_spread))

Running and evaluating the strategy

Key implementation aspects include:

• The daily exit from pairs that have either triggered the exit rule or exceeded a given 
negative return

• The opening of new long and short positions for pairs whose spreads triggered 
entry signals

• In addition, we adjust positions to account for the varying number of pairs

The code for the strategy itself takes up too much space to display here; see the notebook 
pairs_trading_backtest for details. 

Figure 9.16 shows that, at least for the 2017-2019 period, this simplified strategy had its moments 
(note that we availed ourselves of some lookahead bias and ignored transaction costs).

Under these lax assumptions, it underperformed the S&P 500 at the beginning and end of 
the period and was otherwise roughly in line (left panel). It yields an alpha of 0.08 and a 
negative beta of -0.14 (right panel), with an average Sharpe ratio of 0.75 and a Sortino ratio 
of 1.05 (central panel):

Figure 9.16: Strategy performance metrics
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While we should take these performance metrics with a grain of salt, the strategy 
demonstrates the anatomy of a statistical arbitrage based on cointegration in the form of 
pairs trading. Let's take a look at a few steps you could take to build on this framework to 
produce better performance.

Extensions – how to do better
Cointegration is a very useful concept to identify pairs or groups of stocks that tend to 
move in unison. Compared to the statistical sophistication of cointegration, we used very 
simple and static trading rules; the computation on a quarterly basis also distorts the 
strategy, as the patterns of long and short holdings show (see notebook).

To be successful, you will, at a minimum, need to screen a larger universe and optimize 
several of the parameters, including the trading rules. Moreover, risk management should 
account for concentrated positions that arise when certain assets appear relatively often on 
the same side of a traded pair.

You could also operate with baskets as opposed to individual pairs; however, to address 
the growing number of candidates, you would likely need to constrain the composition of 
the baskets.

As mentioned in the Pairs trading – statistical arbitrage with cointegration section, there are 
alternatives that aim to predict price movements. In the following chapters, we will explore 
various machine learning models that aim to predict the absolute size or the direction 
of price movements for a given investment universe and horizon. Using these forecasts 
as long and short entry signals is a natural extension or alternative to the pairs trading 
framework that we studied in this section.

Summary
In this chapter, we explored linear time-series models for the univariate case of individual 
series, as well as multivariate models for several interacting series. We encountered 
applications that predict macro fundamentals, models that forecast asset or portfolio 
volatility with widespread use in risk management, and multivariate VAR models 
that capture the dynamics of multiple macro series. We also looked at the concept of 
cointegration, which underpins the popular pair-trading strategy.

Similar to Chapter 7, Linear Models – From Risk Factors to Return Forecasts, we saw how linear 
models impose a lot of structure, that is, they make strong assumptions that potentially 
require transformations and extensive testing to verify that these assumptions are met. If 
they are, model-training and interpretation are straightforward, and the models provide 
a good baseline that more complex models may be able to improve on. In the next two 
chapters, we will see two examples of this, namely random forests and gradient boosting 
models, and we will encounter several more in Part 4, which is on deep learning.
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10
Bayesian ML – Dynamic Sharpe  

Ratios and Pairs Trading

In this chapter, we will introduce Bayesian approaches to machine learning (ML) and how 
their different perspective on uncertainty adds value when developing and evaluating 
trading strategies.

Bayesian statistics allows us to quantify uncertainty about future events and refine our 
estimates in a principled way as new information arrives. This dynamic approach adapts 
well to the evolving nature of financial markets. It is particularly useful when there are 
fewer relevant data and we require methods that systematically integrate prior knowledge 
or assumptions.

We will see that Bayesian approaches to machine learning allow for richer insights into 
the uncertainty around statistical metrics, parameter estimates, and predictions. The 
applications range from more granular risk management to dynamic updates of predictive 
models that incorporate changes in the market environment. The Black-Litterman approach 
to asset allocation (see Chapter 5, Portfolio Optimization and Performance Evaluation) can be 
interpreted as a Bayesian model. It computes the expected return of an asset as an average 
of the market equilibrium and the investor's views, weighted by each asset's volatility, 
cross-asset correlations, and the confidence in each forecast.

More specifically, in this chapter, we will cover:
• How Bayesian statistics apply to ML

• Probabilistic programming with PyMC3

• Defining and training ML models using PyMC3
• How to run state-of-the-art sampling methods to conduct approximate inference

• Bayesian ML applications to compute dynamic Sharpe ratios, dynamic pairs trading 
hedge ratios, and estimate stochastic volatility
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How Bayesian machine learning works
Classical statistics is said to follow the frequentist approach because it interprets 
probability as the relative frequency of an event over the long run, that is, after observing 
a large number of trials. In the context of probabilities, an event is a combination of one or 
more elementary outcomes of an experiment, such as any of six equal results in rolls of two 
dice or an asset price dropping by 10 percent or more on a given day).

Bayesian statistics, in contrast, views probability as a measure of the confidence or belief in 
the occurrence of an event. The Bayesian perspective, thus, leaves more room for subjective 
views and differences in opinions than the frequentist interpretation. This difference is 
most striking for events that do not happen often enough to arrive at an objective measure 
of long-term frequency.

Put differently, frequentist statistics assumes that data is a random sample from a 
population and aims to identify the fixed parameters that generated the data. Bayesian 
statistics, in turn, takes the data as given and considers the parameters to be random 
variables with a distribution that can be inferred from data. As a result, frequentist 
approaches require at least as many data points as there are parameters to be estimated. 
Bayesian approaches, on the other hand, are compatible with smaller datasets, and well 
suited for online learning from one sample at a time.

The Bayesian view is very useful for many real-world events that are rare or unique, at least 
in important respects. Examples include the outcome of the next election or the question 
of whether the markets will crash within 3 months. In each case, there is both relevant 
historical data as well as unique circumstances that unfold as the event approaches.

We will first introduce Bayes' theorem, which crystallizes the concept of updating beliefs 
by combining prior assumptions with new empirical evidence, and compare the resulting 
parameter estimates with their frequentist counterparts. We will then demonstrate two 
approaches to Bayesian statistical inference, namely conjugate priors and approximate 
inference, which produce insights into the posterior distribution of latent (that is, 
unobserved) parameters, such as the expected value:

• Conjugate priors facilitate the updating process by providing a closed-form 
solution that allows us to precisely compute the solution. However, such exact, 
analytical methods are not always available.

• Approximate inference simulates the distribution that results from combining 
assumptions and data and uses samples from this distribution to compute 
statistical insights.

You can find the code samples for this chapter and links to 
additional resources in the corresponding directory of the GitHub 
repository. The notebooks include color versions of the images. 
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How to update assumptions from empirical evidence

"When the facts change, I change my mind. What do you do, sir?"

                                                                                                        – John Maynard Keynes

The theorem that Reverend Thomas Bayes came up with, over 250 years ago, uses 
fundamental probability theory to prescribe how probabilities or beliefs should change 
as relevant new information arrives. The preceding Keynes quotation captures that spirit. 
It relies on the conditional and total probability and the chain rule; see Bishop (2006) and 
Gelman et al. (2013) for an introduction and more.

The probabilistic belief concerns a single parameter or a vector of parameters  (also: 
hypotheses). Each parameter can be discrete or continuous. 𝜃𝜃  could be a one-dimensional 
statistic like the (discrete) mode of a categorical variable or a (continuous) mean, or a higher 
dimensional set of values like a covariance matrix or the weights of a deep neural network.

A key difference to frequentist statistics is that Bayesian assumptions are expressed as 
probability distributions rather than parameter values. Consequently, while frequentist 
inference focuses on point estimates, Bayesian inference yields probability distributions.

Bayes' theorem updates the beliefs about the parameters of interest by computing the 
posterior probability distribution from the following inputs, as shown in Figure 10.1:

• The prior distribution indicates how likely we consider each possible hypothesis.

• The likelihood function outputs the probability of observing a dataset when given 
certain values for the parameters 𝜃𝜃 , that is, for a specific hypothesis.

• The evidence measures how likely the observed data is, given all possible 
hypotheses. Hence, it is the same for all parameter values and serves to normalize 
the numerator.

Figure 10.1: How evidence updates the prior to the posterior probability distribution



Bayesian ML – Dynamic Sharpe Ratios and Pairs Trading

[ 298 ]

The posterior is the product of prior and likelihood, divided by the evidence. Thus, it 
reflects the probability distribution of the hypothesis, updated by taking into account 
both prior assumptions and the data. Viewed differently, the posterior probability results 
from applying the chain rule, which, in turn, factorizes the joint distribution of data and 
parameters.

With higher-dimensional, continuous variables, the formulation becomes more complex 
and involves (multiple) integrals. Also, an alternative formulation uses odds to express the 
posterior odds as the product of the prior odds, times the likelihood ratio (see Gelman et 
al. 2013).

Exact inference – maximum a posteriori estimation
Practical applications of Bayes' rule to exactly compute posterior probabilities are quite 
limited. This is because the computation of the evidence term in the denominator is quite 
challenging. The evidence reflects the probability of the observed data over all possible 
parameter values. It is also called the marginal likelihood because it requires "marginalizing 
out" the parameters' distribution by adding or integrating over their distribution. This is 
generally only possible in simple cases with a small number of discrete parameters that 
assume very few values.

Maximum a posteriori probability (MAP) estimation leverages the fact that the evidence is a 
constant factor that scales the posterior to meet the requirements for a probability distribution. 
Since the evidence does not depend on 𝜃𝜃 , the posterior distribution is proportional to the 
product of the likelihood and the prior. Hence, MAP estimation chooses the value of 𝜃𝜃  that 
maximizes the posterior given the observed data and the prior belief, that is, the mode of the 
posterior.

The MAP approach contrasts with the Maximum Likelihood Estimation (MLE) of 
parameters that define a probability distribution. MLE picks the parameter value 𝜃𝜃  that 
maximizes the likelihood function for the observed training data.

A look at the definitions highlights that MAP differs from MLE by including the prior 
distribution. In other words, unless the prior is a constant, the MAP estimate will differ 
from its MLE counterpart: 𝜃𝜃MLE = arg max𝜃𝜃 𝑃𝑃(𝑋𝑋|𝜃𝜃) 

The MLE solution tends to reflect the frequentist notion that probability estimates should 
reflect observed ratios. On the other hand, the impact of the prior on the MAP estimate 
often corresponds to adding data that reflects the prior assumptions to the MLE. For 
example, a strong prior that a coin is biased can be incorporated in the MLE context by 
adding skewed trial data.

Prior distributions are a critical ingredient to Bayesian models. We will now introduce 
some convenient choices that facilitate analytical inference.
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How to select priors
The prior should reflect knowledge about the distribution of the parameters because it 
influences the MAP estimate. If a prior is not known with certainty, we need to make a 
choice, often from several reasonable options. In general, it is good practice to justify the 
prior and check for robustness by testing whether alternatives lead to the same conclusion.

There are several types of priors:

• Objective priors maximize the impact of the data on the posterior. If the parameter 
distribution is unknown, we can select an uninformative prior like a uniform 
distribution, also called a flat prior, over a relevant range of parameter values.

• In contrast, subjective priors aim to incorporate information external to the model 
into the estimate. In the Black-Litterman context, the investor's belief about an 
asset's future return would be an example of a subjective prior.

• An empirical prior combines Bayesian and frequentist methods and uses historical 
data to eliminate subjectivity, for example, by estimating various moments to fit a 
standard distribution. Using some historical average of daily returns rather than a 
belief about future returns would be an example of a simple empirical prior.

In the context of an ML model, the prior can be viewed as a regularizer because it limits 
the values that the posterior can assume. Parameters that have zero prior probability, for 
instance, are not part of the posterior distribution. Generally, more good data allows for 
stronger conclusions and reduces the influence of the prior.

How to keep inference simple – conjugate priors

A prior distribution is conjugate with respect to the likelihood when the resulting posterior 
is of the same class or family of distributions as the prior, except for different parameters. 
For example, when both the prior and the likelihood are normally distributed, then the 
posterior is also normally distributed.

The conjugacy of prior and likelihood implies a closed-form solution for the posterior that 
facilitates the update process and avoids the need to use numerical methods to approximate the 
posterior. Moreover, the resulting posterior can be used as the prior for the next update step.

Let's illustrate this process using a binary classification example for stock price movements.

Dynamic probability estimates of asset price moves

When the data consists of binary Bernoulli random variables with a certain success 
probability for a positive outcome, the number of successes in repeated trials follows a 
binomial distribution. The conjugate prior is the beta distribution with support over the 
interval [0, 1] and two shape parameters to model arbitrary prior distributions over the 
success probability. Hence, the posterior distribution is also a beta distribution that we can 
derive by directly updating the parameters.



Bayesian ML – Dynamic Sharpe Ratios and Pairs Trading

[ 300 ]

We will collect samples of different sizes of binarized daily S&P 500 returns, where the 
positive outcome is a price increase. Starting from an uninformative prior that allocates 
equal probability to each possible success probability in the interval [0, 1], we compute the 
posterior for different evidence samples.

The following code sample shows that the update consists of simply adding the observed 
numbers of success and failure to the parameters of the prior distribution to obtain the 
posterior:

n_days = [0, 1, 3, 5, 10, 25, 50, 100, 500]

outcomes = sp500_binary.sample(n_days[-1])

p = np.linspace(0, 1, 100)

# uniform (uninformative) prior

a = b = 1

for i, days in enumerate(n_days):

    up = outcomes.iloc[:days].sum()

    down = days - up

    update = stats.beta.pdf(p, a + up , b + down)

The resulting posterior distributions have been plotted in the following image. They 
illustrate the evolution from a uniform prior that views all success probabilities as equally 
likely to an increasingly peaked distribution.

After 500 samples, the probability is concentrated near the actual probability of a positive 
move at 54.7 percent from 2010 to 2017. It also shows the small differences between MLE 
and MAP estimates, where the latter tends to be pulled slightly toward the expected value 
of the uniform prior:

Figure 10.2: Posterior distributions of the probability that the S&P 500 goes up the next day after up to 500 updates
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In practice, the use of conjugate priors is limited to low-dimensional cases. In addition, the 
simplified MAP approach avoids computing the evidence term but has a key shortcoming, 
even when it is available: it does not return a distribution so that we can derive a measure 
of uncertainty or use it as a prior. Hence, we need to resort to an approximate rather 
than exact inference using numerical methods and stochastic simulations, which we will 
introduce next.

Deterministic and stochastic approximate inference
For most models of practical relevance, it will not be possible to derive the exact posterior 
distribution analytically and compute expected values for the latent parameters. The model 
may have too many parameters, or the posterior distribution may be too complex for an 
analytical solution:

• For continuous variables, the integrals may not have closed-form solutions, while 
the dimensionality of the space and the complexity of the integrand may prohibit 
numerical integration.

• For discrete variables, the marginalizations involve summing over all possible 
configurations of the hidden variables, and though this is always possible in 
principle, we often find in practice that there may be exponentially many hidden 
states that render this calculation prohibitively expensive.

Although for some applications the posterior distribution over unobserved parameters will 
be of interest, most often, it is primarily required to evaluate expectations, for example, to 
make predictions. In such situations, we can rely on approximate inference, which includes 
stochastic and deterministic approaches:

• Stochastic techniques based on Markov chain Monte Carlo (MCMC) sampling 
have popularized the use of Bayesian methods across many domains. They 
generally have the property to converge to the exact result. In practice, sampling 
methods can be computationally demanding and are often limited to small-scale 
problems.

• Deterministic methods called variational inference or variational Bayes are 
based on analytical approximations to the posterior distribution and can scale 
well to large applications. They make simplifying assumptions, for example, that 
the posterior factorizes in a particular way or it has a specific parametric form, 
such as a Gaussian. Hence, they do not generate exact results and can be used as 
complements to sampling methods.

We will outline both approaches in the following two sections.
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Markov chain MonteCarlo sampling

Sampling is about drawing samples X=(x
1
, …, x

n
) from a given distribution p(x). Assuming 

the samples are independent, the law of large numbers ensures that for a growing 
number of samples, the fraction of a given instance x

i
 in the sample (for the discrete case) 

corresponds to its probability p(x=x
i
). In the continuous case, the analogous reasoning 

applies to a given region of the sample space. Hence, averages over samples can be used as 
unbiased estimators of the expected values of parameters of the distribution.

A practical challenge consists of ensuring independent sampling because the distribution 
is unknown. Dependent samples may still be unbiased, but tend to increase the variance 
of the estimate, so that more samples will be needed for an equally precise estimate as for 
independent samples.

Sampling from a multivariate distribution is computationally demanding as the number 
of states increases exponentially with the number of dimensions. Numerous algorithms 
facilitate the process; we will introduce a few popular variations of MCMC-based methods 
here.

A Markov chain is a dynamic stochastic model that describes a random walk over a set 
of states connected by transition probabilities. The Markov property stipulates that the 
process has no memory and that the next step only depends on the current state. In other 
words, this depends on whether the present, past, and future are independent, that is, 
information about past states does not help to predict the future beyond what we know 
from the present.

Monte Carlo methods rely on repeated random sampling to approximate results that may 
be deterministic but that do not permit an exact analytic solution. It was developed during 
the Manhattan Project to estimate energy at the atomic level and received its enduring code 
name to ensure secrecy.

Many algorithms apply the Monte Carlo method to a Markov chain and generally proceed 
as follows:

1. Start at the current position

2. Draw a new position from a proposal distribution

3. Evaluate the probability of the new position in light of data and prior distributions

a. If sufficiently likely, move to the new position
b. Otherwise, remain at the current position

4. Repeat from step 1
5. After a given number of iterations, return all accepted positions



Chapter 10

[ 303 ]

MCMC methods aim to identify and explore interesting regions of the posterior that 
concentrate significant probability density. The memoryless process is said to converge 
when it consistently moves through nearby high-probability states of the posterior where 
the acceptance rate increases. A key challenge is to balance the need for random exploration 
of the sample space with the risk of reducing the acceptance rate.

The initial steps of the process are likely more reflective of the starting position than the posterior, 
and are typically discarded as burn-in samples. A key MCMC property is that the process should 
"forget" about its initial position after a certain (but unknown) number of iterations.

The remaining samples are called the trace of the process. Assuming convergence, the 
relative frequency of samples approximates the posterior and can be used to compute 
expected values based on the law of large numbers.

As already indicated, the precision of the estimate depends on the serial correlation of 
the samples collected by the random walk, each of which, by design, depends only on the 
previous state. Higher correlation limits the effective exploration of the posterior and needs 
to be subjected to diagnostic tests.

General techniques to design such a Markov chain include Gibbs sampling, the 
Metropolis-Hastings algorithm, and more recent Hamiltonian MCMC methods,  
which tend to perform better.

Gibbs sampling

Gibbs sampling simplifies multivariate sampling to a sequence of one-dimensional draws. 
From some starting point, it iteratively holds n-1 variables constant while sampling the nth 
variable. It incorporates this sample and repeats it.

The algorithm is very simple and easy to implement but produces highly correlated 
samples that slow down convergence. The sequential nature also prevents parallelization. 
See Casella and George (1992) for a detailed description and explanation.

Metropolis-Hastings sampling

The Metropolis-Hastings algorithm randomly proposes new locations based on its 
current state. It does so to effectively explore the sample space and reduce the correlation 
of samples relative to Gibbs sampling. To ensure that it samples from the posterior, it 
evaluates the proposal using the product of prior and likelihood, which is proportional 
to the posterior. It accepts with a probability that depends on the result relative to the 
corresponding value for the current sample.

A key benefit of the proposal evaluation method is that it works with a proportional rather 
than an exact evaluation of the posterior. However, it can take a long time to converge. 
This is because the random movements that are not related to the posterior can reduce 
the acceptance rate so that a large number of steps produces only a small number of 
(potentially correlated) samples. The acceptance rate can be tuned by reducing the variance 
of the proposal distribution, but the resulting smaller steps imply less exploration. See Chib 
and Greenberg (1995) for a detailed, introductory exposition of the algorithm.
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Hamiltonian Monte Carlo – going NUTS

Hamiltonian Monte Carlo (HMC) is a hybrid method that leverages the first-order 
derivative information of the gradient of the likelihood. With this, it proposes new states 
for exploration and overcomes some of the MCMC challenges. In addition, it incorporates 
momentum to efficiently "jump around" the posterior. As a result, it converges faster to 
a high-dimensional target distribution than simpler random walk Metropolis or Gibbs 
sampling. See Betancourt (2018) for a comprehensive conceptual introduction.

The No U-Turn Sampler (NUTS, Hoffman and Gelman 2011) is a self-tuning HMC 
extension that adaptively regulates the size and number of moves around the posterior 
before selecting a proposal. It works well on high-dimensional and complex posterior 
distributions, and allows many complex models to be fit without specialized knowledge 
about the fitting algorithm itself. As we will see in the next section, it is the default sampler 
in PyMC3.

Variational inference and automatic differentiation
Variational inference (VI) is an ML method that approximates probability densities 
through optimization. In the Bayesian context, it approximates the posterior distribution, as 
follows:

1. Select a parametrized family of probability distributions

2. Find the member of this family closest to the target, as measured by Kullback-
Leibler divergence

Compared to MCMC, variational Bayes tends to converge faster and scales better to large 
data. While MCMC approximates the posterior with samples from the chain that will 
eventually converge arbitrarily close to the target, variational algorithms approximate the 
posterior with the result of the optimization that is not guaranteed to coincide with the target.

Variational inference is better suited for large datasets, for example, hundreds of millions 
of text documents, so we can quickly explore many models. In contrast, MCMC will deliver 
more accurate results on smaller datasets or when time and computational resources pose 
fewer constraints. For example, MCMC would be a good choice if you had spent 20 years 
collecting a small but expensive dataset, are confident that your model is appropriate, 
and you require precise inferences. See Salimans, Kingma, and Welling (2015) for a more 
detailed comparison.

The downside of variational inference is the need for model-specific derivations and the 
implementation of a tailored optimization routine, which slows down widespread adoption.

The recent Automatic Differentiation Variational Inference (ADVI) algorithm automates 
this process so that the user only specifies the model, expressed as a program, and ADVI 
automatically generates a corresponding variational algorithm (see the references on 
GitHub for implementation details).

We will see that PyMC3 supports various variational inference techniques, including ADVI.
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Probabilistic programming with PyMC3
Probabilistic programming provides a language to describe and fit probability distributions 
so that we can design, encode, and automatically estimate and evaluate complex models. It 
aims to abstract away some of the computational and analytical complexity to allow us to 
focus on the conceptually more straightforward and intuitive aspects of Bayesian reasoning 
and inference.

The field has become quite dynamic since new languages emerged after Uber open 
sourced Pyro (based on PyTorch). Google, more recently, added a probability module to 
TensorFlow.

As a result, the practical relevance and use of Bayesian methods in ML will likely 
increase to generate insights into uncertainty and, in particular, for use cases that require 
transparent rather than black-box models.

In this section, we will introduce the popular PyMC3 library, which implements advanced 
MCMC sampling and variational inference for ML models using Python. Together with 
Stan (named after Stanislaw Ulam, who invented the Monte Carlo method, and developed 
by Andrew Gelman at Columbia University since 2012), PyMC3 is the most popular 
probabilistic programming language.

Bayesian machine learning with Theano
PyMC3 was released in January 2017 to add Hamiltonian MC methods to the Metropolis-
Hastings sampler used in PyMC2 (released 2012). PyMC3 uses Theano as its computational 
backend for dynamic C compilation and automatic differentiation. Theano is a matrix-
focused and GPU-enabled optimization library developed at Yoshua Bengio's Montreal 
Institute for Learning Algorithms (MILA), which inspired TensorFlow. MILA recently 
ceased to further develop Theano due to the success of newer deep learning libraries (see 
Chapter 16, Word Embeddings for Earnings Calls and SEC Filings, for details).

The PyMC3 workflow – predicting a recession
PyMC3 aims for intuitive and readable, yet powerful, syntax that reflects how statisticians 
describe models. The modeling process generally follows these three steps:

1. Encode a probability model by defining:
a. The prior distributions that quantify knowledge and uncertainty about 

latent variables

b. The likelihood function that conditions the parameters on observed data

PyMC4, released in alpha in December 2019, uses TensorFlow instead 
of Theano and aims to limit the impact on the API (see the link to the 
repository on GitHub).
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2. Analyze the posterior using one of the options described in the previous section:

a. Obtain a point estimate using MAP inference

b. Sample from the posterior using MCMC methods

c. Approximate the posterior using variational Bayes

3. Check your model using various diagnostic tools

4. Generate predictions

The resulting model can be used for inference to gain detailed insights into parameter 
values, as well as to predict outcomes for new data points.

We will illustrate this workflow using a simple logistic regression to model the prediction 
of a recession (see the notebook pymc3_workflow). Subsequently, we will use PyMC3 to 
compute and compare Bayesian Sharpe ratios, estimate dynamic pairs trading ratios, and 
implement Bayesian linear time-series models.

The data – leading recession indicators

We will use a small and simple dataset so we can focus on the workflow. We will use the 
Federal Reserve's Economic Data (FRED) service (see Chapter 2, Market and Fundamental 
Data – Sources and Techniques) to download the US recession dates, as defined by the 
National Bureau of Economic Research (NBER). We will also source four variables that 
are commonly used to predict the onset of a recession (Kelley 2019) and available via FRED, 
namely:

• The long-term spread of the treasury yield curve, defined as the difference 
between the 10-year and the 3-month Treasury yields

• The University of Michigan's consumer sentiment indicator

• The National Financial Conditions Index (NFCI)

• The NFCI nonfinancial leverage subindex

The recession dates are identified on a quarterly basis; we will resample all series' 
frequency to monthly frequency to obtain some 457 observations from 1982-2019. If a 
quarter is labeled as a recession, we consider all months in that quarter as such.

We will build a model that intends to answer the question: will the US economy be in 
recession x months into the future? In other words, we do not focus on predicting only the 
first month of a recession; this limits the imbalance to 48 recessionary months.

To this end, we need to pick a lead time; plenty of research has been conducted into 
a suitable time horizon for various leading indicators: the yield curve tends to send signals 
up to 24 months ahead of a recession; the NFCI indicators tend to have a shorter lead time 
(see Kelley, 2019).
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The following table largely confirms this experience: it displays the mutual information (see 
Chapter 6, The Machine Learning Process) between the binary recession variable and the four 
leading indicators for horizons from 1-24 months:

Figure 10.3: Mutual information between recession and leading indicators for horizons from 1-24 months

To strike a balance between the shorter horizon for the NFCI indicators and the yield 
curve, we will pick 12 months as our prediction horizon. The following plots are for the 
distribution of each indicator, broken down by recession status:

Figure 10.4: Leading indicator distributions by recession status

This shows that recessions tend to be associated with a negative long-term spread of the 
treasury yield curve, also known as an inverted yield curve, when short-term interest rates 
rise above long-term rates. The NFCI indicators behave as we would expect; the sentiment 
indicator appears to have the weakest association.

Model definition – Bayesian logistic regression
As discussed in Chapter 6, The Machine Learning Process, logistic regression estimates a 
linear relationship between a set of features and a binary outcome, mediated by a sigmoid 
function to ensure the model produces probabilities. The frequentist approach resulted 
in point estimates for the parameters that measure the influence of each feature on the 
probability that a data point belongs to the positive class, with confidence intervals based 
on assumptions about the parameter distribution.

In contrast, Bayesian logistic regression estimates the posterior distribution over the 
parameters itself. The posterior allows for more robust estimates of what is called a 
Bayesian credible interval for each parameter, with the benefit of more transparency about 
the model's uncertainty.

A probabilistic program consists of observed and unobserved random variables (RVs). 
As discussed previously, we define the observed RVs via likelihood distributions 
and unobserved RVs via prior distributions. PyMC3 includes numerous probability 
distributions for this purpose.
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The PyMC3 library makes it very straightforward to perform approximate Bayesian 
inference for logistic regression. Logistic regression models the probability that the 
economy will be in recession 12 months after month i based on k features, as outlined on the 
left side of the following figure:

Figure 10.5: Bayesian logistic regression

We will use the context manager with to define a manual_logistic_model that we can refer 
to later as a probabilistic model:

1. The RVs for the unobserved parameters for intercept and two features are 
expressed using uninformative priors, These assume normal distributions with a 
mean of 0 and a standard deviation of 100.

2. The likelihood combines the parameters with the data according to the specification 
of the logistic regression.

3. The outcome is modeled as a Bernoulli RV with the success probability given by the 
likelihood:

with pm.Model() as manual_logistic_model:

    # coefficients as rvs with uninformative priors
    intercept = pm.Normal('intercept', 0, sd=100)

    beta_1 = pm.Normal('beta_1', 0, sd=100)

    beta_2 = pm.Normal('beta_2', 0, sd=100)

    # Likelihood transforms rvs into probabilities p(y=1)

    # according to logistic regression model.

    likelihood = pm.invlogit(intercept +

                             beta_1 * data.yield_curve +

                             beta_2 * data.leverage)

    # Outcome as Bernoulli rv with success probability

    # given by sigmoid function conditioned on actual data

    pm.Bernoulli(name='logit',

                 p=likelihood,

                 observed=data.recession)
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Model visualization and plate notation

The command pm.model_to_graphviz(manual_logistic_model) produces the plate notation 
displayed on the right in Figure 10.5. It shows the unobserved parameters as light ovals and 
the observed elements as dark ovals. The rectangle indicates the number of repetitions of 
the observed model element implied by the data that are included in the model definition.

The generalized linear models module

PyMC3 includes numerous common models so that we can limit the manual specification 
for custom applications.

The following code defines the same logistic regression as a member of the Generalized 
Linear Models (GLM) family. It does so using the formula format inspired by the statistical 
language R and is ported to Python by the patsy library:

with pm.Model() as logistic_model:

    pm.glm.GLM.from_formula(recession ~ yield_curve + leverage,

                            data,

                            family=pm.glm.families.Binomial())

Exact MAP inference

We obtain point MAP estimates for the three parameters using the just-defined model's 
.find_MAP() method. As expected, a lower spread value increases the recession probability, 
as does higher leverage (but to a lesser extent):

with logistic_model:

    map_estimate = pm.find_MAP()
print_map(map_estimate)

Intercept     -4.892884

yield_curve   -3.032943

leverage       1.534055

PyMC3 solves the optimization problem of finding the posterior point with the highest 
density using the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, 
but offers several alternatives provided by the SciPy library.

The MAP point estimates are identical to the corresponding statsmodels coefficients (see 
the notebook pymc3_workflow).

Approximate inference – MCMC

If we are only interested in point estimates for the model parameters, then for this simple 
model, the MAP estimate would be sufficient. More complex, custom probabilistic models 
require sampling techniques to obtain a posterior probability for the parameters.
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We will use the model with all its variables to illustrate MCMC inference:

formula = 'recession ~ yield_curve + leverage + financial_conditions + 
sentiment'

with pm.Model() as logistic_model:

    pm.glm.GLM.from_formula(formula=formula,

                            data=data,

                            family=pm.glm.families.Binomial())

# note that pymc3 uses y for the outcome

logistic_model.basic_RVs

[Intercept, yield_curve, leverage, financial_conditions, sentiment, y]

Note that variables measured on very different scales can slow down the sampling process. 
Hence, we first apply the scale() function provided by scikit-learn to standardize all 
features.

Once we have defined our model like this with the new formula, we are ready to perform 
inference to approximate the posterior distribution. MCMC sampling algorithms are 
available through the pm.sample() function.

By default, PyMC3 automatically selects the most efficient sampler and initializes the 
sampling process for efficient convergence. For a continuous model, PyMC3 chooses the 
NUTS sampler discussed in the previous section. It also runs variational inference via ADVI 
to find good starting parameters for the sampler. One among several alternatives is to use 
the MAP estimate.

To see what convergence looks like, we first draw only 100 samples after tuning the 
sampler for 1,000 iterations. These will be discarded. The sampling process can be 
parallelized for multiple chains using the cores argument (except when using GPU):

with logistic_model:

    trace = pm.sample(draws=100,

                      tune=1000,

                      init='adapt_diag',

                      chains=4,

                      cores=4,

                      random_seed=42)

The resulting trace contains the sampled values for each RV. We can inspect the posterior 
distribution of the chains using the plot_traces() function:

plot_traces(trace, burnin=0)
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Figure 10.6 shows both the sample distribution and their values over time for the first two 
features and the intercept (see the notebook for the full output). At this point, the sampling 
process has not converged since for each of the features, the four traces yield quite different 
results; the numbers shown vertically in the left five panels are the averages of the modes of 
the distributions generated by the four traces:

Figure 10.6: Traces after 100 samples

We can continue sampling by providing the trace of a prior run as input. After an 
additional 20,000 samples, we observe a much different picture, as shown in the following 
figure. This shows how the sampling process is now much closer to convergence. Also, note 
that the initial coefficient point estimates were relatively close to the current values:

Figure 10.7: Traces after an additional 50,000 samples

We can compute the credible intervals, the Bayesian counterpart of confidence intervals, 
as percentiles of the trace. The resulting boundaries reflect our confidence about the range 
of the parameter value for a given probability threshold, as opposed to the number of times 
the parameter will be within this range for a large number of trials. Figure 10.8 shows the 
credible intervals for the variables' yield curve and leverage, expressed in terms of the odds 
ratio that results from raising e to the power of the coefficient value (see Chapter 7, Linear 
Models – From Risk Factors to Return Forecasts). 



Bayesian ML – Dynamic Sharpe Ratios and Pairs Trading

[ 312 ]

See the notebook pymc3_workflow for the implementation:

Figure 10.8: Credible intervals for yield curve and leverage

Approximate inference – variational Bayes

The interface for variational inference is very similar to the MCMC implementation. We 
just use fit() instead of the sample() function, with the option to include an early stopping 
CheckParametersConvergence callback if the distribution-fitting process converges up to a 
given tolerance:

with logistic_model:

    callback = CheckParametersConvergence(diff='absolute')
    approx = pm.fit(n=100000,
                    callbacks=[callback])

We can draw samples from the approximated distribution to obtain a trace object, as we did 
previously for the MCMC sampler:

trace_advi = approx.sample(10000)

Inspection of the trace summary shows that the results are slightly less accurate.

Model diagnostics

Bayesian model diagnostics includes validating that the sampling process has converged 
and consistently samples from high-probability areas of the posterior, as well as confirming 
that the model represents the data well.

Convergence

We can visualize the samples over time and their distributions to check the quality of the 
results. The charts shown in the following image show the posterior distributions after an 
initial 100 and an additional 200,000 samples, respectively, and illustrate how convergence 
implies that multiple chains identify the same distribution:
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Figure 10.9: Traces after 400 and after over 200,000 samples

PyMC3 produces various summary statistics for a sampler. These are available as 
individual functions in the stats module, or by providing a trace to the function 
pm.summary().

The following table includes the (separately computed) statsmodels logit coefficients in 
the first column to show that, in this simple case, both models slightly agree because the 
sample mean does not match the coefficients. This is likely due to the high degree of quasi-
separation: the yield curve's high predictability allows for the perfect prediction of 17 
percent of the data points, which, in turn, leads to poorly defined MLE estimates for the 
logistic regression (see the statsmodels output in the notebook for more information):

Parameters

statsmodels PyMC3

Coefficients Mean SD
HPD 
3%

HPD 
97%

Effective 
Samples R hat

Intercept -5.22 -5.47 0.71 -6.82 -4.17 68,142 1.00

yield_curve -3.30 -3.47 0.51 -4.44 -2.55 70,479 1.00

leverage 1.98 2.08 0.40 1.34 2.83 72,639 1.00

financial_
conditions -0.65 -0.70 0.33 -1.33 -0.07 91,104 1.00

sentiment -0.33 -0.34 0.26 -0.82 0.15 106,751 1.00

The remaining columns contain the highest posterior density (HPD) estimate for the 
minimum width credible interval, the Bayesian version of a confidence interval, which, 
here, is computed at the 95 percent level. The n_eff statistic summarizes the number of 
effective (not rejected) samples resulting from the ~100,000  draws.
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R-hat, also known as the Gelman-Rubin statistic, checks convergence by comparing the 
variance between chains to the variance within each chain. If the sampler converged, these 
variances should be identical, that is, the chains should look similar. Hence, the statistic 
should be near 1.

For high-dimensional models with many variables, it becomes cumbersome to inspect 
numerous traces. When using NUTS, the energy plot helps us assess problems of 
convergence. It summarizes how efficiently the random process explores the posterior. The 
plot shows the energy and the energy transition matrix, which should be well matched, as 
in the example shown in the right-hand panel of the following image:

Figure 10.10: Forest and energy plot

Posterior predictive checks

Posterior predictive checks (PPCs) are very useful for examining how well a model fits the 
data. They do so by generating data from the model using parameters from draws from 
the posterior. We use the function pm.sample_ppc for this purpose and obtain n samples for 
each observation (the GLM module automatically names the outcome 'y'):

ppc = pm.sample_ppc(trace_NUTS, samples=500, model=logistic_model)

ppc['y'].shape

(500, 445)

We can evaluate the in-sample fit using the area under the receiver-operating characteristic 
curve (AUC, see Chapter 6, The Machine Learning Process) score to, for example, compare 
different models:

roc_auc_score(y_score=np.mean(ppc['y'], axis=0),

              y_true=data.income)

0.9483627204030226

The result is fairly high at almost 0.95.
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How to generate predictions

Predictions use Theano's shared variables to replace the training data with test data before 
running posterior predictive checks. To allow for visualization and to simplify the 
exposition, we use the yield curve variable as the only predictor and ignore the time-series 
nature of our data. 

Instead, we create the train and test sets using scikit-learn's basic train_test_split() 
function, stratified by the outcome, to maintain the class imbalance:

X = data[['yield_curve']]

labels = X.columns

y = data.recession

X_train, X_test, y_train, y_test = train_test_split(X, y,

                                                    test_size=0.2,

                                                    random_state=42,

                                                    stratify=y)

We then create a shared variable for that training set, which we replace with the test set in 
the next step. Note that we need to use NumPy arrays and provide a list of column labels:

X_shared = theano.shared(X_train.values)

with pm.Model() as logistic_model_pred:

    pm.glm.GLM(x=X_shared, labels=labels,

               y=y_train, family=pm.glm.families.Binomial())

We then run the sampler, as we did previously:

with logistic_model_pred:

    pred_trace = pm.sample(draws=10000,

                           tune=1000,

                           chains=2,

                           cores=2,

                           init='adapt_diag')

Now, we substitute the test data for the train data on the shared variable and apply the 
pm.sample_ppc function to the resulting trace:

X_shared.set_value(X_test)

ppc = pm.sample_ppc(pred_trace,

                    model=logistic_model_pred,

                    samples=100)

y_score = np.mean(ppc['y'], axis=0)

roc_auc_score(y_score=np.mean(ppc['y'], axis=0),

              y_true=y_test)

0.8386
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The AUC score for this simple model is 0.86. Clearly, it is much easier to predict the same 
recession for another month if the training set already includes examples of this recession 
from nearby months. Keep in mind that we are using this model for demonstration 
purposes only.

Figure 10.11 plots the predictions that were sampled from the 100 Monte Carlo chain and 
the uncertainty surrounding them, as well as the actual binary outcomes and the logistic 
curve corresponding to the model predictions:

Figure 10.11: Single-variable model predictions

Summary and key takeaways

We have built a simple logistic regression model to predict the probability that the US 
economy will be in recession in 12 months using four leading indicators. For this simple 
model, we could get exact MAP estimates of the coefficient values, which we could then use 
to parameterize the model and make predictions.

However, more complex, custom probability models will not allow for this shortcut, and 
MAP estimates also do not generate insight into the posterior distribution beyond the 
point estimate. For this reason, we demonstrated how to run approximate inference using 
PyMC3. The results illustrated how we learn about the posterior distribution for each of 
the model parameters, but also showed that even for a small model, the computational 
cost increases considerably compared to statsmodels MLE estimates. Nonetheless, for 
sophisticated probabilistic models, sampling-based solutions are the only way to learn 
about the data.

We will now proceed to illustrate how to apply Bayesian analysis to some trading-related 
use cases.
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Bayesian ML for trading
Now that we are familiar with the Bayesian approach to ML and probabilistic programming 
with PyMC3, let's explore a few relevant trading-related applications, namely:

• Modeling the Sharpe ratio as a probabilistic model for more insightful performance 
comparison

• Computing pairs trading hedge ratios using Bayesian linear regression

• Analyzing linear time series models from a Bayesian perspective

Thomas Wiecki, one of the main PyMC3 authors who also leads Data Science at 
Quantopian, has created several examples that the following sections follow and build on. 
The PyMC3 documentation has many additional tutorials (see GitHub for links).

Bayesian Sharpe ratio for performance comparison
In this section, we will illustrate:

• How to define the Sharpe Ratio (SR) as a probabilistic model using PyMC3

• How to compare its posterior distributions for different return series

The Bayesian estimation for two series offers very rich insights because it provides the 
complete distributions of the credible values for the effect size, the group SR means 
and their difference, as well as standard deviations and their difference. The Python 
implementation is due to Thomas Wiecki and was inspired by the R package BEST 
(Meredith and Kruschke, 2018).

Relevant use cases of a Bayesian SR include the analysis of differences between alternative 
strategies, or between a strategy's in-sample return and its out-of-sample return (see the 
notebook bayesian_sharpe_ratio for details). The Bayesian SR is also part of pyfolio's 
Bayesian tearsheet.

Defining a custom probability model
To model the SR as a probabilistic model, we need the priors about the distribution of 
returns and the parameters that govern this distribution. The Student t distribution exhibits 
fat tails relative to the normal distribution for low degrees of freedom (DF), and is a 
reasonable choice to capture this aspect of returns.

We thus need to model the three parameters of this distribution, namely the mean and 
standard deviation of returns, and the DF. We'll assume normal and uniform distributions 
for the mean and the standard deviation, respectively, and an exponential distribution for 
the DF with a sufficiently low expected value to ensure fat tails.
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The returns are based on these probabilistic inputs, and the annualized SR results from the 
standard computation, ignoring a risk-free rate (using daily returns). We will provide AMZN 
stock returns from 2010-2018 as input (see the notebook for more on data preparation):

mean_prior = data.stock.mean()

std_prior = data.stock.std()

std_low = std_prior / 1000

std_high = std_prior * 1000

with pm.Model() as sharpe_model:

    mean = pm.Normal('mean', mu=mean_prior, sd=std_prior)

    std = pm.Uniform('std', lower=std_low, upper=std_high)

    nu = pm.Exponential('nu_minus_two', 1 / 29, testval=4) + 2

    returns = pm.StudentT('returns', nu=nu, mu=mean, sd=std,

observed=data.stock)

    sharpe = returns.distribution.mean / returns.distribution.variance ** 

.5 * np.sqrt(252)

    pm.Deterministic('sharpe', sharpe)

The plate notation, which we introduced in the previous section on the PyMC3 workflow, 
visualizes the three parameters and their relationships, along with the returns and the 
number of observations we provided in the following diagram:

Figure 10.12: The Bayesian SR in plate notation

We then run the MCMC sampling process we introduced in the previous section (see the 
notebook bayesian_sharpe_ratio for the implementation details that follow the familiar 
workflow). After some 25,000 samples for each of four chains, we obtain the posterior 
distributions for the model parameters as follows, with the results appearing in the 
following plots:

plot_posterior(data=trace);

Figure 10.13: The posterior distribution for the model parameters
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Now that we know how to evaluate the SR for a single asset or portfolio, let's see how we 
can compare the performance of two different return series using the Bayesian SR.

Comparing the performance of two return series 

To compare the performance of two return series, we will model each group's SR separately 
and compute the effect size as the difference between the volatility-adjusted returns. The 
corresponding probability model, displayed in the following diagram, is naturally larger 
because it includes two SRs, plus their difference:

Figure 10.14: The difference between two Bayesian SRs in plate notation

Once we have defined the model, we run it through the MCMC sampling process to obtain 
the posterior distribution for its parameters. We use 2,037 daily returns for the AMZN 
stock 2010-2018 and compare it with S&P 500 returns for the same period. We could use the 
returns on any of our strategy backtests instead of the AMZN returns.

Visualizing the traces reveals granular performance insights into the distributions of each 
metric, as illustrated by the various plots in Figure 10.15:

Figure 10.15: The posterior distributions for the differences between two Bayesian SRs

The most important metric is the difference between the two SRs in the bottom panel. 
Given the full posterior distribution, it is straightforward to visualize or compute the 
probability that one return series is superior from an SR perspective.
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Bayesian rolling regression for pairs trading
In the previous chapter, we introduced pairs trading as a popular trading strategy that 
relies on the cointegration of two or more assets. Given such assets, we need to estimate 
the hedging ratio to decide on the relative magnitude of long and short positions. A basic 
approach uses linear regression. You can find the code for this section in the notebook 
rolling_regression, which follows Thomas Wiecki's rolling regression example (see the 
link to the PyMC3 tutorials on GitHub).

A popular example of pairs trading candidates is ETF GLD, which reflects the gold price 
and a gold mining stock like GFI. We source the close price data using yfinance for the 
2004-2020 period. The left panel of Figure 10.16 shows the historical price series, while 
the right panel shows a scatter plot of historical prices, where the hue indicates the time 
dimension to highlight how the correlation appears to have been evolving. Note that 

we should be using the returns, as we did in Chapter 9, Time-Series Models for Volatility 
Forecasts and Statistical Arbitrage, to compute the hedge ratio; however, using the prices 
series creates more striking visualizations. The modeling process itself remains unaffected:

Figure 10.16: Price series and correlation over time of two pairs of trading candidates

We want to illustrate how a rolling Bayesian linear regression can track changes in the 
relationship between the prices of the two assets over time. The main idea is to incorporate 
the time dimension into a linear regression by allowing for changes in the regression 
coefficients. Specifically, we will assume that intercept and slope follow a random walk 
through time: 𝛼𝛼𝑡𝑡~𝑁𝑁(𝛼𝛼𝑡𝑡𝑡𝑡, 𝜎𝜎𝛼𝛼2)𝛽𝛽𝑡𝑡~𝑁𝑁(𝛽𝛽𝑡𝑡𝑡𝑡, 𝜎𝜎𝛽𝛽2) 

We specify model_randomwalk using PyMC3's built-in pm.GaussianRandomWalk process. It 
requires us to define a standard deviation for both intercept alpha and slope beta:

model_randomwalk = pm.Model()

with model_randomwalk:

    sigma_alpha = pm.Exponential('sigma_alpha', 50.)

    alpha = pm.GaussianRandomWalk('alpha', 

                                  sd=sigma_alpha,

                                  shape=len(prices))
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    sigma_beta = pm.Exponential('sigma_beta', 50.)

    beta = pm.GaussianRandomWalk('beta', 

                                 sd=sigma_beta,

                                 shape=len(prices))

Given the specification of the probabilistic model, we will now define the regression and 
connect it to the input data:

with model_randomwalk:

    # Define regression
    regression = alpha + beta * prices_normed.GLD

    # Assume prices are normally distributed

    # Get mean from regression.

    sd = pm.HalfNormal('sd', sd=.1)

    likelihood = pm.Normal('y', 

                           mu=regression, 

                           sd=sd, 

                           observed=prices_normed.GFI)

Now, we can run our MCMC sampler to generate the posterior distribution for the model 
parameters:

with model_randomwalk:

    trace_rw = pm.sample(tune=2000, 

                         cores=4, 

                         draws=200, 

                         nuts_kwargs=dict(target_accept=.9))

Figure 10.17 depicts how the intercept and slope coefficients have changed over the years, 
underlining the evolving correlations:

Figure 10.17: Changes in intercept and slope coefficients over time

Using the dynamic regression coefficients, we can now visualize how the hedge ratio 
suggested by the rolling regression would have changed over the years using this Bayesian 
approach, which models the coefficients as a random walk. 
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The following plot combines the prices series and the regression lines, where the hue once 
again indicates the timeline (view this in the notebook for the color output):

Figure 10.18: Rolling regression lines and price series

For our last example, we'll implement a Bayesian stochastic volatility model.

Stochastic volatility models
As discussed in the previous chapter, asset prices have time-varying volatility. In some 
periods, returns are highly variable, while in others, they are very stable. We covered 
ARCH/GARCH models that approach this challenge from a classical linear regression 
perspective in Chapter 9, Time-Series Models for Volatility Forecasts and Statistical Arbitrage.

Bayesian stochastic volatility models capture this volatility phenomenon with a latent 
volatility variable, modeled as a stochastic process.  The No-U-Turn Sampler was 
introduced using such a model (Hoffman, et al. 2011), and the notebook stochastic_
volatility illustrates this use case with daily data for the S&P 500 after 2000. Figure 10.19 
shows several volatility clusters throughout the period:



Chapter 10

[ 323 ]

Figure 10.19: Daily S&P 500 log returns

The probabilistic model specifies that the log returns follow a t-distribution, which has 
fat tails, as also generally observed for asset returns. The t-distribution is governed by the 
parameter ν , which represents the DF. It is also called the normality parameter because the 
t-distribution approaches the normal distribution as ν increases. This parameter is assumed 
to have an exponential distribution with parameter λ = 0.1 .

Furthermore, the log returns are assumed to have mean zero, while the standard deviation 
follows a random walk with a standard deviation that also has an exponential distribution:𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝜎𝜎𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣50𝑣𝑣𝑠𝑠𝑖𝑖𝑣𝑣𝑣N𝑣rm𝑣𝑣𝑣𝑠𝑠𝑖𝑖𝑖𝑖, 𝜎𝜎𝑖2𝑣𝑣𝑣𝑣g𝑣𝑟𝑟𝑖𝑖𝑣𝑣𝑣𝑣𝑡𝑡𝑣𝑣𝑣, 0, 𝑣𝑣𝑣 𝑣𝑡𝑡𝑠𝑠𝑖𝑖𝑣𝑣

 

We implement this model in PyMC3 as follows to mirror its probabilistic specification, 
using log returns to match the model:

prices = pd.read_hdf('../data/assets.h5', key='sp500/prices').loc['2000':,  
                                                                  'Close']

log_returns = np.log(prices).diff().dropna()

with pm.Model() as model:

    step_size = pm.Exponential('sigma', 50.)

    s = GaussianRandomWalk('s', sd=step_size, 

                           shape=len(log_returns))

    nu = pm.Exponential('nu', .1)

    r = pm.StudentT('r', nu=nu, 

                    lam=pm.math.exp(-2*s), 

                    observed=log_returns)
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Next, we draw 5,000 NUTS samples after a burn-in period of 2,000 samples, using a higher 
acceptance rate than the default of 0.8, as recommended for problematic posteriors by the 
PyMC3 docs (see the appropriate links on GitHub):

with model:

    trace = pm.sample(tune=2000, 

                      draws=5000,

                      nuts_kwargs=dict(target_accept=.9))

Auto-assigning NUTS sampler...

Initializing NUTS using jitter+adapt_diag...

Multiprocess sampling (4 chains in 4 jobs)

NUTS: [nu, s, sigma]

Sampling 4 chains, 0 divergences: 100%|██████████| 28000/28000 [27:46<00:00, 
16.80draws/s]

The estimated number of effective samples is smaller than 200 for some 
parameters.

After 28,000 total samples for the four chains, the trace plot in the following image confirms 
that the sampling process has converged:

Figure 10.20: Trace plot for the stochastic volatility model

When we plot the samples against the S&P 500 returns in Figure 10.21, we see that this 
simple stochastic volatility model tracks the volatility clusters fairly well:
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Figure 10.21: Model 

Keep in mind that this represents the in-sample fit. As a next step, you should try to 
evaluate the predictive accuracy. We covered how to make predictions in the previous 
subsection on rolling linear regression and used time-series cross validation in several 
previous chapters, which provides you with all the tools you need for this purpose!

Summary
In this chapter, we explored Bayesian approaches to machine learning. We saw that they 
have several advantages, including the ability to encode prior knowledge or opinions, 
deeper insights into the uncertainty surrounding model estimates and predictions, and 
suitability for online learning, where each training sample incrementally impacts the 
model's prediction.

We learned to apply the Bayesian workflow from model specification to estimation, 
diagnostics, and prediction using PyMC3 and explored several relevant applications. 
We will encounter more Bayesian models in Chapter 14, Text Data for Trading – Sentiment 
Analysis, where we'll discuss natural language processing and topic modeling, and in 
Chapter 20, Autoencoders for Conditional Risk Factors and Asset Pricing, where we'll introduce 
variational autoencoders.

The next chapter introduces nonlinear, tree-based models, namely decision trees, and 
shows how to combine multiple models into an ensemble of trees to create a random forest.
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11
Random Forests – A Long-Short 

Strategy for Japanese Stocks

In this chapter, we will learn how to use two new classes of machine learning models for 
trading: decision trees and random forests. We will see how decision trees learn rules 
from data that encode nonlinear relationships between the input and the output variables. 
We will illustrate how to train a decision tree and use it for prediction with regression and 
classification problems, visualize and interpret the rules learned by the model, and tune the 
model's hyperparameters to optimize the bias-variance trade-off and prevent overfitting.

Decision trees are not only important standalone models but are also frequently used as 
components in other models. In the second part of this chapter, we will introduce ensemble 
models that combine multiple individual models to produce a single aggregate prediction 
with lower prediction-error variance. 

We will illustrate bootstrap aggregation, often called bagging, as one of several methods 
to randomize the construction of individual models and reduce the correlation of the 
prediction errors made by an ensemble's components. We will illustrate how bagging 
effectively reduces the variance and learn how to configure, train, and tune random 
forests. We will see how random forests, as an ensemble of a (potentially large) number 
of decision trees, can dramatically reduce prediction errors, at the expense of some loss 
in interpretation.

Then, we will proceed and build a long-short trading strategy that uses a random forest 
to generate profitable signals for large-cap Japanese equities over the last 3 years. We will 
source and prepare the stock price data, tune the hyperparameters of a random forest 
model, and backtest trading rules based on the model's signals. The resulting long-short 
strategy uses machine learning rather than the cointegration relationship we saw in Chapter 

9, Time-Series Models for Volatility Forecasts and Statistical Arbitrage, to identify and trade 
baskets of securities whose prices will likely move in opposite directions over a given 
investment horizon.
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In short, after reading this chapter, you will be able to:

• Use decision trees for regression and classification
• Gain insights from decision trees and visualize the rules learned from the data

• Understand why ensemble models tend to deliver superior results

• Use bootstrap aggregation to address the overfitting challenges of decision trees
• Train, tune, and interpret random forests

• Employ a random forest to design and evaluate a profitable trading strategy

Decision trees – learning rules from data
A decision tree is a machine learning algorithm that predicts the value of a target variable 
based on decision rules learned from data. The algorithm can be applied to both regression 
and classification problems by changing the objective function that governs how the tree 
learns the rules.

We will discuss how decision trees use rules to make predictions, how to train them to 
predict (continuous) returns as well as (categorical) directions of price movements, and how 
to interpret, visualize, and tune them effectively. See Rokach and Maimon (2008) and Hastie, 
Tibshirani, and Friedman (2009) for additional details and further background information.

How trees learn and apply decision rules
The linear models we studied in Chapter 7, Linear Models – From Risk Factors to Return 
Forecasts, and Chapter 9, Time-Series Models for Volatility Forecasts and Statistical Arbitrage, 
learn a set of parameters to predict the outcome using a linear combination of the input 
variables, possibly after being transformed by an S-shaped link function, in the case of 
logistic regression.

Decision trees take a different approach: they learn and sequentially apply a set of rules 
that split data points into subsets and then make one prediction for each subset. The 
predictions are based on the outcome values for the subset of training samples that result 
from the application of a given sequence of rules. Classification trees predict a probability 
estimated from the relative class frequencies or the value of the majority class directly, 
whereas regression trees compute prediction from the mean of the outcome values for the 
available data points.

Each of these rules relies on one particular feature and uses a threshold to split the samples 
into two groups, with values either below or above the threshold for this feature. A binary 
tree naturally represents the logic of the model: the root is the starting point for all samples, 
nodes represent the application of the decision rules, and the data moves along the edges as it 
is split into smaller subsets until it arrives at a leaf node, where the model makes a prediction. 

You can find the code samples for this chapter and links to additional 
resources in the corresponding directory of the GitHub repository. The 
notebooks include color versions of the images. 
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For a linear model, the parameter values allow an interpretation of the impact of the input 
variables on the output and the model's prediction. In contrast, for a decision tree, the various 
possible paths from the root to the leaves determine how the features and their values lead 
to specific decisions by the model. As a consequence, decision trees are capable of capturing 
interdependence among features that linear models cannot capture "out of the box."

The following diagram highlights how the model learns a rule. During training, the 
algorithm scans the features and, for each feature, seeks to find a cutoff that splits the data 
to minimize the loss that results from predictions made. It does so using the subsets that 
would result from the split, weighted by the number of samples in each subset:

Figure 11.1: How a decision tree learns rules from data

To build an entire tree during training, the learning algorithm repeats this process of 
dividing the feature space, that is, the set of possible values for the p input variables, X

1
, X

2
, 

..., X
p
, into mutually-exclusive and collectively exhaustive regions, each represented by a 

leaf node. Unfortunately, the algorithm will not be able to evaluate every possible partition 
of the feature space, given the explosive number of possible combinations of sequences of 
features and thresholds. Tree-based learning takes a top-down, greedy approach, known as 
recursive binary splitting, to overcome this computational limitation.

This process is recursive because it uses subsets of data resulting from prior splits. It is 
top-down because it begins at the root node of the tree, where all observations still belong 
to a single region, and then successively creates two new branches of the tree by adding 
one more split to the predictor space. It is greedy because the algorithm picks the best 
rule in the form of a feature-threshold combination based on the immediate impact on 
the objective function, rather than looking ahead and evaluating the loss several steps 
ahead. We will return to the splitting logic in the more specific context of regression and 
classification trees because this represents the major difference between them.

The number of training samples continues to shrink as recursive splits add new nodes to 
the tree. If rules split the samples evenly, resulting in a perfectly balanced tree with an 
equal number of children for every node, then there would be 2n nodes at level n, each 
containing a corresponding fraction of the total number of observations. In practice, this is 
unlikely, so the number of samples along some branches may diminish rapidly, and trees 
tend to grow to different levels of depth along different paths.
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Recursive splitting would continue until each leaf node contains only a single sample and 
the training error has been reduced to zero. We will introduce several methods to limit 
splits and prevent this natural tendency of decision trees to produce extreme overfitting.

To arrive at a prediction for a new observation, the model uses the rules that it inferred 
during training to decide which leaf node the data point should be assigned to, and then 
uses the mean (for regression) or the mode (for classification) of the training observations 
in the corresponding region of the feature space. A smaller number of training samples in a 
given region of the feature space, that is, in a given leaf node, reduces the confidence in the 
prediction and may reflect overfitting.

Decision trees in practice
In this section, we will illustrate how to use tree-based models to gain insight and make 
predictions. To demonstrate regression trees, we predict returns, and for the classification 
case, we return to the example of positive and negative asset price moves. The code 
examples for this section are in the notebook decision_trees, unless stated otherwise.

The data – monthly stock returns and features

We will select a subset of the Quandl US equity dataset covering the period 2006-2017 and 
follow a process similar to our first feature engineering example in Chapter 4, Financial 
Feature Engineering – How to Research Alpha Factors. We will compute monthly returns 
and 25 (hopefully) predictive features for the 500 most-traded stocks based on the 5-year 
moving average of their dollar volume, yielding 56,756 observations. The features include:

• Historical returns for the past 1, 3, 6, and 12 months.

• Momentum indicators that relate the most recent 1- or 3-month returns to those for 
longer horizons.

• Technical indicators designed to capture volatility like the (normalized) average 
true range (NATR and ATR) and momentum like the relative strength index (RSI).

• Factor loadings for the five Fama-French factors based on rolling OLS regressions.
• Categorical variables for year and month, as well as sector.

Figure 11.2 displays the mutual information between these features and the monthly 
returns we use for regression (left panel) and their binarized classification counterpart, 
which represents positive or negative price moves for the same period. It shows that, on a 
univariate basis, there appear to be substantial differences in the signal content regarding 
both outcomes across the features.

More details can be found in the data_prep notebook in the GitHub repository for this 
chapter. The decision tree models in this chapter are not equipped to handle missing or 
categorical variables, so we will drop the former and apply dummy encoding (see Chapter 

4, Financial Feature Engineering – How to Research Alpha Factors and Chapter 6, The Machine 
Learning Process) to the categorical sector variable:
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Figure 11.2: Mutual information for features and returns or price move direction

Building a regression tree with time-series data

Regression trees make predictions based on the mean outcome value for the training 
samples assigned to a given node, and typically rely on the mean-squared error to select 
optimal rules during recursive binary splitting.

Given a training set, the algorithm iterates over the p predictors, X
1
, X

2
, ..., X

p
, and n 

possible cutpoints, s
1
, s

2
, ..., s

n
, to find an optimal combination. The optimal rule splits the 

feature space into two regions, {X|X
i
 < s

j
} and {X|X

i
 > s

j
}, with values for the X

i
 feature 

either below or above the s
j
 threshold, so that predictions based on the training subsets 

maximize the reduction of the squared residuals relative to the current node.

Let's start with a simplified example to facilitate visualization and also demonstrate how we 
can use time-series data with a decision tree. We will only use 2 months of lagged returns to 
predict the following month, in the vein of an AR(2) model from the previous chapter:𝑟𝑟𝑡𝑡 = 𝑓𝑓(𝑟𝑟𝑡𝑡𝑡𝑡, 𝑟𝑟𝑡𝑡𝑡𝑡) 
Using scikit-learn, configuring and training a regression tree is very straightforward:

from sklearn.tree import DecisionTreeRegressor

# configure regression tree
regression_tree = DecisionTreeRegressor(criterion='mse',      

                                        max_depth=6,         

                                        min_samples_leaf=50)

# Create training data

y = data.target

X = data.drop(target, axis=1)

X2 = X.loc[:, ['t-1', 't-2']]

# fit model
regression_tree.fit(X=X2, y=y)
# fit OLS model
ols_model = sm.OLS(endog=y, exog=sm.add_constant(X2)).fit()
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The OLS summary and a visualization of the first two levels of the decision tree reveal the 
striking differences between the models (see Figure 11.3). The OLS model provides three 
parameters for the intercepts and the two features in line with the linear assumption this 
model makes about the function.

In contrast, the regression tree chart displays, for each node of the first two levels, the 
feature and threshold used to split the data (note that features can be used repeatedly), as 
well as the current value of the mean-squared error (MSE), the number of samples, and the 
predicted value based on these training samples. Also, note that training the decision tree 
takes 58 milliseconds compared to 66 microseconds for the linear regression. While both 
models run fast with only two features, the difference is a factor of 1,000:

Figure 11.3: OLS results and regression tree

The tree chart also highlights the uneven distribution of samples across the nodes as the 
numbers vary between 545 and 55,000 samples after the first splits.

To further illustrate the different assumptions about the functional form of the relationships 
between the input variables and the output, we can visualize the current return predictions 
as a function of the feature space, that is, as a function of the range of values for the lagged 
returns. The following image shows the current monthly return as a function of returns one 
and two periods ago for linear regression (left panel) and the regression tree:

Figure 11.4: Decision surfaces for linear regression and the regression tree
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The linear regression model result on the left-hand side underlines the linearity of the 
relationship between lagged and current returns, whereas the regression tree chart on 
the right illustrates the nonlinear relationship encoded in the recursive partitioning of the 
feature space.

Building a classification tree
A classification tree works just like the regression version, except that the categorical nature 
of the outcome requires a different approach to making predictions and measuring the loss. 
While a regression tree predicts the response for an observation assigned to a leaf node 
using the mean outcome of the associated training samples, a classification tree uses the 
mode, that is, the most common class among the training samples in the relevant region. 
A classification tree can also generate probabilistic predictions based on relative class 
frequencies.

How to optimize for node purity

When growing a classification tree, we also use recursive binary splitting, but instead of 
evaluating the quality of a decision rule using the reduction of the mean-squared error, we 
can use the classification error rate, which is simply the fraction of the training samples in a 
given (leaf) node that do not belong to the most common class.

However, the alternative measures, either Gini impurity or cross-entropy, are preferred 
because they are more sensitive to node purity than the classification error rate, as you can 
see in Figure 11.5. Node purity refers to the extent of the preponderance of a single class in 
a node. A node that only contains samples with outcomes belonging to a single class is pure 
and implies successful classification for this particular region of the feature space. 

Let's see how to compute these measures for a classification outcome with K categories 
0,1,…, K-1 (with K=2, in the binary case). For a given node m, let pmk be the proportion of 
samples from the kth class:

Gini impurity = ∑ 𝑝𝑝𝑚𝑚𝑚𝑚(1 − 𝑝𝑝𝑚𝑚𝑚𝑚)𝑚𝑚cross entropy = − ∑ 𝑝𝑝𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑚𝑚𝑚𝑚)𝑚𝑚
 

The following plot shows that both the Gini impurity and cross-entropy measures are 
maximized over the [0, 1] interval when the class proportions are even, or 0.5 in the binary 
case. Both measures decline when the class proportions approach zero or one and the 
child nodes tend toward purity as a result of a split. At the same time, they imply a higher 
penalty for node impurity than the classification error rate:
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Figure 11.5: Classification loss functions

Note that cross-entropy takes almost 20 times as long to compute as the Gini measure (see 
the notebook for details).

How to train a classification tree
We will now train, visualize, and evaluate a classification tree with up to five consecutive 
splits using 80 percent of the samples for training to predict the remaining 20 percent. We 
will take a shortcut here to simplify the illustration and use the built-in train_test_split, 
which does not protect against lookahead bias, as the custom MultipleTimeSeriesCV 
iterator we introduced in Chapter 6, The Machine Learning Process and will use later in this 
chapter. 

The tree configuration implies up to 25=32 leaf nodes that, on average, in the balanced case, 
would contain over 1,400 of the training samples. Take a look at the following code:

# randomize train-test split

X_train, X_test, y_train, y_test = train_test_split(X, y_binary, test_
size=0.2, random_state=42)

# configure & train tree learner

clf = DecisionTreeClassifier(criterion='gini',
                            max_depth=5,

                            random_state=42)

clf.fit(X=X_train, y=y_train)
# Output:

DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=5,
            max_features=None, max_leaf_nodes=None,

            min_impurity_decrease=0.0, min_impurity_split=None,

            min_samples_leaf=1, min_samples_split=2,
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            min_weight_fraction_leaf=0.0, presort=False, random_state=42,

            splitter='best')

The output after training the model displays all the DecisionTreeClassifier parameters. We 
will address these in more detail in the Hyperparameter tuning section.

Visualizing a decision tree

You can visualize the tree using the Graphviz library (see GitHub for installation 
instructions) because scikit-learn can output a description of the tree using the DOT 
language used by that library. You can configure the output to include feature and class 
labels and limit the number of levels to keep the chart readable, as follows:

dot_data = export_graphviz(classifier,
                           out_file=None, # save to file and convert to png
                           feature_names=X.columns,

                           class_names=['Down', 'Up'],

                           max_depth=3,

                           filled=True,
                           rounded=True,

                           special_characters=True)

graphviz.Source(dot_data)

The following diagram shows how the model uses different features and indicates the split 
rules for both continuous and categorical (dummy) variables. Under the label value for each 
node, the chart shows the number of samples from each class and, under the label class, the 
most common class (there were more up months during the sample period):

Figure 11.6: Visualization of a classification tree
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Evaluating decision tree predictions

To evaluate the predictive accuracy of our first classification tree, we will use our test set to 
generate predicted class probabilities, as follows:

# only keep probabilities for pos. class

y_score = classifier.predict_proba(X=X_test)[:, 1]

The .predict_proba() method produces one probability for each class. In the binary class, 
these probabilities are complementary and sum to 1, so we only need the value for the 
positive class. To evaluate the generalization error, we will use the area under the curve 
based on the receiver-operating characteristic, which we introduced in Chapter 6, The 
Machine Learning Process. The result indicates a significant improvement above and beyond 
the baseline value of 0.5 for a random prediction (but keep in mind that the cross-validation 
method here does not respect the time-series nature of the data):

roc_auc_score(y_score=y_score, y_true=y_test)

0.6341

Overfitting and regularization
Decision trees have a strong tendency to overfit, especially when a dataset has a large 
number of features relative to the number of samples. As discussed in previous chapters, 
overfitting increases the prediction error because the model does not only learn the signal 
contained in the training data, but also the noise.

There are multiple ways to address the risk of overfitting, including:

• Dimensionality reduction (see Chapter 13, Data-Driven Risk Factors and Asset 
Allocation with Unsupervised Learning) improves the feature-to-sample ratio by 
representing the existing features with fewer, more informative, and less noisy 
features.

• Ensemble models, such as random forests, combine multiple trees while 
randomizing the tree construction, as we will see in the second part of this chapter.

Decision trees provide several regularization hyperparameters to limit the growth of a 
tree and the associated complexity. While every split increases the number of nodes, it 
also reduces the number of samples available per node to support a prediction. For each 
additional level, twice the number of samples is needed to populate the new nodes with the 
same sample density.

Tree pruning is an additional tool to reduce the complexity of a tree. It does so by 
eliminating nodes or entire parts of a tree that add little value but increase the model's 
variance. Cost-complexity-pruning, for instance, starts with a large tree and recursively 
reduces its size by replacing nodes with leaves, essentially running the tree construction 
in reverse. The various steps produce a sequence of trees that can then be compared using 
cross-validation to select the ideal size.
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How to regularize a decision tree

The following table lists the key parameters available for this purpose in the scikit-learn 
decision tree implementation. After introducing the most important parameters, we will 
illustrate how to use cross-validation to optimize the hyperparameter settings with respect 
to the bias-variance trade-off and lower prediction errors:

Parameter Description Default Options

max_depth

The maximum number of levels: 
split the nodes until max_depth 
has been reached. All leaves are 
pure or contain fewer samples 
than min_samples_split.

None int

max_features
Number of features to consider 
for a split.

None

None: all features 
int: # features

float: fraction

auto, sqrt: sqrt(n_
features)

log2: log2(n_
features)

max_leaf_nodes
Split nodes until creating this 
many leaves.

None
None: unlimited 
int

min_impurity_decrease
Split node if impurity decreases 
by at least this value.

0 float

min_samples_leaf

A split will only be considered if 
there are at least min_samples_
leaf training samples in each of 
the left and right branches.

1

int;

float (as a percent 
of N)

min_samples_split
The minimum number of 
samples required to split an 
internal node.

2
int; float (percent 
of N)

min_weight_fraction_
leaf

The minimum weighted fraction 
of the sum total of all sample 
weights needed at a leaf node. 
Samples have equal weight 
unless sample_weight is 
provided in the fit method.

0

The max_depth parameter imposes a hard limit on the number of consecutive splits and 
represents the most straightforward way to cap the growth of a tree.
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The min_samples_split and min_samples_leaf parameters are alternative, data-driven 
ways to limit the growth of a tree. Rather than imposing a hard limit on the number of 
consecutive splits, these parameters control the minimum number of samples required to 
further split the data. The latter guarantees a certain number of samples per leaf, while the 
former can create very small leaves if a split results in a very uneven distribution. Small 
parameter values facilitate overfitting, while a high number may prevent the tree from 
learning the signal in the data. The default values are often quite low, and you should use 
cross-validation to explore a range of potential values. You can also use a float to indicate a 
percentage, as opposed to an absolute number.

The scikit-learn documentation contains additional details about how to use the 
various parameters for different use cases; see the resources linked on GitHub for more 
information.

Decision tree pruning

Recursive binary-splitting will likely produce good predictions on the training set but tends 
to overfit the data and produce poor generalization performance. This is because it leads to 
overly complex trees, which are reflected in a large number of leaf nodes, or partitioning of 
the feature space. Fewer splits and leaf nodes imply an overall smaller tree and often lead 
to better predictive performance, as well as interpretability.

One approach to limit the number of leaf nodes is to avoid further splits unless they yield 
significant improvements in the objective metric. The downside of this strategy, however, is 
that sometimes, splits that result in small improvements enable more valuable splits later as 
the composition of the samples keeps changing.

Tree pruning, in contrast, starts by growing a very large tree before removing or pruning 
nodes to reduce the large tree to a less complex and overfit subtree. Cost-complexity-
pruning generates a sequence of subtrees by adding a penalty for adding leaf nodes to the 
tree model and a regularization parameter, similar to the lasso and ridge linear-regression 
models, that modulates the impact of the penalty. Applied to the large tree, an increasing 
penalty will automatically produce a sequence of subtrees. Cross-validation of the 
regularization parameter can be used to identify the optimal, pruned subtree.

This method was introduced in scikit-learn version 0.22; see Esposito et al. (1997) for a 
survey of how various methods work and perform.

Hyperparameter tuning
Decision trees offer an array of hyperparameters to control and tune the training 
result. Cross-validation is the most important tool to obtain an unbiased estimate of 
the generalization error, which, in turn, permits an informed choice among the various 
configuration options. scikit-learn offers several tools to facilitate the process of cross-
validating numerous parameter settings, namely the GridSearchCV convenience class, 
which we will illustrate in the next section. Learning curves also allow diagnostics that 
evaluate potential benefits of collecting additional data to reduce the generalization error.
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Using GridsearchCV with a custom metric

As highlighted in Chapter 6, The Machine Learning Process, scikit-learn provides a method 
to define ranges of values for multiple hyperparameters. It automates the process of cross-
validating the various combinations of these parameter values to identify the optimal 
configuration. Let's walk through the process of automatically tuning your model.

The first step is to instantiate a model object and define a dictionary where the keywords 
name the hyperparameters, and the values list the parameter settings to be tested:

reg_tree = DecisionTreeRegressor(random_state=42)

param_grid = {'max_depth': [2, 3, 4, 5, 6, 7, 8, 10, 12, 15],

              'min_samples_leaf': [5, 25, 50, 100],

              'max_features': ['sqrt', 'auto']}

Then, instantiate the GridSearchCV object, providing the estimator object and parameter 
grid, as well as a scoring method and cross-validation choice, to the initialization method. 

We set our custom MultipleTimeSeriesSplit class to train the model for 60 months, or 5 
years, of data and to validate performance using the subsequent 6 months, repeating the 
process over 10 folds to cover an out-of-sample period of 5 years:

cv = MultipleTimeSeriesCV(n_splits=10,

                          train_period_length=60,

                          test_period_length=6,

                          lookahead=1)

We use the roc_auc metric to score the classifier, and define a custom information 
coefficient (IC) metric using scikit-learn's make_scorer function for the regression model:

def rank_correl(y, y_pred):

    return spearmanr(y, y_pred)[0]

ic = make_scorer(rank_correl)

We can parallelize the search using the n_jobs parameter and automatically obtain a 
trained model that uses the optimal hyperparameters by setting refit=True.

With all the settings in place, we can fit GridSearchCV just like any other model:

gridsearch_reg = GridSearchCV(estimator=reg_tree,

                          param_grid=param_grid,

                          scoring=ic,

                          n_jobs=-1,

                          cv=cv,  # custom MultipleTimeSeriesSplit

                          refit=True,
                          return_train_score=True)

gridsearch_reg.fit(X=X, y=y)
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The training process produces some new attributes for our GridSearchCV object, most 
importantly the information about the optimal settings and the best cross-validation score 
(now using the proper setup, which avoids lookahead bias).

The following table lists the parameters and scores for the best regression and classification 
model, respectively. With a shallower tree and more regularized leaf nodes, the regression 
tree achieves an IC of 0.083, while the classifier's AUC score is 0.525:

Parameter Regression Classification

max_depth 6 12

max_features sqrt sqrt

min_samples_leaf 50 5

Score 0.0829 0.5250

The automation is quite convenient, but we also would like to inspect how the performance 
evolves for different parameter values. Upon completion of this process, the GridSearchCV 
object makes detailed cross-validation results available so that we can gain more insights. 

How to inspect the tree structure

The notebook also illustrates how to run cross-validation more manually to obtain 
custom tree attributes, such as the total number of nodes or leaf nodes associated with 
certain hyperparameter settings. The following function accesses the internal .tree_ 
attribute to retrieve information about the total node count, as well as how many of 
these nodes are leaf nodes:

def get_leaves_count(tree):

    t = tree.tree_

    n = t.node_count

    leaves = len([i for i in range(t.node_count) if t.children_left[i]== -1])

    return leaves

We can combine this information with the train and test scores to gain detailed knowledge 
about the model behavior throughout the cross-validation process, as follows:

train_scores, val_scores, leaves = {}, {}, {}

for max_depth in range(1, 26):

    print(max_depth, end=' ', flush=True)
    clf = DecisionTreeClassifier(criterion='gini', 
                                 max_depth=max_depth,

                                 min_samples_leaf=10,

                                 max_features='auto',

                                 random_state=42)

    train_scores[max_depth], val_scores[max_depth] = [], [] 

    leaves[max_depth] = []

    for train_idx, test_idx in cv.split(X):

        X_train, = X.iloc[train_idx], 
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        y_train  = y_binary.iloc[train_ idx]

        X_test, y_test = X.iloc[test_idx], y_binary.iloc[test_idx]

        clf.fit(X=X_train, y=y_train)
        train_pred = clf.predict_proba(X=X_train)[:, 1]

        train_score = roc_auc_score(y_score=train_pred, y_true=y_train)

        train_scores[max_depth].append(train_score)

        test_pred = clf.predict_proba(X=X_test)[:, 1]

        val_score = roc_auc_score(y_score=test_pred, y_true=y_test)

        val_scores[max_depth].append(val_score)    

        leaves[max_depth].append(get_leaves_count(clf))

The following plot displays how the number of leaf nodes increases with the depth of the 
tree. Due to the sample size of each cross-validation fold containing 60 months with around 
500 data points each, the number of leaf nodes is limited to around 3,000 when limiting the 
number of min_samples_leaf to 10 samples:

Figure 11.7: Visualization of a classification tree

Comparing regression and classification performance
To take a closer look at the performance of the models, we will show the cross-validation 
performance for various levels of depth, while maintaining the other parameter settings 
that produced the best grid search results. Figure 11.8 displays the train and the validation 
scores and highlights the degree of overfitting for deeper trees. This is because the training 
scores steadily increase, whereas validation performance remains flat or decreases.

Note that, for the classification tree, the grid search suggested 12 levels for the best 
predictive accuracy. However, the plot shows similar AUC scores for less complex trees, 
with three or seven levels. We would prefer a shallower tree that promises comparable 
generalization performance while reducing the risk of overfitting:
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Figure 11.8: Train and validation scores for both models

Diagnosing training set size with learning curves

A learning curve is a useful tool that displays how the validation and training scores 
evolve as the number of training samples increases.

The purpose of the learning curve is to find out whether and how much the model would 
benefit from using more data during training. It also helps to diagnose whether the model's 
generalization error is more likely driven by bias or variance.

If the training score meets performance expectations and the validation score exhibits 
significant improvement as the training sample grows, training for a longer lookback 
period or obtaining more data might add value. If, on the other hand, both the validation 
and the training score converge to a similarly poor value, despite an increasing training set 
size, the error is more likely due to bias, and additional training data is unlikely to help.

The following image depicts the learning curves for the best regression and 
classification models:

Figure 11.9: Learning curves for the best version of each model

Especially for the regression model, the validation performance improves with a larger 
training set. This suggests that a longer training period may yield better results. Try it 
yourself to see if it works!
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Gaining insight from feature importance

Decision trees can not only be visualized to inspect the decision path for a given feature, 
but can also summarize the contribution of each feature to the rules learned by the model to 
fit the training data. 

Feature importance captures how much the splits produced by each feature help optimize 
the model's metric used to evaluate the split quality, which in our case is the Gini impurity. 
A feature's importance is computed as the (normalized) total reduction of this metric and 
takes into account the number of samples affected by a split. Hence, features used earlier 
in the tree where the nodes tend to contain more samples are typically considered of 
higher importance.

Figure 11.10 shows the plots for feature importance for the top 15 features of each model. 
Note how the order of features differs from the univariate evaluation based on the mutual 
information scores given at the beginning of this section. Clearly, the ability of decision 
trees to capture interdependencies, such as between time periods and other features, can 
alter the value of each feature:

Figure 11.10: Feature importance for the best regression and classification models

Strengths and weaknesses of decision trees

Regression and classification trees approach making predictions very differently from the 
linear models we have explored in the previous chapters. How do you decide which model 
is more suitable for the problem at hand? Consider the following:

• If the relationship between the outcome and the features is approximately linear (or 
can be transformed accordingly), then linear regression will likely outperform a more 
complex method, such as a decision tree that does not exploit this linear structure.

• If the relationship appears highly nonlinear and more complex, decision trees will 
likely outperform the classical models. Keep in mind that the complexity of the 
relationship needs to be systematic or "real," rather than driven by noise, which 
leads more complex models to overfit.
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Several advantages have made decision trees very popular:

• They are fairly straightforward to understand and to interpret, not least because 
they can be easily visualized and are thus more accessible to a non-technical 
audience. Decision trees are also referred to as white-box models, given the high 
degree of transparency about how they arrive at a prediction. Black-box models, 
such as ensembles and neural networks, may deliver better prediction accuracy, but 
the decision logic is often much more challenging to understand and interpret.

• Decision trees require less data preparation than models that make stronger 
assumptions about the data or are more sensitive to outliers and require data 
standardization (such as regularized regression).

• Some decision tree implementations handle categorical input, do not require the 
creation of dummy variables (improving memory efficiency), and can work with 
missing values, as we will see in Chapter 12, Boosting Your Trading Strategy, but this 
is not the case for scikit-learn.

• Prediction is fast because it is logarithmic in the number of leaf nodes (unless the 
tree becomes extremely unbalanced).

• It is possible to validate the model using statistical tests and account for its 
reliability (see the references for more details).

Decision trees also have several key disadvantages:

• Decision trees have a built-in tendency to overfit to the training set and produce a 
high generalization error. The key steps to address this weakness are pruning and 
regularization using the early-stopping criteria that limits tree growth, as outlined 
in this section.

• Decision trees are also sensitive to unbalanced class weights and may produce 
biased trees. One option is to oversample the underrepresented classes or 
undersample the more frequent class. It is typically better, though, to use class 
weights and directly adjust the objective function.

• The high variance of decision trees is tied to their ability to closely adapt to a 
training set. As a result, minor variations in the data can produce wide swings in 
the tree's structure and, consequently, the model's predictions. A key prevention 
mechanism is the use of an ensemble of randomized decision trees that have low 
bias and produce uncorrelated prediction errors.

• The greedy approach to decision-tree learning optimizes local criteria that reduce 
the prediction error at the current node and do not guarantee a globally optimal 
outcome. Again, ensembles consisting of randomized trees help to mitigate this 
problem.

We will now turn to the ensemble method of mitigating the risk of overfitting that's 
inherent when using decision trees.



Chapter 11

[ 345 ]

Random forests – making trees more reliable
Decision trees are not only useful for their transparency and interpretability. They are also 
fundamental building blocks for more powerful ensemble models that combine many 
individual trees, while randomly varying their design to address the overfitting problems 
we just discussed.

Why ensemble models perform better
Ensemble learning involves combining several machine learning models into a single new 
model that aims to make better predictions than any individual model. More specifically, 
an ensemble integrates the predictions of several base estimators, trained using one or 
more learning algorithms, to reduce the generalization error that these models produce 
on their own.

For ensemble learning to achieve this goal, the individual models must be:

• Accurate: Outperform a naive baseline (such as the sample mean or class 
proportions)

• Independent: Predictions are generated differently to produce different errors

Ensemble methods are among the most successful machine learning algorithms, in 
particular for standard numerical data. Large ensembles are very successful in machine 
learning competitions and may consist of many distinct individual models that have been 
combined by hand or using another machine learning algorithm.

There are several disadvantages to combining predictions made by different models. These 
include reduced interpretability and higher complexity and cost of training, prediction, and 
model maintenance. As a result, in practice (outside of competitions), the small gains in 
accuracy from large-scale ensembling may not be worth the added costs.

There are two groups of ensemble methods that are typically distinguished between, 
depending on how they optimize the constituent models and then integrate the results for a 
single ensemble prediction:

• Averaging methods train several base estimators independently and then average 
their predictions. If the base models are not biased and make different prediction 
errors that are not highly correlated, then the combined prediction may have lower 
variance and can be more reliable. This resembles the construction of a portfolio from 
assets with uncorrelated returns to reduce the volatility without sacrificing the return.

• Boosting methods, in contrast, train base estimators sequentially with the specific 
goal of reducing the bias of the combined estimator. The motivation is to combine 
several weak models into a powerful ensemble.

We will focus on automatic averaging methods in the remainder of this chapter and 
boosting methods in Chapter 12, Boosting Your Trading Strategy.
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Bootstrap aggregation
We saw that decision trees are likely to make poor predictions due to high variance, which 
implies that the tree structure is quite sensitive to the available training sample. We have 
also seen that a model with low variance, such as linear regression, produces similar 
estimates, despite different training samples, as long as there are sufficient samples given 
the number of features.

For a given a set of independent observations, each with a variance of 𝜎𝜎2 , the standard 
error of the sample mean is given by 𝜎𝜎𝜎√𝑛𝑛 . In other words, averaging over a larger set of 
observations reduces the variance. A natural way to reduce the variance of a model and its 
generalization error would, thus, be to collect many training sets from the population, train 
a different model on each dataset, and average the resulting predictions.

In practice, we do not typically have the luxury of many different training sets. This 
is where bagging, short for bootstrap aggregation, comes in. Bagging is a general-
purpose method that's used to reduce the variance of a machine learning model, which is 
particularly useful and popular when applied to decision trees.

We will first explain how this technique mitigates overfitting and then show how to apply 
it to decision trees.

How bagging lowers model variance

Bagging refers to the aggregation of bootstrap samples, which are random samples with 
replacement. Such a random sample has the same number of observations as the original 
dataset but may contain duplicates due to replacement. 

Bagging increases predictive accuracy but decreases model interpretability because it's no 
longer possible to visualize the tree to understand the importance of each feature. As an 
ensemble algorithm, bagging methods train a given number of base estimators on these 
bootstrapped samples and then aggregate their predictions into a final ensemble prediction. 

Bagging reduces the variance of the base estimators to reduce their generalization error by: 

1. Randomizing how each tree is grown

2. Averaging their predictions

It is often a straightforward approach to improve on a given model without the need to 
change the underlying algorithm. This technique works best with complex models that 
have low bias and high variance, such as deep decision trees, because its goal is to limit 
overfitting. Boosting methods, in contrast, work best with weak models, such as shallow 
decision trees.

There are several bagging methods that differ by the random sampling process they apply 
to the training set:

• Pasting draws random samples from the training data without replacement, 
whereas bagging samples with replacement.
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• Random subspaces randomly sample from the features (that is, the columns) 
without replacement.

• Random patches train base estimators by randomly sampling both observations 
and features.

Bagged decision trees

To apply bagging to decision trees, we create bootstrap samples from our training data 
by repeatedly sampling with replacement. Then, we train one decision tree on each of 
these samples and create an ensemble prediction by averaging over the predictions of the 
different trees. You can find the code for this example in the notebook bagged_decision_
trees, unless otherwise noted.

Bagged decision trees are usually grown large, that is, they have many levels and leaf 
nodes and are not pruned so that each tree has a low bias but high variance. The effect of 
averaging their predictions then aims to reduce their variance. Bagging has been shown 
to substantially improve predictive performance by constructing ensembles that combine 
hundreds or even thousands of trees trained on bootstrap samples.

To illustrate the effect of bagging on the variance of a regression tree, we can use the 
BaggingRegressor meta-estimator provided by scikit-learn. It trains a user-defined base 
estimator based on parameters that specify the sampling strategy:

• max_samples and max_features control the size of the subsets drawn from the rows 
and the columns, respectively.

• bootstrap and bootstrap_features determine whether each of these samples is 
drawn with or without replacement.

The following example uses an exponential function to generate training samples for a 
single DecisionTreeRegressor and a BaggingRegressor ensemble that consists of 10 trees, 
each grown 10 levels deep. Both models are trained on the random samples and predict 
outcomes for the actual function with added noise.

Since we know the true function, we can decompose the mean-squared error into bias, 
variance, and noise, and compare the relative size of these components for both models 
according to the following breakdown:𝐸𝐸[𝑦𝑦0 − 𝑓𝑓(𝑥𝑥0)]2 = Var(𝑓𝑓(𝑥𝑥0)) + [Bias(𝑓𝑓(𝑥𝑥0))]2 + 𝑉𝑉𝑉𝑉𝑉𝑉(𝑉𝑉) 
We will draw 100 random samples of 250 training and 500 test observations each to train 
each model and collect the predictions:

noise = .5  # noise relative to std(y)

noise = y.std() * noise

X_test = choice(x, size=test_size, replace=False)

max_depth = 10

n_estimators=10

tree = DecisionTreeRegressor(max_depth=max_depth)
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bagged_tree = BaggingRegressor(base_estimator=tree, n_estimators=n_
estimators)

learners = {'Decision Tree': tree, 'Bagging Regressor': bagged_tree}

predictions = {k: pd.DataFrame() for k, v in learners.items()}

for i in range(reps):

    X_train = choice(x, train_size)

    y_train = f(X_train) + normal(scale=noise, size=train_size)

    for label, learner in learners.items():

        learner.fit(X=X_train.reshape(-1, 1), y=y_train)
        preds = pd.DataFrame({i: learner.predict(X_test.reshape(-1, 1))},  
                             index=X_test)

        predictions[label] = pd.concat([predictions[label], preds], axis=1)

For each model, the plots in Figure 11.11 show:

• The mean prediction and a band of two standard deviations around the mean 
(upper panel) 

• The bias-variance-noise breakdown based on the values for the true function 
(bottom panel)

We find that the variance of the predictions of the individual decision tree (left side) 
is almost twice as high as that for the small ensemble of 10 bagged trees, based on 
bootstrapped samples:

Figure 11.11: Bias-variance breakdown for individual and bagged decision trees

See the notebook bagged_decision_trees for implementation details.
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How to build a random forest
The random forest algorithm builds on the randomization introduced by bagging to further 
reduce variance and improve predictive performance. 

In addition to training each ensemble member on bootstrapped training data, random 
forests also randomly sample from the features used in the model (without replacement). 
Depending on the implementation, the random samples can be drawn for each tree or each 
split. As a result, the algorithm faces different options when learning new rules, either at 
the level of a tree or for each split.

The sample size for the features differs between regression and classification trees:

• For classification, the sample size is typically the square root of the number of 
features.

• For regression, it can be anywhere from one-third to all features and should be 
selected based on cross-validation.

The following diagram illustrates how random forests randomize the training of individual 
trees and then aggregate their predictions into an ensemble prediction:

Figure 11.12: How a random forest grows individual trees

The goal of randomizing the features in addition to the training observations is to further 
decorrelate the prediction errors of the individual trees. All features are not created equal, 
and a small number of highly relevant features will be selected much more frequently 
and earlier in the tree-construction process, making decision trees more alike across the 
ensemble. However, the less the generalization errors of individual trees correlate, the more 
the overall variance will be reduced.
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How to train and tune a random forest
The key configuration parameters include the various hyperparameters for the individual 
decision trees introduced in the How to tune the hyperparameters section. The following table 
lists additional options for the two RandomForest classes:

Keyword Default Description

bootstrap TRUE Bootstrap samples during training

n_estimators 10 Number of trees in the forest

oob_score FALSE Uses out-of-bag samples to estimate the R2 on unseen data

The bootstrap parameter activates the bagging algorithm just described. Bagging, in 
turn, enables the computation of the out-of-bag score (oob_score), which estimates the 
generalization accuracy from samples not included in the bootstrap sample used to train a 
given tree (see the Out-of-bag testing section).

The parameter n_estimators defines the number of trees to be grown as part of the forest. 
Larger forests perform better, but also take more time to build. It is important to monitor 
the cross-validation error as the number of base learners grows. The goal is to identify 
when the rising cost of training an additional tree outweighs the benefit of reducing the 
validation error, or when the latter starts to increase again.

The max_features parameter controls the size of the randomly selected feature subsets 
available when learning a new decision rule and to split a node. A lower value reduces the 
correlation of the trees and, thus, the ensemble's variance, but may also increase the bias. As 
pointed out at the beginning of this section, good starting values are the number of training 
features for regression problems and the square root of this number for classification 
problems, but will depend on the relationships among features and should be optimized 
using cross-validation.

Random forests are designed to contain deep fully-grown trees, which can be created 
using max_depth=None and min_samples_split=2. However, these values are not necessarily 
optimal, especially for high-dimensional data with many samples and, consequently, 
potentially very deep trees that can become very computationally, and memory, intensive.

The RandomForest class provided by scikit-learn supports parallel training and prediction 
by setting the n_jobs parameter to the k number of jobs to run on different cores. The -1 
value uses all available cores. The overhead of interprocess communication may limit the 
speedup from being linear so that k jobs may take more than 1/k the time of a single job. 
Nonetheless, the speedup is often quite significant for large forests or deep individual 
trees that may take a meaningful amount of time to train when the data is large, and split 
evaluation becomes costly.

As always, the best parameter configuration should be identified using cross-validation. 
The following steps illustrate the process. The code for this example is in the notebook 
random_forest_tuning.



Chapter 11

[ 351 ]

We will use GridSearchCV to identify an optimal set of parameters for an ensemble of 
classification trees:

rf_clf = RandomForestClassifier(n_estimators=100,
                                criterion='gini',

                                max_depth=None,

                                min_samples_split=2,

                                min_samples_leaf=1,

                                min_weight_fraction_leaf=0.0,

                                max_features='auto',

                                max_leaf_nodes=None,

                                min_impurity_decrease=0.0,

                                min_impurity_split=None,

                                bootstrap=True, oob_score=False,

                                n_jobs=-1, random_state=42)

We use the same 10-fold custom cross-validation as in the decision tree example previously 
and populate the parameter grid with values for the key configuration settings:

cv = MultipleTimeSeriesCV(n_splits=10, train_period_length=60,

                          test_period_length=6, lookahead=1)

clf = RandomForestClassifier(random_state=42, n_jobs=-1)
param_grid = {'n_estimators': [50, 100, 250],

              'max_depth': [5, 15, None],

              'min_samples_leaf': [5, 25, 100]}

Configure GridSearchCV using the preceding as input:

gridsearch_clf = GridSearchCV(estimator=clf,

                              param_grid=param_grid,

                              scoring='roc_auc',

                              n_jobs=-1,

                              cv=cv,

                              refit=True,
                              return_train_score=True,

                              verbose=1)

We run our grid search as before and find the following result for the best-performing 
regression and classification models. A random forest regression model does better with 
shallower trees compared to the classifier but otherwise uses the same settings:

Parameter Regression Classification
max_depth 5 15

min_samples_leaf 5 5

n_estimators 100 100

Score 0.0435 0.5205
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However, both models underperform their individual decision tree counterparts, 
highlighting that more complex models do not necessarily outperform simpler approaches, 
especially when the data is noisy and the risk of overfitting is high.

Feature importance for random forests
A random forest ensemble may contain hundreds of individual trees, but it is still possible 
to obtain an overall summary measure of feature importance from bagged models.

For a given feature, the importance score is the total reduction in the objective function's 
value due to splits on this feature and is averaged over all trees. Since the objective function 
takes into account how many features are affected by a split, features used near the top of a 
tree will get higher scores due to the larger number of observations contained in the smaller 
number of available nodes. By averaging over many trees grown in a randomized fashion, 
the feature importance estimate loses some variance and becomes more accurate.

The score is measured in terms of the mean-squared error for regression trees and the Gini 
impurity or entropy for classification trees. scikit-learn further normalizes feature importance 
so that it sums up to 1. Feature importance thus computed is also popular for feature selection 
as an alternative to the mutual information measures we saw in Chapter 6, The Machine 
Learning Process (see SelectFromModel in the sklearn.feature_selection module).

Figure 11.13 shows the values for the top 15 features for both models. The regression model 
relies much more on time periods than the better-performing decision tree:

Figure 11.13: Random forest feature importance

Out-of-bag testing
Random forests offer the benefit of built-in cross-validation because individual trees 
are trained on bootstrapped versions of the training data. As a result, each tree uses, 
on average, only two-thirds of the available observations. To see why, consider that a 
bootstrap sample has the same size, n, as the original sample, and each observation has 
the same probability, 1/n, to be drawn. Hence, the probability of not entering a bootstrap 
sample at all is (1-1/n)n, which converges (quickly) to 1/e, or roughly one third. 
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This remaining one-third of the observations that are not included in the training set is used 
to grow a bagged tree called out-of-bag (OOB) observations, and can serve as a validation 
set. Just as with cross-validation, we predict the response for an OOB sample for each tree 
built without this observation, and then average the predicted responses (if regression is 
the goal) or take a majority vote or predicted probability (if classification is the goal) for a 
single ensemble prediction for each OOB sample. These predictions produce an unbiased 
estimate of the generalization error, which is conveniently computed during training.

The resulting OOB error is a valid estimate of the generalization error for this observation. 
This is because the prediction is produced using decision rules learned in the absence of this 
observation. Once the random forest is sufficiently large, the OOB error closely approximates 
the leave-one-out cross-validation error. The OOB approach to estimate the test error is very 
efficient for large datasets where cross-validation can be computationally costly. 

However, the same caveats apply as for cross-validation: you need to take care to avoid 
a lookahead bias that would ensue if OOB observations could be selected out-of-order. In 
practice, this makes it very difficult to use OOB testing with time-series data, where the 
validation set needs to be selected subject to the sequential nature of the data.

Pros and cons of random forests
Bagged ensemble models have both advantages and disadvantages. 

The advantages of random forests include:

• Depending on the use case, a random forest can perform on par with the best 
supervised learning algorithms.

• Random forests provide a reliable feature importance estimate.

• They offer efficient estimates of the test error without incurring the cost of repeated 
model training associated with cross-validation.

On the other hand, the disadvantages of random forests include:

• An ensemble model is inherently less interpretable than an individual decision tree.

• Training a large number of deep trees can have high computational costs (but can 
be parallelized) and use a lot of memory.

• Predictions are slower, which may create challenges for applications that require 
low latency.

Let's now take a look at how we can use a random forest for a trading strategy.

Long-short signals for Japanese stocks
In Chapter 9, Time-Series Models for Volatility Forecasts and Statistical Arbitrage, we used 
cointegration tests to identify pairs of stocks with a long-term equilibrium relationship in 
the form of a common trend to which their prices revert.
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In this chapter, we will use the predictions of a machine learning model to identify assets 
that are likely to go up or down so we can enter market-neutral long and short positions, 
accordingly. The approach is similar to our initial trading strategy that used linear 
regression in Chapter 7, Linear Models – From Risk Factors to Return Forecasts, and Chapter 8, 
The ML4T Workflow – From Model to Strategy Backtesting.

Instead of the scikit-learn random forest implementation, we will use the LightGBM 
package, which has been primarily designed for gradient boosting. One of several 
advantages is LightGBM's ability to efficiently encode categorical variables as numeric 
features rather than using one-hot dummy encoding (Fisher 1958). We'll provide a more 
detailed introduction in the next chapter, but the code samples should be easy to follow as 
the logic is similar to the scikit-learn version.

The data – Japanese equities
We are going to design a strategy for a universe of Japanese stocks, using data provided 
by Stooq, a Polish data provider that currently offers interesting datasets for various asset 
classes, markets, and frequencies, which we also relied upon in Chapter 9, Time-Series 
Models for Volatility Forecasts and Statistical Arbitrage.

While there is little transparency regarding the sourcing and quality of the data, it has 
the powerful advantage of currently being free of charge. In other words, we get to 
experiment with data on stocks, bonds, commodities, and FX at daily, hourly, and 5-minute 
frequencies, but should take the results with a large grain of salt.

The create_datasets notebook in the data directory of this book's GitHub repository 
contains instructions for downloading the data and storing them in HDF5 format. For this 
example, we are using price data on some 3,000 Japanese stocks for the 2010-2019 period. 
The last 2 years will serve as the out-of-sample test period, while the prior years will serve 
as our cross-validation sample for model selection. 

Please refer to the notebook japanese_equity_features for the code samples in this section. 
We remove tickers with more than five consecutive missing values and only keep the 1,000 
most-traded stocks.

The features – lagged returns and technical indicators

We'll keep it relatively simple and combine historical returns for 1, 5, 10, 21, and 63 trading 
days with several technical indicators provided by TA-Lib (see Chapter 4, Financial Feature 
Engineering – How to Research Alpha Factors). 

More specifically, we compute for each stock:

• Percentage price oscillator (PPO): A normalized version of the moving average 
convergence/divergence (MACD) indicator that measures the difference between 
the 14-day and the 26-day exponential moving average to capture differences in 
momentum across assets.
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• Normalized average true range (NATR): Measures price volatility in a way that 
can be compared across assets.

• Relative strength index (RSI): Another popular momentum indicator (see 
Chapter 4, Financial Feature Engineering – How to Research Alpha Factors for details).

• Bollinger Bands: Ratios of the moving average to the moving standard deviations 
used to identify opportunities for mean reversion.

We will also include markers for the time periods year, month, and weekday, and rank 
stocks on a scale from 1 to 20 with respect to their latest return for each of the six intervals 
on each trading day.

The outcomes – forward returns for different horizons
To test the predictive ability of a random forest given these features, we generate forward 
returns for the same intervals up to 21 trading days (1 month).

The leads and lags implied by the historical and forward returns cause some loss of data 
that increases with the investment horizon. We end up with 2.3 million observations on 18 
features and 4 outcomes for 941 stocks.

The ML4T workflow with LightGBM
We will now embark on selecting a random forest model that produces tradeable signals. 
Several studies have done so successfully; see, for instance, Krauss, Do, and Huck (2017) 
and Rasekhschaffe and Jones (2019) and the resources referenced there.

We will use the fast and memory-efficient LightGBM implementation that's open sourced 
by Microsoft and most popular for gradient boosting, which is the topic of the next chapter, 
where we will take a closer look at the various LightGBM features. 

We will begin by discussing key experimental design decisions, then build and evaluate 
a predictive model whose signals will drive the trading strategy that we will design and 
evaluate in the final step. Please refer to the notebook random_forest_return_signals for 
the code samples in this section, unless otherwise stated.

From universe selection to hyperparameter tuning

To develop a trading strategy that uses a machine learning model, we need to make several 
decisions on the scope and design of the model, including:

• Lookback period: How many historical trading days to use for training

• Lookahead period: How many days into the future to predict returns

• Test period: For how many consecutive days to make predictions with the 
same model

• Hyperparameters: Which parameters and configurations to evaluate
• Ensembling: Whether to rely on a single model or some combination of 

multiple models
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To evaluate the options of interest, we also need to select a universe and time period for 
cross-validation, as well as an out-of-sample test period and universe. More specifically, 
we cross-validate several options for the period up to 2017 on a subset of our sample of 
Japanese stocks.

Once we've settled on a model, we'll define trading rules and backtest the strategy that uses 
the signals of our model out-of-sample over the last 2 years on the complete universe to 
validate its performance.

For the time-series cross-validation, we'll rely on the MultipleTimeSeriesCV that we 
developed in Chapter 7, Linear Models – From Risk Factors to Return Forecasts, to parameterize 
the length of the training and test period while avoiding lookahead bias. This custom CV 
class permits us to:

• Train the model on a consecutive sample containing train_length days for each 
ticker.

• Validate its performance during a subsequent period containing test_length 
days and lookahead number of days, apart from the training period, to avoid data 
leakage.

• Repeat for a given number of n_splits while rolling the train and validation 
periods forward for test_length number of days each time.

We'll work on the model selection step in this section and on strategy backtesting in the 
following one.

Sampling tickers to speed up cross-validation

Training a random forest takes quite a bit longer than linear regression and depends on the 
configuration, where the number of trees and their depth are the main drivers. 

To keep our experiments manageable, we'll select the 250 most-traded stocks over 
the 2010-17 period to evaluate the performance of different outcomes and model 
configurations, as follows: 

DATA_DIR = Path('..', 'data')

prices = (pd.read_hdf(DATA_DIR / 'assets.h5', 'stooq/jp/tse/stocks/prices')

          .loc[idx[:, '2010': '2017'], :])

dollar_vol = prices.close.mul(prices.volume)

dollar_vol_rank = dollar_vol.groupby(level='date').rank(ascending=False)

universe = dollar_vol_rank.groupby(level='symbol').mean().nsmallest(250).index



Chapter 11

[ 357 ]

Defining lookback, lookahead, and roll-forward periods
Running our strategy requires training models on a rolling basis, using a certain number 
of trading days (the lookback period) from our universe to learn the model parameters and 
predict the outcome for a certain number of future days. In our example, we'll consider 63, 
126, 252, 756, and 1,260 trading days for training while rolling forward and predicting for 5, 
21, or 63 days during each iteration.

We will pair the parameters in a list for easy iteration and optional sampling and/or 
shuffling, as follows:

train_lengths = [1260, 756, 252, 126, 63]

test_lengths = [5, 21, 63]

test_params = list(product(train_lengths, test_lengths))

n = len(test_params)

test_param_sample = np.random.choice(list(range(n)), 

                                     size=int(n), 

                                     replace=False)

test_params = [test_params[i] for i in test_param_sample]

Hyperparameter tuning with LightGBM

The LightGBM model accepts a large number of parameters, as the documentation explains 
in detail (see https://lightgbm.readthedocs.io/ and the next chapter). For our purposes, 
we just need to enable the random forest algorithm by defining boosting_type, setting 
bagging_freq to a positive number, and setting objective to regression:

base_params = dict(boosting_type='rf',

                   objective='regression',

                   bagging_freq=1)

Next, we select the hyperparameters most likely to affect the predictive accuracy, namely:

• The number of trees to grow for the model (num_boost_round) 

• The share of rows (bagging_fraction) and columns (feature_fraction) used 
for bagging

• The minimum number of samples required in a leaf (min_data_in_leaf) to control 
for overfitting 

Another benefit of LightGBM is that we can evaluate a trained model for a subset of its 
trees (or continue training after a certain number of evaluations), which allows us to test 
multiple num_iteration values during a single training session. 

Alternatively, you can enable early_stopping to interrupt training when the loss metric for 
a validation set no longer improves. However, the cross-validation performance estimates 
will be biased upward as the model uses information on the outcome that will not be 
available under realistic circumstances.

https://lightgbm.readthedocs.io/
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We'll use the following values for the hyperparameters, which control the bagging method 
and tree growth:

bagging_fraction_opts = [.5, .75, .95]

feature_fraction_opts = [.75, .95]

min_data_in_leaf_opts = [250, 500, 1000]

cv_params = list(product(bagging_fraction_opts,

                         feature_fraction_opts,

                         min_data_in_leaf_opts))

n_cv_params = len(cv_params)

Cross-validating signals over various horizons

To evaluate a model for a given set of hyperparameters, we will generate predictions using 
the lookback, lookahead, and roll-forward periods. 

First, we will identify categorical variables because LightGBM does not require one-hot 
encoding; instead, it sorts the categories according to the outcome, which delivers better 
results for regression trees, according to Fisher (1958). We'll create variables to identify 
different periods:

categoricals = ['year', 'weekday', 'month']

for feature in categoricals:

    data[feature] = pd.factorize(data[feature], sort=True)[0]

To this end, we will create the binary LightGBM Dataset and configure 
MultipleTimeSeriesCV using the given train_length and test_length, which determine 
the number of splits for our 2-year validation period:

for train_length, test_length in test_params:

    n_splits = int(2 * YEAR / test_length)

    cv = MultipleTimeSeriesCV(n_splits=n_splits,

                              test_period_length=test_length,

                              lookahead=lookahead,

                              train_period_length=train_length)

    label = label_dict[lookahead]

    outcome_data = data.loc[:, features + [label]].dropna()

    lgb_data = lgb.Dataset(data=outcome_data.drop(label, axis=1),

                           label=outcome_data[label],

                           categorical_feature=categoricals,

                           free_raw_data=False)

Next, we take the following steps:

1. Select the hyperparameters for this iteration. 

2. Slice the binary LightGM Dataset we just created into train and test sets. 
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3. Train the model.

4. Generate predictions for the validation set for a range of num_iteration settings:

for p, (bagging_fraction, feature_fraction, min_data_in_leaf) \

        in enumerate(cv_params_):

    params = base_params.copy()

    params.update(dict(bagging_fraction=bagging_fraction,

                       feature_fraction=feature_fraction,

                       min_data_in_leaf=min_data_in_leaf))

    start = time()

    cv_preds, nrounds = [], []

    for i, (train_idx, test_idx) in \

            enumerate(cv.split(X=outcome_data)):

        lgb_train = lgb_data.subset(train_idx.tolist()).construct()

        lgb_test = lgb_data.subset(test_idx.tolist()).construct()

        model = lgb.train(params=params,

                          train_set=lgb_train,

                          num_boost_round=num_boost_round,

                          verbose_eval=False)

        test_set = outcome_data.iloc[test_idx, :]

        X_test = test_set.loc[:, model.feature_name()]

        y_test = test_set.loc[:, label]

        y_pred = {str(n): model.predict(X_test, num_iteration=n)

                  for n in num_iterations}

        cv_preds.append(y_test.to_frame('y_test')

                        .assign(**y_pred).assign(i=i))

        nrounds.append(model.best_iteration)

5. To evaluate the validation performance, we compute the IC for the complete set of 
predictions, as well as on a daily basis, for a range of numbers of iterations:

df = [by_day.apply(lambda x: spearmanr(x.y_test,

                                       x[str(n)])[0]).to_frame(n)

      for n in num_iterations]

ic_by_day = pd.concat(df, axis=1)

daily_ic.append(ic_by_day.assign(bagging_fraction=bagging_fraction,

                                 feature_fraction=feature_fraction,

                                 min_data_in_leaf=min_data_in_leaf))

cv_ic = [spearmanr(cv_preds.y_test, cv_preds[str(n)])[0]

         for n in num_iterations]

ic.append([bagging_fraction, feature_fraction,

           min_data_in_leaf, lookahead] + cv_ic)



Random Forests – A Long-Short Strategy for Japanese Stocks

[ 360 ]

Now, we need to assess the signal content of the predictions to select a model for our 
trading strategy.

Analyzing cross-validation performance

First, we'll take a look at the distribution of the IC for the various train and test windows, as 
well as prediction horizons across all hyperparameter settings. Then, we'll take a closer look 
at the impact of the hyperparameter settings on the model's predictive accuracy.

IC for different lookback, roll-forward, and lookahead periods
The following image illustrates the distribution and quantiles of the daily mean IC for four 
prediction horizons and five training windows, as well as the best-performing 21-day test 
window. Unfortunately, it does not yield conclusive insights into whether shorter or longer 
windows do better, but rather illustrates the degree of noise in the data due to the range of 
model configurations we tested and the resulting lack of consistency in outcomes:

Figure 11.14: Distribution of the daily mean information coefficient for various model configurations

OLS regression of random forest configuration parameters
To understand in more detail how the parameters of our experiment affect the outcome, we 
can run an OLS regression of these parameters on the daily mean IC. Figure 11.15 shows the 
coefficients and confidence intervals for the 1- and 5-day lookahead periods.

All variables are one-hot encoded and can be interpreted relative to the smallest category 
of each that is captured by the constant. The results differ across the horizons; the longest 
training period works best for the 1-day prediction but yields the worst performance for 5 
days, with no clear patterns. Longer training appears to improve the 1-day model up to a 
certain point, but this is less clear for the 5-day model. The only somewhat consistent result 
seems to suggest a lower bagging fraction and higher minimum sample settings:
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Figure 11.15: OLS coefficients and confidence intervals for the various random forest configuration parameters

Ensembling forecasts – signal analysis using Alphalens

Ultimately, we care about the signal content of the model predictions regarding our 
investment universe and holding period. To this end, we'll evaluate the return spread 
produced by equal-weighted portfolios invested in different quantiles of the predicted 
returns using Alphalens.

As discussed in Chapter 4, Financial Feature Engineering – How to Research Alpha Factors, 
Alphalens computes and visualizes various metrics that summarize the predictive 
performance of an Alpha Factor. The notebook alphalens_signals_quality illustrates how 
to combine the model predictions with price data in the appropriate format using the utility 
function get_clean_factor_and_forward_returns.

To address some of the noise inherent in the CV predictions, we select the top three 1-day 
models according to their mean daily IC and average their results. 

When we provide the resulting signal to Alphalens, we find the following for a 1-day 
holding period:

• Annualized alpha of 0.081 and beta of 0.083

• A mean period-wise spread between top and bottom quintile returns of 5.16 
basis points

The following image visualizes the mean period-wise returns by factor quintile and the 
cumulative daily forward returns associated with the stocks in each quintile:

Figure 11.16: Alphalens factor signal evaluation
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The preceding image shows that the 1-day ahead predictions appear to contain useful 
trading signals over a short horizon based on the return spread of the top and bottom 
quintiles. We'll now move on and develop and backtest a strategy that uses predictions 
generated by the top ten 1-day lookahead models that produced the results shown here for 
the validation period.

The strategy – backtest with Zipline
To design and backtest a trading strategy using Zipline, we need to generate predictions 
for our universe for the test period, ingest the Japanese equity data and load the signal into 
Zipline, set up a pipeline, and define rebalancing rules to trigger trades accordingly.

Ingesting Japanese Equities into Zipline

We follow the process described in Chapter 8, The ML4T Workflow – From Model to Strategy 
Backtesting, to convert our Stooq equity OHLCV data into a Zipline bundle. The directory 
custom_bundle contains the preprocessing module that creates the asset IDs and metadata, 
defines an ingest function that does the heavy lifting, and registers the bundle with an 
extension. 

The folder contains a README with additional instructions.

Running an in- and out-of-sample strategy backtest

The notebook random_forest_return_signals shows how to select the hyperparameters 
that produced the best validation IC performance and generate forecasts accordingly.

We will use our 1-day model predictions and apply some simple logic: we will enter long 
and short positions for the 25 assets with the highest positive and lowest negative predicted 
returns. We will trade every day, as long as there are at least 15 candidates on either side, 
and close out all positions that are not among the current top forecasts. 

This time, we will also include a small trading commission of $0.05 per share but will not 
use slippage since we are trading the most liquid Japanese stocks with a relatively modest 
capital base.

The results – evaluation with pyfolio

The left panel shown in Figure 11.17 shows the in-sample (2016-17) and out-of-sample 
(2018-19) performance of the strategy relative to the Nikkei 225, which was mostly flat 
throughout the period.

The strategy earns 10.4 percent for in-sample and 5.5 percent for out-of-sample on an 
annualized basis. 
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The right panel shows the 3-month rolling Sharpe ratio, which reaches 0.96 in-sample and 
0.61 out-of-sample:

Figure 11.17: Pyfolio strategy evaluation

The overall performance statistics highlight cumulative returns of 36.6 percent after the 
(low) transaction costs of $0.05 cent per share, implying an out-of-sample alpha of 0.06 
and a beta of 0.08 (relative to the NIKKEI 225). The maximum drawdown was 11.0 percent 
in-sample and 8.7 percent out-of-sample:

All In-sample Out-of-sample

# Months 48 25 23

Annual return 8.00% 10.40% 5.50%

Cumulative returns 36.60% 22.80% 11.20%

Annual volatility 10.20% 10.90% 9.60%

Sharpe ratio 0.8 0.96 0.61

Calmar ratio 0.72 0.94 0.63

Stability 0.82 0.82 0.64

Max drawdown -11.00% -11.00% -8.70%

Sortino ratio 1.26 1.53 0.95

Daily value at risk -1.30% -1.30% -1.20%

Alpha 0.08 0.11 0.06

Beta 0.06 0.04 0.08

The pyfolio tearsheets contain lots of additional details regarding exposure, risk profile, 
and other aspects. 
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Summary
In this chapter, we learned about a new class of model capable of capturing a non-linear 
relationship, in contrast to the classical linear models we had explored so far. We saw how 
decision trees learn rules to partition the feature space into regions that yield predictions, 
and thus segment the input data into specific regions.

Decision trees are very useful because they provide unique insights into the relationships 
between features and target variables, and we saw how to visualize the sequence of 
decision rules encoded in the tree structure.

Unfortunately, a decision tree is prone to overfitting. We learned that ensemble models 
and the bootstrap aggregation method manage to overcome some of the shortcomings of 
decision trees and render them useful as components of much more powerful composite 
models. 

In the next chapter, we will explore another ensemble model, boosting, which has come to 
be considered one of the most important machine learning algorithms.
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In the previous chapter, we saw how random forests improve on the predictions of a 
decision tree by combining many trees into an ensemble. The key to reducing the high 
variance of an individual tree is the use of bagging, short for bootstrap aggregation, which 
introduces randomness into the process of growing individual trees. More specifically, 
bagging samples from the data with replacements so that each tree is trained on a different 
but equal-sized random subset, with some observations repeating. In addition, a random 
forest randomly selects a subset of the features so that both the rows and the columns of 
the training set for each tree are random versions of the original data. The ensemble then 
generates predictions by averaging over the outputs of the individual trees.

Individual random forest trees are usually grown deep to ensure low bias while relying on 
the randomized training process to produce different, uncorrelated prediction errors that 
have a lower variance when aggregated than individual tree predictions. In other words, 
the randomized training aims to decorrelate (think diversify) the errors of individual trees. 
It does this so that the ensemble is less susceptible to overfitting, has a lower variance, and 
thus generalizes better to new data.

This chapter explores boosting, an alternative ensemble algorithm for decision trees that 
often produces even better results. The key difference is that boosting modifies the training 
data for each new tree based on the cumulative errors made by the model so far. In contrast 
to random forests that train many trees independently using samples of the training set, 
boosting proceeds sequentially using reweighted versions of the data. State-of-the-art 
boosting implementations also adopt the randomization strategies of random forests.

Over the last three decades, boosting has become one of the most successful machine 
learning (ML) algorithms, dominating many ML competitions for structured, tabular data 
(as opposed to high-dimensional image or speech data with a more complex input-out 
relationship where deep learning excels). We will show how boosting works, introduce 
several high-performance implementations, and apply boosting to high-frequency data 
and backtest an intraday trading strategy.
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More specifically, after reading this chapter, you will be able to:

• Understand how boosting differs from bagging and how gradient boosting evolved 
from adaptive boosting.

• Design and tune adaptive boosting and gradient boosting models with scikit-learn.

• Build, tune, and evaluate gradient boosting models on large datasets using the 
state-of-the-art implementations XGBoost, LightGBM, and CatBoost.

• Interpret and gain insights from gradient boosting models.

• Use boosting with high-frequency data to design an intraday strategy.

Getting started – adaptive boosting
Like bagging, boosting is an ensemble learning algorithm that combines base learners 
(typically decision trees) into an ensemble. Boosting was initially developed for 
classification problems, but can also be used for regression, and has been called one of the 
most potent learning ideas introduced in the last 20 years (Hastie, Tibshirani, and Friedman 
2009). Like bagging, it is a general method or metamethod that can be applied to many 
statistical learning methods.

The motivation behind boosting was to find a method that combines the outputs of many 
weak models, where "weak" means they perform only slightly better than a random guess, 
into a highly accurate, boosted joint prediction (Schapire and Freund 2012).

In general, boosting learns an additive hypothesis, H
M

, of a form similar to linear regression. 
However, each of the m= 1,..., M elements of the summation is a weak base learner, called 
h

t
, which itself requires training. The following formula summarizes this approach:

𝐻𝐻𝑀𝑀(𝑥𝑥) =  ∑ ℎ𝑡𝑡(𝑥𝑥)⏟  weak learner
𝑀𝑀
𝑚𝑚=1  

As discussed in the previous chapter, bagging trains base learners on different random 
samples of the data. Boosting, in contrast, proceeds sequentially by training the base 
learners on data that it repeatedly modifies to reflect the cumulative learning. The goal is to 
ensure that the next base learner compensates for the shortcomings of the current ensemble. 
We will see in this chapter that boosting algorithms differ in how they define shortcomings. 
The ensemble makes predictions using a weighted average of the predictions of the weak 
models.

You can find the code samples for this chapter and links to additional 
resources in the corresponding directory of the GitHub repository. The 
notebooks include color versions of the images. 
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The first boosting algorithm that came with a mathematical proof that it enhances the 
performance of weak learners was developed by Robert Schapire and Yoav Freund around 
1990. In 1997, a practical solution for classification problems emerged in the form of the adaptive 
boosting (AdaBoost) algorithm, which won the Göedel Prize in 2003 (Freund and Schapire 
1997). About another 5 years later, this algorithm was extended to arbitrary objective functions 
when Leo Breiman (who invented random forests) connected the approach to gradient descent, 
and Jerome Friedman came up with gradient boosting in 1999 (Friedman 2001).

Numerous optimized implementations, such as XGBoost, LightGBM, and CatBoost, which we 
will look at later in this chapter, have emerged in recent years and firmly established gradient 
boosting as the go-to solution for structured data. In the following sections, we'll briefly 
introduce AdaBoost and then focus on the gradient boosting model, as well as the three state-
of-the-art implementations of this very powerful and flexible algorithm we just mentioned.

The AdaBoost algorithm
When it emerged in the 1990s, AdaBoost was the first ensemble algorithm to iteratively 
adapt to the cumulative learning progress when fitting an additional ensemble member. 
In particular, AdaBoost changed the weights on the training data to reflect the cumulative 
errors of the current ensemble on the training set, before fitting a new, weak learner. 
AdaBoost was the most accurate classification algorithm at the time, and Leo Breiman 
referred to it as the best off-the-shelf classifier in the world at the 1996 NIPS conference 
(Hastie, Tibshirani, and Friedman 2009).

Over the subsequent decades, the algorithm had a large impact on machine learning 
because it provided theoretical performance guarantees. These guarantees only require 
sufficient data and a weak learner that reliably predicts just better than a random guess. As 
a result of this adaptive method that learns in stages, the development of an accurate ML 
model no longer required accurate performance over the entire feature space. Instead, the 
design of a model could focus on finding weak learners that just outperformed a coin flip 
using a small subset of the features.

In contrast to bagging, which builds ensembles of very large trees to reduce bias, AdaBoost 
grows shallow trees as weak learners, often producing superior accuracy with stumps—
that is, trees formed by a single split. The algorithm starts with an equally weighted 
training set and then successively alters the sample distribution. After each iteration, 
AdaBoost increases the weights of incorrectly classified observations and reduces the 
weights of correctly predicted samples so that subsequent weak learners focus more on 
particularly difficult cases. Once trained, the new decision tree is incorporated into the 
ensemble with a weight that reflects its contribution to reducing the training error.

The AdaBoost algorithm for an ensemble of base learners, hm(x), m=1, ..., M, that predicts 
discrete classes, y ∈ [−1, 1] , and N training observations can be summarized as follows:

1. Initialize sample weights w
i
=1/N for observations i=1, ..., N.

2. For each base classifier, hm, m=1, ..., M, do the following:

1. Fit hm(x) to the training data, weighted by w
i
.

2. Compute the base learner's weighted error rate 𝜀𝜀𝑚𝑚  on the training set.
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3. Compute the base learner's ensemble weight 𝛼𝛼𝑚𝑚  as a function of its error 
rate, as shown in the following formula:𝛼𝛼𝑚𝑚 = log (1 − 𝜀𝜀𝑚𝑚𝜀𝜀𝑚𝑚 ) 

4. Update the weights for misclassified samples according to 𝑤𝑤𝑖𝑖 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒(𝛼𝛼𝑚𝑚) 
3. Predict the positive class when the weighted sum of the ensemble members is 

positive, and negative otherwise, as shown in the following formula:

𝐻𝐻(𝑥𝑥) = sign ( ∑ 𝛼𝛼𝑚𝑚ℎ𝑚𝑚(𝑥𝑥)⏟      weighted weak learner
𝑀𝑀
𝑚𝑚=1 ) 

AdaBoost has many practical advantages, including ease of implementation and fast 
computation, and can be combined with any method for identifying weak learners. Apart 
from the size of the ensemble, there are no hyperparameters that require tuning. AdaBoost 
is also useful for identifying outliers because the samples that receive the highest weights 
are those that are consistently misclassified and inherently ambiguous, which is also typical 
for outliers.

There are also disadvantages: the performance of AdaBoost on a given dataset depends on 
the ability of the weak learner to adequately capture the relationship between features and 
outcome. As the theory suggests, boosting will not perform well when there is insufficient 
data, or when the complexity of the ensemble members is not a good match for the 
complexity of the data. It can also be susceptible to noise in the data.

See Schapire and Freund (2012) for a thorough introduction and review of boosting algorithms.

Using AdaBoost to predict monthly price moves
As part of its ensemble module, scikit-learn provides an AdaBoostClassifier 
implementation that supports two or more classes. The code examples for this section are in 
the notebook boosting_baseline, which compares the performance of various algorithms 
with a dummy classifier that always predicts the most frequent class.

We need to first define a base_estimator as a template for all ensemble members and 
then configure the ensemble itself. We'll use the default DecisionTreeClassifier with max_
depth=1 — that is, a stump with a single split. Alternatives include any other model from 
linear or logistic regression to a neural network that conforms to the scikit-learn interface 
(see the documentation). However, decision trees are by far the most common in practice.

The complexity of base_estimator is a key tuning parameter because it depends on the 
nature of the data. As demonstrated in the previous chapter, changes to max_depth should 
be combined with appropriate regularization constraints using adjustments to, for example, 
min_samples_split, as shown in the following code:

base_estimator = DecisionTreeClassifier(criterion='gini', 
                                        splitter='best',

                                        max_depth=1, 
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                                        min_samples_split=2, 

                                        min_samples_leaf=20, 

                                        min_weight_fraction_leaf=0.0,

                                        max_features=None, 

                                        random_state=None, 

                                        max_leaf_nodes=None, 

                                        min_impurity_decrease=0.0, 

                                        min_impurity_split=None)

In the second step, we'll design the ensemble. The n_estimators parameter controls the 
number of weak learners, and learning_rate determines the contribution of each weak 
learner, as shown in the following code. By default, weak learners are decision tree stumps:

ada_clf = AdaBoostClassifier(base_estimator=base_estimator,
                            n_estimators=100,

                            learning_rate=1.0,

                            algorithm='SAMME.R',

                            random_state=42)

The main tuning parameters that are responsible for good results are n_estimators and the 
base_estimator complexity. This is because the depth of the tree controls the extent of the 
interaction among the features.

We will cross-validate the AdaBoost ensemble using the custom OneStepTimeSeriesSplit, 
a simplified version of the more flexible MultipleTimeSeriesCV (see Chapter 6, The Machine 
Learning Process). It implements a 12-fold rolling time-series split to predict 1 month ahead 
for the last 12 months in the sample, using all available prior data for training, as shown in 
the following code:

cv = OneStepTimeSeriesSplit(n_splits=12, test_period_length=1, shuffle=True)
def run_cv(clf, X=X_dummies, y=y, metrics=metrics, cv=cv, fit_params=None):
    return cross_validate(estimator=clf,

                          X=X,

                          y=y,

                          scoring=list(metrics.keys()),

                          cv=cv,

                          return_train_score=True,

                          n_jobs=-1,                 # use all cores

                          verbose=1,

                          fit_params=fit_params)

The validation results show a weighted accuracy of 0.5068, an AUC score of 0.5348, and 
precision and recall values of 0.547 and 0.576, respectively, implying an F1 score of 0.467. 
This is marginally below a random forest with default settings that achieves a validation 
AUC of 0.5358. Figure 12.1 shows the distribution of the various metrics for the 12 train and 
test folds as a boxplot (note that the random forest perfectly fits the training set):
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Figure 12.1: AdaBoost cross-validation performance

See the companion notebook for additional details on the code to cross-validate and process 
the results.

Gradient boosting – ensembles for most tasks
AdaBoost can also be interpreted as a stagewise forward approach to minimizing an 
exponential loss function for a binary outcome, y ∈ [−1, 1] , that identifies a new base 
learner, hm, at each iteration, m, with the corresponding weight,𝛼𝛼𝑚𝑚 , and adds it to the 
ensemble, as shown in the following formula:

argmin𝛼𝛼𝛼𝛼 ∑exp(−𝑦𝑦𝑖𝑖(𝑓𝑓𝑚𝑚𝑚𝑚(𝑥𝑥𝑖𝑖))⏟          current ensemble + 𝛼𝛼𝑚𝑚ℎ𝑚𝑚(𝑥𝑥𝑖𝑖)⏟      new member)𝑁𝑁
𝑖𝑖𝑖𝑚  

This interpretation of AdaBoost as a gradient descent algorithm that minimizes a particular 
loss function, namely exponential loss, was only discovered several years after its original 
publication.
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Gradient boosting leverages this insight and applies the boosting method to a much 
wider range of loss functions. The method enables the design of machine learning 
algorithms to solve any regression, classification, or ranking problem, as long as it can be 
formulated using a loss function that is differentiable and thus has a gradient. Common 
example loss functions for different tasks include:

• Regression: The mean-squared and absolute loss

• Classification: Cross-entropy

• Learning to rank: Lambda rank loss

We covered regression and classification loss functions in Chapter 6, The Machine Learning 
Process; learning to rank is outside the scope of this book, but see Nakamoto (2011) for an 
introduction and Chen et al. (2009) for details on ranking loss.

The flexibility to customize this general method to many specific prediction tasks is 
essential to boosting's popularity. Gradient boosting is also not limited to weak learners 
and often achieves the best performance with decision trees several levels deep.

The main idea behind the resulting gradient boosting machines (GBMs) algorithm is 
training the base learners to learn the negative gradient of the current loss function of the 
ensemble. As a result, each addition to the ensemble directly contributes to reducing the 
overall training error, given the errors made by prior ensemble members. Since each new 
member represents a new function of the data, gradient boosting is also said to optimize 
over the functions hm in an additive fashion.

In short, the algorithm successively fits weak learners hm, such as decision trees, to the 
negative gradient of the loss function that is evaluated for the current ensemble, as shown 
in the following formula:

𝐻𝐻𝑚𝑚(𝑥𝑥) = 𝐻𝐻𝑚𝑚𝑚𝑚(𝑥𝑥)⏟      current ensemble+ 𝛾𝛾𝑚𝑚ℎ𝑚𝑚(𝑥𝑥)⏟      new member = 𝐻𝐻𝑚𝑚𝑚𝑚(𝑥𝑥) + argmin𝛾𝛾𝛾𝛾 ∑𝐿𝐿(𝑦𝑦𝑖𝑖 𝛾 𝐻𝐻𝑚𝑚𝑚𝑚(𝑥𝑥𝑖𝑖) + ℎ(𝑥𝑥))⏟              loss function
𝑁𝑁
𝑖𝑖𝑖𝑚  

In other words, at a given iteration m, the algorithm computes the gradient of the current 
loss for each observation and then fits a regression tree to these pseudo-residuals. In 
a second step, it identifies an optimal prediction for each leaf node that minimizes the 
incremental loss due to adding this new learner to the ensemble.

This differs from standalone decision trees and random forests, where the prediction 
depends on the outcomes for the training samples assigned to a terminal node, namely 
their average, in the case of regression, or the frequency of the positive class for binary 
classification. The focus on the gradient of the loss function also implies that gradient 
boosting uses regression trees to learn both regression and classification rules because the 
gradient is always a continuous function.



Boosting Your Trading Strategy

[ 372 ]

The final ensemble model makes predictions based on the weighted sum of the predictions of 
the individual decision trees, each of which has been trained to minimize the ensemble loss, 
given the prior prediction for a given set of feature values, as shown in the following diagram:

Figure 12.2: The gradient boosting algorithm

Gradient boosting trees have produced state-of-the-art performance on many 
classification, regression, and ranking benchmarks. They are probably the most popular 
ensemble learning algorithms as standalone predictors in a diverse set of ML competitions, 
as well as in real-world production pipelines, for example, to predict click-through rates for 
online ads.

The success of gradient boosting is based on its ability to learn complex functional 
relationships in an incremental fashion. However, the flexibility of this algorithm requires 
the careful management of the risk of overfitting by tuning hyperparameters that constrain 
the model's tendency to learn noise, as opposed to the signal, in the training data.

We will introduce the key mechanisms to control the complexity of a gradient boosting tree 
model, and then illustrate model tuning using the sklearn implementation.

How to train and tune GBM models
Boosting has often demonstrated remarkable resilience to overfitting, despite significant 
growth of the ensemble and, thus, the complexity of the model. The combination of very 
low and decreasing training error with non-increasing validation error is often associated 
with improved confidence in the predictions: as boosting continues to grow the ensemble 
with the goal of improving predictions for the most challenging cases, it adjusts the 
decision boundary to maximize the distance, or margin, of the data points.

However, overfitting certainly happens, and the two key drivers of gradient boosting 
performance are the size of the ensemble and the complexity of its constituent decision trees.

The control of the complexity of decision trees aims to avoid learning highly specific rules 
that typically imply a very small number of samples in leaf nodes. We covered the most 
effective constraints used to limit the ability of a decision tree to overfit to the training data 
in the previous chapter. They include minimum thresholds for:
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• The number of samples to either split a node or accept it as a terminal node.

• The improvement in node quality, as measured by the purity or entropy for 
classification, or mean-squared error for regression, to further grow the tree.

In addition to directly controlling the size of the ensemble, there are various regularization 
techniques, such as shrinkage, that we encountered in the context of the ridge and lasso 
linear regression models in Chapter 7, Linear Models – From Risk Factors to Return Forecasts. 
Furthermore, the randomization techniques used in the context of random forests are also 
commonly applied to gradient boosting machines.

Ensemble size and early stopping

Each boosting iteration aims to reduce the training loss, increasing the risk of overfitting for 
a large ensemble. Cross-validation is the best approach to find the optimal ensemble size 
that minimizes the generalization error.

Since the ensemble size needs to be specified before training, it is useful to monitor the 
performance on the validation set and abort the training process when, for a given number 
of iterations, the validation error no longer decreases. This technique is called early 
stopping and is frequently used for models that require a large number of iterations and 
are prone to overfitting, including deep neural networks.

Keep in mind that using early stopping with the same validation set for a large number of 
trials will also lead to overfitting, but just for the particular validation set rather than the 
training set. It is best to avoid running a large number of experiments when developing a 
trading strategy as the risk of false discoveries increases significantly. In any case, keep a 
hold-out test set to obtain an unbiased estimate of the generalization error.

Shrinkage and learning rate

Shrinkage techniques apply a penalty for increased model complexity to the model's loss 
function. For boosting ensembles, shrinkage can be applied by scaling the contribution 
of each new ensemble member down by a factor between 0 and 1. This factor is called 
the learning rate of the boosting ensemble. Reducing the learning rate increases shrinkage 
because it lowers the contribution of each new decision tree to the ensemble.

The learning rate has the opposite effect of the ensemble size, which tends to increase for 
lower learning rates. Lower learning rates coupled with larger ensembles have been found 
to reduce the test error, in particular for regression and probability estimation. Large 
numbers of iterations are computationally more expensive but often feasible with fast, 
state-of-the-art implementations as long as the individual trees remain shallow.

Depending on the implementation, you can also use adaptive learning rates that adjust to 
the number of iterations, typically lowering the impact of trees added later in the process. 
We will see some examples later in this chapter.
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Subsampling and stochastic gradient boosting

As discussed in detail in the previous chapter, bootstrap averaging (bagging) improves the 
performance of an otherwise noisy classifier.

Stochastic gradient boosting samples the training data without replacement at each 
iteration to grow the next tree (whereas bagging uses sampling with replacement). The 
benefit is lower computational effort due to the smaller sample and often better accuracy, 
but subsampling should be combined with shrinkage.

As you can see, the number of hyperparameters keeps increasing, which drives up the 
number of potential combinations. As a result, the risk of false positives increases when 
choosing the best model from a large number of trials based on a limited amount of training 
data. The best approach is to proceed sequentially and select parameter values individually 
or use combinations of subsets of low cardinality.

How to use gradient boosting with sklearn
The ensemble module of sklearn contains an implementation of gradient boosting 
trees for regression and classification, both binary and multiclass. The following 
GradientBoostingClassifier initialization code illustrates the key tuning parameters. 
The notebook sklearn_gbm_tuning contains the code examples for this section. More 
recently (version 0.21), scikit-learn introduced a much faster, yet still experimental, 
HistGradientBoostingClassifier inspired by the implementations in the following section.

The available loss functions include the exponential loss that leads to the AdaBoost 
algorithm and the deviance that corresponds to the logistic regression for probabilistic 
outputs. The friedman_mse node quality measure is a variation on the mean-squared 
error, which includes an improvement score (see the scikit-learn documentation linked on 
GitHub), as shown in the following code:

# deviance = logistic reg; exponential: AdaBoost

gb_clf = GradientBoostingClassifier(loss='deviance',                
# shrinks the contribution of each tree

                                   learning_rate=0.1,              

# number of boosting stages

                                   n_estimators=100,               

# fraction of samples used t fit base learners
                                   subsample=1.0,                  

# measures the quality of a split

                                   criterion='friedman_mse',       

                                   min_samples_split=2,            

                                   min_samples_leaf=1, 

# min. fraction of sum of weights

                                   min_weight_fraction_leaf=0.0,   



Chapter 12

[ 375 ]

# opt value depends on interaction

                                   max_depth=3,                    

                                   min_impurity_decrease=0.0, 

                                   min_impurity_split=None, 

                                   max_features=None, 

                                   max_leaf_nodes=None, 

                                   warm_start=False, 

                                   presort='auto',

                                   validation_fraction=0.1, 

                                   tol=0.0001)

Similar to AdaBoostClassifier, this model cannot handle missing values. We'll again use 
12-fold cross-validation to obtain errors for classifying the directional return for rolling 
1-month holding periods, as shown in the following code:

gb_cv_result = run_cv(gb_clf, y=y_clean, X=X_dummies_clean)

gb_result = stack_results(gb_cv_result)

We parse and plot the result to find a slight improvement—using default parameter 
values—over both AdaBoostClassifier and the random forest as the test AUC increases to 
0.537. Figure 12.3 shows boxplots for the various loss metrics we are tracking:

Figure 12.3: Cross-validation performance of the scikit-learn gradient boosting classifier
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How to tune parameters with GridSearchCV

The GridSearchCV class in the model_selection module facilitates the systematic evaluation 
of all combinations of the hyperparameter values that we would like to test. In the 
following code, we will illustrate this functionality for seven tuning parameters, which, 
when defined, will result in a total of 24 × 32 × 4 = 576  different model configurations:

cv = OneStepTimeSeriesSplit(n_splits=12)

param_grid = dict(

        n_estimators=[100, 300],

        learning_rate=[.01, .1, .2],

        max_depth=list(range(3, 13, 3)),

        subsample=[.8, 1],

        min_samples_split=[10, 50],

        min_impurity_decrease=[0, .01],

        max_features=['sqrt', .8, 1])

The .fit() method executes the cross-validation using the custom OneStepTimeSeriesSplit 
and the roc_auc score to evaluate the 12 folds. Sklearn lets us persist the result, as it would 
for any other model, using the joblib pickle implementation, as shown in the following code:

gs = GridSearchCV(gb_clf,

                  param_grid,

                  cv=cv,

                  scoring='roc_auc',

                  verbose=3,

                  n_jobs=-1,

                  return_train_score=True)

gs.fit(X=X, y=y)
# persist result using joblib for more efficient storage of large numpy arrays
joblib.dump(gs, 'gbm_gridsearch.joblib')

The GridSearchCV object has several additional attributes, after completion, that we can 
access after loading the pickled result. We can use them to learn which hyperparameter 
combination performed best and its average cross-validation AUC score, which results in a 
modest improvement over the default values. This is shown in the following code:

pd.Series(gridsearch_result.best_params_)

learning_rate              0.01

max_depth                  9.00

max_features               1.00

min_impurity_decrease      0.01

min_samples_split         50.00

n_estimators             300.00

subsample                  1.00

gridsearch_result.best_score_

0.5569
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Parameter impact on test scores

The GridSearchCV result stores the average cross-validation scores so that we can analyze 
how different hyperparameter settings affect the outcome.

The six seaborn swarm plots in the right panel of Figure 12.4 show the distribution of AUC 
test scores for all hyperparameter values. In this case, the highest AUC test scores required 
a low learning_rate and a large value for max_features. Some parameter settings, such as a 
low learning_rate, produce a wide range of outcomes that depend on the complementary 
settings of other parameters:

Figure 12.4: Hyperparameter impact for the scikit-learn gradient boosting model

We will now explore how hyperparameter settings jointly affect the cross-validation 
performance. To gain insight into how parameter settings interact, we can train a 
DecisionTreeRegressor with the mean CV AUC as the outcome and the parameter settings, 
encoded in one-hot or dummy format (see the notebook for details). The tree structure 
highlights that using all features (max_features=1), a low learning_rate, and a max_depth 
above three led to the best results, as shown in the following diagram:

Figure 12.5: Impact of the gradient boosting model hyperparameter settings on test performance

The bar chart in the left panel of Figure 12.4 displays the influence of the hyperparameter 
settings in producing different outcomes, measured by their feature importance for a 
decision tree that has grown to its maximum depth. Naturally, the features that appear near 
the top of the tree also accumulate the highest importance scores.
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How to test on the holdout set

Finally, we would like to evaluate the best model's performance on the holdout set that we 
excluded from the GridSearchCV exercise. It contains the last 7 months of the sample period 
(through February 2018; see the notebook for details).

We obtain a generalization performance estimate based on the AUC score of 0.5381 for the 
first month of the hold-out period using the following code example:

idx = pd.IndexSlice

auc = {}

for i, test_date in enumerate(test_dates):

    test_data = test_feature_data.loc[idx[:, test_date], :]

    preds = best_model.predict(test_data)

    auc[i] = roc_auc_score(y_true=test_target.loc[test_data.index], y_
score=preds)

auc = pd.Series(auc)

The downside of the sklearn gradient boosting implementation is the limited training 
speed, which makes it difficult to try out different hyperparameter settings quickly. In the 
next section, we will see that several optimized implementations have emerged over the 
last few years that significantly reduce the time required to train even large-scale models, 
and have greatly contributed to a broader scope for applications of this highly effective 
algorithm.

Using XGBoost, LightGBM, and CatBoost
Over the last few years, several new gradient boosting implementations have used various 
innovations that accelerate training, improve resource efficiency, and allow the algorithm to 
scale to very large datasets. The new implementations and their sources are as follows:

• XGBoost: Started in 2014 by T. Chen during his Ph.D. (T. Chen and Guestrin 2016)

• LightGBM: Released in January 2017 by Microsoft (Ke et al. 2017)

• CatBoost: Released in April 2017 by Yandex (Prokhorenkova et al. 2019)

These innovations address specific challenges of training a gradient boosting model 
(see this chapter's README file on GitHub for links to the documentation). The XGBoost 
implementation was the first new implementation to gain popularity: among the 29 
winning solutions published by Kaggle in 2015, 17 solutions used XGBoost. Eight of these 
solely relied on XGBoost, while the others combined XGBoost with neural networks.

We will first introduce the key innovations that have emerged over time and subsequently 
converged (so that most features are available for all implementations), before illustrating 
their implementation.
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How algorithmic innovations boost performance
Random forests can be trained in parallel by growing individual trees on independent 
bootstrap samples. The sequential approach of gradient boosting, in contrast, slows 
down training, which, in turn, complicates experimentation with the large number of 
hyperparameters that need to be adapted to the nature of the task and the dataset.

To add a tree to the ensemble, the algorithm minimizes the prediction error with respect 
to the negative gradient of the loss function, similar to a conventional gradient descent 
optimizer. The computational cost during training is thus proportional to the time it 
takes to evaluate potential split points for each feature.

Second-order loss function approximation

The most important algorithmic innovations lower the cost of evaluating the loss function 
by using an approximation that relies on second-order derivatives, resembling Newton's 
method to find stationary points. As a result, scoring potential splits becomes much faster.

As discussed, a gradient boosting ensemble H
M

 is trained incrementally to minimize the 
sum of the prediction error and the regularization penalty. Denoting the prediction of the 
outcome y

i
 by the ensemble after step m as �̂�𝑦𝑖𝑖(𝑚𝑚) , as a differentiable convex loss function 

that measures the difference between the outcome and the prediction, and Ω  as a penalty 
that increases with the complexity of the ensemble H

M
. The incremental hypothesis h

m
 aims 

to minimize the following objective L:

ℒ (𝑚𝑚) =∑ 𝑙𝑙(𝑦𝑦𝑖𝑖 , �̂�𝑦𝑖𝑖(𝑚𝑚))⏟      Loss at step m
𝑛𝑛
𝑖𝑖=1 +∑ Ω(𝐻𝐻𝑚𝑚)⏟    Regularization

𝑡𝑡
𝑖𝑖=1 =∑𝑙𝑙 (𝑦𝑦𝑖𝑖 , �̂�𝑦𝑖𝑖(𝑚𝑚−1)  + ℎ𝑚𝑚(𝑥𝑥𝑖𝑖)⏟    additional tree)𝑛𝑛

𝑖𝑖=1 + Ω(𝐻𝐻𝑚𝑚) 
The regularization penalty helps to avoid overfitting by favoring a model that uses simple 
yet predictive regression trees. In the case of XGBoost, for example, the penalty for a 
regression tree h depends on the number of leaves per tree T, the regression tree scores 
for each terminal node w, and the hyperparameters 𝛾𝛾  and 𝜆𝜆 . This is summarized in the 
following formula: Ω(ℎ) = 𝛾𝛾𝛾𝛾 + 12𝜆𝜆||𝑤𝑤||2 

Therefore, at each step, the algorithm greedily adds the hypothesis hm that most improves 
the regularized objective. The second-order approximation of a loss function, based on 
a Taylor expansion, speeds up the evaluation of the objective, as summarized in the 
following formula:

ℒ(𝑚𝑚𝑚 ≃∑[𝑔𝑔𝑖𝑖𝑓𝑓𝑚𝑚(𝑥𝑥𝑖𝑖𝑚 + 12ℎ𝑖𝑖𝑓𝑓𝑚𝑚2(𝑥𝑥𝑖𝑖𝑚] + Ω𝑛𝑛
𝑖𝑖𝑖𝑖 (ℎ𝑚𝑚𝑚 
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Here, g
i
 is the first-order gradient of the loss function before adding the new learner for a 

given feature value, and h
i
 is the corresponding second-order gradient (or Hessian) value, 

as shown in the following formulas:𝑔𝑔𝑖𝑖 = 𝜕𝜕�̂�𝑦𝑖𝑖(𝑚𝑚−1)𝑙𝑙(𝑦𝑦𝑖𝑖 , �̂�𝑦𝑖𝑖(𝑚𝑚−1)) ℎ𝑖𝑖 = 𝜕𝜕2�̂�𝑦𝑖𝑖(𝑚𝑚−1)𝑙𝑙(𝑦𝑦𝑖𝑖 , �̂�𝑦𝑖𝑖(𝑚𝑚−1)) 
The XGBoost algorithm was the first open source algorithm to leverage this approximation 
of the loss function to compute the optimal leaf scores for a given tree structure and the 
corresponding value of the loss function. The score consists of the ratio of the sums of the 
gradient and Hessian for the samples in a terminal node. It uses this value to score the 
information gain that would result from a split, similar to the node impurity measures 
we saw in the previous chapter, but applicable to arbitrary loss functions. See Chen and 
Guestrin (2016) for the detailed derivation.

Simplified split-finding algorithms
The original gradient boosting implementation by sklearn finds the optimal split 
that enumerates all options for continuous features. This exact greedy algorithm is 
computationally very demanding due to the potentially very large number of split options 
for each feature. This approach faces additional challenges when the data does not fit in 
memory or when training in a distributed setting on multiple machines.

An approximate split-finding algorithm reduces the number of split points by assigning 
feature values to a user-determined set of bins, which can also greatly reduce the memory 
requirements during training. This is because only a single value needs to be stored for 
each bin. XGBoost introduced a quantile sketch algorithm that divides weighted training 
samples into percentile bins to achieve a uniform distribution. XGBoost also introduced the 
ability to handle sparse data caused by missing values, frequent zero-gradient statistics, 
and one-hot encoding, and can learn an optimal default direction for a given split. As a 
result, the algorithm only needs to evaluate non-missing values.

In contrast, LightGBM uses gradient-based one-side sampling (GOSS) to exclude a 
significant proportion of samples with small gradients, and only uses the remainder to 
estimate the information gain and select a split value accordingly. Samples with larger 
gradients require more training and tend to contribute more to the information gain.

LightGBM also uses exclusive feature bundling to combine features that are mutually 
exclusive, in that they rarely take nonzero values simultaneously, to reduce the number 
of features. As a result, LightGBM was the fastest implementation when released and still 
often performs best.



Chapter 12

[ 381 ]

Depth-wise versus leaf-wise growth

LightGBM differs from XGBoost and CatBoost in how it prioritizes which nodes to split. 
LightGBM decides on splits leaf-wise, that is, it splits the leaf node that maximizes the 
information gain, even when this leads to unbalanced trees. In contrast, XGBoost and 
CatBoost expand all nodes depth-wise and first split all nodes at a given level of depth, 
before adding more levels. The two approaches expand nodes in a different order and will 
produce different results except for complete trees. The following diagram illustrates these 
two approaches:

Figure 12.6: Depth-wise vs leaf-wise growth

LightGBM's leaf-wise splits tend to increase model complexity and may speed up 
convergence, but also increase the risk of overfitting. A tree grown depth-wise with n levels 
has up to 2n terminal nodes, whereas a leaf-wise tree with 2n leaves can have significantly 
more levels and contain correspondingly fewer samples in some leaves. Hence, tuning 
LightGBM's num_leaves setting requires extra caution, and the library allows us to control 
max_depth at the same time to avoid undue node imbalance. More recent versions of 
LightGBM also offer depth-wise tree growth.

GPU-based training

All new implementations support training and prediction on one or more GPUs to achieve 
significant speedups. They are compatible with current CUDA-enabled GPUs. Installation 
requirements vary and are evolving quickly. The XGBoost and CatBoost implementations 
work for several current versions, but LightGBM may require local compilation (see 
GitHub for links to the documentation).

The speedups depend on the library and the type of the data, and they range from low, 
single-digit multiples to factors of several dozen. Activation of the GPU only requires the 
change of a task parameter and no other hyperparameter modifications.

DART – dropout for additive regression trees

Rashmi and Gilad-Bachrach (2015) proposed a new model to train gradient boosting trees 
to address a problem they labeled over-specialization: trees added during later iterations 
tend only to affect the prediction of a few instances, while making a minor contribution to 
the remaining instances. However, the model's out-of-sample performance can suffer, and 
it may become over-sensitive to the contributions of a small number of trees.
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The new algorithms employ dropouts that have been successfully used for learning 
more accurate deep neural networks, where they mute a random fraction of the neural 
connections during training. As a result, nodes in higher layers cannot rely on a few 
connections to pass the information needed for the prediction. This method has made a 
significant contribution to the success of deep neural networks for many tasks and has also 
been used with other learning techniques, such as logistic regression.

DART, or dropout for additive regression trees, operates at the level of trees and mutes 
complete trees as opposed to individual features. The goal is for trees in the ensemble 
generated using DART to contribute more evenly toward the final prediction. In some cases, 
this has been shown to produce more accurate predictions for ranking, regression, and 
classification tasks. The approach was first implemented in LightGBM and is also available 
for XGBoost.

Treatment of categorical features

The CatBoost and LightGBM implementations handle categorical variables directly without 
the need for dummy encoding.

The CatBoost implementation (which is named for its treatment of categorical features) 
includes several options to handle such features, in addition to automatic one-hot encoding. 
It assigns either the categories of individual features or combinations of categories for 
several features to numerical values. In other words, CatBoost can create new categorical 
features from combinations of existing features. The numerical values associated with 
the category levels of individual features or combinations of features depend on their 
relationship with the outcome value. In the classification case, this is related to the 
probability of observing the positive class, computed cumulatively over the sample, based 
on a prior, and with a smoothing factor. See the CatBoost documentation for more detailed 
numerical examples.

The LightGBM implementation groups the levels of the categorical features to maximize 
homogeneity (or minimize variance) within groups with respect to the outcome values. 
The XGBoost implementation does not handle categorical features directly and requires 
one-hot (or dummy) encoding.

Additional features and optimizations

XGBoost optimizes computation in several respects to enable multithreading. Most 
importantly, it keeps data in memory in compressed column blocks, where each column is 
sorted by the corresponding feature value. It computes this input data layout once before 
training and reuses it throughout to amortize the up-front cost. As a result, the search for 
split statistics over columns becomes a linear scan of quantiles that can be done in parallel 
and supports column subsampling.

The subsequently released LightGBM and CatBoost libraries built on these innovations, and 
LightGBM further accelerated training through optimized threading and reduced memory 
usage. Because of their open source nature, libraries have tended to converge over time.
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XGBoost also supports monotonicity constraints. These constraints ensure that the values 
for a given feature are only positively or negatively related to the outcome over its entire 
range. They are useful to incorporate external assumptions about the model that are known 
to be true.

A long-short trading strategy with boosting
In this section, we'll design, implement, and evaluate a trading strategy for US equities 
driven by daily return forecasts produced by gradient boosting models. We'll use the 
Quandl Wiki data to engineer a few simple features (see the notebook preparing_the_
model_data for details), select a model while using 2015/16 as validation period, and run an 
out-of-sample test for 2017.

As in the previous examples, we'll lay out a framework and build a specific example that 
you can adapt to run your own experiments. There are numerous aspects that you can vary, 
from the asset class and investment universe to more granular aspects like the features, 
holding period, or trading rules. See, for example, the Alpha Factor Library in the Appendix 
for numerous additional features.

We'll keep the trading strategy simple and only use a single ML signal; a real-life 
application will likely use multiple signals from different sources, such as complementary 
ML models trained on different datasets or with different lookahead or lookback periods. 
It would also use sophisticated risk management, from simple stop-loss to value-at-risk 
analysis.

Generating signals with LightGBM and CatBoost
XGBoost, LightGBM, and CatBoost offer interfaces for multiple languages, including 
Python, and have both a scikit-learn interface that is compatible with other scikit-learn 
features, such as GridSearchCV and their own methods to train and predict gradient 
boosting models. The notebook boosting_baseline.ipynb that we used in the first two 
sections of this chapter illustrates the scikit-learn interface for each library. The notebook 
compares the predictive performance and running times of various libraries. It does so by 
training boosting models to predict monthly US equity returns for the 2001-2018 range with 
the features we created in Chapter 4, Financial Feature Engineering – How to Research Alpha 
Factors.

The left panel of the following image displays the predictive accuracy of the forecasts of 
1-month stock price movements using default settings for all implementations, measured in 
terms of the mean AUC resulting from 12-fold cross-validation:
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Figure 12.7: Predictive performance and runtimes of the various gradient boosting models

The predictive performance varies from 0.525 to 0.541. This may look like a small range 
but with the random benchmark AUC at 0.5, the worst-performing model improves on the 
benchmark by 5 percent while the best does so by 8 percent, which, in turn, is a relative 
rise of 60 percent. CatBoost with GPUs and LightGBM (using integer-encoded categorical 
variables) perform best, underlining the benefits of converting categorical into numerical 
variables outlined previously.

The running time for the experiment varies much more significantly than the predictive 
performance. LightGBM is 10x faster on this dataset than either XGBoost or CatBoost 
(using GPU) while delivering very similar predictive performance. Due to this large speed 
advantage and because GPU is not available to everyone, we'll focus on LightGBM but also 
illustrate how to use CatBoost; XGBoost works very similarly to both.

Working with LightGBM and CatBoost models entails:

1. Creating library-specific binary data formats
2. Configuring and tuning various hyperparameters
3. Evaluating the results

We will describe these steps in the following sections. The notebook trading_signals_
with_lightgbm_and_catboost contains the code examples for this subsection, unless 
otherwise noted.

From Python to C++ – creating binary data formats

LightGBM and CatBoost are written in C++ and translate Python objects, like a pandas 
DataFrame, into binary data formats before precomputing feature statistics to accelerate the 
search for split points, as described in the previous section. The result can be persisted to 
accelerate the start of subsequent training.

We'll subset the dataset mentioned in the preceding section through the end of 2016 to 
cross-validate several model configurations for various lookback and lookahead windows, 
as well as different roll-forward periods and hyperparameters. Our approach to model 
selection will be similar to the one we used in the previous chapter and uses the custom 
MultipleTimeSeriesCV introduced in Chapter 7, Linear Models – From Risk Factors to Return 
Forecasts.
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We select the train and validation sets, identify labels and features, and integer-encode 
categorical variables with values starting at zero, as expected by LightGBM (not necessary 
as long as the category codes have values less than 232, but avoids a warning):

data = (pd.read_hdf('data.h5', 'model_data')

            .sort_index()

            .loc[idx[:, :'2016'], :])

labels = sorted(data.filter(like='fwd').columns)
features = data.columns.difference(labels).tolist()

categoricals = ['year', 'weekday', 'month']

for feature in categoricals:

    data[feature] = pd.factorize(data[feature], sort=True)[0]

The notebook example iterates over many configurations, optionally using random 
samples to speed up model selection using a diverse subset. The goal is to identify the most 
impactful parameters without trying every possible combination.

To do so, we create the binary Dataset objects. For LightGBM, this looks as follows:

import lightgbm as lgb

outcome_data = data.loc[:, features + [label]].dropna()

lgb_data = lgb.Dataset(data=outcome_data.drop(label, axis=1),

                           label=outcome_data[label],

                           categorical_feature=categoricals,

                           free_raw_data=False)

The CatBoost data structure is called Pool and works similarly:

cat_cols_idx = [outcome_data.columns.get_loc(c) for c in categoricals]

catboost_data = Pool(label=outcome_data[label],

                    data=outcome_data.drop(label, axis=1),

                    cat_features=cat_cols_idx)

For both libraries, we identify the categorical variables for conversion into numerical 
variables based on outcome information, as described in the previous section. The CatBoost 
implementation needs feature columns to be identified using indices rather than labels.

We can simply slice the binary datasets using the train and validation set indices provided 
by MultipleTimeSeriesCV during cross-validation as follows, combining both examples into 
one snippet:

for i, (train_idx, test_idx) in enumerate(cv.split(X=outcome_data)):

   lgb_train = lgb_data.subset(train_idx.tolist()).construct()

   train_set = catboost_data.slice(train_idx.tolist())



Boosting Your Trading Strategy

[ 386 ]

How to tune hyperparameters

LightGBM and CatBoost implementations come with numerous hyperparameters that 
permit fine-grained control. Each library has parameter settings to:

• Specify the task objective and learning algorithm

• Design the base learners

• Apply various regularization techniques

• Handle early stopping during training

• Enable the use of GPU or parallelization on CPU

The documentation for each library details the various parameters. Since they implement 
variations of the same algorithms, parameters may refer to the same concept but have 
different names across libraries. The GitHub repository lists resources that clarify which 
XGBoost and LightGBM parameters have a comparable effect.

Objectives and loss functions

The libraries support several boosting algorithms, including gradient boosting for trees and 
linear base learners, as well as DART for LightGBM and XGBoost. LightGBM also supports 
the GOSS algorithm, which we described previously, as well as random forests.

The appeal of gradient boosting consists of the efficient support of arbitrary differentiable 
loss functions, and each library offers various options for regression, classification, and 
ranking tasks. In addition to the chosen loss function, additional evaluation metrics can be 
used to monitor performance during training and cross-validation.

Learning parameters

Gradient boosting models typically use decision trees to capture feature interaction, and 
the size of individual trees is the most important tuning parameter. XGBoost and CatBoost 
set the max_depth default to 6. In contrast, LightGBM uses a default num_leaves value of 
31, which corresponds to five levels for a balanced tree, but imposes no constraints on 
the number of levels. To avoid overfitting, num_leaves should be lower than 2max_depth. For 
example, for a well-performing max_depth value of 7, you would set num_leaves to 70–80 
rather than 27=128, or directly constrain max_depth.

The number of trees or boosting iterations defines the overall size of the ensemble. All 
libraries support early_stopping to abort training once the loss functions register no further 
improvements during a given number of iterations. As a result, it is often most efficient to 
set a large number of iterations and stop training based on the predictive performance on a 
validation set. However, keep in mind that the validation error will be biased upward due 
to the implied lookahead bias.

The libraries also permit the use of custom loss metrics to track train and validation 
performance and execute early_stopping. The notebook illustrates how to code the 
information coefficient (IC) for LightGBM and CatBoost. However, we will not rely on 
early_stopping for our experiments to avoid said bias.
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Regularization

All libraries implement the regularization strategies for base learners, such as minimum 
values for the number of samples or the minimum information gain required for splits and 
leaf nodes.

They also support regularization at the ensemble level using shrinkage, which is 
implemented via a learning rate that constrains the contribution of new trees. It is also 
possible to implement an adaptive learning rate via callback functions that lower the 
learning rate as the training progresses, as has been successfully used in the context of 
neural networks. Furthermore, the gradient boosting loss function can be constrained using 
L1 or L2 regularization, similar to the ridge and lasso regression models, for example, by 
increasing the penalty for adding more trees.

The libraries also allow for the use of bagging or column subsampling to randomize tree 
growth for random forests and decorrelate prediction errors to reduce overall variance. 
The quantization of features for approximate split finding adds larger bins as an additional 
option to protect against overfitting.

Randomized grid search

To explore the hyperparameter space, we specify values for key parameters that we would 
like to test in combination. The sklearn library supports RandomizedSearchCV to cross-
validate a subset of parameter combinations that are sampled randomly from specified 
distributions. We will implement a custom version that allows us to monitor performance 
so we can abort the search process once we're satisfied with the result, rather than 
specifying a set number of iterations beforehand.

To this end, we specify options for the relevant hyperparameters of each library, generate 
all combinations using the Cartesian product generator provided by the itertools library, 
and shuffle the result.

In the case of LightGBM, we focus on the learning rate, the maximum size of the trees, 
the randomization of the feature space during training, and the minimum number of data 
points required for a split. This results in the following code, where we randomly select half 
of the configurations:

learning_rate_ops = [.01, .1, .3]

max_depths = [2, 3, 5, 7]

num_leaves_opts = [2 ** i for i in max_depths]

feature_fraction_opts = [.3, .6, .95]

min_data_in_leaf_opts = [250, 500, 1000]

cv_params = list(product(learning_rate_ops,

                         num_leaves_opts,

                         feature_fraction_opts,

                         min_data_in_leaf_opts))

n_params = len(cv_params)
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# randomly sample 50%

cvp = np.random.choice(list(range(n_params)),

                           size=int(n_params / 2), 

                           replace=False)

cv_params_ = [cv_params[i] for i in cvp]

Now, we are mostly good to go: during each iteration, we create a MultipleTimeSeriesCV 
instance based on the lookahead, train_period_length, and test_period_length 
parameters, and cross-validate the selected hyperparameters accordingly over a 2-year 
period.

Note that we generate validation predictions for a range of ensemble sizes so that we can 
infer the optimal number of iterations:

num_iterations = [10, 25, 50, 75] + list(range(100, 501, 50))

num_boost_round = num_iterations[-1]

for lookahead, train_length, test_length in test_params:

   n_splits = int(2 * YEAR / test_length)

   cv = MultipleTimeSeriesCV(n_splits=n_splits,

                             lookahead=lookahead,

                             test_period_length=test_length,

                             train_period_length=train_length)

   for p, param_vals in enumerate(cv_params_):

       for i, (train_idx, test_idx) in enumerate(cv.split(X=outcome_data)):

           lgb_train = lgb_data.subset(train_idx.tolist()).construct()

           model = lgb.train(params=params,

                             train_set=lgb_train,

                             num_boost_round=num_boost_round,

                             verbose_eval=False)

           test_set = outcome_data.iloc[test_idx, :]

           X_test = test_set.loc[:, model.feature_name()]

           y_test = test_set.loc[:, label]

           y_pred = {str(n): model.predict(X_test, num_iteration=n) for n in 
num_iterations}

Please see the notebook trading_signals_with_lightgbm_and_catboost for additional 
details, including how to log results and compute and capture various metrics that we need 
for the evaluation of the results, to which we'll turn to next.

How to evaluate the results

Now that cross-validation of numerous configurations has produced a large number of 
results, we need to evaluate the predictive performance to identify the model that generates 
the most reliable and profitable signals for our prospective trading strategy. The notebook 
evaluate_trading_signals contains the code examples for this section.
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We produced a larger number of LightGBM models because it runs an order of magnitude 
faster than CatBoost and will demonstrate some evaluation strategies accordingly.

Cross-validation results – LightGBM versus CatBoost

First, we compare the predictive performance of the models produced by the two libraries 
across all configurations in terms of their validation IC, both across the entire validation 
period and averaged over daily forecasts.

The following image shows that that LightGBM performs (slightly) better than CatBoost, 
especially for longer horizons. This is not an entirely fair comparison because we ran more 
configurations for LightGBM, which also, unsurprisingly, shows a wider dispersion of 
outcomes:

Figure 12.8: Overall and daily IC for the LightGBM and CatBoost models over three prediction horizons

Regardless, we will focus on LightGBM results; see the notebooks trading_signals_with_
lightgbm_and_catboost and evaluate_trading_signals for more details on CatBoost or to 
run your own experiments.

In view of the substantial dispersion across model results, let's take a closer look at the best-
performing parameter settings.

Best-performing parameter settings

The top-performing LightGBM models uses the following parameters for the three different 
prediction horizons (see the notebook for details):

Lookahead
Learning 
Rate

# Leaves
Feature 
Fraction

Min. Data 
in Leaf

Daily Average Overall

IC # Rounds IC
# 
Rounds

1 0.3 4 95% 1,000 1.70 75 4.41 50

1 0.3 4 95% 250 1.34 250 4.36 25

1 0.3 4 95% 1,000 1.70 75 4.30 75

5 0.1 8 95% 1,000 3.95 300 10.46 300

5 0.3 4 95% 1,000 3.43 150 10.32 50
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5 0.3 4 95% 1,000 3.43 150 10.24 150

21 0.1 8 60% 500 5.84 25 13.97 10

21 0.1 32 60% 250 5.89 50 11.59 10

21 0.1 4 60% 250 7.33 75 11.40 10

Note that shallow trees produce the best overall IC across the three prediction horizons. 
Longer training over 4.5 years also produced better results.

Hyperparameter impact – linear regression

Next, we'd like to understand if there's a systematic, statistical relationship between the 
hyperparameters and the outcomes across daily predictions. To this end, we will run a 
linear regression using the various LightGBM hyperparameter settings as dummy variables 
and the daily validation IC as the outcome.

The chart in Figure 12.9 shows the coefficient estimates and their confidence intervals for 
1- and 21-day forecast horizons. For the shorter horizon, a longer lookback period, a higher 
learning rate, and deeper trees (more leaf nodes) have a positive impact. For the longer 
horizon, the picture is a little less clear: shorter trees do better, but the lookback period is 
not significant. A higher feature sampling rate also helps. In both cases, a larger ensemble 
does better. Note that these results apply to this specific example only.

Figure 12.9: Coefficient estimates and their confidence intervals for different forecast horizons

Use IC instead of information coefficient
We average the top five models and provide the corresponding prices to Alphalens, in 
order to compute the mean period-wise return earned on an equal-weighted portfolio 
invested in the daily factor quintiles for various holding periods:
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Metric
Holding Period

1D 5D 10D 21D

Mean Period Wise 
Spread (bps)

12.1654 6.9514 4.9465 4.4079

Ann. alpha 0.1759 0.0776 0.0446 0.0374

beta 0.0891 0.1516 0.1919 0.1983

We find a 12 bps spread between the top and the bottom quintile, which implies an annual 
alpha of 0.176 while the beta is low at 0.089 (see Figure 12.10):

Figure 12.10: Average and cumulative returns by factor quantile

The following charts show the quarterly rolling IC for the 1-day and the 21-day forecasts 
over the 2-year validation period for the best-performing models:

Figure 12.11: Rolling IC for 1-day and 21-day return forecasts

The average IC is 2.35 and 8.52 for the shorter and the longer horizon models, respectively, 
and remain positive for the large majority of days in the sample.

We'll now take a look at how to gain additional insight into how the model works before we 
select our models, generate predictions, define a trading strategy, and evaluate their performance.

Inside the black box – interpreting GBM results
Understanding why a model predicts a certain outcome is very important for several 
reasons, including trust, actionability, accountability, and debugging. Insights into the 
nonlinear relationship between features and the outcome uncovered by the model, as well 
as interactions among features, are also of value when the goal is to learn more about the 
underlying drivers of the phenomenon under study.
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A common approach to gaining insights into the predictions made by tree ensemble 
methods, such as gradient boosting or random forest models, is to attribute feature 
importance values to each input variable. These feature importance values can be computed 
on an individual basis for a single prediction or globally for an entire dataset (that is, for all 
samples) to gain a higher-level perspective of how the model makes predictions.

The code examples for this section are in the notebook model_interpretation.

Feature importance

There are three primary ways to compute global feature importance values:

• Gain: This classic approach, introduced by Leo Breiman in 1984, uses the total 
reduction of loss or impurity contributed by all splits for a given feature. The 
motivation is largely heuristic, but it is a commonly used method to select features.

• Split count: This is an alternative approach that counts how often a feature is used 
to make a split decision, based on the selection of features for this purpose based on 
the resultant information gain.

• Permutation: This approach randomly permutes the feature values in a test set and 
measures how much the model's error changes, assuming that an important feature 
should create a large increase in the prediction error. Different permutation choices 
lead to alternative implementations of this basic approach.

Individualized feature importance values that compute the relevance of features for a single 
prediction are less common. This is because available model-agnostic explanation methods 
are much slower than tree-specific methods.

All gradient boosting implementations provide feature-importance scores after training as 
a model attribute. The LightGBM library provides two versions, as shown in the following 
list:

• gain: Contribution of a feature to reducing the loss

• split: The number of times the feature was used

These values are available using the trained model's .feature_importance() method with 
the corresponding importance_type parameter. For the best-performing LightGBM model, 
the results for the 20 most important features are as shown in Figure 12.12:
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Figure 12.12: LightGBM feature importance

The time period indicators dominate, followed by the latest returns, the normalized ATR, 
the sector dummy, and the momentum indicator (see the notebook for implementation 
details).

Partial dependence plots

In addition to the summary contribution of individual features to the model's prediction, 
partial dependence plots visualize the relationship between the target variable and a set of 
features. The nonlinear nature of gradient boosting trees causes this relationship to depend 
on the values of all other features. Hence, we will marginalize these features out. By doing 
so, we can interpret the partial dependence as the expected target response.

We can visualize partial dependence only for individual features or feature pairs. The latter 
results in contour plots that show how combinations of feature values produce different 
predicted probabilities, as shown in the following code:

fig, axes = plot_partial_dependence(estimator=best_model,
                                    X=X,

                                    features=['return_12m', 'return_6m', 

                                              'CMA', ('return_12m',  
                                                      'return_6m')],

                                    percentiles=(0.01, 0.99),

                                    n_jobs=-1,

                                    n_cols=2,

                                    grid_resolution=250)
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After some additional formatting (see the companion notebook), we obtain the results 
shown in Figure 12.13:

Figure 12.13: Partial dependence plots for scikit-learn GradientBoostingClassifier

The lower-right plot shows the dependence of the probability of a positive return over 
the next month, given the range of values for lagged 12-month and 6-month returns, after 
eliminating outliers at the [1%, 99%] percentiles. The month_9 variable is a dummy variable, 
hence the step-function-like plot. We can also visualize the dependency in 3D, as shown in 
the following code:

targets = ['return_12m', 'return_6m']

pdp, axes = partial_dependence(estimator=gb_clf,

                               features=targets,

                               X=X_,

                               grid_resolution=100)

XX, YY = np.meshgrid(axes[0], axes[1])

Z = pdp[0].reshape(list(map(np.size, axes))).T

fig = plt.figure(figsize=(14, 8))
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ax = Axes3D(fig)
surf = ax.plot_surface(XX, YY, Z,

                       rstride=1,

                       cstride=1,

                       cmap=plt.cm.BuPu,

                       edgecolor='k')

ax.set_xlabel(' '.join(targets[0].split('_')).capitalize())

ax.set_ylabel(' '.join(targets[1].split('_')).capitalize())

ax.set_zlabel('Partial Dependence')

ax.view_init(elev=22, azim=30)

This produces the following 3D plot of the partial dependence of the 1-month return 
direction on lagged 6-month and 12-months returns:

Figure 12.14: Partial dependence as a 3D plot

SHapley Additive exPlanations

At the 2017 NIPS conference, Scott Lundberg and Su-In Lee, from the University of 
Washington, presented a new and more accurate approach to explaining the contribution 
of individual features to the output of tree ensemble models called SHapley Additive 
exPlanations, or SHAP values.

This new algorithm departs from the observation that feature-attribution methods for tree 
ensembles, such as the ones we looked at earlier, are inconsistent—that is, a change in a 
model that increases the impact of a feature on the output can lower the importance values 
for this feature (see the references on GitHub for detailed illustrations of this).
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SHAP values unify ideas from collaborative game theory and local explanations, and 
have been shown to be theoretically optimal, consistent, and locally accurate based on 
expectations. Most importantly, Lundberg and Lee have developed an algorithm that 
manages to reduce the complexity of computing these model-agnostic, additive feature-
attribution methods from O(TLDM) to O(TLD2), where T and M are the number of trees and 
features, respectively, and D and L are the maximum depth and number of leaves across 
the trees. This important innovation permits the explanation of predictions from previously 
intractable models with thousands of trees and features in a fraction of a second. An open 
source implementation became available in late 2017 and is compatible with XGBoost, 
LightGBM, CatBoost, and sklearn tree models.

Shapley values originated in game theory as a technique for assigning a value to each 
player in a collaborative game that reflects their contribution to the team's success. 
SHAP values are an adaptation of the game theory concept to tree-based models and are 
calculated for each feature and each sample. They measure how a feature contributes to the 
model output for a given observation. For this reason, SHAP values provide differentiated 
insights into how the impact of a feature varies across samples, which is important, given 
the role of interaction effects in these nonlinear models.

How to summarize SHAP values by feature

To get a high-level overview of the feature importance across a number of samples, there 
are two ways to plot the SHAP values: a simple average across all samples that resembles 
the global feature-importance measures computed previously (as shown in the left-hand 
panel of Figure 12.15), or a scatterplot to display the impact of every feature for every 
sample (as shown in the right-hand panel of the figure). They are very straightforward 
to produce using a trained model from a compatible library and matching input data, as 
shown in the following code:

# load JS visualization code to notebook

shap.initjs()

# explain the model's predictions using SHAP values

explainer = shap.TreeExplainer(model)

shap_values = explainer.shap_values(X_test)

shap.summary_plot(shap_values, X_test, show=False)

The scatterplot sorts features by their total SHAP values across all samples and then shows 
how each feature impacts the model output, as measured by the SHAP value, as a function 
of the feature's value, represented by its color, where red represents high values and blue 
represents low values relative to the feature's range:
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Figure 12.15: SHAP summary plots

There are some interesting differences compared to the conventional feature importance 
shown in Figure 12.12; namely, the MACD indicator turns out more important, as well as 
the relative return measures.

How to use force plots to explain a prediction

The force plot in the following image shows the cumulative impact of various features 
and their values on the model output, which in this case was 0.6, quite a bit higher than 
the base value of 0.13 (the average model output over the provided dataset). Features 
highlighted in red with arrows pointing to the right increase the output. The month being 
October is the most important feature and increases the output from 0.338 to 0.537, whereas 
the year being 2017 reduces the output.

Hence, we obtain a detailed breakdown of how the model arrived at a specific prediction, 
as shown in the following plot:

Figure 12.16: SHAP force plot
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We can also compute force plots for multiple data points or predictions at a time and use 
a clustered visualization to gain insights into how prevalent certain influence patterns are 
across the dataset. The following plot shows the force plots for the first 1,000 observations 
rotated by 90 degrees, stacked horizontally, and ordered by the impact of different features 
on the outcome for the given observation.

The implementation uses hierarchical agglomerative clustering of data points on the feature 
SHAP values to identify these patterns, and displays the result interactively for exploratory 
analysis (see the notebook), as shown in the following code:

shap.force_plot(explainer.expected_value, shap_values[:1000,:],  
                X_test.iloc[:1000])

This produces the following output:

Figure 12.17: SHAP clustered force plot

How to analyze feature interaction

Lastly, SHAP values allow us to gain additional insights into the interaction effects between 
different features by separating these interactions from the main effects. shap.dependence_
plot can be defined as follows:

shap.dependence_plot(ind='r01',

                     shap_values=shap_values,

                     features=X,

                     interaction_index='r05',

                     title='Interaction between 1- and 5-Day Returns')

It displays how different values for 1-month returns (on the x-axis) affect the outcome 
(SHAP value on the y-axis), differentiated by 3-month returns (see the following plot):
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Figure 12.18: SHAP interaction plot

SHAP values provide granular feature attribution at the level of each individual prediction 
and enable much richer inspection of complex models through (interactive) visualization. 
The SHAP summary dot plot displayed earlier in this section (Figure 12.15) offers much 
more differentiated insights than a global feature-importance bar chart. Force plots of 
individual clustered predictions allow more detailed analysis, while SHAP dependence 
plots capture interaction effects and, as a result, provide more accurate and detailed results 
than partial dependence plots.

The limitations of SHAP values, as with any current feature-importance measure, concern 
the attribution of the influence of variables that are highly correlated because their similar 
impact can be broken down in arbitrary ways.

Backtesting a strategy based on a boosting ensemble
In this section, we'll use Zipline to evaluate the performance of a long-short strategy that 
enters 25 long and 25 short positions based on a daily return forecast signal. To this end, 
we'll select the best-performing models, generate forecasts, and design trading rules that act 
on these predictions.

Based on our evaluation of the cross-validation results, we'll select one or several models 
to generate signals for a new out-of-sample period. For this example, we'll combine 
predictions for the best 10 LightGBM models to reduce variance for the 1-day forecast 
horizon based on its solid mean quantile spread computed by Alphalens.
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We just need to obtain the parameter settings for the best-performing models and then 
train accordingly. The notebook making_out_of_sample_predictions contains the requisite 
code. Model training uses the hyperparameter settings of the best-performing models and 
data for the test period, but otherwise follows the logic used during cross-validation very 
closely, so we'll omit the details here.

In the notebook backtesting_with_zipline, we've combined the predictions of the top 10 
models for the validation and test periods, as follows:

def load_predictions(bundle):

    predictions = (pd.read_hdf('predictions.h5', 'train/01')

                   .append(pd.read_hdf('predictions.h5', 'test/01') 
                   .drop('y_test', axis=1)))

    predictions = (predictions.loc[~predictions.index.duplicated()]

                   .iloc[:, :10]

                   .mean(1)

                   .sort_index()

                   .dropna()

                  .to_frame('prediction'))

We'll use the custom ML factor that we introduced in Chapter 8, The ML4T Workflow – From 
Model to Strategy Backtesting, to import the predictions and make it accessible in a pipeline.

We'll execute Pipeline from the beginning of the validation period to the end of the test 
period. Figure 12.19 shows (unsurprisingly) solid in-sample performance with annual 
returns of 27.3 percent, compared to 8.0 percent out-of-sample. The right panel of the image 
shows the cumulative returns relative to the S&P 500:

Metric All In-sample Out-of-sample

Annual return 20.60% 27.30% 8.00%

Cumulative returns 75.00% 62.20% 7.90%

Annual volatility 19.40% 21.40% 14.40%

Sharpe ratio 1.06 1.24 0.61

Max drawdown -17.60% -17.60% -9.80%

Sortino ratio 1.69 2.01 0.87

Skew 0.86 0.95 -0.16

Kurtosis 8.61 7.94 3.07

Daily value at risk -2.40% -2.60% -1.80%

Daily turnover 115.10% 108.60% 127.30%

Alpha 0.18 0.25 0.05

Beta 0.24 0.24 0.22

The Sharpe ratio is 1.24 in-sample and 0.61 out-of-sample; the right panel shows the 
quarterly rolling value. Alpha is 0.25 in-sample versus 0.05 out-of-sample, with beta values 
of 0.24 and 0.22, respectively. The worst drawdown leads to losses of 17.59 percent in the 
second half of 2015:
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Figure 12.19: Strategy performance—cumulative returns and rolling Sharpe ratio

Long trades are slightly more profitable than short trades, which lose on average:

Summary stats All trades Short trades Long trades

Total number of round_trips 22,352 11,631 10,721

Percent profitable 50.0% 48.0% 51.0%

Winning round_trips 11,131 5,616 5,515

Losing round_trips 11,023 5,935 5,088

Even round_trips 198 80 118

Lessons learned and next steps
Overall, we can see that despite using only market data in a highly liquid environment, the 
gradient boosting models manage to deliver predictions that are significantly better than 
random guesses. Clearly, profits are anything but guaranteed, not least since we made very 
generous assumptions regarding transaction costs (note the high turnover).

However, there are several ways to improve on this basic framework, that is, by varying 
parameters from more general and strategic to more specific and tactical aspects, such as:

1. Try a different investment universe (for example, fewer liquid stocks or other 
assets).

2. Be creative about adding complementary data sources.

3. Engineer more sophisticated features.

4. Vary the experiment setup using, for example, longer or shorter holding and 
lookback periods.

5. Come up with more interesting trading rules and use several rather than a single 
ML signal.

Hopefully, these suggestions inspire you to build on the template we laid out and come up 
with an effective ML-driven trading strategy!
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Boosting for an intraday strategy
We introduced high-frequency trading (HFT) in Chapter 1, Machine Learning for Trading – 
From Idea to Execution, as a key trend that accelerated the adoption of algorithmic strategies. 
There is no objective definition of HFT that pins down the properties of the activities 
it encompasses, including holding periods, order types (for example, passive versus 
aggressive), and strategies (momentum or reversion, directional or liquidity provision, 
and so on). However, most of the more technical treatments of HFT seem to agree that the 
data driving HFT activity tends to be the most granular available. Typically, this would 
be microstructure data directly from the exchanges such as the NASDAQ ITCH data 
that we introduced in Chapter 2, Market and Fundamental Data – Sources and Techniques, to 
demonstrate how it details every order placed, every execution, and every cancelation, and 
thus permits the reconstruction of the full limit order book, at least for equities and except 
for certain hidden orders.

The application of ML to HFT includes the optimization of trade execution both on official 
exchanges and in dark pools. ML can also be used to generate trading signals, as we will 
show in this section; see also Kearns and Nevmyvaka (2013) for additional details and 
examples of how ML can add value in the HFT context.

This section uses the AlgoSeek NASDAQ 100 dataset from the Consolidated Feed 
produced by the Securities Information Processor. The data includes information on the 
National Best Bid and Offer quotes and trade prices at minute bar frequency. It also 
contains some features on the price dynamic, such as the number of trades at the bid or ask 
price, or those following positive and negative price moves at the tick level (see Chapter 2, 
Market and Fundamental Data – Sources and Techniques, for additional background and the 
download and preprocessing instructions in the data directory in the GitHub repository).

We'll first describe how we can engineer features for this dataset, then train a gradient 
boosting model to predict the volume-weighted average price for the next minute, and then 
evaluate the quality of the resulting trading signals.

Engineering features for high-frequency data
The dataset that AlgoSeek generously made available for this book contains over 50 
variables on 100 tickers for any given day at minute frequency for the period 2013-2017. The 
data also covers pre-market and after-hours trading, but we'll limit this example to official 
market hours to the 390 minutes from 9:30 a.m. to 4:00 p.m. to somewhat restrict the size of 
the data, as well as to avoid having to deal with periods of irregular trading activity. See the 
notebook intraday_features for the code examples in this section.

We'll select 12 variables with over 51 million observations as raw material to create features 
for an ML model. This will aim predict the 1-min forward return for the volume-weighted 
average price:

MultiIndex: 51242505 entries, ('AAL', Timestamp('2014-12-22 09:30:00')) to 
('YHOO', Timestamp('2017-06-16 16:00:00'))
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Data columns (total 12 columns):

 #   Column  Non-Null Count     Dtype  

---  ------  --------------     -----  

 0   first   51242500 non-null  float64
 1   high    51242500 non-null  float64
 2   low     51242500 non-null  float64
 3   last    51242500 non-null  float64
 4   price   49242369 non-null  float64
 5   volume  51242505 non-null  int64  

 6   up      51242505 non-null  int64  

 7   down    51242505 non-null  int64  

 8   rup     51242505 non-null  int64  

 9   rdown   51242505 non-null  int64  

 10  atask   51242505 non-null  int64  

 11  atbid   51242505 non-null  int64  

dtypes: float64(5), int64(7)
memory usage: 6.1+ GB

Due to the large memory footprint of the data, we only create 20 simple features, namely:

• The lagged returns for each of the last 10 minutes.

• The number of shares traded with upticks and downticks during a bar, divided by 
the total number of shares.

• The number of shares traded where the trade price is the same (repeated) following 
and upticks or downticks during a bar, divided by the total number of shares.

• The difference between the number of shares traded at the ask versus the bid price, 
divided by total volume during the bar. 

• Several technical indicators, including the Balance of Power, the Commodity 
Channel Index, and the Stochastic RSI (see the Appendix, Alpha Factor Library, for 
details).

We'll make sure that we shift the data to avoid lookahead bias, as exemplified by the 
computation of the Money Flow Index, which uses the TA-Lib implementation:

data['MFI'] = (by_ticker

               .apply(lambda x: talib.MFI(x.high,

                                          x.low,

                                          x['last'],

                                          x.volume,

                                          timeperiod=14)

                      .shift()))

The following graph shows a standalone evaluation of the individual features' predictive 
content using their rank correlation with the 1-minute forward returns. It reveals that the 
recent lagged returns are presumably the most informative variables:
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Figure 12.20: Information coefficient for high-frequency features

We can now proceed to train a gradient boosting model using these features.

Minute-frequency signals with LightGBM
To generate predictive signals for our HFT strategy, we'll train a LightGBM boosting model 
to predict the 1-min forward returns. The model receives 12 months of minute data during 
training the model and generates out-of-sample forecasts for the subsequent 21 trading 
days. We'll repeat this for 24 train-test splits to cover the last 2 years of our 5-year sample.

The training process follows the preceding LightGBM example closely; see the notebook 
intraday_model for the implementation details.

One key difference is the adaptation of the custom MultipleTimeSeriesCV to minute 
frequency; we'll be referencing the date_time level of MultiIndex (see notebook for 
implementation). We compute the lengths of the train and test periods based on 390 
observations per ticker and day as follows:

DAY = 390   # minutes; 6.5 hrs (9:30 - 15:59)

MONTH = 21  # trading days

n_splits = 24

cv = MultipleTimeSeriesCV(n_splits=n_splits,

                          lookahead=1,

                          test_period_length=MONTH * DAY,

                          train_period_length=12 * MONTH * DAY,

                          date_idx='date_time')

The large data size significantly drives up training time, so we use default settings but set 
the number to trees per ensemble to 250. We track the IC on the test set using the following 
ic_lgbm() custom metric definition that we pass to the model's .train() method.

The custom metric receives the model prediction and the binary training dataset, which 
we can use to compute any metric of interest; note that we set is_higher_better to True 
since the model minimizes loss functions by default (see the LightGBM documentation for 
additional information):
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def ic_lgbm(preds, train_data):

    """Custom IC eval metric for lightgbm"""

    is_higher_better = True

    return 'ic', spearmanr(preds, train_data.get_label())[0], is_higher_
better

model = lgb.train(params=params,

                  train_set=lgb_train,

                  valid_sets=[lgb_train, lgb_test],

                  feval=ic_lgbm,

                  num_boost_round=num_boost_round,

                  early_stopping_rounds=50,

                  verbose_eval=50)

At 250 iterations, the validation IC is still improving for most folds, so our results are not 
optimal, but training already takes several hours this way. Let's now take a look at the 
predictive content of the signals generated by our model.

Evaluating the trading signal quality
Now, we would like to know how accurate the model's out-of-sample predictions are, and 
whether they could be the basis for a profitable trading strategy.

First, we compute the IC, both for all predictions and on a daily basis, as follows:

ic = spearmanr(cv_preds.y_test, cv_preds.y_pred)[0]

by_day = cv_preds.groupby(cv_preds.index.get_level_values('date_time').date)

ic_by_day = by_day.apply(lambda x: spearmanr(x.y_test, x.y_pred)[0])

daily_ic_mean = ic_by_day.mean()

daily_ic_median = ic_by_day.median()

For the 2 years of rolling out-of-sample tests, we obtain a statistically significant, positive 
1.90. On a daily basis, the mean IC is 1.98 and the median IC equals 1.91.

These results clearly suggest that the predictions contain meaningful information about the 
direction and size of short-term price movements that we could use for a trading strategy.

Next, we calculate the average and cumulative forward returns for each decile of the 
predictions:

dates = cv_preds.index.get_level_values('date_time').date

cv_preds['decile'] = (cv_preds.groupby(dates, group_keys=False)

min_ret_by_decile = cv_preds.groupby(['date_time', 'decile']).y_test.mean()

                      .apply(lambda x: pd.qcut(x.y_pred, q=10))))
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cumulative_ret_by_decile = (min_ret_by_decile

                            .unstack('decile')

                            .add(1)

                            .cumprod()

                            .sub(1))

Figure 12.21 displays the results. The left panel shows the average 1-min return per decile 
and indicates an average spread of 0.5 basis points per minute. The right panel shows the 
cumulative return of an equal-weighted portfolio invested in each decile, suggesting that—
before transaction costs—a long-short strategy appears attractive:

Figure 12.21: Average 1-min returns and cumulative returns by decile

The backtest with minute data is quite time-consuming, so we've omitted this step; 
however, feel free to experiment with Zipline or backtrader to evaluate this strategy under 
more realistic assumptions regarding transaction costs or using proper risk controls.

Summary
In this chapter, we explored the gradient boosting algorithm, which is used to build 
ensembles in a sequential manner, adding a shallow decision tree that only uses a very 
small number of features to improve on the predictions that have been made. We saw how 
gradient boosting trees can be very flexibly applied to a broad range of loss functions, as 
well as offer many opportunities to tune the model to a given dataset and learning task.

Recent implementations have greatly facilitated the use of gradient boosting. They've done 
this by accelerating the training process and offering more consistent and detailed insights 
into the importance of features and the drivers of individual predictions.

Finally, we developed a simple trading strategy driven by an ensemble of gradient boosting 
models that was actually profitable, at least before significant trading costs. We also saw 
how to use gradient boosting with high-frequency data.

In the next chapter, we will turn to Bayesian approaches to machine learning.
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13
Data-Driven Risk Factors and Asset 

Allocation with Unsupervised Learning

Chapter 6, The Machine Learning Process, introduced how unsupervised learning adds value 
by uncovering structures in data without the need for an outcome variable to guide the 
search process. This contrasts with supervised learning, which was the focus of the last 
several chapters: instead of predicting future outcomes, unsupervised learning aims to 
learn an informative representation of the data that helps explore new data, discover useful 
insights, or solve some other task more effectively.

Dimensionality reduction and clustering are the main tasks for unsupervised learning:

• Dimensionality reduction transforms the existing features into a new, smaller set 
while minimizing the loss of information. Algorithms differ by how they measure 
the loss of information, whether they apply linear or nonlinear transformations or 
which constraints they impose on the new feature set.

• Clustering algorithms identify and group similar observations or features instead 
of identifying new features. Algorithms differ in how they define the similarity of 
observations and their assumptions about the resulting groups.

These unsupervised algorithms are useful when a dataset does not contain an outcome. 
For instance, we may want to extract tradeable information from a large body of financial 
reports or news articles. In Chapter 14, Text Data for Trading – Sentiment Analysis, we'll use 
topic modeling to discover hidden themes that allow us to explore and summarize content 
more effectively, and identify meaningful relationships that can help us to derive signals.

The algorithms are also useful when we want to extract information independently from 
an outcome. For example, rather than using third-party industry classifications, clustering 
allows us to identify synthetic groupings based on the attributes of assets useful for our 
purposes, such as returns over a certain time horizon, exposure to risk factors, or similar 
fundamentals. In this chapter, we will learn how to use clustering to manage portfolio risks 
by identifying hierarchical relationships among asset returns.
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More specifically, after reading this chapter, you will understand:

• How principal component analysis (PCA) and independent component analysis 
(ICA) perform linear dimensionality reduction

• Identifying data-driven risk factors and eigenportfolios from asset returns using PCA

• Effectively visualizing nonlinear, high-dimensional data using manifold learning

• Using T-SNE and UMAP to explore high-dimensional image data

• How k-means, hierarchical, and density-based clustering algorithms work

• Using agglomerative clustering to build robust portfolios with hierarchical risk parity

Dimensionality reduction
In linear algebra terms, the features of a dataset create a vector space whose dimensionality 
corresponds to the number of linearly independent rows or columns, whichever is larger. 
Two columns are linearly dependent when they are perfectly correlated so that one can be 
computed from the other using the linear operations of addition and multiplication.

In other words, they are parallel vectors that represent the same direction rather than 
different ones in the data and thus only constitute a single dimension. Similarly, if one 
variable is a linear combination of several others, then it is an element of the vector space 
created by those columns and does not add a new dimension of its own.

The number of dimensions of a dataset matters because each new dimension can add a 
signal concerning an outcome. However, there is also a downside known as the curse 
of dimensionality: as the number of independent features grows while the number of 
observations remains constant, the average distance between data points also grows, 
and the density of the feature space drops exponentially, with dramatic implications for 
machine learning (ML). Prediction becomes much harder when observations are more 
distant, that is, different from each other. Alternative data sources, like text and images, 
typically are of high dimensionality, but they generally affect models that rely on a large 
number of features. The next section addresses the resulting challenges.

Dimensionality reduction seeks to represent the data more efficiently by using fewer 
features. To this end, algorithms project the data to a lower-dimensional space while 
discarding any variation that is not informative, or by identifying a lower-dimensional 
subspace or manifold on or near to where the data lives.

A manifold is a space that locally resembles Euclidean space. One-dimensional manifolds 
include a line or a circle, but not the visual representation of the number eight due to the 
crossing point.

You can find the code samples for this chapter and links to additional 
resources in the corresponding directory of the GitHub repository. The 
notebooks include color versions of the images.
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The manifold hypothesis maintains that high-dimensional data often resides in a lower-
dimensional space, which, if identified, permits a faithful representation of the data in this 
subspace. Refer to Fefferman, Mitter, and Narayanan (2016) for background information 
and the description of an algorithm that tests this hypothesis.

Dimensionality reduction, therefore, compresses the data by finding a different, smaller 
set of variables that capture what matters most in the original features to minimize the loss 
of information. Compression helps counter the curse of dimensionality, economizes on 
memory, and permits the visualization of salient aspects of higher-dimensional data that is 
otherwise very difficult to explore.

Dimensionality reduction algorithms differ by the constraints they impose on the new 
variables and how they aim to minimize the loss of information (see Burges 2010 for an 
excellent overview):

• Linear algorithms like PCA and ICA constrain the new variables to be linear 
combinations of the original features; for example, hyperplanes in a lower-
dimensional space. Whereas PCA requires the new features to be uncorrelated, ICA 
goes further and imposes statistical independence, implying the absence of both 
linear and nonlinear relationships.

• Nonlinear algorithms are not restricted to hyperplanes and can capture a more 
complex structure in the data. However, given the infinite number of options, the 
algorithms still need to make assumptions in order to arrive at a solution. Later in 
this section, we will explain how t-distributed Stochastic Neighbor Embedding 
(t-SNE) and Uniform Manifold Approximation and Projection (UMAP) are 
very useful to visualize higher-dimensional data. Figure 13.1 illustrates how 
manifold learning identifies a two-dimensional subspace in the three-dimensional 
feature space. (The notebook manifold_learning illustrates the use of additional 
algorithms, including local linear embedding.)

Figure 13.1: Nonlinear dimensionality reduction

The curse of dimensionality
An increase in the number of dimensions of a dataset means that there are more entries in 
the vector of features that represents each observation in the corresponding Euclidean space. 
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We measure the distance in a vector space using the Euclidean distance, also known as 
the L2 norm, which we applied to the vector of linear regression coefficients to train a 
regularized ridge regression.

The Euclidean distance between two n-dimensional vectors with Cartesian coordinates p 
= (p1, p2, ..., pn

) and q = (q1, q2, ..., qn
) is computed using the familiar formula developed by 

Pythagoras:

  𝑑𝑑(𝑝𝑝 , 𝑞𝑞) =  √∑(𝑝𝑝𝑖𝑖 − 𝑞𝑞𝑖𝑖)2𝑛𝑛
𝑖𝑖=1  

Therefore, each new dimension adds a non-negative term to the sum so that the distance 
increases with the number of dimensions for distinct vectors. In other words, as the 
number of features grows for a given number of observations, the feature space becomes 
increasingly sparse, that is, less dense or emptier. On the flip side, the lower data density 
requires more observations to keep the average distance between the data points the same.

Figure 13.2 illustrates the exponential growth in the number of data points needed to 
maintain the average distance among observations as the number of dimensions increases. 
10 points uniformly distributed on a line correspond to 102 points in two dimensions and 
103 points in three dimensions in order to keep the density constant.

Figure 13.2: The number of features required to keep the average distance constant grows exponentially with the 
number of dimensions

The notebook the_curse_of_dimensionality in the GitHub repository folder for this section 
simulates how the average and minimum distances between data points increase as the 
number of dimensions grows (see Figure 13.3).

Figure 13.3: Average distance of 1,000 data points in a unit hypercube
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The simulation randomly samples up to 2,500 features in the range [0, 1] from 
an uncorrelated uniform or a correlated normal distribution. The average distance between 
data points increases to over 11 times the unitary feature range for the normal distribution, 
and to over 20 times in the (extreme) case of an uncorrelated uniform distribution.

When the distance between observations grows, supervised ML becomes more difficult 
because predictions for new samples are less likely to be based on learning from similar 
training features. Put simply, the number of possible unique rows grows exponentially as the 
number of features increases, making it much harder to efficiently sample the space. Similarly, 
the complexity of the functions learned by flexible algorithms that make fewer assumptions 
about the actual relationship grows exponentially with the number of dimensions.

Flexible algorithms include the tree-based models we saw in Chapter 11, Random Forests 
– A Long-Short Strategy for Japanese Stocks, and Chapter 12, Boosting Your Trading Strategy. 
They also include the deep neural networks that we will cover later in the book, starting 
with Chapter 16, Word Embeddings for Earnings Calls and SEC Filings. The variance of these 
algorithms increases as more dimensions add opportunities to overfit to noise, resulting in 
poor generalization performance.

Dimensionality reduction leverages the fact that, in practice, features are often correlated 
or exhibit little variation. If so, it can compress data without losing much of the signal and 
complements the use of regularization to manage prediction error due to variance and 
model complexity.

The critical question that we take on in the following section then becomes: what are the 
best ways to find a lower-dimensional representation of the data?

Linear dimensionality reduction
Linear dimensionality reduction algorithms compute linear combinations that translate, 
rotate, and rescale the original features to capture significant variations in the data, subject 
to constraints on the characteristics of the new features.

PCA, invented in 1901 by Karl Pearson, finds new features that reflect directions of 
maximal variance in the data while being mutually uncorrelated. ICA, in contrast, 
originated in signal processing in the 1980s with the goal of separating different signals 
while imposing the stronger constraint of statistical independence.

This section introduces these two algorithms and then illustrates how to apply PCA to asset 
returns in order to learn risk factors from the data, and build so-called eigenportfolios for 
systematic trading strategies.

Principal component analysis

PCA finds linear combinations of the existing features and uses these principal components 
to represent the original data. The number of components is a hyperparameter that 
determines the target dimensionality and can be, at most, equal to the lesser of the number 
of rows or columns.
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PCA aims to capture most of the variance in the data to make it easy to recover the original 
features and ensures that each component adds information. It reduces dimensionality by 
projecting the original data into the principal component space.

The PCA algorithm works by identifying a sequence of components, each of which aligns 
with the direction of maximum variance in the data after accounting for variation captured 
by previously computed components. The sequential optimization ensures that new 
components are not correlated with existing components and produces an orthogonal basis 
for a vector space.

This new basis is a rotation of the original basis, such that the new axes point in the direction 
of successively decreasing variance. The decline in the amount of variance of the original 
data explained by each principal component reflects the extent of correlation among the 
original features. In other words, the share of components that captures, for example, 95 
percent of the original variation provides insight into the linearly independent information 
in the original data.

Visualizing PCA in 2D

Figure 13.4 illustrates several aspects of PCA for a two-dimensional random dataset (refer to 
the notebook pca_key_ideas):

• The left panel shows how the first and second principal components align with the 
directions of maximum variance while being orthogonal.

• The central panel shows how the first principal component minimizes the 
reconstruction error, measured as the sum of the distances between the data points 
and the new axis.

• The right panel illustrates supervised OLS (refer to Chapter 7, Linear Models – 
From Risk Factors to Return Forecasts ), which approximates the outcome (x

2
) by 

a line computed from the single feature x
1
. The vertical lines highlight how OLS 

minimizes the distance along the outcome axis, whereas PCA minimizes the 
distances that are orthogonal to the hyperplane.

Figure 13.4: PCA in 2D from various perspectives
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Key assumptions made by PCA

PCA makes several assumptions that are important to keep in mind. These include:

• High variance implies a high signal-to-noise ratio.

• The data is standardized so that the variance is comparable across features.

• Linear transformations capture the relevant aspects of the data.

• Higher-order statistics beyond the first and second moments do not matter, which 
implies that the data has a normal distribution.

The emphasis on the first and second moments aligns with standard risk/return metrics, 
but the normality assumption may conflict with the characteristics of market data. 
Market data often exhibits skew or kurtosis (fat tails) that differ from those of the normal 
distribution and will not be taken into account by PCA.

How the PCA algorithm works

The algorithm finds vectors to create a hyperplane of target dimensionality that minimizes 
the reconstruction error, measured as the sum of the squared distances of the data points to 
the plane. As illustrated previously, this goal corresponds to finding a sequence of vectors 
that align with directions of maximum retained variance given the other components, while 
ensuring all principal components are mutually orthogonal.

In practice, the algorithm solves the problem either by computing the eigenvectors of the 
covariance matrix or by using the singular value decomposition (SVD).

We illustrate the computation using a randomly generated three-dimensional ellipse with 
100 data points, as shown in the left panel of Figure 13.5, including the two-dimensional 
hyperplane defined by the first two principal components. (Refer to the notebook the_math_
behind_pca for the code samples in the following three sections.)

Figure 13.5: Visual representation of dimensionality reduction from 3D to 2D
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PCA based on the covariance matrix

We first compute the principal components using the square covariance matrix with the 
pairwise sample covariances for the features x

i
, xj, i, j = 1, ..., n as entries in row i and column j:𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖,𝑗𝑗 =  ∑ (𝑥𝑥𝑖𝑖𝑖𝑖 − �̅�𝑥𝑖𝑖) (𝑥𝑥𝑗𝑗𝑖𝑖 − �̅�𝑥𝑗𝑗) 𝑁𝑁𝑖𝑖=1 𝑁𝑁 − 1  

For a square matrix M of n dimension, we define the eigenvectors 𝜔𝜔𝑖𝑖  and eigenvalues 𝜆𝜆 
i
, 

i=1, ..., n as follows: 𝑀𝑀𝑀𝑀𝑖𝑖 =  𝜆𝜆𝑖𝑖𝑀𝑀𝑖𝑖 
Therefore, we can represent the matrix M using eigenvectors and eigenvalues, where W is a 
matrix that contains the eigenvectors as column vectors, and L is a matrix that contains 𝜆𝜆 i as 
diagonal entries (and 0s otherwise). We define the eigendecomposition as:𝑀𝑀 =  𝑊𝑊𝑊𝑊𝑊𝑊−1 

Using NumPy, we implement this as follows, where the pandas DataFrame data contains 
the 100 data points of the ellipse:

# compute covariance matrix: 

cov = np.cov(data.T) # expects variables in rows by default

cov.shape

(3, 3)

Next, we calculate the eigenvectors and eigenvalues of the covariance matrix. The 
eigenvectors contain the principal components (where the sign is arbitrary):

eigen_values, eigen_vectors = eig(cov)

eigen_vectors

array([[ 0.71409739, -0.66929454, -0.20520656],

       [-0.70000234, -0.68597301, -0.1985894 ],

       [ 0.00785136, -0.28545725,  0.95835928]])

We can compare the result with the result obtained from sklearn and find that they match 
in absolute terms:

pca = PCA()

pca.fit(data)
C = pca.components_.T # columns = principal components

C

array([[ 0.71409739,  0.66929454,  0.20520656],

       [-0.70000234,  0.68597301,  0.1985894 ],

       [ 0.00785136,  0.28545725, -0.95835928]])

np.allclose(np.abs(C), np.abs(eigen_vectors))

True
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We can also verify the eigendecomposition, starting with the diagonal matrix L that 
contains the eigenvalues:

# eigenvalue matrix

ev = np.zeros((3, 3))

np.fill_diagonal(ev, eigen_values)
ev # diagonal matrix

array([[1.92923132, 0.        , 0.        ],

       [0.        , 0.55811089, 0.        ],

       [0.        , 0.        , 0.00581353]])

We find that the result does indeed hold:

decomposition = eigen_vectors.dot(ev).dot(inv(eigen_vectors))

np.allclose(cov, decomposition)

PCA using the singular value decomposition

Next, we'll take a look at the alternative computation using the SVD. This algorithm is 
slower when the number of observations is greater than the number of features (which is 
the typical case) but yields better numerical stability, especially when some of the features 
are strongly correlated (which is often the reason to use PCA in the first place).

SVD generalizes the eigendecomposition that we just applied to the square and symmetric 
covariance matrix to the more general case of m x n rectangular matrices. It has the form 
shown at the center of the following figure. The diagonal values of Σ  are the singular 
values, and the transpose of V* contains the principal components as column vectors.

Figure 13.6: The SVD decomposed

In this case, we need to make sure our data is centered with mean zero (the computation of 
the covariance earlier took care of this):

n_features = data.shape[1]

data_ = data - data.mean(axis=0)
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Using the centered data, we compute the SVD:

U, s, Vt = svd(data_)

U.shape, s.shape, Vt.shape

((100, 100), (3,), (3, 3))

We can convert the vector s, which contains only singular values, into an n x m matrix and 
show that the decomposition works:

S = np.zeros_like(data_)

S[:n_features, :n_features] = np.diag(s)

S.shape

(100, 3)

We find that the decomposition does indeed reproduce the standardized data:

np.allclose(data_, U.dot(S).dot(Vt))

True

Lastly, we confirm that the columns of the transpose of V* contain the principal 
components:

np.allclose(np.abs(C), np.abs(Vt.T))

In the next section, we will demonstrate how sklearn implements PCA.

PCA with sklearn

The sklearn.decomposition.PCA implementation follows the standard API based on the 
fit() and transform() methods that compute the desired number of principal components 
and project the data into the component space, respectively. The convenience method fit_
transform() accomplishes this in a single step.

PCA offers three different algorithms that can be specified using the svd_solver parameter:

• full computes the exact SVD using the LAPACK solver provided by scipy.

• arpack runs a truncated version suitable for computing less than the full number of 
components.

• randomized uses a sampling-based algorithm that is more efficient when the 
dataset has more than 500 observations and features, and the goal is to compute less 
than 80 percent of the components.

• auto also randomizes where it is most efficient; otherwise, it uses the full SVD.

Please view the references on GitHub for algorithmic implementation details.

Other key configuration parameters of the PCA object are:
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• n_components: Compute all principal components by passing None (the default), 
or limit the number to int. For svd_solver=full, there are two additional options: 
a float in the interval [0, 1] computes the number of components required to retain 
the corresponding share of the variance in the data, and the option mle estimates the 
number of dimensions using the maximum likelihood.

• whiten: If True, it standardizes the component vectors to unit variance, which, in 
some cases, can be useful in a predictive model (the default is False).

To compute the first two principal components of the three-dimensional ellipsis and project 
the data into the new space, use fit_transform():

pca2 = PCA(n_components=2)

projected_data  = pca2.fit_transform(data)
projected_data.shape

(100, 2)

The explained variance of the first two components is very close to 100 percent:

pca2.explained_variance_ratio_

array([0.77381099, 0.22385721])

Figure 13.5 shows the projection of the data into the new two-dimensional space.

Independent component analysis

ICA is another linear algorithm that identifies a new basis to represent the original data but 
pursues a different objective than PCA. Refer to Hyvärinen and Oja (2000) for a detailed 
introduction.

ICA emerged in signal processing, and the problem it aims to solve is called blind source 
separation. It is typically framed as the cocktail party problem, where a given number 
of guests are speaking at the same time so that a single microphone records overlapping 
signals. ICA assumes there are as many different microphones as there are speakers, each 
placed at different locations so that they record a different mix of signals. ICA then aims to 
recover the individual signals from these different recordings.

In other words, there are n original signals and an unknown square mixing matrix A that 
produces an n-dimensional set of m observations so that𝑋𝑋𝑛𝑛 ×  𝑚𝑚 =  𝐴𝐴𝑛𝑛 ×  𝑛𝑛    𝑠𝑠𝑛𝑛 ×  𝑚𝑚 

The goal is to find the matrix W = A-1 that untangles the mixed signals to recover the sources. 

The ability to uniquely determine the matrix W hinges on the non-Gaussian distribution 
of the data. Otherwise, W could be rotated arbitrarily given the multivariate normal 
distribution's symmetry under rotation. Furthermore, ICA assumes the mixed signal is the 
sum of its components and is, therefore, unable to identify Gaussian components because 
their sum is also normally distributed.



Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning

[ 418 ]

ICA assumptions

ICA makes the following critical assumptions:

• The sources of the signals are statistically independent

• Linear transformations are sufficient to capture the relevant information
• The independent components do not have a normal distribution

• The mixing matrix A can be inverted

ICA also requires the data to be centered and whitened, that is, to be mutually uncorrelated 
with unit variance. Preprocessing the data using PCA, as outlined earlier, achieves the 
required transformations.

The ICA algorithm

FastICA, used by sklearn, is a fixed-point algorithm that uses higher-order statistics to 
recover the independent sources. In particular, it maximizes the distance to a normal 
distribution for each component as a proxy for independence.

An alternative algorithm called InfoMax minimizes the mutual information between 
components as a measure of statistical independence.

ICA with sklearn

The ICA implementation by sklearn uses the same interface as PCA, so there is little to 
add. Note that there is no measure of explained variance because ICA does not compute 
components successively. Instead, each component aims to capture the independent aspects 
of the data.

Manifold learning – nonlinear dimensionality reduction
Linear dimensionality reduction projects the original data onto a lower-dimensional 
hyperplane that aligns with informative directions in the data. The focus on linear 
transformations simplifies the computation and echoes common financial metrics, such as 
PCA's goal to capture the maximum variance.

However, linear approaches will naturally ignore signals reflected in nonlinear 
relationships in the data. Such relationships are very important in alternative datasets 
containing, for example, image or text data. Detecting such relationships during 
exploratory analysis can provide important clues about the data's potential signal content.

In contrast, the manifold hypothesis emphasizes that high-dimensional data often lies 
on or near a lower-dimensional nonlinear manifold that is embedded in the higher-
dimensional space. The two-dimensional Swiss roll displayed in Figure 13.1 (at the 
beginning of this chapter) illustrates such a topological structure. Manifold learning aims to 
find the manifold of intrinsic dimensionality and then represent the data in this subspace. A 
simplified example uses a road as a one-dimensional manifold in a three-dimensional space 
and identifies data points using house numbers as local coordinates.
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Several techniques approximate a lower-dimensional manifold. One example is locally 
linear embedding (LLE), which was invented by Lawrence Saul and Sam Roweis (2000) 
and used to "unroll" the Swiss roll shown in Figure 13.1 (view the examples in the manifold_
learning_lle notebook).

For each data point, LLE identifies a given number of nearest neighbors and computes 
weights that represent each point as a linear combination of its neighbors. It finds a lower-
dimensional embedding by linearly projecting each neighborhood on global internal 
coordinates on the lower-dimensional manifold and can be thought of as a sequence of 
PCA applications.

Visualization requires that the reduction is at least three dimensions, possibly below the 
intrinsic dimensionality, and poses the challenge of faithfully representing both the local 
and global structure. This challenge relates to the curse of dimensionality; that is, while 
the volume of a sphere expands exponentially with the number of dimensions, the lower-
dimensional space available to represent high-dimensional data is much more limited. For 
instance, in 12 dimensions, there can be 13 equidistant points; however, in two dimensions, 
there can only be 3 that form a triangle with sides of equal length. Therefore, accurately 
reflecting the distance of one point to its high-dimensional neighbors in lower dimensions 
risks distorting the relationships among all other points. The result is the crowding problem: 
to maintain global distances, local points may need to be placed too closely together.

The next two sections cover techniques that have allowed us to make progress in 
addressing the crowding problem for the visualization of complex datasets. We will use the 
fashion MNIST dataset, which is a more sophisticated alternative to the classic handwritten 
digit MNIST benchmark data used for computer vision. It contains 60,000 training and 
10,000 test images of fashion objects in 10 classes (take a look at the sample images in the 
notebook manifold_learning_intro). The goal of a manifold learning algorithm for this 
data is to detect whether the classes lie on distinct manifolds to facilitate their recognition 
and differentiation.

t-distributed Stochastic Neighbor Embedding

t-SNE is an award-winning algorithm, developed by Laurens van der Maaten and Geoff 
Hinton in 2008, to detect patterns in high-dimensional data. It takes a probabilistic, 
nonlinear approach to locate data on several different but related  
low-dimensional manifolds. The algorithm emphasizes keeping similar points together in 
low dimensions as opposed to maintaining the distance between points that are apart in 
high dimensions, which results from algorithms like PCA that minimize squared distances.

The algorithm proceeds by converting high-dimensional distances into (conditional) 
probabilities, where high probabilities imply low distance and reflect the likelihood of 
sampling two points based on similarity. It accomplishes this by, first, positioning a normal 
distribution over each point and computing the density for a point and each neighbor, 
where the perplexity parameter controls the effective number of neighbors. In the second 
step, it arranges points in low dimensions and uses similarly computed low-dimensional 
probabilities to match the high-dimensional distribution. It measures the difference 
between the distributions using the Kullback-Leibler divergence, which puts a high penalty 
on misplacing similar points in low dimensions. 
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The low-dimensional probabilities use a Student's t-distribution with one degree of 
freedom because it has fatter tails that reduce the penalty of misplacing points that are 
more distant in high dimensions to manage the crowding problem.

The upper panels in Figure 13.7 show how t-SNE is able to differentiate between the 
FashionMNIST image classes. A higher perplexity value increases the number of neighbors 
used to compute the local structure and gradually results in more emphasis on global 
relationships. (Refer to the repository for a high-resolution color version of this figure.)

Figure 13.7: t-SNE and UMAP visualization of Fashion MNIST image data for different hyperparameters

t-SNE is the current state of the art in high-dimensional data visualization. Weaknesses 
include the computational complexity that scales quadratically in the number n of points 
because it evaluates all pairwise distances, but a subsequent tree-based implementation has 
reduced the cost to n log n.

Unfortunately, t-SNE does not facilitate the projection of new data points into the low-
dimensional space. The compressed output is not a very useful input for distance- or 
density-based cluster algorithms because t-SNE treats small and large distances differently.

Uniform Manifold Approximation and Projection

UMAP is a more recent algorithm for visualization and general dimensionality reduction. It 
assumes the data is uniformly distributed on a locally connected manifold and looks for the 
closest low-dimensional equivalent using fuzzy topology. It uses a neighbors parameter, 
which impacts the result in a similar  
way to perplexity in the preceding section.

It is faster and hence scales better to large datasets than t-SNE and sometimes preserves the 
global structure better than t-SNE. It can also work with different distance functions, including 
cosine similarity, which is used to measure the distance between word count vectors.

The preceding figure illustrates how UMAP does indeed move the different clusters further 
apart, whereas t-SNE provides more granular insight into the local structure.
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The notebook also contains interactive Plotly visualizations for each of the algorithms that 
permit the exploration of the labels and identify which objects are placed close to each other.

PCA for trading
PCA is useful for algorithmic trading in several respects, including:

• The data-driven derivation of risk factors by applying PCA to asset returns

• The construction of uncorrelated portfolios based on the principal components of 
the correlation matrix of asset returns

We will illustrate both of these applications in this section.

Data-driven risk factors
In Chapter 7, Linear Models – From Risk Factors to Return Forecasts, we explored risk factor 
models used in quantitative finance to capture the main drivers of returns. These models 
explain differences in returns on assets based on their exposure to systematic risk factors 
and the rewards associated with these factors. In particular, we explored the Fama-French 
approach, which specifies factors based on prior knowledge about the empirical behavior 
of average returns, treats these factors as observable, and then estimates risk model 
coefficients using linear regression.

An alternative approach treats risk factors as latent variables and uses factor analytic 
techniques like PCA to simultaneously learn the factors from data and estimate how 
they drive returns. In this section, we will demonstrate how this method derives factors 
in a purely statistical or data-driven way with the advantage of not requiring ex ante 
knowledge of the behavior of asset returns (see the notebook pca_and_risk_factor_models 
for more details).

Preparing the data – top 350 US stocks

We will use the Quandl stock price data and select the daily adjusted close prices of the 
500 stocks with the largest market capitalization and data for the 2010-2018 period. We will 
then compute the daily returns as follows:

idx = pd.IndexSlice

with pd.HDFStore('../../data/assets.h5') as store:

    stocks = store['us_equities/stocks'].marketcap.nlargest(500)

    returns = (store['quandl/wiki/prices']

               .loc[idx['2010': '2018', stocks.index], 'adj_close']

               .unstack('ticker')

               .pct_change())
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We obtain 351 stocks and returns for over 2,000 trading days:

returns.info()

DatetimeIndex: 2072 entries, 2010-01-04 to 2018-03-27

Columns: 351 entries, A to ZTS

PCA is sensitive to outliers, so we winsorize the data at the 2.5 percent and 97.5 percent 
quantiles, respectively:

PCA does not permit missing data, so we will remove any stocks that do not have data for 
at least 95 percent of the time period. Then, in a second step, we will remove trading days 
that do not have observations on at least 95 percent of the remaining stocks:

returns = returns.dropna(thresh=int(returns.shape[0] * .95), axis=1)

returns = returns.dropna(thresh=int(returns.shape[1] * .95))

We are left with 315 equity return series covering a similar period:

returns.info()

DatetimeIndex: 2071 entries, 2010-01-05 to 2018-03-27

Columns: 315 entries, A to LYB

We impute any remaining missing values using the average return for any given trading 
day:

daily_avg = returns.mean(1)

returns = returns.apply(lambda x: x.fillna(daily_avg))

Running PCA to identify the key return drivers

Now we are ready to fit the principal components model to the asset returns using default 
parameters to compute all of the components using the full SVD algorithm:

pca = PCA(n_components='mle')

pca.fit(returns)

We find that the most important factor explains around 55 percent of the daily return 
variation. The dominant factor is usually interpreted as "the market," whereas the 
remaining factors can be interpreted as industry or style factors in line with our discussions 
in Chapter 5, Portfolio Optimization and Performance Evaluation, and Chapter 7, Linear Models – 
From Risk Factors to Return Forecasts, depending on the results of a closer inspection (please 
refer to the next example).
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The plot on the right of Figure 13.8 shows the cumulative explained variance and indicates 
that around 10 factors explain 60 percent of the returns of this cross-section of stocks.

Figure 13.8: (Cumulative) explained return variance by PCA-based risk factors

The notebook contains a simulation for a broader cross-section of stocks and the longer 
2000-2018 time period. It finds that, on average, the first three components explained 40 
percent, 10 percent, and 5 percent of 500 randomly selected stocks, as shown in Figure 13.9:

Figure 13.9: Explained variance of the top 10 principal components—100 trials

The cumulative plot shows a typical "elbow" pattern that can help to identify a suitable 
target dimensionality as the number of components beyond which additional components 
add less incremental value.

We can select the top two principal components to verify that they are indeed uncorrelated:

risk_factors = pd.DataFrame(pca.transform(returns)[:, :2], 

                            columns=['Principal Component 1', 

                                     'Principal Component 2'], 

                            index=returns.index)

(risk_factors['Principal Component 1']

.corr(risk_factors['Principal Component 2']))

7.773256996252084e-15
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Moreover, we can plot the time series to highlight how each factor captures different 
volatility patterns, as shown in the following figure:

Figure 13.10: Return volatility patterns captured by the first two principal components

A risk factor model would employ a subset of the principal components as features to 
predict future returns, similar to our approach in Chapter 7, Linear Models – From Risk 
Factors to Return Forecasts.

Eigenportfolios
Another application of PCA involves the covariance matrix of the normalized returns. 
The principal components of the correlation matrix capture most of the covariation 
among assets in descending order and are mutually uncorrelated. Moreover, we can use 
standardized principal components as portfolio weights. You can find the code example for 
this section in the notebook pca_and_eigen_portfolios.

Let's use the 30 largest stocks with data for the 2010-2018 period to facilitate the exposition:

idx = pd.IndexSlice

with pd.HDFStore('../../data/assets.h5') as store:

    stocks = store['us_equities/stocks'].marketcap.nlargest(30)

    returns = (store['quandl/wiki/prices']

               .loc[idx['2010': '2018', stocks.index], 'adj_close']

               .unstack('ticker')

               .pct_change())

We again winsorize and also normalize the returns:

normed_returns = scale(returns

                       .clip(lower=returns.quantile(q=.025), 

                             upper=returns.quantile(q=.975), 

                             axis=1)

                       .apply(lambda x: x.sub(x.mean()).div(x.std())))
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After dropping assets and trading days like in the previous example, we are left with 23 
assets and over 2,000 trading days. We compute the return covariance and estimate all of 
the principal components to find that the two largest explain 55.9 percent and 15.5 percent 
of the covariation, respectively:

cov = returns.cov()

pca = PCA()

pca.fit(cov)
pd.Series(pca.explained_variance_ratio_).head()

0 55.91%

1 15.52%

2 5.36%

3 4.85%

4 3.32%

Next, we select and normalize the four largest components so that they sum to 1, and we 
can use them as weights for portfolios that we can compare to an EW portfolio formed from 
all of the stocks:

top4 = pd.DataFrame(pca.components_[:4], columns=cov.columns)

eigen_portfolios = top4.div(top4.sum(1), axis=0)

eigen_portfolios.index = [f'Portfolio {i}' for i in range(1, 5)]

The weights show distinct emphasis, as you can see in Figure 13.11. For example, Portfolio 
3 puts large weights on Mastercard and Visa, the two payment processors in the sample, 
whereas Portfolio 2 has more exposure to technology companies:

Figure 13.11: Eigenportfolio weights
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When comparing the performance of each portfolio over the sample period to "the market" 
consisting of our small sample, we find that Portfolio 1 performs very similarly, whereas 
the other portfolios capture different return patterns (see Figure 13.12).

Figure 13.12: Cumulative eigenportfolio returns

Clustering
Both clustering and dimensionality reduction summarize the data. As we have just 
discussed, dimensionality reduction compresses the data by representing it using new, 
fewer features that capture the most relevant information. Clustering algorithms, in 
contrast, assign existing observations to subgroups that consist of similar data points.

Clustering can serve to better understand the data through the lens of categories learned 
from continuous variables. It also permits you to automatically categorize new objects 
according to the learned criteria. Examples of related applications include hierarchical 
taxonomies, medical diagnostics, and customer segmentation. Alternatively, clusters can 
be used to represent groups as prototypes, using, for example, the midpoint of a cluster 
as the best representatives of learned grouping. An example application includes image 
compression.

Clustering algorithms differ with respect to their strategy of identifying groupings:

• Combinatorial algorithms select the most coherent of different groupings of 
observations.

• Probabilistic modeling estimates distributions that most likely generated the 
clusters.

• Hierarchical clustering finds a sequence of nested clusters that optimizes coherence 
at any given stage.

Algorithms also differ by the notion of what constitutes a useful collection of objects that 
needs to match the data characteristics, domain, and goal of the applications. Types of 
groupings include:
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• Clearly separated groups of various shapes

• Prototype- or center-based, compact clusters

• Density-based clusters of arbitrary shape

• Connectivity- or graph-based clusters

Important additional aspects of a clustering algorithm include whether it:

• Requires exclusive cluster membership 

• Makes hard, that is, binary, or soft, probabilistic assignments 

• Is complete and assigns all data points to clusters

The following sections introduce key algorithms, including k-means, hierarchical, and 
density-based clustering, as well as Gaussian mixture models (GMMs). The notebook 
clustering_algos compares the performance of these algorithms on different, labeled 
datasets to highlight strengths and weaknesses. It uses mutual information (refer to Chapter 

6, The Machine Learning Process) to measure the congruence of cluster assignments and 
labels.

k-means clustering
k-means is the most well-known clustering algorithm, and it was first proposed by Stuart 
Lloyd at Bell Labs in 1957. It finds k centroids and assigns each data point to exactly one 
cluster with the goal of minimizing the within-cluster variance (called inertia). It typically 
uses the Euclidean distance, but other metrics can also be used. k-means assumes that 
clusters are spherical and of equal size and ignores the covariance among features.

Assigning observations to clusters

The problem is computationally difficult (NP-hard) because there are kN ways to partition 
the N observations into k clusters. The standard iterative algorithm delivers a local 
optimum for a given k and proceeds as follows:

1. Randomly define k cluster centers and assign points to the nearest centroid

2. Repeat:

1. For each cluster, compute the centroid as the average of the features

2. Assign each observation to the closest centroid

3. Convergence: assignments (or within-cluster variation) don't change

The notebook kmeans_implementation shows you how to code the algorithm using Python. 
It visualizes the algorithm's iterative optimization and demonstrates how the resulting 
centroids partition the feature space into areas called Voronoi that delineate the clusters. 
The result is optimal for the given initialization, but alternative starting positions will 
produce different results. Therefore, we compute multiple clusterings from different initial 
values and select the solution that minimizes within-cluster variance.
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k-means requires continuous or one-hot encoded categorical variables. Distance metrics are 
typically sensitive to scale, making it necessary to standardize features to ensure they have 
equal weight.

The strengths of k-means include its wide range of applicability, fast convergence, and 
linear scalability to large data while producing clusters of even size. The weaknesses 
include the need to tune the hyperparameter k, no guarantee of finding a global optimum, 
the restrictive assumption that clusters are spheres, and features not being correlated. It is 
also sensitive to outliers.

Evaluating cluster quality

Cluster quality metrics help select from among alternative clustering results. The notebook 
kmeans_evaluation illustrates the following options.

The k-means objective function suggests we compare the evolution of the inertia or within-
cluster variance. Initially, additional centroids decrease the inertia sharply because new 
clusters improve the overall fit. Once an appropriate number of clusters has been found 
(assuming it exists), new centroids reduce the within-cluster variance by much less, as they 
tend to split natural groupings.

Therefore, when k-means finds a good cluster representation of the data, the inertia tends 
to follow an elbow-shaped path similar to the explained variance ratio for PCA (take a look 
at the notebook for implementation details).

The silhouette coefficient provides a more detailed picture of cluster quality. It answers the 
question: how far are the points in the nearest cluster relative to the points in the assigned 
cluster? To this end, it compares the mean intra-cluster distance a to the mean distance of 
the nearest cluster b and computes the following score s:𝑠𝑠 =  𝑏𝑏 − 𝑎𝑎max(𝑎𝑎, 𝑏𝑏)   ∈  [−1 , 1] 

The score can vary between -1 and 1, but negative values are unlikely in practice 
because they imply that the majority of points are assigned to the wrong cluster. A 
useful visualization of the silhouette score compares the values for each data point to the 
global average because it highlights the coherence of each cluster relative to the global 
configuration. The rule of thumb is to avoid clusters with mean scores below the average 
for all samples.

Figure 13.13 shows an excerpt from the silhouette plot for three and four clusters, where the 
former highlights the poor fit of cluster 1 by subpar contributions to the global silhouette 
score, whereas all of the four clusters have some values that exhibit above-average scores.
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Figure 13.13: Silhouette plots for three and four clusters

In sum, given the usually unsupervised nature, it is necessary to vary the hyperparameters 
of the cluster algorithms and evaluate the different results. It is also important to calibrate 
the scale of the features, particularly when some should be given a higher weight and thus 
be measured on a larger scale. Finally, to validate the robustness of the results, use subsets 
of data to identify whether particular cluster patterns emerge consistently.

Hierarchical clustering
Hierarchical clustering avoids the need to specify a target number of clusters because it 
assumes that data can successively be merged into increasingly dissimilar clusters. It does 
not pursue a global objective but decides incrementally how to produce a sequence of nested 
clusters that range from a single cluster to clusters consisting of the individual data points.

Different strategies and dissimilarity measures
There are two approaches to hierarchical clustering:

1. Agglomerative clustering proceeds bottom-up, sequentially merging two of the 
remaining groups based on similarity.

2. Divisive clustering works top-down and sequentially splits the remaining clusters 
to produce the most distinct subgroups.

Both groups produce N-1 hierarchical levels and facilitate the selection of clustering at the 
level that best partitions data into homogenous groups. We will focus on the more common 
agglomerative clustering approach.

The agglomerative clustering algorithm departs from the individual data points and 
computes a similarity matrix containing all mutual distances. It then takes N-1 steps 
until there are no more distinct clusters and, each time, updates the similarity matrix 
to substitute elements that have been merged by the new cluster so that the matrix 
progressively shrinks.
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While hierarchical clustering does not have hyperparameters like k-means, the measure 
of dissimilarity between clusters (as opposed to individual data points) has an important 
impact on the clustering result. The options differ as follows:

• Single-link: Distance between the nearest neighbors of two clusters

• Complete link: Maximum distance between the respective cluster members

• Ward's method: Minimize within-cluster variance

• Group average: Uses the cluster midpoint as a reference distance

Visualization – dendrograms

Hierarchical clustering provides insight into degrees of similarity among observations as it 
continues to merge data. A significant change in the similarity metric from one merge to the 
next suggests that a natural clustering existed prior to this point.

The dendrogram visualizes the successive merges as a binary tree, displaying the 
individual data points as leaves and the final merge as the root of the tree. It also shows 
how the similarity monotonically decreases from the bottom to the top. Therefore, 
it is natural to select a clustering by cutting the dendrogram. Refer to the notebook 
hierarchical_clustering for implementation details.

Figure 13.14 illustrates the dendrogram for the classic Iris dataset with four classes and three 
features using the four different distance metrics introduced in the preceding section. It 
evaluates the fit of the hierarchical clustering using the cophenetic correlation coefficient 
that compares the pairwise distances among points and the cluster similarity metric at which 
a pairwise merge occurred. A coefficient of 1 implies that closer points always merge earlier.

Figure 13.14: Dendrograms and cophenetic correlation for different dissimilarity measures
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Different linkage methods produce different dendrogram "looks" so that we cannot use 
this visualization to compare results across methods. In addition, the Ward method, which 
minimizes the within-cluster variance, may not properly reflect the change in variance 
from one level to the next. Instead, the dendrogram can reflect the total within-cluster 
variance at different levels, which may be misleading. Alternative quality metrics are more 
appropriate, such as the cophenetic correlation or measures like inertia if aligned with the 
overall goal.

The strengths of hierarchical clustering include:

• The algorithm does not need the specific number of clusters but, instead, provides 
insight about potential clustering by means of an intuitive visualization. 

• It produces a hierarchy of clusters that can serve as a taxonomy. 

• It can be combined with k-means to reduce the number of items at the start of the 
agglomerative process.

On the other hand, its weaknesses include:

• The high cost in terms of computation and memory due to the numerous similarity 
matrix updates.

• All merges are final so that it does not achieve the global optimum.
• The curse of dimensionality leads to difficulties with noisy, high-dimensional data.

Density-based clustering
Density-based clustering algorithms assign cluster membership based on proximity to other 
cluster members. They pursue the goal of identifying dense regions of arbitrary shapes and 
sizes. They do not require the specification of a certain number of clusters but instead rely 
on parameters that define the size of a neighborhood and a density threshold.

We'll outline the two popular algorithms: DBSCAN and its newer hierarchical refinement. 
Refer to the notebook density_based_clustering for the relevant code samples and the link 
in this chapter's README on GitHub to a Quantopian example by Jonathan Larking that uses 
DBSCAN for a pairs trading strategy.

DBSCAN

Density-based spatial clustering of applications with noise (DBSCAN) was developed in 
1996 and awarded the KDD Test of Time award at the 2014 KDD conference because of the 
attention it has received in theory and practice. 

It aims to identify core and non-core samples, where the former extend a cluster and the 
latter are part of a cluster but do not have sufficient nearby neighbors to further grow the 
cluster. Other samples are outliers and are not assigned to any cluster.
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It uses a parameter eps for the radius of the neighborhood and min_samples for the number 
of members required for core samples. It is deterministic and exclusive and has difficulties 
with clusters of different density and high-dimensional data. It can be challenging to tune 
the parameters to the requisite density, especially as it is often not constant.

Hierarchical DBSCAN

Hierarchical DBSCAN (HDBSCAN) is a more recent development that assumes clusters 
are islands of potentially differing density to overcome the DBSCAN challenges just 
mentioned. It also aims to identify the core and non-core samples. It uses the parameters 
min_cluster_size and min_samples to select a neighborhood and extend a cluster. The 
algorithm iterates over multiple eps values and chooses the most stable clustering. In 
addition to identifying clusters of varying density, it provides insight into the density and 
hierarchical structure of the data.

Figure 13.15 shows how DBSCAN and HDBSCAN, respectively, are able to identify clusters 
that differ in shape significantly from those discovered by k-means, for example. The 
selection of the clustering algorithm is a function of the structure of your data; refer to the 
pairs trading strategy that was referenced earlier in this section for a practical example.

Figure 13.15: Comparing the DBSCAN and HDBSCAN clustering algorithms

Gaussian mixture models
GMMs are generative models that assume the data has been generated by a mix of various 
multivariate normal distributions. The algorithm aims to estimate the mean and covariance 
matrices of these distributions.

A GMM generalizes the k-means algorithm: it adds covariance among features so that 
clusters can be ellipsoids rather than spheres, while the centroids are represented by the 
means of each distribution. The GMM algorithm performs soft assignments because each 
point has a probability of being a member of any cluster.
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The notebook gaussian_mixture_models demonstrates the implementation and visualizes the 
resulting cluster. You are likely to prefer GMM over other clustering algorithms when the 
k-means assumption of spherical clusters is too constraining; GMM often needs fewer clusters 
to produce a good fit given its greater flexibility. The GMM algorithm is also preferable when 
you need a generative model; because GMM estimates the probability distributions that 
generated the samples, it is easy to generate new samples based on the result.

Hierarchical clustering for optimal portfolios
In Chapter 5, Portfolio Optimization and Performance Evaluation, we discussed several 
methods that aim to choose portfolio weights for a given set of assets to optimize the risk 
and return profile of the resulting portfolio. These included the mean-variance optimization 
of Markowitz's modern portfolio theory, the Kelly criterion, and risk parity. In this 
section, we cover hierarchical risk parity (HRP), a more recent innovation (Prado 2016) 
that leverages hierarchical clustering to assign position sizes to assets based on the risk 
characteristics of subgroups.

We will first present how HRP works and then compare its performance against 
alternatives using a long-only strategy driven by the gradient boosting models we 
developed in the last chapter.

How hierarchical risk parity works
The key ideas of hierarchical risk parity are to do the following:

• Use hierarchical clustering of the covariance matrix to group assets with a similar 
correlation structure together 

• Reduce the number of degrees of freedom by only considering similar assets as 
substitutes when constructing the portfolio

Refer to the notebook and Python files in the subfolder hierarchical_risk_parity for 
implementation details.

The first step is to compute a distance matrix that represents proximity for correlated assets 
and meets distance metric requirements. The resulting matrix becomes an input to the 
SciPy hierarchical clustering function that computes the successive clusters using one of 
several available methods, as discussed previously in this chapter.

def get_distance_matrix(corr):

    """Compute distance matrix from correlation;

        0 <= d[i,j] <= 1"""

    return np.sqrt((1 - corr) / 2)

distance_matrix = get_distance_matrix(corr)

linkage_matrix = linkage(squareform(distance_matrix), 'single')
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The linkage_matrix can be used as input to the sns.clustermap function to visualize 
the resulting hierarchical clustering. The dendrogram displayed by seaborn shows how 
individual assets and clusters of assets merged based on their relative distances (see the left 
panel of Figure 13.16).

clustergrid = sns.clustermap(distance_matrix,

                             method='single',

                             row_linkage=linkage_matrix,

                             col_linkage=linkage_matrix,

                             cmap=cmap, center=0)

sorted_idx = clustergrid.dendrogram_row.reordered_ind

sorted_tickers = corr.index[sorted_idx].tolist()

Compared to a seaborn.heatmap of the original correlation matrix, there is now significantly 
more structure in the sorted data (the right panel) compared to the original correlation 
matrix displayed in the central panel.

Figure 13.16: Original and clustered correlation matrix

Using the tickers sorted according to the hierarchy induced by the clustering algorithm, 
HRP now proceeds to compute a top-down inverse-variance allocation that successively 
adjusts weights depending on the variance of the subclusters further down the tree.

def get_inverse_var_pf(cov):

    """Compute the inverse-variance portfolio"""

    ivp = 1 / np.diag(cov)

    return ivp / ivp.sum()

def get_cluster_var(cov, cluster_items):

    """Compute variance per cluster"""

    cov_ = cov.loc[cluster_items, cluster_items]  # matrix slice

    w_ = get_inverse_var_pf(cov_)

    return (w_ @ cov_ @ w_).item()
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To this end, the algorithm uses a bisectional search to allocate the variance of a cluster to its 
elements based on their relative riskiness.

def get_hrp_allocation(cov, tickers):

    """Compute top-down HRP weights"""

    weights = pd.Series(1, index=tickers)

    clusters = [tickers]  # initialize one cluster with all assets

    while len(clusters) > 0:

        # run bisectional search:

        clusters = [c[start:stop] for c in clusters

                    for start, stop in ((0, int(len(c) / 2)),

                                        (int(len(c) / 2), len(c)))

                    if len(c) > 1]

        for i in range(0, len(clusters), 2):  # parse in pairs

            cluster0 = clusters[i]

            cluster1 = clusters[i + 1]

            cluster0_var = get_cluster_var(cov, cluster0)

            cluster1_var = get_cluster_var(cov, cluster1)

            weight_scaler = 1 - cluster0_var / (cluster0_var + cluster1_var)

            weights[cluster0] *= weight_scaler

            weights[cluster1] *= 1 - weight_scaler

    return weights

The resulting portfolio allocation produces weights that sum to 1 and reflect the structure 
present in the correlation matrix (refer to the notebook for details).

Backtesting HRP using an ML trading strategy
Now that we know how HRP works, we would like to test how it performs in practice 
compared to some alternatives, namely a simple equal-weighted portfolio and a mean-
variance optimized portfolio. You can find the code samples for this section and additional 
details and analyses in the notebook pf_optimization_with_hrp_zipline_benchmark.

To this end, we'll build on the gradient boosting models developed in the last chapter. We 
will backtest a strategy for 2015-2017 with a universe of the 1,000 most liquid US stocks. 
The strategy relies on the model predictions to enter long positions in the 25 stocks with 
the highest positive return prediction for the next day. On a daily basis, we rebalance our 
holdings so that the weights for our target positions match the values suggested by HRP.
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Ensembling the gradient boosting model predictions

We begin by averaging the predictions of the 10 models that performed best during the 
2015-16 cross-validation period (refer to Chapter 12, Boosting Your Trading Strategy, for 
details), as shown in the following code excerpt:

def load_predictions(bundle):

    path = Path('../../12_gradient_boosting_machines/data')

    predictions = (pd.read_hdf(path / 'predictions.h5', 'lgb/train/01')

                   .append(pd.read_hdf(path / 'predictions.h5', 'lgb/
test/01').drop('y_test', axis=1)))

    predictions = (predictions.loc[~predictions.index.duplicated()]

                   .iloc[:, :10]

                   .mean(1)

                   .sort_index()

                   .dropna()

                  .to_frame('prediction'))

On a daily basis, we obtain the model predictions and select the top 25 tickers. If there are 
at least 20 tickers with positive forecasts, we enter the long positions and close all of the 
other holdings:

def before_trading_start(context, data):

    """

    Called every day before market open.

    """

    output = pipeline_output('signals')['longs'].astype(int)

    context.longs = output[output!=0].index

    if len(context.longs) < MIN_POSITIONS:

        context.divest = set(context.portfolio.positions.keys())

    else:

        context.divest = context.portfolio.positions.keys() - context.longs

Using PyPortfolioOpt to compute HRP weights

PyPortfolioOpt, which we used in Chapter 5, Portfolio Optimization and Performance Evaluation, 
to compute mean-variance optimized weights, also implements HRP. We'll run it as part of 
the scheduled rebalancing that takes place every morning. It needs the return history for the 
target assets and returns a dictionary of ticker-weight pairs that we use to place orders:

def rebalance_hierarchical_risk_parity(context, data):

    """Execute orders according to schedule_function()"""

    for symbol, open_orders in get_open_orders().items():

        for open_order in open_orders:

            cancel_order(open_order)

    for asset in context.divest:

        order_target(asset, target=0)
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    if len(context.longs) > context.min_positions:

        returns = (data.history(context.longs, fields='price',
                          bar_count=252+1, # for 1 year of returns 

                          frequency='1d')

                   .pct_change()

                   .dropna(how='all'))

        hrp_weights = HRPOpt(returns=returns).hrp_portfolio()

        for asset, target in hrp_weights.items():

            order_target_percent(asset=asset, target=target)

Markowitz rebalancing follows a similar process, as outlined in Chapter 5, Portfolio 
Optimization and Performance Evaluation, and is included in the notebook.

Performance comparison with pyfolio

The following charts show the cumulative returns for the in- and out-of-sample (with 
respect to the ML model selection process) of the equal-weighted (EW), the HRP, and the 
mean-variance (MV) optimized portfolios.

Figure 13.17: Cumulative returns for the different portfolios

The cumulative returns are 207.3 percent for MV, 133 percent for EW, and 75.1 percent for 
HRP. The Sharpe ratios are 1.16, 1.01, and 0.83, respectively. Alpha returns are 0.28 for MV, 
0.16 for EW, and 0.16 for HRP, with betas of 1.77, 1.87, and 1.67, respectively.

Therefore, it turns out that, in this particular context, the often-criticized MV approach does 
best, while HRP comes up last. However, be aware that the results are quite sensitive to the 
number of stocks traded, the time period, and other factors.

Try it out for yourself, and learn which technique performs best under the circumstances 
most relevant for you!
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Summary
In this chapter, we explored unsupervised learning methods that allow us to extract 
valuable signals from our data without relying on the help of outcome information 
provided by labels.

We learned how to use linear dimensionality reduction methods like PCA and ICA to 
extract uncorrelated or independent components from data that can serve as risk factors or 
portfolio weights. We also covered advanced nonlinear manifold learning techniques that 
produce state-of-the-art visualizations of complex, alternative datasets. In the second part 
of the chapter, we covered several clustering methods that produce data-driven groupings 
under various assumptions. These groupings can be useful, for example, to construct 
portfolios that apply risk-parity principles to assets that have been clustered hierarchically.

In the next three chapters, we will learn about various machine learning techniques for a 
key source of alternative data, namely natural language processing for text documents.
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14
Text Data for Trading – 

Sentiment Analysis

This is the first of three chapters dedicated to extracting signals for algorithmic trading strategies 
from text data using natural language processing (NLP) and machine learning (ML).

Text data is very rich in content but highly unstructured, so it requires more preprocessing 
to enable an ML algorithm to extract relevant information. A key challenge consists of 
converting text into a numerical format without losing its meaning. We will cover several 
techniques capable of capturing the nuances of language so that they can be used as input 
for ML algorithms.

In this chapter, we will introduce fundamental feature extraction techniques that focus on 
individual semantic units, that is, words or short groups of words called tokens. We will 
show how to represent documents as vectors of token counts by creating a document-term 
matrix and then proceed to use it as input for news classification and sentiment analysis. 
We will also introduce the naive Bayes algorithm, which is popular for this purpose.

In the following two chapters, we build on these techniques and use ML algorithms such 
as topic modeling and word-vector embeddings to capture the information contained in a 
broader context.

In particular in this chapter, we will cover the following:

• What the fundamental NLP workflow looks like
• How to build a multilingual feature extraction pipeline using spaCy and TextBlob

• Performing NLP tasks such as part-of-speech (POS) tagging or named entity 
recognition

• Converting tokens to numbers using the document-term matrix

• Classifying text using the naive Bayes model

• How to perform sentiment analysis
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ML with text data – from language to features
Text data can be extremely valuable given how much information humans communicate 
and store using natural language. The diverse set of data sources relevant to financial 
investments range from formal documents like company statements, contracts, and patents, 
to news, opinion, and analyst research or commentary, to various types of social media 
postings or messages.

Numerous and diverse text data samples are available online to explore the use of NLP 
algorithms, many of which are listed among the resources included in this chapter's README 
file on GitHub. For a comprehensive introduction, see Jurafsky and Martin (2008).

To realize the potential value of text data, we'll introduce the specialized NLP techniques 
and the most effective Python libraries, outline key challenges particular to working 
with language data, introduce critical elements of the NLP workflow, and highlight NLP 
applications relevant for algorithmic trading.

Key challenges of working with text data
The conversion of unstructured text into a machine-readable format requires careful 
preprocessing to preserve the valuable semantic aspects of the data. How humans 
comprehend the content of language is not fully understood and improving machines' 
ability to understand language remains an area of very active research.

NLP is particularly challenging because the effective use of text data for ML requires an 
understanding of the inner workings of language as well as knowledge about the world to 
which it refers. Key challenges include the following:

• Ambiguity due to polysemy, that is, a word or phrase having different meanings 
depending on context ("Local High School Dropouts Cut in Half")

• The nonstandard and evolving use of language, especially on social media

• The use of idioms like "throw in the towel"

• Tricky entity names like "Where is A Bug's Life playing?"
• Knowledge of the world: "Mary and Sue are sisters" versus "Mary and Sue are 

mothers"

You can find the code samples for this chapter and links to additional 
resources in the corresponding directory of the GitHub repository. The 
notebooks include color versions of the images.
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The NLP workflow
A key goal for using ML from text data for algorithmic trading is to extract signals from 
documents. A document is an individual sample from a relevant text data source, for 
example, a company report, a headline, a news article, or a tweet. A corpus, in turn, is a 
collection of documents.

Figure 14.1 lays out the key steps to convert documents into a dataset that can be used to 
train a supervised ML algorithm capable of making actionable predictions:

Figure 14.1: The NLP workflow

Fundamental techniques extract text features as isolated semantic units called tokens and 
use rules and dictionaries to annotate them with linguistic and semantic information. The 
bag-of-words model uses token frequency to model documents as token vectors, which 
leads to the document-term matrix that is frequently used for text classification, retrieval, 
or summarization.

Advanced approaches rely on ML to refine basic features such as tokens and produce 
richer document models. These include topic models that reflect the joint usage of tokens 
across documents and word-vector models that aim to capture the context of token usage.

We will review key decisions at each step of the workflow and the related tradeoffs in more 
detail before illustrating their implementation using the spaCy library in the next section. 
The following table summarizes the key tasks of an NLP pipeline:

Feature Description

Tokenization Segment text into words, punctuation marks, and so on.

Part-of-speech tagging Assign word types to tokens, such as a verb or noun.

Dependency parsing Label syntactic token dependencies, like subject <=> object.

Stemming and lemmatization Assign the base forms of words: "was" => "be", "rats" => "rat".

Sentence boundary detection Find and segment individual sentences.

Named entity recognition Label "real-world" objects, such as people, companies, or locations.

Similarity Evaluate the similarity of words, text spans, and documents.
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Parsing and tokenizing text data – selecting the vocabulary

A token is an instance of a sequence of characters in a given document and is considered a 
semantic unit. The vocabulary is the set of tokens contained in a corpus deemed relevant 
for further processing; tokens not in the vocabulary will be ignored.

The goal, of course, is to extract tokens that most accurately reflect the document's 
meaning. The key tradeoff at this step is the choice of a larger vocabulary to better reflect 
the text source at the expense of more features and higher model complexity (discussed as 
the curse of dimensionality in Chapter 13, Data-Driven Risk Factors and Asset Allocation with 
Unsupervised Learning).

Basic choices in this regard concern the treatment of punctuation and capitalization, the use 
of spelling correction, and whether to exclude very frequent so-called "stop words" (such as 
"and" or "the") as meaningless noise.

In addition, we need to decide whether to include groupings of n individual tokens called 
n-grams as semantic units (an individual token is also called unigram). An example of a 
two-gram (or bigram) is "New York", whereas "New York City" is a three-gram (or trigram). 
The decision can rely on dictionaries or a comparison of the relative frequencies of the 
individual and joint usage. There are more unique combinations of tokens than unigrams, 
hence adding n-grams will drive up the number of features and risks adding noise unless 
filtered for by frequency.

Linguistic annotation – relationships among tokens

Linguistic annotations include the application of syntactic and grammatical rules to 
identify the boundary of a sentence despite ambiguous punctuation, and a token's role and 
relationships in a sentence for POS tagging and dependency parsing. It also permits the 
identification of common root forms for stemming and lemmatization to group together 
related words.

The following are some key concepts related to annotations:

• Stemming uses simple rules to remove common endings such as s, ly, ing, or ed 
from a token and reduce it to its stem or root form.

• Lemmatization uses more sophisticated rules to derive the canonical root (lemma) 
of a word. It can detect irregular common roots such as "better" and "best" and more 
effectively condenses the vocabulary but is slower than stemming. Both approaches 
simplify the vocabulary at the expense of semantic nuances.

• POS annotations help disambiguate tokens based on their function (for example, 
when a verb and noun have the same form), which increases the vocabulary but 
may capture meaningful distinctions.

• Dependency parsing identifies hierarchical relationships among tokens and is 
commonly used for translation. It is important for interactive applications that 
require more advanced language understanding, such as chatbots.
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Semantic annotation – from entities to knowledge graphs

Named-entity recognition (NER) aims at identifying tokens that represent objects of 
interest, such as persons, countries, or companies. It can be further developed into a 
knowledge graph that captures semantic and hierarchical relationships among such 
entities. It is a critical ingredient for applications that, for example, aim at predicting the 
impact of news events on sentiment.

Labeling – assigning outcomes for predictive modeling

Many NLP applications learn to predict outcomes based on meaningful information 
extracted from the text. Supervised learning requires labels to teach the algorithm the true 
input-output relationship. With text data, establishing this relationship may be challenging 
and require explicit data modeling and collection.

Examples include decisions on how to quantify the sentiment implicit in a text document 
such as an email, transcribed interview, or tweet with respect to a new domain, or which 
aspects of a research document or news report should be assigned a specific outcome.

Applications
The use of ML with text data for trading relies on extracting meaningful information in 
the form of features that help predict future price movements. Applications range from 
the exploitation of the short-term market impact of news to the longer-term fundamental 
analysis of the drivers of asset valuation. Examples include the following:

• The evaluation of product review sentiment to assess a company's competitive 
position or industry trends

• The detection of anomalies in credit contracts to predict the probability or impact of 
a default

• The prediction of news impact in terms of direction, magnitude, and affected entities

JP Morgan, for instance, developed a predictive model based on 250,000 analyst reports 
that outperformed several benchmark indices and produced uncorrelated signals relative to 
sentiment factors formed from consensus EPS and recommendation changes.

From text to tokens – the NLP pipeline
In this section, we will demonstrate how to construct an NLP pipeline using the open-
source Python library spaCy. The textacy library builds on spaCy and provides easy access 
to spaCy attributes and additional functionality.

Refer to the notebook nlp_pipeline_with_spaCy for the following code samples, installation 
instruction, and additional details.
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NLP pipeline with spaCy and textacy
spaCy is a widely used Python library with a comprehensive feature set for fast text 
processing in multiple languages. The usage of the tokenization and annotation engines 
requires the installation of language models. The features we will use in this chapter only 
require the small models; the larger models also include word vectors that we will cover in 
Chapter 16, Word Embeddings for Earnings Calls and SEC Filings.

With the library installed and linked, we can instantiate a spaCy language model and then 
apply it to the document. The result is a Doc object that tokenizes the text and processes it 
according to configurable pipeline components that by default consist of a tagger, a parser, 
and a named-entity recognizer:

nlp = spacy.load('en')

nlp.pipe_names

['tagger', 'parser', 'ner']

Let's illustrate the pipeline using a simple sentence:

sample_text = 'Apple is looking at buying U.K. startup for $1 billion'
doc = nlp(sample_text)

Parsing, tokenizing, and annotating a sentence

The parsed document content is iterable, and each element has numerous attributes 
produced by the processing pipeline. The next sample illustrates how to access the 
following attributes:

• .text: The original word text

• .lemma_: The word root

• .pos_: A basic POS tag

• .tag_: The detailed POS tag

• .dep_: The syntactic relationship or dependency between tokens

• .shape_: The shape of the word, in terms of capitalization, punctuation, and digits

• .is alpha: Checks whether the token is alphanumeric

• .is stop: Checks whether the token is on a list of common words for the given 
language

We iterate over each token and assign its attributes to a pd.DataFrame:

pd.DataFrame([[t.text, t.lemma_, t.pos_, t.tag_, t.dep_, t.shape_, 

               t.is_alpha, t.is_stop]

              for t in doc],

             columns=['text', 'lemma', 'pos', 'tag', 'dep', 'shape', 

                      'is_alpha', is_stop'])



Chapter 14

[ 445 ]

This produces the following result:

text lemma pos tag dep shape is_alpha is_stop

Apple apple PROPN NNP nsubj Xxxxx TRUE FALSE

is be VERB VBZ aux xx TRUE TRUE

looking look VERB VBG ROOT xxxx TRUE FALSE

at at ADP IN prep xx TRUE TRUE

buying buy VERB VBG pcomp xxxx TRUE FALSE

U.K. u.k. PROPN NNP compound X.X. FALSE FALSE

startup startup NOUN NN dobj xxxx TRUE FALSE

for for ADP IN prep xxx TRUE TRUE

$ $ SYM $ quantmod $ FALSE FALSE

1 1 NUM CD compound d FALSE FALSE

billion billion NUM CD pobj xxxx TRUE FALSE

We can visualize the syntactic dependency in a browser or notebook using the following:

displacy.render(doc, style='dep', options=options, jupyter=True)

The preceding code allows us to obtain a dependency tree like the following one:

Figure 14.2: spaCy dependency tree

We can get additional insight into the meaning of attributes using spacy.explain(), such as 
the following, for example:

spacy.explain("VBZ") 

verb, 3rd person singular present

Batch-processing documents

We will now read a larger set of 2,225 BBC News articles (see GitHub for the data source 
details) that belong to five categories and are stored in individual text files. We do the 
following:

1. Call the .glob() method of the pathlib module's Path object.

2. Iterate over the resulting list of paths.

3. Read all lines of the news article excluding the heading in the first line.
4. Append the cleaned result to a list:

files = Path('..', 'data', 'bbc').glob('**/*.txt')
bbc_articles = []
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for i, file in enumerate(sorted(list(files))):
    with file.open(encoding='latin1') as f:
        lines = f.readlines()

        body = ' '.join([l.strip() for l in lines[1:]]).strip()

        bbc_articles.append(body)

len(bbc_articles)

2225

Sentence boundary detection

We will illustrate sentence detection by calling the NLP object on the first of the articles:

doc = nlp(bbc_articles[0])

type(doc)

spacy.tokens.doc.Doc

spaCy computes sentence boundaries from the syntactic parse tree so that punctuation and 
capitalization play an important but not decisive role. As a result, boundaries will coincide 
with clause boundaries, even for poorly punctuated text.

We can access the parsed sentences using the .sents attribute:

sentences = [s for s in doc.sents]

sentences[:3]

[Quarterly profits at US media giant TimeWarner jumped 76% to $1.13bn (Â£600m) 
for the three months to December, from $639m year-earlier.  ,
 The firm, which is now one of the biggest investors in Google, benefited from 
sales of high-speed internet connections and higher advert sales.,

 TimeWarner said fourth quarter sales rose 2% to $11.1bn from $10.9bn.]

Named entity recognition

spaCy enables named entity recognition using the .ent_type_ attribute:

for t in sentences[0]:

    if t.ent_type_:

        print('{} | {} | {}'.format(t.text, t.ent_type_, spacy.explain(t.
ent_type_)))

Quarterly | DATE | Absolute or relative dates or periods

US | GPE | Countries, cities, states

TimeWarner | ORG | Companies, agencies, institutions, etc.

Textacy makes access to the named entities that appear in the first article easy:

entities = [e.text for e in entities(doc)]

pd.Series(entities).value_counts().head()

TimeWarner        7

AOL               5
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fourth quarter    3

year-earlier      2

one               2

N-grams

N-grams combine n consecutive tokens. This can be useful for the bag-of-words model 
because, depending on the textual context, treating (for example) "data scientist" as a single 
token may be more meaningful than the two distinct tokens "data" and "scientist".

Textacy makes it easy to view the ngrams of a given length n occurring at least min_freq 
times:

pd.Series([n.text for n in ngrams(doc, n=2, min_freq=2)]).value_counts()

fourth quarter     3

quarter profits     2
Time Warner        2

company said       2

AOL Europe         2

spaCy's streaming API

To pass a larger number of documents through the processing pipeline, we can use spaCy's 
streaming API as follows:

iter_texts = (bbc_articles[i] for i in range(len(bbc_articles)))

for i, doc in enumerate(nlp.pipe(iter_texts, batch_size=50, n_threads=8)):

    assert doc.is_parsed

Multi-language NLP

spaCy includes trained language models for English, German, Spanish, Portuguese, French, 
Italian, and Dutch, as well as a multi-language model for named-entity recognition. Cross-
language usage is straightforward since the API does not change.

We will illustrate the Spanish language model using a parallel corpus of TED talk subtitles 
(see the GitHub repo for data source references). For this purpose, we instantiate both 
language models:

model = {}

for language in ['en', 'es']:

    model[language] = spacy.load(language)

We read small corresponding text samples in each model:

text = {}

path = Path('../data/TED')

for language in ['en', 'es']:
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    file_name = path /  'TED2013_sample.{}'.format(language)
    text[language] = file_name.read_text()

Sentence boundary detection uses the same logic but finds a different breakdown:

parsed, sentences = {}, {}

for language in ['en', 'es']:

    parsed[language] = model[language](text[language])

    sentences[language] = list(parsed[language].sents)

    print('Sentences:', language, len(sentences[language]))

Sentences: en 22

Sentences: es 22

POS tagging also works in the same way:

pos = {}

for language in ['en', 'es']:

    pos[language] = pd.DataFrame([[t.text, t.pos_, spacy.explain(t.pos_)] 

                                  for t in sentences[language][0]],

                                 columns=['Token', 'POS Tag', 'Meaning'])

pd.concat([pos['en'], pos['es']], axis=1).head()

This produces the following table:

Token POS Tag Meaning Token POS Tag Meaning

There ADV adverb Existe VERB verb

s VERB verb una DET determiner

a DET determiner estrecha ADJ adjective

tight ADJ adjective y CONJ conjunction

and CCONJ
coordinating 
conjunction

sorprendente ADJ adjective

The next section illustrates how to use the parsed and annotated tokens to build a 
document-term matrix that can be used for text classification.

NLP with TextBlob
TextBlob is a Python library that provides a simple API for common NLP tasks and builds 
on the  Natural Language Toolkit (NLTK) and the Pattern web mining libraries. TextBlob 
facilitates POS tagging, noun phrase extraction, sentiment analysis, classification, and 
translation, among others.

To illustrate the use of TextBlob, we sample a BBC Sport article with the headline "Robinson 
ready for difficult task". Similar to spaCy and other libraries, the first step is to pass the 
document through a pipeline represented by the TextBlob object to assign the annotations 
required for various tasks (see the notebook nlp_with_textblob):
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from textblob import TextBlob

article = docs.sample(1).squeeze()

parsed_body = TextBlob(article.body)

Stemming

To perform stemming, we instantiate the SnowballStemmer from the NTLK library, call its 
.stem() method on each token, and display tokens that were modified as a result:

from nltk.stem.snowball import SnowballStemmer

stemmer = SnowballStemmer('english')

[(word, stemmer.stem(word)) for i, word in enumerate(parsed_body.words) 

 if word.lower() != stemmer.stem(parsed_body.words[i])]

[('Manchester', 'manchest'),

 ('United', 'unit'),

 ('reduced', 'reduc'),

 ('points', 'point'),

 ('scrappy', 'scrappi')

Sentiment polarity and subjectivity

TextBlob provides polarity and subjectivity estimates for parsed documents using 
dictionaries provided by the Pattern library. These dictionaries lexicon-map adjectives 
frequently found in product reviews to sentiment polarity scores, ranging from -1 to +1 
(negative ↔ positive) and a similar subjectivity score (objective ↔ subjective).

The .sentiment attribute provides the average for each score over the relevant tokens, 
whereas the .sentiment_assessments attribute lists the underlying values for each token 
(see the notebook):

parsed_body.sentiment

Sentiment(polarity=0.088031914893617, subjectivity=0.46456433637284694)

Counting tokens – the document-term matrix
In this section, we first introduce how the bag-of-words model converts text data into a 
numeric vector space representations. The goal is to approximate document similarity by 
their distance in that space. We then proceed to illustrate how to create a document-term 
matrix using the sklearn library.
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The bag-of-words model
The bag-of-words model represents a document based on the frequency of the terms or 
tokens it contains. Each document becomes a vector with one entry for each token in the 
vocabulary that reflects the token's relevance to the document.

Creating the document-term matrix

The document-term matrix is straightforward to compute given the vocabulary. However, 
it is also a crude simplification because it abstracts from word order and grammatical 
relationships. Nonetheless, it often achieves good results in text classification quickly and, 
thus, provides a very useful starting point.

The left panel of Figure 14.3 illustrates how this document model converts text data into a 
matrix with numerical entries where each row corresponds to a document and each column 
to a token in the vocabulary. The resulting matrix is usually both very high-dimensional 
and sparse, that is, it contains many zero entries because most documents only contain a 
small fraction of the overall vocabulary.

Figure 14.3: Document-term matrix and cosine similarity

There are several ways to weigh a token's vector entry to capture its relevance to the 
document. We will illustrate how to use sklearn to use binary flags that indicate presence 
or absence, counts, and weighted counts that account for differences in term frequencies 
across all documents in the corpus.

Measuring the similarity of documents

The representation of documents as word vectors assigns to each document a location in 
the vector space created by the vocabulary. Interpreting the vector entries as Cartesian 
coordinates in this space, we can use the angle between two vectors to measure their 
similarity because vectors that point in the same direction contain the same terms with the 
same frequency weights.
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The right panel of the preceding figure illustrates—simplified in two dimensions—the 
calculation of the distance between a document represented by a vector d

1
 and a query 

vector (either a set of search terms or another document) represented by the vector q.

The cosine similarity equals the cosine of the angle between the two vectors. It translates 
the size of the angle into a number in the range [0, 1] since all vector entries are non-negative 
token weights. A value of 1 implies that both documents are identical with respect to their 
token weights, whereas a value of 0 implies that the two documents only contain distinct 
tokens.

As shown in the figure, the cosine of the angle is equal to the dot product of the vectors, 
that is, the sum product of their coordinates, divided by the product of the lengths, 
measured by the Euclidean norms, of each vector.

Document-term matrix with scikit-learn
The scikit-learn preprocessing module offers two tools to create a document-term matrix. 
CountVectorizer uses binary or absolute counts to measure the term frequency (TF) tf(d, t) 
for each document d and token t.

TfidfVectorizer, by contrast, weighs the (absolute) term frequency by the inverse document 
frequency (IDF). As a result, a term that appears in more documents will receive a lower 
weight than a token with the same frequency for a given document but with a lower 
frequency across all documents. More specifically, using the default settings, the tf-idf(d, t) 
entries for the document-term matrix are computed as tf-idf(d, t) = tf(d, t) x idf(t) with:idf(𝑡𝑡) = log 1 + 𝑛𝑛𝑑𝑑1 + df(𝑑𝑑𝑑 𝑡𝑡) + 1 

where n
d
 is the number of documents and df(d, t) the document frequency of term t. The 

resulting TF-IDF vectors for each document are normalized with respect to their absolute 
or squared totals (see the sklearn documentation for details). The TF-IDF measure was 
originally used in information retrieval to rank search engine results and has subsequently 
proven useful for text classification and clustering.

Both tools use the same interface and perform tokenization and further optional 
preprocessing of a list of documents before vectorizing the text by generating token counts 
to populate the document-term matrix.

Key parameters that affect the size of the vocabulary include the following:

• stop_words: Uses a built-in or user-provided list of (frequent) words to exclude

• ngram_range: Includes n-grams in a range of n defined by a tuple of (n
min

, n
max

)

• lowercase: Converts characters accordingly (the default is True)

• min_df/max_df: Ignores words that appear in less/more (int) or are present in a 
smaller/larger share of documents (if float [0.0,1.0])

• max_features: Limits the number of tokens in vocabulary accordingly

• binary: Sets non-zero counts to 1 (True)
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See the notebook document_term_matrix for the following code samples and additional 
details. We are again using the 2,225 BBC news articles for illustration.

Using CountVectorizer

The notebook contains an interactive visualization that explores the impact of the min_df 
and max_df settings on the size of the vocabulary. We read the articles into a DataFrame, 
set CountVectorizer to produce binary flags and use all tokens, and call its .fit_transform() 
method to produce a document-term matrix:

binary_vectorizer = CountVectorizer(max_df=1.0,

                                    min_df=1,

                                    binary=True)

binary_dtm = binary_vectorizer.fit_transform(docs.body)
<2225x29275 sparse matrix of type '<class 'numpy.int64'>'

   with 445870 stored elements in Compressed Sparse Row format>

The output is a scipy.sparse matrix in row format that efficiently stores a small share (<0.7 
percent) of the 445,870 non-zero entries in the 2,225 (document) rows and 29,275 (token) 
columns.

Visualizing the vocabulary distribution

The visualization in Figure 14.4 shows that requiring tokens to appear in at least 1 percent 
and less than 50 percent of documents restricts the vocabulary to around 10 percent of the 
almost 30,000 tokens.

This leaves a mode of slightly over 100 unique tokens per document, as shown in the left 
panel of the following plot. The right panel shows the document frequency histogram for 
the remaining tokens:

Figure 14.4: The distributions of unique tokens and number of tokens per document
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Finding the most similar documents

CountVectorizer result lets us find the most similar documents using the pdist() functions 
for pairwise distances provided by the scipy.spatial.distance module. It returns a 
condensed distance matrix with entries corresponding to the upper triangle of a square 
matrix. We use np.triu_indices() to translate the index that minimizes the distance to the 
row and column indices that in turn correspond to the closest token vectors:

m = binary_dtm.todense()        # pdist does not accept sparse format

pairwise_distances = pdist(m, metric='cosine')

closest = np.argmin(pairwise_distances)  # index that minimizes distance

rows, cols = np.triu_indices(n_docs)      # get row-col indices

rows[closest], cols[closest]

(6, 245)

Articles 6 and 245 are closest by cosine similarity, due to the fact that they share 38 tokens 
out of a combined vocabulary of 303 (see notebook). The following table summarizes these 
two articles and demonstrates the limited ability of similarity measures based on word 
counts to identify deeper semantic similarity:

Article 6 Article 245

Topic Business Business

Heading Jobs growth still slow in the US Ebbers 'aware' of WorldCom fraud

Body

The US created fewer jobs than expected 
in January, but a fall in jobseekers 
pushed the unemployment rate to its 
lowest level in three years.  According 
to Labor Department figures, US firms 
added only 146,000 jobs in January. 

Former WorldCom boss Bernie Ebbers was 
directly involved in the $11bn financial 
fraud at the firm, his closest associate has 
told a US court.  Giving evidence in the 
criminal trial of Mr Ebbers, ex-finance chief 
Scott Sullivan implicated his colleague in 
the accounting scandal at the firm.

Both CountVectorizer and TfidfVectorizer can be used with spaCy, for example, to 
perform lemmatization and exclude certain characters during tokenization:

nlp = spacy.load('en')

def tokenizer(doc):

    return [w.lemma_ for w in nlp(doc) 

                if not w.is_punct | w.is_space]

vectorizer = CountVectorizer(tokenizer=tokenizer, binary=True)

doc_term_matrix = vectorizer.fit_transform(docs.body)

See the notebook for additional detail and more examples.
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TfidfTransformer and TfidfVectorizer
TfidfTransformer computes the TF-IDF weights from a document-term matrix of token 
counts like the one produced by CountVectorizer.

TfidfVectorizer performs both computations in a single step. It adds a few parameters to 
the CountVectorizer API that controls the smoothing behavior.

The TFIDF computation works as follows for a small text sample:

sample_docs = ['call you tomorrow',

               'Call me a taxi',

               'please call me... PLEASE!']

We compute the term frequency as before:

vectorizer = CountVectorizer()

tf_dtm = vectorizer.fit_transform(sample_docs).todense()
tokens = vectorizer.get_feature_names()

term_frequency = pd.DataFrame(data=tf_dtm,

                             columns=tokens)

  call  me  please  taxi  tomorrow  you

0     1   0       0     0         1    1

1     1   1       0     1         0    0

2     1   1       2     0         0    0

The document frequency is the number of documents containing the token:

vectorizer = CountVectorizer(binary=True)

df_dtm = vectorizer.fit_transform(sample_docs).todense().sum(axis=0)
document_frequency = pd.DataFrame(data=df_dtm,

                                  columns=tokens)

   call  me  please  taxi  tomorrow  you

0     3   2       1     1         1    1

The TF-IDF weights are the ratio of these values:

tfidf = pd.DataFrame(data=tf_dtm/df_dtm, columns=tokens)
   call   me  please  taxi  tomorrow  you

0  0.33 0.00    0.00  0.00      1.00 1.00

1  0.33 0.50    0.00  1.00      0.00 0.00

2  0.33 0.50    2.00  0.00      0.00 0.00
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The effect of smoothing
To avoid zero division, TfidfVectorizer uses smoothing for document and term frequencies:

• smooth_idf: Adds one to document frequency, as if an extra document contained 
every token in the vocabulary, to prevent zero divisions

• sublinear_tf: Applies sublinear tf scaling, that is, replaces tf with 1 + log(tf)

In combination with normed weights, the results differ slightly:

vect = TfidfVectorizer(smooth_idf=True,
                      norm='l2',  # squared weights sum to 1 by document

                      sublinear_tf=False,  # if True, use 1+log(tf)

                      binary=False)

pd.DataFrame(vect.fit_transform(sample_docs).todense(),
            columns=vect.get_feature_names())

   call   me  please  taxi  tomorrow  you

0  0.39 0.00    0.00  0.00      0.65 0.65

1  0.43 0.55    0.00  0.72      0.00 0.00

2  0.27 0.34    0.90  0.00      0.00 0.00

Summarizing news articles using TfidfVectorizer
Due to their ability to assign meaningful token weights, TF-IDF vectors are also used 
to summarize text data. For example, Reddit's autotldr function is based on a similar 
algorithm. See the notebook for an example using the BBC articles.

Key lessons instead of lessons learned
The large number of techniques and options to process natural language for use in ML 
models corresponds to the complex nature of this highly unstructured data source. The 
engineering of good language features is both challenging and rewarding, and arguably the 
most important step in unlocking the semantic value hidden in text data.

In practice, experience helps to select transformations that remove the noise rather than the 
signal, but it will likely remain necessary to cross-validate and compare the performance of 
different combinations of preprocessing choices.

NLP for trading
Once text data has been converted into numerical features using the NLP techniques discussed 
in the previous sections, text classification works just like any other classification task.

In this section, we will apply these preprocessing techniques to news articles, product 
reviews, and Twitter data and teach various classifiers to predict discrete news categories, 
review scores, and sentiment polarity.
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First, we will introduce the naive Bayes model, a probabilistic classification algorithm that 
works well with the text features produced by a bag-of-words model.

The code samples for this section are in the notebook news_text_classification.

The naive Bayes classifier
The naive Bayes algorithm is very popular for text classification because its low 
computational cost and memory requirements facilitate training on very large, high-
dimensional datasets. Its predictive performance can compete with more complex models, 
provides a good baseline, and is best known for successful spam detection.

The model relies on Bayes' theorem and the assumption that the various features are 
independent of each other given the outcome class. In other words, for a given outcome, 
knowing the value of one feature (for example, the presence of a token in a document) does 
not provide any information about the value of another feature.

Bayes' theorem refresher

Bayes' theorem expresses the conditional probability of one event (for example, that an 
email is spam as opposed to benign "ham") given another event (for example, that the email 
contains certain words) as follows:

𝑃𝑃𝑃is spam | has words)⏟              Posterior = 𝑃𝑃𝑃has words | is spam)⏞              Likelihood 𝑃𝑃𝑃is spam)⏞      Prior𝑃𝑃𝑃has words)⏟        Evidence %0 

The posterior probability that an email is in fact spam given that it contains certain words 
depends on the interplay of three factors:

• The prior probability that an email is spam

• The likelihood of encountering these words in a spam email

• The evidence, that is, the probability of seeing these words in an email

To compute the posterior, we can ignore the evidence because it is the same for all 
outcomes (spam versus ham), and the unconditional prior may be easy to compute.

However, the likelihood poses insurmountable challenges for a reasonably sized 
vocabulary and a real-world corpus of emails. The reason is the combinatorial explosion 
of the words that did or did not appear jointly in different documents that prevent the 
evaluation required to compute a probability table and assign a value to the likelihood.

The conditional independence assumption

The key assumption to make the model both tractable and earn it the name naive is that the 
features are independent conditional on the outcome. To illustrate, let's classify an email 
with the three words "Send money now" so that Bayes' theorem becomes the following:
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𝑃𝑃(spam | send money now) = 𝑃𝑃(send money now | spam) × 𝑃𝑃(spam)𝑃𝑃(send money now)  

Formally, the assumption that the three words are conditionally independent means that 
the probability of observing "send" is not affected by the presence of the other terms given 
that the mail is spam, that is, P(send | money, now, spam) = P(send | spam). As a result, 
we can simplify the likelihood function:𝑃𝑃(spam | send money now) =   𝑃𝑃(send | spam) × 𝑃𝑃(money | spam) × 𝑃𝑃(now | spam) × 𝑃𝑃(spam)𝑃𝑃(send money now)  

Using the "naive" conditional independence assumption, each term in the numerator is 
straightforward to compute as relative frequencies from the training data. The denominator 
is constant across classes and can be ignored when posterior probabilities need to be 
compared rather than calibrated. The prior probability becomes less relevant as the number 
of factors, that is, features, increases.

In sum, the advantages of the naive Bayes model are fast training and prediction because 
the number of parameters is proportional to the number of features, and their estimation 
has a closed-form solution (based on training data frequencies) rather than expensive 
iterative optimization. It is also intuitive and somewhat interpretable, does not require 
hyperparameter tuning and is relatively robust to irrelevant features given sufficient signal.

However, when the independence assumption does not hold and text classification 
depends on combinations of features, or features are correlated, the model will perform 
poorly.

Classifying news articles
We start with an illustration of the naive Bayes model for news article classification using 
the BBC articles that we read before to obtain a DataFrame with 2,225 articles from five 
categories:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 2225 entries, 0 to 2224

Data columns (total 3 columns):

topic      2225 non-null object

heading    2225 non-null object

body       2225 non-null object

To train and evaluate a multinomial naive Bayes classifier, we split the data into the default 
75:25 train-test set ratio, ensuring that the test set classes closely mirror the train set:

y = pd.factorize(docs.topic)[0] # create integer class values

X = docs.body

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1,  
                                                    stratify=y)
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We proceed to learn the vocabulary from the training set and transform both datasets using 
CountVectorizer with default settings to obtain almost 26,000 features:

vectorizer = CountVectorizer()

X_train_dtm = vectorizer.fit_transform(X_train)
X_test_dtm = vectorizer.transform(X_test)

X_train_dtm.shape, X_test_dtm.shape

((1668, 25919), (557, 25919))

Training and prediction follow the standard sklearn fit/predict interface:

nb = MultinomialNB()

nb.fit(X_train_dtm, y_train)
y_pred_class = nb.predict(X_test_dtm)

We evaluate the multiclass predictions using accuracy to find the default classifier achieved 
an accuracy of almost 98 percent:

accuracy_score(y_test, y_pred_class)

0.97666068222621

Sentiment analysis with Twitter and Yelp data
Sentiment analysis is one of the most popular uses of NLP and ML for trading because 
positive or negative perspectives on assets or other price drivers are likely to impact 
returns.

Generally, modeling approaches to sentiment analysis rely on dictionaries (as does the 
TextBlob library) or models trained on outcomes for a specific domain. The latter is often 
preferable because it permits more targeted labeling, for example, by tying text features to 
subsequent price changes rather than indirect sentiment scores.

We will illustrate ML for sentiment analysis using a Twitter dataset with binary polarity 
labels and a large Yelp business review dataset with a five-point outcome scale.

Binary sentiment classification with Twitter data
We use a dataset that contains 1.6 million training and 350 test tweets from 2009 with 
algorithmically assigned binary positive and negative sentiment scores that are fairly 
evenly split (see the notebook for more detailed data exploration).

Multinomial naive Bayes

We create a document-term matrix with 934 tokens as follows:

vectorizer = CountVectorizer(min_df=.001, max_df=.8, stop_words='english')

train_dtm = vectorizer.fit_transform(train.text)
<1566668x934 sparse matrix of type '<class 'numpy.int64'>'

    with 6332930 stored elements in Compressed Sparse Row format>
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We then train the MultinomialNB classifier as before and predict the test set:

nb = MultinomialNB()

nb.fit(train_dtm, train.polarity)
predicted_polarity = nb.predict(test_dtm)

The result has over 77.5 percent accuracy:

accuracy_score(test.polarity, predicted_polarity)

0.7768361581920904

Comparison with TextBlob sentiment scores

We also obtain TextBlob sentiment scores for the tweets and note (see the left panel in Figure 
14.5) that positive test tweets receive a significantly higher sentiment estimate. We then use 
the MultinomialNB model's .predict_proba() method to compute predicted probabilities 
and compare both models using the respective area under the curve, or AUC, that we 
introduced in Chapter 6, The Machine Learning Process (see the right panel in Figure 14.5).

Figure 14.5: Accuracy of custom versus generic sentiment scores

The custom naive Bayes model outperforms TextBlob in this case, achieving a test AUC of 
0.848 compared to 0.825 for TextBlob.

Multiclass sentiment analysis with Yelp business reviews

Finally, we apply sentiment analysis to the significantly larger Yelp business review 
dataset with five outcome classes (see the notebook sentiment_analysis_yelp for code and 
additional details).

The data consists of several files with information on the business, the user, the review, and 
other aspects that Yelp provides to encourage data science innovation.
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We will use around six million reviews produced over the 2010-2018 period (see the 
notebook for details). The following figure shows the number of reviews and the average 
number of stars per year, as well as the star distribution across all reviews.

Figure 14.6: Basic exploratory analysis of Yelp reviews

We will train various models on a 10 percent sample of the data through 2017 and use the 
2018 reviews as the test set. In addition to the text features resulting from the review texts, 
we will also use other information submitted with the review about the given user. 

Combining text and numerical features

The dataset contains various numerical features (see notebook for implementation details).

The vectorizers produce scipy.sparse matrices. To combine the vectorized text data with 
other features, we need to first convert these to sparse matrices as well; many sklearn 
objects and other libraries such as LightGBM can handle these very memory-efficient data 
structures. Converting the sparse matrix to a dense NumPy array risks memory overflow.

Most variables are categorical, so we use one-hot encoding since we have a fairly large 
dataset to accommodate the increase in features.

We convert the encoded numerical features and combine them with the document-term 
matrix:

train_numeric = sparse.csr_matrix(train_dummies.astype(np.uint))

train_dtm_numeric = sparse.hstack((train_dtm, train_numeric))

Benchmark accuracy

Using the most frequent number of stars (=5) to predict the test set achieves an accuracy 
close to 52 percent:

test['predicted'] = train.stars.mode().iloc[0]

accuracy_score(test.stars, test.predicted)

0.5196950594793454

Multinomial naive Bayes model

Next, we train a naive Bayes classifier using a document-term matrix produced by 
CountVectorizer with default settings.
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nb = MultinomialNB()

nb.fit(train_dtm,train.stars)
predicted_stars = nb.predict(test_dtm)

The prediction produces 64.7 percent accuracy on the test set, a 24.4 percent improvement 
over the benchmark:

accuracy_score(test.stars, predicted_stars)

0.6465164206691094

Training with the combination of text and other features improves the test accuracy to 
0.671.

Logistic regression

In Chapter 7, Linear Models – From Risk Factors to Return Forecasts, we introduced binary 
logistic regression. sklearn also implements a multiclass model with a multinomial and a 
one-versus-all training option, where the latter trains a binary model for each class while 
considering all other classes as the negative class. The multinomial option is much faster 
and more accurate than the one-versus-all implementation.

We evaluate a range of values for the regularization parameter C to identify the best performing 
model, using the lbfgs solver as follows (see the sklearn documentation for details):

def evaluate_model(model, X_train, X_test, name, store=False):

    start = time()

    model.fit(X_train, train.stars)
    runtime[name] = time() – start

    predictions[name] = model.predict(X_test)

    accuracy[result] = accuracy_score(test.stars, predictions[result])

    if store:

        joblib.dump(model, f'results/{result}.joblib')

Cs = np.logspace(-5, 5, 11)

for C in Cs:

    model = LogisticRegression(C=C, multi_class='multinomial', 
solver='lbfgs')

    evaluate_model(model, train_dtm, test_dtm, result, store=True)

Figure 14.7 shows the plots of the validation results.

Multiclass gradient boosting with LightGBM

For comparison, we also train a LightGBM gradient boosting tree ensemble with default 
settings and a multiclass objective:

param = {'objective':'multiclass', 'num_class': 5}

booster = lgb.train(params=param, 
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                    train_set=lgb_train, 

                    num_boost_round=500, 

                    early_stopping_rounds=20,

                    valid_sets=[lgb_train, lgb_test])

Predictive performance

Figure 14.7 displays the accuracy of each model for the combined data. The right panel plots 
the validation performance for the logistic regression models for both datasets and different 
levels of regularization.

Multinomial logistic regression performs best with a test accuracy slightly above 74 
percent. Naive Bayes performs significantly worse. The default LightGBM settings did 
not improve over the linear model with an accuracy of 0.736. However, we could tune 
the hyperparameters of the gradient boosting model and may well see performance 
improvements that put it at least on par with logistic regression. Either way, the result 
serves as a reminder not to discount simple, regularized models as they may deliver not 
only good results, but also do so quickly.

Figure 14.7: Test performance on combined data (all models, left) and for logistic regression with varying regularization

Summary
In this chapter, we explored numerous techniques and options to process unstructured 
data with the goal of extracting semantically meaningful numerical features for use in ML 
models.

We covered the basic tokenization and annotation pipeline and illustrated its 
implementation for multiple languages using spaCy and TextBlob. We built on these results 
to build a document model based on the bag-of-words model to represent documents as 
numerical vectors. We learned how to refine the preprocessing pipeline and then used the 
vectorized text data for classification and sentiment analysis.

We have two more chapters on alternative text data. In the next chapter, we will learn how 
to summarize texts using unsupervised learning to identify latent topics. Then, in Chapter 

16, Word Embeddings for Earnings Calls and SEC Filings, we will learn how to represent 
words as vectors that reflect the context of word usage, a technique that has been used very 
successfully to provide richer text features for various classification tasks.
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15
Topic Modeling –  

Summarizing Financial News

In the last chapter, we used the bag-of-words (BOW) model to convert unstructured 
text data into a numerical format. This model abstracts from word order and represents 
documents as word vectors, where each entry represents the relevance of a token to the 
document. The resulting document-term matrix (DTM)—or transposed as the term-
document matrix—is useful for comparing documents to each other or a query vector for 
similarity based on their token content and, therefore, finding the proverbial needle in a 
haystack. It provides informative features to classify documents, such as in our sentiment 
analysis examples.

However, this document model produces both high-dimensional data and very sparse data, 
yet it does little to summarize the content or get closer to understanding what it is about. 
In this chapter, we will use unsupervised machine learning to extract hidden themes from 
documents using topic modeling. These themes can produce detailed insights into a large 
body of documents in an automated way. They are very useful in order to understand the 
haystack itself and allow us to tag documents based on their affinity with the various topics.

Topic models generate sophisticated, interpretable text features that can be a first step toward 
extracting trading signals from large collections of documents. They speed up the review of 
documents, help identify and cluster similar documents, and support predictive modeling.

Applications include the unsupervised discovery of potentially insightful themes 
in company disclosures or earnings call transcripts, customer reviews, or contracts. 
Furthermore, the document-topic associations facilitate the labeling by assigning, for 
example, sentiment metrics or, more directly, subsequent relevant asset returns.
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More specifically, after reading this chapter, you'll understand:

• How topic modeling has evolved, what it achieves, and why it matters

• Reducing the dimensionality of the DTM using latent semantic indexing (LSI)

• Extracting topics with probabilistic latent semantic analysis (pLSA)

• How latent Dirichlet allocation (LDA) improves pLSA to become the most popular 
topic model

• Visualizing and evaluating topic modeling results

• Running LDA using sklearn and Gensim

• How to apply topic modeling to collections of earnings calls and financial 
news articles

Learning latent topics – Goals and approaches
Topic modeling discovers hidden themes that capture semantic information beyond 
individual words in a body of documents. It aims to address a key challenge for a machine 
learning algorithm that learns from text data by transcending the lexical level of "what 
actually has been written" to the semantic level of "what was intended." The resulting topics 
can be used to annotate documents based on their association with various topics.

In practical terms, topic models automatically summarize large collections of documents 
to facilitate organization and management as well as search and recommendations. At 
the same time, it enables the understanding of documents to the extent that humans can 
interpret the descriptions of topics.

Topic models also mitigate the curse of dimensionality that often plagues the BOW 
model; representing documents with high-dimensional, sparse vectors can make similarity 
measures noisy, lead to inaccurate distance measurements, and result in the overfitting of 
text classification models.

Moreover, the BOW model loses context as well as semantic information since it ignores 
word order. It is also unable to capture synonymy (where several words have the same 
meaning) or polysemy (where one word has several meanings). As a result of the latter, 
document retrieval or similarity search may miss the point when the documents are not 
indexed by the terms used to search or compare.

These shortcomings of the BOW model prompt the question: how can we learn meaningful 
topics from data that facilitate a more productive interaction with documentary data?

You can find the code samples for this chapter and links to additional 
resources in the corresponding directory of the GitHub repository. 
The notebooks include color versions of the images. 
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Initial attempts by topic models to improve on the vector space model (developed in the 
mid-1970s) applied linear algebra to reduce the dimensionality of the DTM. This approach 
is similar to the algorithm that we discussed as principal component analysis in Chapter 13, 
Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning. While effective, it is 
difficult to evaluate the results of these models without a benchmark model. In response, 
probabilistic models have emerged that assume an explicit document generation process 
and provide algorithms to reverse engineer this process and recover the underlying topics.

The following table highlights key milestones in the model evolution, which we will 
address in more detail in the following sections:

Model Year Description

Latent semantic indexing (LSI) 1988
Captures the semantic document-term relationship by 
reducing the dimensionality of the word space

Probabilistic latent semantic 
analysis (pLSA)

1999
Reverse engineers a generative process that assumes 
words generate a topic and documents as a mix of topics

Latent Dirichlet 
allocation (LDA)

2003
Adds a generative process for documents: a three-level 
hierarchical Bayesian model

Latent semantic indexing
Latent semantic indexing (LSI)—also called latent semantic analysis (LSA)—set out to 
improve the results of queries that omitted relevant documents containing synonyms of 
query terms (Dumais et al. 1988). Its goal was to model the relationships between documents 
and terms so that it could predict that a term should be associated with a document, even 
though, because of the variability in word use, no such association was observed.

LSI uses linear algebra to find a given number k of latent topics by decomposing the 
DTM. More specifically, it uses the singular value decomposition (SVD) to find the best 
lower-rank DTM approximation using k singular values and vectors. In other words, LSI 
builds on some of the dimensionality reduction techniques we encountered in Chapter 13, 
Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning. The authors also 
experimented with hierarchical clustering but found it too restrictive for this purpose.

In this context, SVD identifies a set of uncorrelated indexing variables or factors that 
represent each term and document by its vector of factor values. Figure 15.1 illustrates 
how SVD decomposes the DTM into three matrices: two matrices that contain orthogonal 
singular vectors and a diagonal matrix with singular values that serve as scaling factors.

Assuming some correlation in the input DTM, singular values decay in value. Therefore, 
selecting the T-largest singular values yields a lower-dimensional approximation of the 
original DTM that loses relatively little information. In the compressed version, the rows or 
columns that had N items only have T < N entries.
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The LSI decomposition of the DTM can be interpreted as shown in Figure 15.1:

• The first M× T  matrix represents the relationships between documents and topics.

• The diagonal matrix scales the topics by their corpus strength.

• The third matrix models the term-topic relationship.

Figure 15.1: LSI and the SVD

The rows of the matrix produced by multiplying the first two matrices UTΣT  correspond to 
the locations of the original documents projected into the latent topic space.

How to implement LSI using sklearn
We will illustrate LSI using the BBC articles data that we introduced in the last chapter 
because they are small enough for quick training and allow us to compare topic 
assignments with category labels. Refer to the notebook latent_semantic_indexing for 
additional implementation details.

We begin by loading the documents and creating a train and (stratified) test set with 50 
articles. Then, we vectorize the data using TfidfVectorizer to obtain weighted DTM counts 
and filter out words that appear in less than 1 percent or more than 25 percent of the 
documents, as well as generic stopwords, to obtain a vocabulary of around 2,900 words:

vectorizer = TfidfVectorizer(max_df=.25, min_df=.01, 
                             stop_words='english', 

                             binary=False)

train_dtm = vectorizer.fit_transform(train_docs.article)
test_dtm = vectorizer.transform(test_docs.article)

We use scikit-learn's TruncatedSVD class, which only computes the k-largest singular values, 
to reduce the dimensionality of the DTM. The deterministic arpack algorithm delivers an 
exact solution, but the default "randomized" implementation is more efficient for large 
matrices. 
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We compute five topics to match the five categories, which explain only 5.4 percent of the 
total DTM variance, so a larger number of topics would be reasonable:

svd = TruncatedSVD(n_components=5, n_iter=5, random_state=42)

svd.fit(train_dtm)
svd.explained_variance_ratio_.sum()

0.05382357286057269

LSI identifies a new orthogonal basis for the DTM that reduces the rank to the number of 
desired topics. The .transform() method of the trained svd object projects the documents 
into the new topic space. This space results from reducing the dimensionality of the 
document vectors and corresponds to the UTΣT  transformation illustrated earlier in this 
section:

train_doc_topics = svd.transform(train_dtm)

train_doc_topics.shape

(2175, 5)

We can sample an article to view its location in the topic space. We draw a "Politics" article 
that is most (positively) associated with topics 1 and 2:

i = randint(0, len(train_docs))

train_docs.iloc[i, :2].append(pd.Series(doc_topics[i], index=topic_labels))

Category                                     Politics

Heading     What the election should really be about?

Topic 1                                          0.33

Topic 2                                          0.18

Topic 3                                          0.12

Topic 4                                          0.02

Topic 5                                          0.06

The topic assignments for this sample align with the average topic weights for each 
category illustrated in Figure 15.2 ("Politics" is the rightmost bar). They illustrate how 
LSI expresses the k topics as directions in a k-dimensional space (the notebook includes a 
projection of the average topic assignments per category into two-dimensional space).

Each category is clearly defined, and the test assignments match with train assignments. 
However, the weights are both positive and negative, making it more difficult to interpret 
the topics.
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Figure 15.2: LSI topic weights for train and test data

We can also display the words that are most closely associated with each topic (in absolute 
terms). The topics appear to capture some semantic information but are not clearly 
differentiated (refer to Figure 15.3).

Figure 15.3: Top 10 words per LSI topic

Strengths and limitations
The strengths of LSI include the removal of noise and the mitigation of the curse of 
dimensionality. It also captures some semantic aspects, like synonymy, and clusters 
both documents and terms via their topic associations. Furthermore, it does not require 
knowledge of the document language, and both information retrieval queries and 
document comparisons are easy to do.
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However, the results of LSI are difficult to interpret because topics are word vectors with 
both positive and negative entries. In addition, there is no underlying model that would 
permit the evaluation of fit or provide guidance when selecting the number of dimensions 
or topics to use.

Probabilistic latent semantic analysis
Probabilistic latent semantic analysis (pLSA) takes a statistical perspective on LSI/LSA 
and creates a generative model to address the lack of theoretical underpinnings of LSA 
(Hofmann 2001).

pLSA explicitly models the probability word w appearing in document d, as described by 
the DTM as a mixture of conditionally independent multinomial distributions that involve 
topics t.

There are both symmetric and asymmetric formulations of how word-document co-
occurrences come about. The former assumes that both words and documents are 
generated by the latent topic class. In contrast, the asymmetric model assumes that topics 
are selected given the document, and words result in a second step given the topic.𝑃𝑃(𝑤𝑤, 𝑑𝑑)  =∑ 𝑃𝑃(𝑑𝑑|𝑡𝑡)𝑃𝑃(𝑤𝑤|𝑡𝑡)𝑡𝑡⏟          symmetric = 𝑃𝑃(𝑑𝑑)∑ 𝑃𝑃(𝑡𝑡|𝑑𝑑)𝑃𝑃(𝑤𝑤|𝑡𝑡)𝑡𝑡⏟              asymmetric  

The number of topics is a hyperparameter chosen prior to training and is not learned from 
the data.

The plate notation in Figure 15.4 describes the statistical dependencies in a probabilistic 
model. More specifically, it encodes the relationship just described for the asymmetric 
model. Each rectangle represents multiple items: the outer block stands for M documents, 
while the inner shaded rectangle symbolizes N words for each document. We only observe 
the documents and their content; the model infers the hidden or latent topic distribution:

Figure 15.4: The statistical dependencies modeled by pLSA in plate notation

Let's now take a look at how we can implement this model in practice.
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How to implement pLSA using sklearn
pLSA is equivalent to non-negative matrix factorization (NMF) using a Kullback-Leibler 
divergence objective (view the references on GitHub). Therefore, we can use the sklearn.
decomposition.NMF class to implement this model following the LSI example.

Using the same train-test split of the DTM produced by TfidfVectorizer, we fit pLSA like so:

nmf = NMF(n_components=n_components, 

          random_state=42, 

          solver='mu',

          beta_loss='kullback-leibler', 

          max_iter=1000)

nmf.fit(train_dtm)

We get a measure of the reconstruction error that is a substitute for the explained variance 
measure from earlier:

nmf.reconstruction_err_

316.2609400385988

Due to its probabilistic nature, pLSA produces only positive topic weights that result in 
more straightforward topic-category relationships for the test and training sets, as shown in 
Figure 15.5:

Figure 15.5: pLSA weights by topic for train and test data

We also note that the word lists that describe each topic begin to make more sense; for 
example, the "Entertainment" category is most directly associated with Topic 4, which 
includes the words "film," "star," and so forth, as you can see in Figure 15.6:
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Figure 15.6: Top words per topic for pLSA 

Strengths and limitations
The benefit of using a probability model is that we can now compare the performance of 
different models by evaluating the probability they assign to new documents given the 
parameters learned during training. It also means that the results have a clear probabilistic 
interpretation. In addition, pLSA captures more semantic information, including polysemy.

On the other hand, pLSA increases the computational complexity compared to LSI, and the 
algorithm may only yield a local as opposed to a global maximum. Finally, it does not yield 
a generative model for new documents because it takes them as given.

Latent Dirichlet allocation
Latent Dirichlet allocation (LDA) extends pLSA by adding a generative process for topics 
(Blei, Ng, and Jordan 2003). It is the most popular topic model because it tends to produce 
meaningful topics that humans can relate to, can assign topics to new documents, and is 
extensible. Variants of LDA models can include metadata, like authors or image data, or 
learn hierarchical topics.

How LDA works
LDA is a hierarchical Bayesian model that assumes topics are probability distributions 
over words, and documents are distributions over topics. More specifically, the model 
assumes that topics follow a sparse Dirichlet distribution, which implies that documents 
reflect only a small set of topics, and topics use only a limited number of terms frequently.
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The Dirichlet distribution

The Dirichlet distribution produces probability vectors that can be used as a discrete 
probability distribution. That is, it randomly generates a given number of values that 
are positive and sum to one. It has a parameter 𝛼𝛼  of positive real value that controls the 
concentration of the probabilities. Values closer to zero mean that only a few values will be 
positive and receive most of the probability mass. Figure 15.7 illustrates three draws of size 
10 for 𝛼𝛼  = 0.1:

Figure 15.7: Three draws from the Dirichlet distribution

The notebook dirichlet_distribution contains a simulation that lets you experiment with 
different parameter values.

The generative model

The LDA topic model assumes the following generative process when an author adds an 
article to a body of documents:

1. Randomly mix a small subset of topics with proportions defined by the Dirichlet 
probabilities.

2. For each word in the text, select one of the topics according to the document-topic 
probabilities.

3. Select a word from the topic's word list according to the topic-word probabilities.

As a result, the article content depends on the weight of each topic and the terms that make 
up each topic. The Dirichlet distribution governs the selection of topics for documents and 
words for topics. It encodes the idea that a document only covers a few topics, while each 
topic uses only a small number of words frequently.

The plate notation for the LDA model in Figure 15.8 summarizes these relationships and 
highlights the key model parameters:
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Figure 15.8: The statistical dependencies of the LDA model in plate notation

Reverse engineering the process

The generative process is clearly fictional but turns out to be useful because it permits the 
recovery of the various distributions. The LDA algorithm reverse engineers the work of the 
imaginary author and arrives at a summary of the document-topic-word relationships that 
concisely describes:

• The percentage contribution of each topic to a document

• The probabilistic association of each word with a topic

LDA solves the Bayesian inference problem of recovering the distributions from the 
body of documents and the words they contain by reverse engineering the assumed 
content generation process. The original paper by Blei et al. (2003) uses variational Bayes 
(VB) to approximate the posterior distribution. Alternatives include Gibbs sampling and 
expectation propagation. We will illustrate, shortly, the implementations by the sklearn and 
Gensim libraries.

How to evaluate LDA topics
Unsupervised topic models do not guarantee that the result will be meaningful or 
interpretable, and there is no objective metric to assess the quality of the result as in 
supervised learning. Human topic evaluation is considered the gold standard, but it is 
potentially expensive and not readily available at scale.

Two options to evaluate results more objectively include perplexity, which evaluates the 
model on unseen documents, and topic coherence metrics, which aim to evaluate the 
semantic quality of the uncovered patterns.
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Perplexity

Perplexity, when applied to LDA, measures how well the topic-word probability distribution 
recovered by the model predicts a sample of unseen text documents. It is based on the 
entropy H(p) of this distribution p and is computed with respect to the set of tokens w:2ℎ(𝑝𝑝) =  2−Σ𝑤𝑤 𝑝𝑝(𝑤𝑤) log2 𝑝𝑝(𝑤𝑤) 
Measures closer to zero imply the distribution is better at predicting the sample.

Topic coherence

Topic coherence measures the semantic consistency of the topic model results, that is, 
whether humans would perceive the words and their probabilities associated with topics 
as meaningful.

To this end, it scores each topic by measuring the degree of semantic similarity between the 
words most relevant to the topic. More specifically, coherence measures are based on the 
probability of observing the set of words W that defines a topic together.

There are two measures of coherence that have been designed for LDA and are shown to 
align with human judgments of topic quality, namely the UMass and the UCI metrics.

The UCI metric (Stevens et al. 2012) defines a word pair's score to be the sum of the 
pointwise mutual information (PMI) between two distinct pairs of (top) topic words w

i
, w

j
 ∈  w and a smoothing factor 𝜀𝜀 :coherenceUCI =  ∑ log 𝑝𝑝(𝑤𝑤𝑖𝑖 , 𝑤𝑤𝑗𝑗) + 𝜖𝜖𝑝𝑝(𝑤𝑤𝑖𝑖)𝑝𝑝(𝑤𝑤𝑗𝑗)(𝑤𝑤𝑖𝑖,𝑤𝑤𝑗𝑗) ∈ 𝑊𝑊  

The probabilities are computed from word co-occurrence frequencies in a sliding window 
over an external corpus like Wikipedia so that this metric can be thought of as an external 
comparison to semantic ground truth.

In contrast, the UMass metric (Mimno et al. 2011) uses the co-occurrences in a number of 
documents D from the training corpus to compute a coherence score:coherenceUMass =  ∑ log 𝐷𝐷(𝑤𝑤𝑖𝑖 , 𝑤𝑤𝑗𝑗) + 𝜖𝜖𝐷𝐷(𝑤𝑤𝑗𝑗)(𝑤𝑤𝑖𝑖,𝑤𝑤𝑗𝑗) ∈ 𝑊𝑊  

Rather than comparing the model result to extrinsic ground truth, this measure reflects 
intrinsic coherence. Both measures have been evaluated to align well with human judgment 
(Röder, Both, and Hinneburg 2015). In both cases, values closer to zero imply that a topic is 
more coherent.
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How to implement LDA using sklearn
We will use the BBC data as before and train an LDA model using sklearn's decomposition.
LatentDirichletAllocation class with five topics (refer to the sklearn documentation for 
details on the parameters and the notebook lda_with_sklearn for implementation details):

lda_opt = LatentDirichletAllocation(n_components=5, 

                                    n_jobs=-1, 

                                    max_iter=500,

                                    learning_method='batch', 

                                    evaluate_every=5,

                                    verbose=1, 

                                    random_state=42)

ldat.fit(train_dtm)
LatentDirichletAllocation(batch_size=128, doc_topic_prior=None,

             evaluate_every=5, learning_decay=0.7, learning_method='batch',

             learning_offset=10.0, max_doc_update_iter=100, max_iter=500,
             mean_change_tol=0.001, n_components=5, n_jobs=-1,

             n_topics=None, perp_tol=0.1, random_state=42,

             topic_word_prior=None, total_samples=1000000.0, verbose=1)

The model tracks the in-sample perplexity during training and stops iterating once this 
measure stops improving. We can persist and load the result as usual with sklearn objects:

joblib.dump(lda, model_path / 'lda_opt.pkl')

lda_opt = joblib.load(model_path / 'lda_opt.pkl')

How to visualize LDA results using pyLDAvis
Topic visualization facilitates the evaluation of topic quality using human judgment. 
pyLDAvis is a Python port of LDAvis, developed in R and D3.js (Sievert and Shirley 2014). 
We will introduce the key concepts; each LDA application notebook contains examples.

pyLDAvis displays the global relationships among topics while also facilitating their 
semantic evaluation by inspecting the terms most closely associated with each individual 
topic and, inversely, the topics associated with each term. It also addresses the challenge 
that terms that are frequent in a corpus tend to dominate the distribution over words that 
define a topic.

To this end, LDAVis introduces the relevance r of term w to topic t. The relevance produces 
a flexible ranking of terms by topic, by computing a weighted average of two metrics:

• The degree of association of topic t with term w, expressed as the conditional 
probability p(w | t)

• The saliency, or lift, which measures how the frequency of term w for the topic t, 
p(w | t), compares to its overall frequency across all documents, p(w)
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More specifically, we can compute the relevance r for a term w and a topic t given a user-
defined weight 0 ≤ λ ≤ , like the following:𝑟𝑟(𝑤𝑤, 𝑡𝑡 | λ) =  λ log(𝑝𝑝(𝑤𝑤|𝑡𝑡)) + (1 − λ) log 𝑝𝑝(𝑤𝑤|𝑡𝑡)𝑝𝑝(𝑤𝑤)  

The tool allows the user to interactively change λ  to adjust the relevance, which updates the 
ranking of terms. User studies have found λ = 0.6  to produce the most plausible results.

How to implement LDA using Gensim
Gensim is a specialized natural language processing (NLP) library with a fast LDA 
implementation and many additional features. We will also use it in the next chapter 
on word vectors (refer to the notebook lda_with_gensim for details and the installation 
directory for related instructions).

We convert the DTM produced by sklearn's CountVectorizer or TfIdfVectorizer into 
Gensim data structures as follows:

train_corpus = Sparse2Corpus(train_dtm, documents_columns=False)

test_corpus = Sparse2Corpus(test_dtm, documents_columns=False)

id2word = pd.Series(vectorizer.get_feature_names()).to_dict()

Gensim's LDA algorithm includes numerous settings:

LdaModel(corpus=None, 

       num_topics=100, 

       id2word=None, 

       distributed=False, 

       chunksize=2000,  # No of doc per training chunk.

       passes=1,        # No of passes through corpus during training

       update_every=1,  # No of docs to be iterated through per update

       alpha='symmetric', 

       eta=None,        # a-priori belief on word probability

       decay=0.5,      # % of lambda forgotten when new doc is examined

       offset=1.0,     # controls slow down of first few iterations.
       eval_every=10,  # how often estimate log perplexity (costly)

       iterations=50,  # Max. of iterations through the corpus

       gamma_threshold=0.001, # Min. change in gamma to continue

       minimum_probability=0.01, # Filter topics with lower probability

       random_state=None, 

       ns_conf=None, 

       minimum_phi_value=0.01, # lower bound on term probabilities

       per_word_topics=False,  #  Compute most word-topic probabilities

       callbacks=None, 

       dtype=<class 'numpy.float32'>)
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Gensim also provides an LdaMulticore model for parallel training that may speed up 
training using Python's multiprocessing features for parallel computation.

Model training just requires instantiating LdaModel, as follows:

lda_gensim = LdaModel(corpus=train_corpus,

                      num_topics=5,

                      id2word=id2word)

Gensim evaluates topic coherence, as introduced in the previous section, and shows the 
most important words per topic:

coherence = lda_gensim.top_topics(corpus=train_corpus, coherence='u_mass')

We can display the results as follows:

topic_coherence = []

topic_words = pd.DataFrame()

for t in range(len(coherence)):

    label = topic_labels[t]

    topic_coherence.append(coherence[t][1])

    df = pd.DataFrame(coherence[t][0], columns=[(label, 'prob'),  
                                                (label, 'term')])

    df[(label, 'prob')] = df[(label, 'prob')].apply( 
                              lambda x: '{:.2%}'.format(x))

    topic_words = pd.concat([topic_words, df], axis=1)

                      

topic_words.columns = pd.MultiIndex.from_tuples(topic_words.columns)

pd.set_option('expand_frame_repr', False)

print(topic_words.head())

This shows the following top words for each topic:

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

Probability Term Probability Term Probability Term Probability Term Probability Term

0.55% online 0.90% best 1.04% mobile 0.64% market 0.94% labour

0.51% site 0.87% game 0.98% phone 0.53% growth 0.72% blair

0.46% game 0.62% play 0.51% music 0.52% sales 0.72% brown

0.45% net 0.61% won 0.48% film 0.49% economy 0.65% election

0.44% used 0.56% win 0.48% use 0.45% prices 0.57% united
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The left panel of Figure 15.9 displays the topic coherence scores, which highlight the decay 
of topic quality (at least, in part, due to the relatively small dataset):

Figure 15.9: Topic coherence and test set assignments

The right panel displays the evaluation of our test set of 50 articles with our trained model. 
The model makes four mistakes for an accuracy of 92 percent.

Modeling topics discussed in earnings calls
In Chapter 3, Alternative Data for Finance – Categories and Use Cases, we learned how to 
scrape earnings call data from the SeekingAlpha site. In this section, we will illustrate 
topic modeling using this source. I'm using a sample of some 700 earnings call transcripts 
between 2018 and 2019. This is a fairly small dataset; for a practical application, we would 
need a larger dataset.

The directory earnings_calls contains several files with the code examples used in this 
section. Refer to the notebook lda_earnings_calls for details on loading, exploring, and 
preprocessing the data, as well as training and evaluating individual models, and the run_
experiments.py file for the experiments described next.

Data preprocessing
The transcripts consist of individual statements by company representatives, an operator, 
and a Q&A session with analysts. We will treat each of these statements as separate 
documents, ignoring operator statements, to obtain 32,047 items with mean and median 
word counts of 137 and 62, respectively:

documents = []

for transcript in earnings_path.iterdir():

    content = pd.read_csv(transcript / 'content.csv')

    documents.extend(content.loc[(content.speaker!='Operator') & (content.
content.str.len() > 5), 'content'].tolist())

len(documents)

32047
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We use spaCy to preprocess these documents, as illustrated in Chapter 13, Data-Driven Risk 
Factors and Asset Allocation with Unsupervised Learning, (refer to the notebook), and store the 
cleaned and lemmatized text as a new text file.

Exploration of the most common tokens, as shown in Figure 15.10, reveals domain-specific 
stopwords like "year" and "quarter" that we remove in a second step, where we also filter 
out statements with fewer than 10 words so that some 22,582 remain.

Figure 15.10: Most common earnings call tokens

Model training and evaluation
For illustration, we create a DTM containing terms appearing in between 0.5 and 25 percent 
of documents that results in 1,529 features. Now we proceed to train a 15-topic model using 
25 passes over the corpus. This takes a bit over two minutes on a 4-core i7.

The top 10 words per topic, as shown in Figure 15.11, identify several distinct themes that 
range from obvious financial information to clinical trials (Topic 5), China and tariff issues 
(Topic 9), and technology issues (Topic 11).

Figure 15.11: Most important words for earnings call topics

Using pyLDAvis' relevance metric with a 0.6 weighting of unconditional frequency relative 
to lift, topic definitions become more intuitive, as illustrated in Figure 15.12 for Topic 7 
about China and the trade wars:
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Figure 15.12: pyLDAVis' interactive topic explorer

The notebook also illustrates how you can look up documents by their topic association. In 
this case, an analyst can review relevant statements for nuances, use sentiment analysis to 
further process the topic-specific text data, or assign labels derived from market prices.

Running experiments
To illustrate the impact of different parameter settings, we run a few hundred experiments 
for different DTM constraints and model parameters. More specifically, we let the min_df 
and max_df parameters range from 50-500 words and 10 to 100 percent of documents, 
respectively, using alternatively binary and absolute counts. We then train LDA models 
with 3 to 50 topics, using 1 and 25 passes over the corpus.

The chart in Figure 15.13 illustrates the results in terms of topic coherence (higher is 
better) and perplexity (lower is better). Coherence drops after 25-30 topics, and perplexity 
similarly increases.
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Figure 15.13: Impact of LDA hyperparameter settings on topic quality

The notebook includes regression results that quantify the relationships between 
parameters and outcomes. We generally get better results using absolute counts and a 
smaller vocabulary.

Topic modeling for with financial news
The notebook lda_financial_news contains an example of LDA applied to a subset of over 
306,000 financial news articles from the first five months of 2018. The datasets have been 
posted on Kaggle, and the articles have been sourced from CNBC, Reuters, the Wall Street 
Journal, and more. The notebook contains download instructions.

We select the most relevant 120,000 articles based on their section titles with a total of 
54 million tokens for an average word count of 429 words per article. To prepare the data 
for the LDA model, we rely on spaCy to remove numbers and punctuation and lemmatize 
the results.

Figure 15.14 highlights the remaining most frequent tokens and the article length 
distribution with a median length of 231 tokens; the 90th percentile is 642 words.

Figure 15.14: Corpus statistics for financial news data
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In Figure 15.15, we show results for one model using a vocabulary of 3,570 tokens based 
on min_df=0.005 and max_df=0.1, with a single pass to avoid the length training time for 15 
topics. We can use the top_topics attribute of the trained LdaModel to obtain the most likely 
words for each topic (refer to the notebook for more details).

Figure 15.15: Top 15 words for financial news topics

The topics outline several issues relevant to the time period, including Brexit (Topic 8), 
North Korea (Topic 4), and Tesla (Topic 14).

Gensim provides a LdaMultiCore implementation that allows for parallel training using 
Python's multiprocessing module and improves performance by 50 percent when using 
four workers. More workers do not further reduce training time, though, due to I/O 
bottlenecks.

Summary
In this chapter, we explored the use of topic modeling to gain insights into the content 
of a large collection of documents. We covered latent semantic indexing that uses 
dimensionality reduction of the DTM to project documents into a latent topic space. While 
effective in addressing the curse of dimensionality caused by high-dimensional word 
vectors, it does not capture much semantic information. Probabilistic models make explicit 
assumptions about the interplay of documents, topics, and words that allow algorithms 
to reverse engineer the document generation process and evaluate the model fit on new 
documents. We learned that LDA is capable of extracting plausible topics that allow us to 
gain a high-level understanding of large amounts of text in an automated way, while also 
identifying relevant documents in a targeted way.

In the next chapter, we will learn how to train neural networks that embed individual 
words in a high-dimensional vector space that captures important semantic information 
and allows us to use the resulting word vectors as high-quality text features.
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16
Word Embeddings for  

Earnings Calls and SEC Filings

In the two previous chapters, we converted text data into a numerical format using the 
bag-of-words model. The result is sparse, fixed-length vectors that represent documents 
in high-dimensional word space. This allows the similarity of documents to be evaluated 
and creates features to train a model with a view to classifying a document's content or 
rating the sentiment expressed in it. However, these vectors ignore the context in which a 
term is used so that two sentences containing the same words in a different order would be 
encoded by the same vector, even if their meaning is quite different.

This chapter introduces an alternative class of algorithms that use neural networks to learn 
a vector representation of individual semantic units like a word or a paragraph. These 
vectors are dense rather than sparse, have a few hundred real-valued entries, and are called 
embeddings because they assign each semantic unit a location in a continuous vector space. 
They result from training a model to predict tokens from their context so that similar usage 
implies a similar embedding vector. Moreover, the embeddings encode semantic aspects like 
relationships among words by means of their relative location. As a result, they are powerful 
features for deep learning models for solving tasks that require semantic information, such 
as machine translation, question answering, or maintaining a dialogue.

To develop a trading strategy based on text data, we are usually interested in the 
meaning of documents rather than individual tokens. For example, we might want to 
create a dataset that uses features representing a tweet or a news article with sentiment 
information (refer to Chapter 14, Text Data for Trading – Sentiment Analysis), or an asset's 
return for a given horizon after publication. Although the bag-of-words model loses 
plenty of information when encoding text data, it has the advantage of representing an 
entire document. However, word embeddings have been further developed to represent 
more than individual tokens. Examples include the doc2vec extension, which resorts to 
weighting word embeddings. More recently, the attention mechanism emerged to produce 
more context-sensitive sentence representations, resulting in transformer architectures such 
as the BERT family of models that has dramatically improved performance on numerous 
natural language tasks.
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More specifically, after working through this chapter and the companion notebooks, you 
will know about the following:

• What word embeddings are, how they work, and why they capture semantic 
information

• How to obtain and use pretrained word vectors

• Which network architectures are most effective at training word2vec models

• How to train a word2vec model using Keras, Gensim, and TensorFlow

• Visualizing and evaluating the quality of word vectors

• How to train a word2vec model on SEC filings to predict stock price moves
• How doc2vec extends word2vec and can be used for sentiment analysis

• Why the transformer's attention mechanism had such an impact on natural 
language processing

• How to fine-tune pretrained BERT models on financial data and extract high-
quality embeddings

You can find the code examples and links to additional resources in the GitHub directory 
for this chapter. This chapter uses neural networks and deep learning; if unfamiliar, you 
may want to first read Chapter 17, Deep Learning for Trading, which introduces key concepts 
and libraries.

How word embeddings encode semantics
The bag-of-words model represents documents as sparse, high-dimensional vectors that 
reflect the tokens they contain. Word embeddings represent tokens as dense, lower-
dimensional vectors so that the relative location of words reflects how they are used in 
context. They embody the distributional hypothesis from linguistics that claims words are 
best defined by the company they keep.

Word vectors are capable of capturing numerous semantic aspects; not only are synonyms 
assigned nearby embeddings, but words can have multiple degrees of similarity. For 
example, the word "driver" could be similar to "motorist" or to "factor." Furthermore, 
embeddings encode relationships among pairs of words like analogies (Tokyo is to Japan what 
Paris is to France, or went is to go what saw is to see), as we will illustrate later in this section.

Embeddings result from training a neural network to predict words from their context or 
vice versa. In this section, we will introduce how these models work and present successful 
approaches, including word2vec, doc2vec, and the more recent transformer family of models.
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How neural language models learn usage in context
Word embeddings result from training a shallow neural network to predict a word given 
its context. Whereas traditional language models define context as the words preceding 
the target, word embedding models use the words contained in a symmetric window 
surrounding the target. In contrast, the bag-of-words model uses the entire document as 
context and relies on (weighted) counts to capture the co-occurrence of words.

Earlier neural language models used included nonlinear hidden layers that increased the 
computational complexity. word2vec, introduced by Mikolov, Sutskever, et al. (2013) and 
its extensions simplified the architecture to enable training on large datasets. The Wikipedia 
corpus, for example, contains over 2 billion tokens. (Refer to Chapter 17, Deep Learning for 
Trading, for additional details on feedforward networks.)

word2vec – scalable word and phrase embeddings
A word2vec model is a two-layer neural net that takes a text corpus as input and outputs 
a set of embedding vectors for words in that corpus. There are two different architectures, 
shown in the following diagram, to efficiently learn word vectors using shallow neural 
networks (Mikolov, Chen, et al., 2013):

• The continuous-bag-of-words (CBOW) model predicts the target word using the 
average of the context word vectors as input so that their order does not matter. 
CBOW trains faster and tends to be slightly more accurate for frequent terms, but 
pays less attention to infrequent words.

• The skip-gram (SG) model, in contrast, uses the target word to predict words 
sampled from the context. It works well with small datasets and finds good 
representations even for rare words or phrases.

Figure 16.1: Continuous-bag-of-words versus skip-gram processing logic



Word Embeddings for Earnings Calls and SEC Filings

[ 486 ]

The model receives an embedding vector as input and computes the dot product with 
another embedding vector. Note that, assuming normed vectors, the dot product is 
maximized (in absolute terms) when vectors are equal, and minimized when they 
are orthogonal.

During training, the backpropagation algorithm adjusts the embedding weights in 
response to the loss computed by an objective function based on classification errors. We 
will see in the next section how word2vec computes the loss.

Training proceeds by sliding the context window over the documents, typically segmented 
into sentences. Each complete iteration over the corpus is called an epoch. Depending on 
the data, several dozen epochs may be necessary for vector quality to converge.

The skip-gram model implicitly factorizes a word-context matrix that contains the 
pointwise mutual information of the respective word and context pairs (Levy and 
Goldberg, 2014).

Model objective – simplifying the softmax

Word2vec models aim to predict a single word out of a potentially very large vocabulary. 
Neural networks often use the softmax function as an output unit in the final layer to 
implement the multiclass objective because it maps an arbitrary number of real values to an 
equal number of probabilities. The softmax function is defined as follows, where h refers to 
the embedding and v to the input vectors, and c is the context of word w:

𝑝𝑝(𝑤𝑤|𝑐𝑐) = exp(ℎT𝑣𝑣𝑤𝑤′ )∑ exp(ℎT𝑣𝑣𝑤𝑤𝑖𝑖′ )𝑤𝑤𝑖𝑖∈𝑉𝑉  

However, the softmax complexity scales with the number of classes because the 
denominator requires computing the dot product for all words in the vocabulary to 
standardize the probabilities. Word2vec gains efficiency by using a modified version of the 
softmax or sampling-based approximations:

• The hierarchical softmax organizes the vocabulary as a binary tree with words 
as leaf nodes. The unique path to each node can be used to compute the word 
probability (Morin and Bengio, 2005).

• Noise contrastive estimation (NCE) samples out-of-context "noise words" and 
approximates the multiclass task by a binary classification problem. The NCE 
derivative approaches the softmax gradient as the number of samples increases, but 
as few as 25 samples can yield convergence similar to the softmax 45 times faster 
(Mnih and Kavukcuoglu, 2013).

• Negative sampling (NEG) omits the noise word samples to approximate NCE and 
directly maximizes the probability of the target word. Hence, NEG optimizes the 
semantic quality of embedding vectors (similar vectors for similar usage) rather 
than the accuracy on a test set. It may, however, produce poorer representations for 
infrequent words than the hierarchical softmax objective (Mikolov et al., 2013).
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Automating phrase detection

Preprocessing typically involves phrase detection, that is, the identification of tokens 
that are commonly used together and should receive a single vector representation (for 
example, New York City; refer to the discussion of n-grams in Chapter 13, Data-Driven Risk 
Factors and Asset Allocation with Unsupervised Learning).

The original word2vec authors (Mikolov et al., 2013) use a simple lift scoring method that 
identifies two words w

i
, wj as a bigram if their joint occurrence exceeds a given threshold 

relative to each word's individual appearance, corrected by a discount factor, δ:

score(𝑤𝑤𝑖𝑖, 𝑤𝑤𝑗𝑗) = count(𝑤𝑤𝑖𝑖, 𝑤𝑤𝑗𝑗) − 𝛿𝛿count(𝑤𝑤𝑖𝑖)count(𝑤𝑤𝑗𝑗) 
The scorer can be applied repeatedly to identify successively longer phrases.

An alternative is the normalized pointwise mutual information score, which is more 
accurate, but also more costly to compute. It uses the relative word frequency P(w) and 
varies between +1 and -1:

NPMI = ln(𝑃𝑃(𝑤𝑤𝑖𝑖, 𝑤𝑤𝑗𝑗)/𝑃𝑃(𝑤𝑤𝑖𝑖)𝑃𝑃(𝑤𝑤𝑗𝑗))−ln (𝑃𝑃(𝑤𝑤𝑖𝑖, 𝑤𝑤𝑗𝑗))  

Evaluating embeddings using semantic arithmetic 
The bag-of-words model creates document vectors that reflect the presence and relevance 
of tokens to the document. As discussed in Chapter 15, Topic Modeling – Summarizing 
Financial News, latent semantic analysis reduces the dimensionality of these vectors 
and identifies what can be interpreted as latent concepts in the process. Latent Dirichlet 
allocation represents both documents and terms as vectors that contain the weights of 
latent topics.

The word and phrase vectors produced by word2vec do not have an explicit meaning. 
However, the embeddings encode similar usage as proximity in the latent space created 
by the model. The embeddings also capture semantic relationships so that analogies can be 
expressed by adding and subtracting word vectors.

Figure 16.2 shows how the vector that points from "Paris" to "France" (which measures 
the difference between their embedding vectors) reflects the "capital of" relationship. The 
analogous relationship between London and the UK corresponds to the same vector: the 
embedding for the term "UK" is very close to the location obtained by adding the "capital 
of" vector to the embedding for the term "London":
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Figure 16.2: Embedding vector arithmetic

Just as words can be used in different contexts, they can be related to other words in 
different ways, and these relationships correspond to different directions in the latent 
space. Accordingly, there are several types of analogies that the embeddings should reflect 
if the training data permits.

The word2vec authors provide a list of over 25,000 relationships in 14 categories spanning 
aspects of geography, grammar and syntax, and family relationships to evaluate the quality 
of embedding vectors. As illustrated in the preceding diagram, the test validates that the 
target word "UK" is closest to the result of adding the vector that represents an analogous 
relationship "Paris: France" to the target's complement "London".

The following table shows the number of samples and illustrates some of the analogy 
categories. The test checks how close the embedding for d is to the location determined by 
c + (b-a). Refer to the evaluating_embeddings notebook for implementation details.

Category # Samples a b c d

Capital-Country 506 athens greece baghdad iraq

City-State 4,242 chicago illinois houston texas

Past Tense 1,560 dancing danced decreasing decreased

Plural 1,332 banana bananas bird birds

Comparative 1,332 bad worse big bigger

Opposite 812 acceptable unacceptable aware unaware

Superlative 1,122 bad worst big biggest

Plural (Verbs) 870 decrease decreases describe describes

Currency 866 algeria dinar angola kwanza

Family 506 boy girl brother sister
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Similar to other unsupervised learning techniques, the goal of learning embedding vectors 
is to generate features for other tasks, such as text classification or sentiment analysis. There 
are a couple of options to obtain embedding vectors for a given corpus of documents:

• Use pretrained embeddings learned from a generic large corpus like Wikipedia or 
Google News

• Train your own model using documents that reflect a domain of interest

The less generic and more specialized the content of the subsequent text modeling task, the 
more preferable the second approach. However, quality word embeddings are data-hungry 
and require informative documents containing hundreds of millions of words.

We will first look at how you can use pretrained vectors and then demonstrate examples of 
how to build your own word2vec models using financial news and SEC filings data.

How to use pretrained word vectors
There are several sources for pretrained word embeddings. Popular options 
include Stanford's GloVE and spaCy's built-in vectors (refer to the  
using_pretrained_vectors notebook for details). In this section, we will focus on GloVe.

GloVe – Global vectors for word representation
GloVe (Global Vectors for Word Representation, Pennington, Socher, and Manning, 2014) 
is an unsupervised algorithm developed at the Stanford NLP lab that learns vector 
representations for words from aggregated global word-word co-occurrence statistics (see 
resources linked on GitHub). Vectors pretrained on the following web-scale sources are 
available:

• Common Crawl with 42 billion or 840 billion tokens and a vocabulary or 1.9 million 
or 2.2 million tokens

• Wikipedia 2014 + Gigaword 5 with 6 billion tokens and a vocabulary of 400,000 
tokens

• Twitter using 2 billion tweets, 27 billion tokens, and a vocabulary of 1.2 million 
tokens

We can use Gensim to convert the vector text files using glove2word2vec and then load 
them into the KeyedVector object:

from gensim.models import Word2Vec, KeyedVectors

from gensim.scripts.glove2word2vec import glove2word2vec

glove2word2vec(glove_input_file=glove_file, word2vec_output_file=w2v_file)
model = KeyedVectors.load_word2vec_format(w2v_file, binary=False)
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Gensim uses the word2vec analogy tests described in the previous section using text 
files made available by the authors to evaluate word vectors. For this purpose, the library 
has the wv.accuracy function, which we use to pass the path to the analogy file, indicate 
whether the word vectors are in binary format, and whether we want to ignore the case. We 
can also restrict the vocabulary to the most frequent to speed up testing:

accuracy = model.wv.accuracy(analogies_path,

                             restrict_vocab=300000,

                             case_insensitive=True)

The word vectors trained on the Wikipedia corpus cover all analogies and achieve an 
overall accuracy of 75.44 percent with some variation across categories:

Category # Samples Accuracy Category # Samples Accuracy

Capital-Country 506 94.86% Comparative 1,332 88.21%

Capitals RoW 8,372 96.46% Opposite 756 28.57%

City-State 4,242 60.00% Superlative 1,056 74.62%

Currency 752 17.42% Present-Participle 1,056 69.98%

Family 506 88.14% Past Tense 1,560 61.15%

Nationality 1,640 92.50% Plural 1,332 78.08%

Adjective-Adverb 992 22.58% Plural Verbs 870 58.51%

Figure 16.3 compares the performance for the three GloVe sources for the 100,000 most 
common tokens. It shows that Common Crawl vectors, which cover about 80 percent of the 
analogies, achieve slightly higher accuracy at 78 percent. The Twitter vectors cover only 25 
percent, with 56.4 percent accuracy:

Figure 16.3: GloVe accuracy on word2vec analogies
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Figure 16.4 projects the 300-dimensional embeddings of the most closely related analogies 
for a word2vec model trained on the Wikipedia corpus with over 2 billion tokens into 
two dimensions using PCA. A test of over 24,400 analogies from the following categories 
achieved an accuracy of over 73.5 percent:

Figure 16.4: 2D visualization of selected analogy embeddings

Custom embeddings for financial news
Many tasks require embeddings of domain-specific vocabulary that models pretrained on 
a generic corpus may not be able to capture. Standard word2vec models are not able to 
assign vectors to out-of-vocabulary words and instead use a default vector that reduces 
their predictive value. 

For example, when working with industry-specific documents, the vocabulary or its 
usage may change over time as new technologies or products emerge. As a result, the 
embeddings need to evolve as well. In addition, documents like corporate earnings releases 
use nuanced language that GloVe vectors pretrained on Wikipedia articles are unlikely to 
properly reflect.

In this section, we will train and evaluate domain-specific embeddings using financial 
news. We'll first show how to preprocess the data for this task, then demonstrate how the 
skip-gram architecture outlined in the first section works, and finally visualize the results. 
We also will introduce alternative, faster training methods.
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Preprocessing – sentence detection and n-grams
To illustrate the word2vec network architecture, we'll use the financial news dataset 
with over 125,000 relevant articles that we introduced in Chapter 15, Topic Modeling – 
Summarizing Financial News, on topic modeling. We'll load the data as  
outlined in the lda_financial_news.ipynb notebook in that chapter. The  
financial_news_preprocessing.ipynb notebook contains the code samples for this section.

We use spaCy's built-in sentence boundary detection to split each article into sentences, 
remove less informative items, such as numbers and punctuation, and keep the result if it is 
between 6 and 99 tokens long:

def clean_doc(d):

    doc = []

    for sent in d.sents:

        s = [t.text.lower() for t in sent if not

        any([t.is_digit, not t.is_alpha, t.is_punct, t.is_space])]

        if len(s) > 5 or len(sent) < 100:

            doc.append(' '.join(s))

    return doc

nlp = English()

sentencizer = nlp.create_pipe("sentencizer")

nlp.add_pipe(sentencizer)

clean_articles = []

iter_articles = (article for article in articles)

for i, doc in enumerate(nlp.pipe(iter_articles, batch_size=100, n_process=8), 
1):

    clean_articles.extend(clean_doc(doc))

We end up with 2.43 million sentences that, on average, contain 15 tokens.

Next, we create n-grams to capture composite terms. Gensim lets us identify n-grams 
based on the relative frequency of joint versus individual occurrence of the components. 
The Phrases module scores the tokens, and the Phraser class transforms the text 
data accordingly. 
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It transforms our list of sentences into a new dataset that we can write to file as follows:

sentences = LineSentence((data_path / f'articles_clean.txt').as_posix())

phrases = Phrases(sentences=sentences,

                          min_count=10,  # ignore terms with a lower count

                          threshold=0.5,  # only phrases with higher score

                          delimiter=b'_',  # how to join ngram tokens

                          scoring='npmi')  # alternative: default

grams = Phraser(phrases)

sentences = grams[sentences]

with (data_path / f'articles_ngrams.txt').open('w') as f:

        for sentence in sentences:

            f.write(' '.join(sentence) + '\n')

The notebook illustrates how we can repeat this process using the 2-gram file as input to 
create 3-grams. We end up with some 25,000 2-grams and 15,000 3- or 4-grams. Inspecting 
the result shows that the highest-scoring terms are names of companies or individuals, 
suggesting that we might want to tighten our initial cleaning criteria. Refer to the notebook 
for additional details on the dataset.

The skip-gram architecture in TensorFlow 2
In this section, we will illustrate how to build a word2vec model using the Keras interface 
of TensorFlow 2 that we will introduce in much more detail in the next chapter. The 
financial_news_word2vec_tensorflow notebook contains the code samples and additional 
implementation details.

We start by tokenizing the documents and assigning a unique ID to each item in the 
vocabulary. First, we sample a subset of the sentences created in the previous section to 
limit the training time:

SAMPLE_SIZE=.5

sentences = file_path.read_text().split('\n')
words = ' '.join(np.random.choice(sentences, size=int(SAMLE_SIZE* l 
en(sentences)), replace=False)).split()
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We require at least 10 occurrences in the corpus, keep a vocabulary of 31,300 tokens, and 
begin with the following steps:

1. Extract the top n most common words to learn embeddings.

2. Index these n words with unique integers.

3. Create an {index: word} dictionary.

4. Replace the n words with their index, and a dummy value 'UNK' elsewhere:

# Get (token, count) tuples for tokens meeting MIN_FREQ

MIN_FREQ = 10

token_counts = [t for t in Counter(words).most_common() if t[1] >= 
MIN_FREQ]

tokens, counts = list(zip(*token_counts))

# create id-token dicts & reverse dicts
id_to_token = pd.Series(tokens, index=range(1, len(tokens) + 1)).to_
dict()

id_to_token.update({0: 'UNK'})

token_to_id = {t:i for i, t in id_to_token.items()}

data = [token_to_id.get(word, 0) for word in words]

We end up with 17.4 million tokens and a vocabulary of close to 60,000 tokens, including 
up to 3-grams. The vocabulary covers around 72.5 percent of the analogies.

Noise-contrastive estimation – creating validation samples

Keras includes a make_sampling_table method that allows us to create a training set as pairs 
of context and noise words with corresponding labels, sampled according to their corpus 
frequencies. A lower factor increases the probability of selecting less frequent tokens; a 
chart in the notebook shows that the value of 0.1 limits sampling to the top 10,000 tokens:

SAMPLING_FACTOR =  1e-4

sampling_table = make_sampling_table(vocab_size,  
                                     sampling_factor=SAMPLING_FACTOR)
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Generating target-context word pairs

To train our model, we need pairs of tokens where one represents the target and the other 
is selected from the surrounding context window, as shown previously in the right panel of 
Figure 16.1. We can use Keras' skipgrams() function as follows:

pairs, labels = skipgrams(sequence=data,

                          vocabulary_size=vocab_size,

                          window_size=WINDOW_SIZE,

                          sampling_table=sampling_table,

                          negative_samples=1.0,

                          shuffle=True)

The result is 120.4 million context-target pairs, evenly split between positive and negative 
samples. The negative samples are generated according to the  
sampling_table probabilities we created in the previous step. The first five target and 
context word IDs with their matching labels appear as follows:

pd.DataFrame({'target': target_word[:5],

              'context': context_word[:5],

              'label': labels[:5]})

   target context label

0   30867    2117     1

1     196     359     1

2   17960   32467     0

3     314    1721     1

4   28387    7811     0

Creating the word2vec model layers

The word2vec model contains the following:

• An input layer that receives the two scalar values representing the target-context 
pair

• A shared embedding layer that computes the dot product of the vector for the 
target and context word

• A sigmoid output layer

The input layer has two components, one for each element of the target-context pair:

input_target = Input((1,), name='target_input')

input_context = Input((1,), name='context_input')
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The shared embedding layer contains one vector for each element of the vocabulary that is 
selected according to the index of the target and context tokens, respectively:

embedding = Embedding(input_dim=vocab_size,

                      output_dim=EMBEDDING_SIZE,

                      input_length=1,

                      name='embedding_layer')

target = embedding(input_target)

target = Reshape((EMBEDDING_SIZE, 1), name='target_embedding')(target)

context = embedding(input_context)

context = Reshape((EMBEDDING_SIZE, 1), name='context_embedding')(context)

The output layer measures the similarity of the two embedding vectors by their dot 
product and transforms the result using the sigmoid function that we encountered when 
discussing logistic regression in Chapter 7, Linear Models – From Risk Factors to Return 
Forecasts:

# similarity measure

dot_product = Dot(axes=1)([target, context])

dot_product = Reshape((1,), name='similarity')(dot_product)

output = Dense(units=1, activation='sigmoid', name='output')(dot_product)

This skip-gram model contains a 200-dimensional embedding layer that will assume 
different values for each vocabulary item. As a result, we end up with 59,617 x 200 trainable 
parameters, plus two for the sigmoid output.

In each iteration, the model computes the dot product of the context and the target 
embedding vectors, passes the result through the sigmoid to produce a probability, and 
adjusts the embedding based on the gradient of the loss.

Visualizing embeddings using TensorBoard
TensorBoard is a visualization tool that permits the projection of the embedding vectors 
into two or three dimensions to explore the word and phrase locations. After loading the 
embedding metadata file we created (refer to the notebook), you can also search for specific 
terms to view and explore its neighbors, projected into two or three dimensions using 
UMAP, t-SNE, or PCA (refer to Chapter 13, Data-Driven Risk Factors and Asset Allocation 

with Unsupervised Learning). Refer to the notebook for a higher-resolution color version of 
the following screenshot:
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Figure 16.5: 3D embeddings and metadata visualization

How to train embeddings faster with Gensim
The TensorFlow implementation is very transparent in terms of its architecture, but it is 
not particularly fast. The natural language processing (NLP) library Gensim, which we 
also used for topic modeling in the last chapter, offers better performance and more closely 
resembles the C-based word2vec implementation provided by the original authors.

Usage is very straightforward. We first create a sentence generator that just takes the name 
of the file we produced in the preprocessing step as input (we'll work with 3-grams again):

sentence_path = data_path / FILE_NAME

sentences = LineSentence(str(sentence_path))

In a second step, we configure the word2vec model with the familiar parameters 
concerning the sizes of the embedding vector and the context window, the minimum token 
frequency, and the number of negative samples, among others:

model = Word2Vec(sentences,

                 sg=1, # set to 1 for skip-gram; CBOW otherwise

                 size=300,

                 window=5,

                 min_count=20,

                 negative=15,

                 workers=8,

                 iter=EPOCHS,

                 alpha=0.05)
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One epoch of training takes a bit over 2 minutes on a modern 4-core i7 processor.

We can persist both the model and the word vectors, or just the word vectors, as follows:

# persist model

model.save(str(gensim_path / 'word2vec.model'))

# persist word vectors

model.wv.save(str(gensim_path / 'word_vectors.bin'))

We can validate model performance and continue training until we are satisfied with the 
results like so:

model.train(sentences, epochs=1, total_examples=model.corpus_count)

In this case, training for six additional epochs yields the best results with an accuracy of 
41.75 percent across all analogies covered by the vocabulary. The left panel of Figure 16.6 
shows the correct/incorrect predictions and accuracy breakdown per category.

Gensim also allows us to evaluate custom semantic algebra. We can check the popular 
"woman"+"king"-"man" ~ "queen" example as follows:

most_sim = best_model.wv.most_similar(positive=['woman', 'king'], 
negative=['man'], topn=10)

The right panel of the figure shows that "queen" is the third token, right after "monarch" 
and the less obvious "lewis", followed by several royalties:

Figure 16.6: Analogy accuracy by category and for a specific example
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We can also evaluate the tokens most similar to a given target to gain a better understanding 
of the embedding characteristics. We randomly select based on log corpus frequency:

counter = Counter(sentence_path.read_text().split())

most_common = pd.DataFrame(counter.most_common(), columns=['token', 'count'])

most_common['p'] = np.log(most_common['count'])/np.log(most_common['count']).
sum()similars = pd.DataFrame()

for token in np.random.choice(most_common.token, size=10, p=most_common.p):

    similars[token] = [s[0] for s in best_model.wv.most_similar(token)]

The following table exemplifies the results that include several n-grams:

Target Closest Match

0 1 2 3 4

profiles profile users political_
consultancy_
cambridge_
analytica

sophisticated facebook

divestments divestitures acquisitions takeovers bayer consolidation

readiness training military command air_force preparations

arsenal nuclear_
weapons

russia ballistic_missile weapons hezbollah

supply_
disruptions

disruptions raw_material disruption prices downturn

We will now proceed to develop an application more closely related to real-life trading 
using SEC filings.

word2vec for trading with SEC filings
In this section, we will learn word and phrase vectors from annual SEC filings using 
Gensim to illustrate the potential value of word embeddings for algorithmic trading. In 
the following sections, we will combine these vectors as features with price returns to train 
neural networks to predict equity prices from the content of security filings.

In particular, we will use a dataset containing over 22,000 10-K annual reports from the 
period 2013-2016 that are filed by over 6,500 listed companies and contain both financial 
information and management commentary (see Chapter 2, Market and Fundamental Data – 
Sources and Techniques).

For about 3,000 companies corresponding to 11,000 filings, we have stock prices to label 
the data for predictive modeling. (See data source details and download instructions and 
preprocessing code samples in the sec_preprocessing notebook in the sec-filings folder.)
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Preprocessing – sentence detection and n-grams
Each filing is a separate text file, and a master index contains filing metadata. We extract the 
most informative sections, namely:

• Item 1 and 1A: Business and Risk Factors

• Item 7: Management's Discussion

• Item 7a: Disclosures about Market Risks

The sec_preprocessing notebook shows how to parse and tokenize the text using spaCy, 
similar to the approach in Chapter 14. We do not lemmatize the tokens to preserve nuances 
of word usage.

Automatic phrase detection

As in the previous section, we use Gensim to detect phrases that consist of multiple tokens, 
or n-grams. The notebook shows that the most frequent bigrams include common_stock, 
united_states, cash_flows, real_estate, and interest_rates.

We end up with a vocabulary of slightly over 201,000 tokens with a median frequency of 
7, suggesting substantial noise that we can remove by increasing the minimum frequency 
when training our word2vec model.

Labeling filings with returns to predict earnings surprises
The dataset comes with a list of tickers and filing dates associated with the 10,000 
documents. We can use this information to select stock prices for a certain period 
surrounding the filing publication. The goal would be to train a model that uses word 
vectors for a given filing as input to predict post-filing returns.

The following code example shows how to label individual filings with the 1-month return 
for the period after filing:

with pd.HDFStore(DATA_FOLDER / 'assets.h5') as store:

    prices = store['quandl/wiki/prices'].adj_close

sec = pd.read_csv('sec_path/filing_index.csv').rename(columns=str.lower)
sec.date_filed = pd.to_datetime(sec.date_filed)
sec = sec.loc[sec.ticker.isin(prices.columns), ['ticker', 'date_filed']]
price_data = []
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for ticker, date in sec.values.tolist():

    target = date + relativedelta(months=1)

    s = prices.loc[date: target, ticker]

    price_data.append(s.iloc[-1] / s.iloc[0] - 1)

df = pd.DataFrame(price_data,

                  columns=['returns'],

                  index=sec.index)

We will come back to this when we work with deep learning architectures in the 
following chapters.

Model training
The gensim.models.word2vec class implements the skip-gram and CBOW architectures 
introduced previously. The notebook word2vec contains additional implementation details.

To facilitate memory-efficient text ingestion, the LineSentence class creates a generator 
from individual sentences contained in the text file provided:

sentence_path = Path('data', 'ngrams', f'ngrams_2.txt')

sentences = LineSentence(sentence_path)

The Word2Vec class offers the configuration options introduced earlier in this chapter:

model = Word2Vec(sentences,

                 sg=1,          # 1=skip-gram; otherwise CBOW

                 hs=0,          # hier. softmax if 1, neg. sampling if 0

                 size=300,      # Vector dimensionality

                 window=3,      # Max dist. btw target and context word

                 min_count=50,  # Ignore words with lower frequency

                 negative=10,   # noise word count for negative sampling

                 workers=8,     # no threads

                 iter=1,        # no epochs = iterations over corpus

                 alpha=0.025,   # initial learning rate

                 min_alpha=0.0001 # final learning rate
                )

The notebook shows how to persist and reload models to continue training, or how to store 
the embedding vectors separately, for example, for use in machine learning models.
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Model evaluation

Basic functionality includes identifying similar words:

sims=model.wv.most_similar(positive=['iphone'], restrict_vocab=15000)

                  term   similarity

0                 ipad    0.795460

1              android    0.694014

2           smartphone    0.665732

We can also validate individual analogies using positive and negative contributions 
accordingly:

model.wv.most_similar(positive=['france', 'london'],

                      negative=['paris'],

                      restrict_vocab=15000)

             term  similarity

0  united_kingdom    0.606630

1         germany    0.585644

2     netherlands    0.578868

Performance impact of parameter settings

We can use the analogies to evaluate the impact of different parameter settings. The 
following results stand out (refer to the detailed results in the models folder):

• Negative sampling outperforms the hierarchical softmax, while also training faster.

• The skip-gram architecture outperforms CBOW.

• Different min_count settings have a smaller impact; the midpoint of 50 performs 
best.

Further experiments with the best-performing skip-gram model using negative sampling 
and a min_count of 50 show the following:

• Context windows smaller than 5 reduce performance.

• A higher negative sampling rate improves performance at the expense of 
slower training.

• Larger vectors improve performance, with a size of 600 yielding the best accuracy 
at 38.5 percent.
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Sentiment analysis using doc2vec embeddings
Text classification requires combining multiple word embeddings. A common approach is to 
average the embedding vectors for each word in the document. This uses information from 
all embeddings and effectively uses vector addition to arrive at a different location point in 
the embedding space. However, relevant information about the order of words is lost.

In contrast, the document embedding model, doc2vec, developed by the word2vec authors 
shortly after publishing their original contribution, produces embeddings for pieces of 
text like a paragraph or a product review directly. Similar to word2vec, there are also two 
flavors of doc2vec:

• The distributed bag of words (DBOW) model corresponds to the word2vec CBOW 
model. The document vectors result from training a network on the synthetic 
task of predicting a target word based on both the context word vectors and the 
document's doc vector.

• The distributed memory (DM) model corresponds to the word2wec skip-gram 
architecture. The doc vectors result from training a neural net to predict a target 
word using the full document's doc vector.

Gensim's Doc2Vec class implements this algorithm. We'll illustrate the use of doc2vec by 
applying it to the Yelp sentiment dataset that we introduced in Chapter 14. To speed up 
training, we limit the data to a stratified random sample of 0.5 million Yelp reviews with 
their associated star ratings. The doc2vec_yelp_sentiment notebook contains the code 
examples for this section.

Creating doc2vec input from Yelp sentiment data
We load the combined Yelp dataset containing 6 million reviews, as created in Chapter 14, 
Text Data for Trading – Sentiment Analysis, and sample 100,000 reviews for each star rating:

df = pd.read_parquet('data_path / 'user_reviews.parquet').loc[:, ['stars', 

                                                                  'text']]

stars = range(1, 6)

sample = pd.concat([df[df.stars==s].sample(n=100000) for s in stars])

We use nltk's RegexpTokenizer for simple and quick text cleaning:

tokenizer = RegexpTokenizer(r'\w+')

stopword_set = set(stopwords.words('english'))

def clean(review):

    tokens = tokenizer.tokenize(review)

    return ' '.join([t for t in tokens if t not in stopword_set])

sample.text = sample.text.str.lower().apply(clean)
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After we filter out reviews shorter than 10 tokens, we are left with 485,825 samples. The left 
panel of Figure 16.6 shows the distribution of the number of tokens per review.

The gensim.models.Doc2Vec class processes documents in the TaggedDocument format 
that contains the tokenized documents alongside a unique tag that permits the document 
vectors to be accessed after training:

sample = pd.read_parquet('yelp_sample.parquet')

sentences = []

for i, (stars, text) in df.iterrows():

    sentences.append(TaggedDocument(words=text.split(), tags=[i]))

Training a doc2vec model
The training interface works in a similar fashion to word2vec and also allows continued 
training and persistence:

model = Doc2Vec(documents=sentences,

                dm=1,           # 1=distributed memory, 0=dist.BOW

                epochs=5,

                size=300,       # vector size

                window=5,       # max. distance betw. target and context

                min_count=50,   # ignore tokens w. lower frequency

                negative=5,     # negative training samples

                dm_concat=0,    # 1=concatenate vectors, 0=sum

                dbow_words=0,   # 1=train word vectors as well

                workers=4)

model.save((results_path / 'sample.model').as_posix())

We can query the n terms most similar to a given token as a quick way to evaluate the 
resulting word vectors as follows:

model.most_similar('good')

The right panel of Figure 16.7 displays the returned tokens and their similarity:
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Figure 16.7: Histogram of the number of tokens per review (left) and terms most similar to the token 'good'

Training a classifier with document vectors
Now, we can access the document vectors to create features for a sentiment classifier:

y = sample.stars.sub(1)

X = np.zeros(shape=(len(y), size)) # size=300

for i in range(len(sample)):

    X[i] = model.docvecs[i]

X.shape

(485825, 300)

We create training and test sets as usual:

X_train, X_test, y_train, y_test = train_test_split(X, y,

                                                    test_size=0.2,

                                                    random_state=42,

                                                    stratify=y)

Now, we proceed to train a RandomForestClassifier, a LightGBM gradient boosting model, 
and a multinomial logistic regression. We use 500 trees for the random forest:

rf = RandomForestClassifier(n_jobs=-1, n_estimators=500)
rf.fit(X_train, y_train)
rf_pred = rf.predict(X_test)
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We use early stopping with the LightGBM classifier, but it runs for the full 5,000 rounds 
because it continues to improve its validation performance:

train_data = lgb.Dataset(data=X_train, label=y_train)

test_data = train_data.create_valid(X_test, label=y_test)

params = {'objective': 'multiclass',

          'num_classes': 5}

lgb_model = lgb.train(params=params,

                      train_set=train_data,

                      num_boost_round=5000,

                      valid_sets=[train_data, test_data],

                      early_stopping_rounds=25,

                      verbose_eval=50)

# generate multiclass predictions

lgb_pred = np.argmax(lgb_model.predict(X_test), axis=1)

Finally, we build a multinomial logistic regression model as follows:

lr = LogisticRegression(multi_class='multinomial', solver='lbfgs',  
                        class_weight='balanced')

lr.fit(X_train, y_train)
lr_pred = lr.predict(X_test)

When we compute the accuracy for each model on the validation set, gradient boosting 
performs significantly better at 62.24 percent. Figure 16.8 shows the confusion matrix and 
accuracy for each model:

Figure 16.8: Confusion matrix and test accuracy for alternative models

The sentiment classification result in Chapter 14, Text Data for Trading – Sentiment Analysis, 
produced better accuracy for LightGBM (73.6 percent), but we used the full dataset and 
included additional features. You may want to test whether increasing the sample size or 
tuning the model parameters makes doc2vec perform equally well.
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Lessons learned and next steps
This example applied sentiment analysis using doc2vec to product reviews rather than 
financial documents. We selected product reviews because it is very difficult to find 
financial text data that is large enough for training word embeddings from scratch and also 
has useful sentiment labels or sufficient information for us to assign them labels, such as 
asset returns, ourselves.

While product reviews allow us to demonstrate the workflow, we need to keep in mind 
important structural differences: product reviews are often short, informal, and specific to 
one particular object. Many financial documents, in contrast, are longer, more formal, and 
the target object may or may not be clearly identified. Financial news articles could concern 
multiple targets, and while corporate disclosures may have a clear source, they may also 
discuss competitors. An analyst report, for instance, may also discuss both positive and 
negative aspects of the same object or topic.

In short, the interpretation of sentiment expressed in financial documents often requires a 
more sophisticated, nuanced, and granular approach that builds up an understanding of 
the content's meaning from different aspects. Decision makers also often care to understand 
how a model arrives at its conclusion.

These challenges have not yet been solved and remain an area of very active research, 
complicated not least by the scarcity of suitable data sources. However, recent 
breakthroughs that significantly boosted performance on various NLP tasks since 2018 
suggest that financial sentiment analysis may also become more robust in the coming years. 
We will turn to these innovations next.

New frontiers – pretrained transformer models
Word2vec and GloVe embeddings capture more semantic information than the bag-of-
words approach. However, they allow only a single fixed-length representation of each 
token that does not differentiate between context-specific usages. To address unsolved 
problems such as multiple meanings for the same word, called polysemy, several new 
models have emerged that build on the attention mechanism designed to learn more 
contextualized word embeddings (Vaswani et al., 2017). The key characteristics of these 
models are as follows:

• The use of bidirectional language models that process text both left-to-right and 
right-to-left for a richer context representation

• The use of semi-supervised pretraining on a large generic corpus to learn universal 
language aspects in the form of embeddings and network weights that can be used 
and fine-tuned for specific tasks (a form of transfer learning that we will discuss in 
more detail in Chapter 18, CNNs for Financial Time Series and Satellite Images)
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In this section, we briefly describe the attention mechanism, outline how the recent 
transformer models—starting with Bidirectional Encoder Representation from 
Transformers (BERT)—use it to improve performance on key NLP tasks, reference 
several sources for pretrained language models, and explain how to use them for financial 
sentiment analysis.

Attention is all you need 
The attention mechanism explicitly models the relationships between words in a sentence 
to better incorporate the context. It was first applied to machine translation (Bahdanau, 
Cho, and Bengio, 2016), but has since become integral to neural language models for a wide 
variety of tasks.

Until 2017, recurrent neural networks (RNNs), which sequentially process text left-to-right 
or right-to-left, represented the state of the art for NLP tasks like translation. Google, for 
example, has employed such a model in production since late 2016. Sequential processing 
implies several steps to semantically connect words at distant locations and precludes 
parallel processing, which greatly speeds up computation on modern, specialized hardware 
like GPUs. (For more information on RNNs, refer to Chapter 19, RNNs for Multivariate Time 
Series and Sentiment Analysis.)

In contrast, the Transformer model, introduced in the seminal paper Attention is all you need 
(Vaswani et al., 2017), requires only a constant number of steps to identify semantically 
related words. It relies on a self-attention mechanism that captures links between all words 
in a sentence, regardless of their relative position. The model learns the representation of a 
word by assigning an attention score to every other word in the sentence that determines 
how much each of the other words should contribute to the representation. These scores 
then inform a weighted average of all words' representations, which is fed into a fully 
connected network to generate a new representation for the target word.

The Transformer model uses an encoder-decoder architecture with several layers, each 
of which uses several attention mechanisms (called heads) in parallel. It yielded large 
performance improvements on various translation tasks and, more importantly, inspired 
a wave of new research into neural language models addressing a broader range of tasks. 
The resources linked on GitHub contain various excellent visual explanations of how the 
attention mechanism works, so we won't go into more detail here.
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BERT – towards a more universal language model
In 2018, Google released the BERT model, which stands for Bidirectional Encoder 
Representations from Transformers (Devlin et al., 2019). In a major breakthrough for NLP 
research, it achieved groundbreaking results on eleven natural language understanding 
tasks, ranging from question answering and named entity recognition to paraphrasing 
and sentiment analysis, as measured by the General Language Understanding Evaluation 
(GLUE) benchmark (see GitHub for links to task descriptions and a leaderboard).

The new ideas introduced by BERT unleashed a flurry of new research that produced 
dozens of improvements that soon surpassed non-expert humans on the GLUE tasks and 
led to the more challenging SuperGLUE benchmark designed by DeepMind (Wang et al., 
2019). As a result, 2018 is now considered a turning point for NLP research; both Google 
Search and Microsoft's Bing are now using variations of BERT to interpret user queries and 
provide more accurate results.

We will briefly outline BERT's key innovations and provide indications on how to get 
started using it and its subsequent enhancements with one of several open source libraries 
providing pretrained models.

Key innovations – deeper attention and pretraining

The BERT model builds on two key ideas, namely, the transformer architecture described 
in the previous section and unsupervised pretraining so that it doesn't need to be trained 
from scratch for each new task; rather, its weights are fine-tuned:

• BERT takes the attention mechanism to a new (deeper) level by using 12 or 24 
layers, depending on the architecture, each with 12 or 16 attention heads. This 
results in up to 24 × 16 = 384 attention mechanisms to learn context-specific 
embeddings.

• BERT uses unsupervised, bidirectional pretraining to learn its weights in advance 
on two tasks: masked language modeling (predicting a missing word given the left 
and right context) and next sentence prediction (predicting whether one sentence 
follows another).

Context-free models such as word2vec or GloVe generate a single embedding for each 
word in the vocabulary: the word "bank" would have the same context-free representation 
in "bank account" and "bank of the river." In contrast, BERT learns to represent each 
word based on the other words in the sentence. As a bidirectional model, BERT is able to 
represent the word "bank" in the sentence "I accessed the bank account," not only based on 
"I accessed the" as a unidirectional contextual model, but also based on "account."
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BERT and its successors can be pretrained on a generic corpus like Wikipedia before 
adapting its final layers to a specific task and fine-tuning its weights. As a result, you can 
use large-scale, state-of-the-art models with billions of parameters, while only incurring 
a few hours rather than days or weeks of training costs. Several libraries offer such 
pretrained models that you can build on to develop a custom sentiment classifier for your 
dataset of choice.

Using pretrained state-of-the-art models

The recent NLP breakthroughs described in this section have shown how to acquire 
linguistic knowledge from unlabeled text with networks large enough to represent the 
long tail of rare usage phenomena. The resulting Transformer architectures make fewer 
assumptions about word order and context; instead, they learn a much more subtle 
understanding of language from very large amounts of data, using hundreds of millions or 
even billions of parameters.

We will highlight several libraries that make pretrained networks, as well as excellent 
Python tutorials available.

The Hugging Face Transformers library

Hugging Face is a US start-up developing chatbot applications designed to offer 
personalized AI-powered communication. It raised $15 million in late 2019 to further 
develop its very successful open source NLP library, Transformers. 

The library provides general-purpose architectures for natural language understanding 
and generation with more than 32 pretrained models in more than 100 languages and deep 
interoperability between TensorFlow 2 and PyTorch. It has excellent documentation.

The spacy-transformers library includes wrappers to facilitate the inclusion of the 
pretrained transformer models in a spaCy pipeline. Refer to the reference links on GitHub 
for more information.

AllenNLP

AllenNLP is built and maintained by the Allen Institute for AI, started by Microsoft 
cofounder Paul Allen, in close collaboration with researchers at the University of 
Washington. It has been designed as a research library for developing state-of-the-art deep 
learning models on a wide variety of linguistic tasks, built on PyTorch.

It offers solutions for key tasks from question answering to sentence annotation, including 
reading comprehension, named entity recognition, and sentiment analysis. A pretrained 
RoBERTa model (a more robust version of BERT; Liu et al., 2019) achieves over 95 percent 
accuracy on the Stanford sentiment treebank and can be used with just a few lines of code 
(see links to the documentation on GitHub).
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Trading on text data – lessons learned and next steps
As highlighted at the end of the section Sentiment analysis using doc2vec embeddings, there 
are important structural characteristics of financial documents that often complicate their 
interpretation and undermine simple dictionary-based methods.

In a recent survey of financial sentiment analysis, Man, Luo, and Lin (2019) found that 
most existing approaches only identify high-level polarities, such as positive, negative, or 
neutral. However, practical applications that lead to real decisions typically require a more 
nuanced and transparent analysis. In addition, the lack of large financial text datasets with 
relevant labels limits the potential for using traditional machine learning methods or neural 
networks for sentiment analysis.

The pretraining approach just described, which, in principle, yields a deeper understanding 
of textual information, thus offers substantial promise. However, most applied research 
using transformers has focused on NLP tasks such as translation, question answering, logic, 
or dialog systems. Applications in relation to financial data are still in their infancy (see, 
for example, Araci 2019). This is likely to change soon given the availability of pretrained 
models and their potential to extract more valuable information from financial text data.

Summary
In this chapter, we discussed a new way of generating text features that use shallow neural 
networks for unsupervised machine learning. We saw how the resulting word embeddings 
capture interesting semantic aspects beyond the meaning of individual tokens by capturing 
some of the context in which they are used. We also covered how to evaluate the quality of 
word vectors using analogies and linear algebra.

We used Keras to build the network architecture that produces these features and applied 
the more performant Gensim implementation to financial news and SEC filings. Despite the 
relatively small datasets, the word2vec embeddings did capture meaningful relationships. 
We also demonstrated how appropriate labeling with stock price data can form the basis 
for supervised learning.

We applied the doc2vec algorithm, which produces a document rather than token vectors, 
to build a sentiment classifier based on Yelp business reviews. While this is unlikely to yield 
tradeable signals, it illustrates the process of how to extract features from relevant text data 
and train a model to predict an outcome that may be informative for a trading strategy.

Finally, we outlined recent research breakthroughs that promise to yield more powerful 
natural language models due to the availability of pretrained architectures that only require 
fine-tuning. Applications to financial data, however, are still at the research frontier.

In the next chapter, we will dive into the final part of this book, which covers how various 
deep learning architectures can be useful for algorithmic trading.
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17
Deep Learning for Trading

This chapter kicks off Part 4, which covers how several deep learning (DL) modeling 
techniques can be useful for investment and trading. DL has achieved numerous 
breakthroughs in many domains, ranging from image and speech recognition to 
robotics and intelligent agents that have drawn widespread attention and revived large-
scale research into artificial intelligence (AI). The expectations are high that the rapid 
development will continue and many more solutions to difficult practical problems will 
emerge.

In this chapter, we will present feedforward neural networks to introduce key elements 
of working with neural networks relevant to the various DL architectures covered in the 
following chapters. More specifically, we will demonstrate how to train large models 
efficiently using the backpropagation algorithm and manage the risks of overfitting. We 
will also show how to use the popular TensorFlow 2 and PyTorch frameworks, which we 
will leverage throughout Part 4.

Finally, we will develop, backtest, and evaluate a trading strategy based on signals 
generated by a deep feedforward neural network. We will design and tune the neural 
network and analyze how key hyperparameter choices affect its performance. 

In summary, after reading this chapter and reviewing the accompanying notebooks, you 
will know about:

• How DL solves AI challenges in complex domains

• Key innovations that have propelled DL to its current popularity

• How feedforward networks learn representations from data

• Designing and training deep neural networks (NNs) in Python

• Implementing deep NNs using Keras, TensorFlow, and PyTorch

• Building and tuning a deep NN to predict asset returns

• Designing and backtesting a trading strategy based on deep NN signals
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In the following chapters, we will build on this foundation to design various architectures 
suitable for different investment applications with a particular focus on alternative text and 
image data. 

These include recurrent neural networks (RNNs) tailored to sequential data such as 
time series or natural language, and convolutional neural networks (CNNs), which are 
particularly well suited to image data but can also be used with time-series data. We will 
also cover deep unsupervised learning, including autoencoders and generative adversarial 
networks (GANs) as well as reinforcement learning to train agents that interactively learn 
from their environment.

Deep learning – what's new and why it matters
The machine learning (ML) algorithms covered in Part 2 work well on a wide variety of 
important problems, including on text data, as demonstrated in Part 3. They have been 
less successful, however, in solving central AI problems such as recognizing speech or 
classifying objects in images. These limitations have motivated the development of DL, 
and the recent DL breakthroughs have greatly contributed to a resurgence of interest in AI. 
For a comprehensive introduction that includes and expands on many of the points in this 
section, see Goodfellow, Bengio, and Courville (2016), or for a much shorter version, see 
LeCun, Bengio, and Hinton (2015).

In this section, we outline how DL overcomes many of the limitations of other ML 
algorithms. These limitations particularly constrain performance on high-dimensional and 
unstructured data that requires sophisticated efforts to extract informative features.

The ML techniques we covered in Parts 2 and 3 are best suited for processing structured 
data with well-defined features. We saw, for example, how to convert text data into tabular 
data using the document-text matrix in Chapter 14, Text Data for Trading – Sentiment 
Analysis. DL overcomes the challenge of designing informative features, possibly by hand, 
by learning a representation of the data that better captures its characteristics with respect 
to the outcome.

More specifically, we'll see how DL learns a hierarchical representation of the data, and 
why this approach works well for high-dimensional, unstructured data. We will describe 
how NNs employ a multilayered, deep architecture to compose a set of nested functions 
and discover a hierarchical structure. These functions compute successive and increasingly 
abstract representations of the data in each layer based on the learning of the previous 
layer. We will also look at how the backpropagation algorithm adjusts the network 
parameters so that these representations best meet the model's objective.

You can find the code samples for this chapter and links to 
additional resources in the corresponding directory of the GitHub 
repository. The notebooks include color versions of the images.
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We will also briefly outline how DL fits into the evolution of AI and the diverse set of 
approaches that aim to achieve the current goals of AI.

Hierarchical features tame high-dimensional data
As discussed throughout Part 2, the key challenge of supervised learning is to generalize 
from training data to new samples. Generalization becomes exponentially more difficult 
as the dimensionality of the data increases. We encountered the root causes of these 
difficulties as the curse of dimensionality in Chapter 13, Data-Driven Risk Factors and Asset 
Allocation with Unsupervised Learning.

One aspect of this curse is that volume grows exponentially with the number of 
dimensions: for a hypercube with edge length 10, volume increases from 103 to 104 as 
its dimensionality increases from three to four. Conversely, the data density for a given 
sample size drops exponentially. In other words, the number of observations required to 
maintain a certain density grows exponentially.

Another aspect is that functional relationships between the features and the output 
can become more complex when they are allowed to vary across a growing number of 
dimensions. As discussed in Chapter 6, The Machine Learning Process, ML algorithms 
struggle to learn arbitrary functions in a high-dimensional space because the number 
of candidates grows exponentially while the density of the data available to infer the 
relationship drops simultaneously. To mitigate this problem, algorithms hypothesize that 
the target function belongs to a certain class and impose constraints on the search for the 
optimal solution within that class for the problem at hand.

Furthermore, algorithms typically assume that the output at a new point should be 
similar to the output at nearby training points. This prior assumption of smoothness or 
local constancy posits that the learned function will not change much in a small region, 
as illustrated by the k-nearest neighbor algorithm (see Chapter 6, The Machine Learning 
Process). However, as data density drops exponentially with a growing number of 
dimensions, the distance between training samples naturally rises. The notion of nearby 
training examples thus becomes less meaningful as the potential complexity of the target 
function increases.

For traditional ML algorithms, the number of parameters and required training samples 
is generally proportional to the number of regions in the input space that the algorithm is 
able to distinguish. DL is designed to overcome the challenges of learning an exponential 
number of regions from a limited number of training points by assuming that a hierarchy of 
features generates the data.
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DL as representation learning
Many AI tasks like image or speech recognition require knowledge about the world. One of 
the key challenges is to encode this knowledge so a computer can utilize it. For decades, the 
development of ML systems required considerable domain expertise to transform the raw 
data (such as image pixels) into an internal representation that a learning algorithm could 
use to detect or classify patterns.

Similarly, how much value an ML algorithm adds to a trading strategy depends greatly 
on our ability to engineer features that represent the predictive information in the data so 
that the algorithm can process it. Ideally, the features capture independent drivers of the 
outcome, as discussed in Chapter 4, Financial Feature Engineering – How to Research Alpha 
Factors, and throughout Parts 2 and 3 when designing and evaluating factors that capture 
trading signals.

Rather than relying on hand-designed features, representation learning allows an ML 
algorithm to automatically discover the representation of the data most useful for detecting 
or classifying patterns. DL combines this technique with specific assumptions about the 
nature of the features. See Bengio, Courville, and Vincent (2013) for additional information.

How DL extracts hierarchical features from data

The core idea behind DL is that a multi-level hierarchy of features has generated the data. 
Consequently, a DL model encodes the prior belief that the target function is composed of a 
nested set of simpler functions. This assumption permits an exponential gain in the number 
of regions that can be distinguished for a given number of training samples.

In other words, DL is a representation learning method that extracts a hierarchy of concepts 
from the data. It learns this hierarchical representation by composing simple but non-
linear functions that successively transform the representation of one level (starting with 
the input data) into a new representation at a higher, slightly more abstract level. By 
combining enough of these transformations, DL is able to learn very complex functions.

Applied to a classification task, for example, higher levels of representation tend to amplify 
the aspects of the data most helpful for discriminating objects while suppressing irrelevant 
sources of variation. As we will see in more detail in Chapter 18, CNNs for Financial Time 
Series and Satellite Images, raw image data is just a two- or three-dimensional array of pixel 
values. The first layer of representation typically learns features that focus on the presence 
or absence of edges at particular orientations and locations. The second layer often learns 
motifs that depend on particular edge arrangements, regardless of small variations in their 
positions. The following layer may assemble motifs to represent parts of relevant objects, 
and subsequent layers would detect objects as combinations of these parts.
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The key breakthrough of DL is that a general-purpose learning algorithm can extract 
hierarchical features suitable for modeling high-dimensional, unstructured data in a way 
that is infinitely more scalable than human engineering. It is thus no surprise that the rise 
of DL parallels the large-scale availability of unstructured image or text data. To the extent 
that these data sources also figure prominently among alternative data, DL has become 
highly relevant for algorithmic trading.

Good and bad news – the universal approximation theorem

The universal approximation theorem formalizes the ability of NNs to capture arbitrary 
relationships between input and output data. George Cybenko (1989) demonstrated that 
single-layer NNs using sigmoid activation functions can represent any continuous function 
on a closed and bounded subset of Rn. Kurt Hornik (1991) further showed that it is not 
the specific shape of the activation function but rather the multilayered architecture that 
enables the hierarchical feature representation, which in turn allows NNs to approximate 
universal functions.

However, the theorem does not help us identify the network architecture required to 
represent a specific target function. We will see in the last section of this chapter that 
there are numerous parameters to optimize, including the network's width and depth, the 
number of connections between neurons, and the type of activation functions.

Furthermore, the ability to represent arbitrary functions does not imply that a network 
can actually learn the parameters for a given function. It took over two decades for 
backpropagation, the most popular learning algorithm for NNs to become effective at scale. 
Unfortunately, given the highly nonlinear nature of the optimization problem, there is no 
guarantee that it will find the absolute best rather than just a relatively good solution.

How DL relates to ML and AI
AI has a long history, going back at least to the 1950s as an academic field and much 
longer as a subject of human inquiry, but has experienced several waves of ebbing and 
flowing enthusiasm since (see Nilsson, 2009, for an in-depth survey). ML is an important 
subfield with a long history in related disciplines such as statistics and became prominent 
in the 1980s. As we have just discussed, and as depicted in Figure 17.1, DL is a form of 
representation learning and is itself a subfield of ML.

The initial goal of AI was to achieve general AI, conceived as the ability to solve problems 
considered to require human-level intelligence, and to reason and draw logical conclusions 
about the world and automatically improve itself. AI applications that do not involve 
ML include knowledge bases that encode information about the world, combined with 
languages for logical operations. 
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Historically, much AI effort went into developing rule-based systems that aimed to capture 
expert knowledge and decision-making rules, but hard-coding these rules frequently failed 
due to excessive complexity. In contrast, ML implies a probabilistic approach that learns 
rules from data and aims at circumventing the limitations of human-designed rule-based 
systems. It also involves a shift to narrower, task-specific objectives. 

The following figure sketches the relationship between the various AI subfields, outlines 
their goals, and highlights their relevance on a timeline.

Figure 17.1: AI timeline and subfields

In the next section, we will see how to actually build a neural network.

Designing an NN
DL relies on NNs, which consist of a few key building blocks, which in turn can be 
configured in a multitude of ways. In this section, we introduce how NNs work and 
illustrate their most important components used to design different architectures.

(Artificial) NNs were originally inspired by biological models of learning like the human 
brain, either in an attempt to mimic how it works and achieve similar success, or to gain a 
better understanding through simulation. Current NN research draws less on neuroscience, 
not least since our understanding of the brain has not yet reached a sufficient level of 
granularity. Another constraint is overall size: even if the number of neurons used in NNs 
continued to double every year since their inception in the 1950s, they would only reach the 
scale of the human brain around 2050.

We will also explain how backpropagation, often simply called backprop, uses gradient 
information (the value of the partial derivative of the cost function with respect to 
a parameter) to adjust all neural network parameters based on training errors. The 
composition of various nonlinear modules implies that the optimization of the objective 
function can be quite challenging. We also introduce refinements of backpropagation that 
aim to accelerate the learning process.



Chapter 17

[ 519 ]

A simple feedforward neural network architecture
In this section, we introduce feedforward NNs, which are based on the multilayer 
perceptron (MLP) and consist of one or more hidden layers that connect the input to the 
output layer. In feedforward NNs, information only flows from input to output, such that 
they can be represented as directed acyclic graphs, as in the following figure. In contrast, 
recurrent neural networks (RNNs; see Chapter 19, RNNs for Multivariate Time Series and 
Sentiment Analysis) include loops from the output back to the input to track or memorize 
past patterns and events.

We will first describe the feedforward NN architecture and how to implement it using 
NumPy. Then we will explain how backpropagation learns the NN weights and implement 
it in Python to train a binary classification network that produces perfect results even 
though the classes are not linearly separable. See the notebook build_and_train_
feedforward_nn for implementation details.

A feedforward NN consists of several layers, each of which receives a sample of input data 
and produces an output. The chain of transformations starts with the input layer, which 
passes the source data to one of several internal or hidden layers, and ends with the output 
layer, which computes a result for comparison with the sample's output value.

The hidden and output layers consist of nodes or neurons. Nodes of a fully connected or 
dense layer connect to some or all nodes of the previous layer. The network architecture 
can be summarized by its depth, measured by the number of hidden layers, or the width 
and the number of nodes of each layer.

Each connection has a weight used to compute a linear combination of the input values. 
A layer may also have a bias node that always outputs a 1 and is used by the nodes in the 
subsequent layer, like a constant in linear regression. The goal of the training phase is to 
learn values for these weights that optimize the network's predictive performance.

Each node of the hidden layers computes the dot product of the weights and the output 
of the previous layer. An activation function transforms the result, which becomes the 
input to the subsequent layer. This transformation is typically nonlinear (like the sigmoid 
function used for logistic regression; see Chapter 7, Linear Models – From Risk Factors to 
Return Forecasts, on linear models) so that the network can learn nonlinear relationships; 
we'll discuss common activation functions in the next section. The output layer computes 
the linear combination of the output of the last hidden layer with its weights and uses an 
activation function that matches the type of ML problem.

The computation of the network output from the inputs thus flows through a chain of 
nested functions and is called forward propagation. Figure 17.2 illustrates a single-layer 
feedforward NN with a two-dimensional input vector, a hidden layer of width three, and 
two nodes in the output layer. This architecture is simple enough, so we can still easily 
graph it yet illustrate the key concepts.
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Figure 17.2: A feedforward architecture with one hidden layer

The network graph shows that each of the three hidden layer nodes (not counting the 
bias) has three weights, one for the input layer bias and two for each of the two input 
variables. Similarly, each output layer node has four weights to compute the product sum 
or dot product of the hidden layer bias and activations. In total, there are 17 parameters to 
be learned.

The forward propagation panel on the right of the figure lists the computations for an 
example node at the hidden and output layers, h and o, respectively. The first node in the 
hidden layer applies the sigmoid function to the linear combination z of its weights and 
inputs akin to logistic regression. The hidden layer thus runs three logistic regressions in 
parallel, while the backpropagation algorithm ensures that their parameters will most likely 
differ to best inform subsequent layers.

The output layer uses a softmax activation function (see Chapter 6, The Machine Learning 
Process) that generalizes the logistic sigmoid function to multiple classes. It adjusts the dot 
product of the hidden layer output with its weight to represent probabilities for the classes 
(only two in this case to simplify the presentation).

The forward propagation can also be expressed as nested functions, where h again 
represents the hidden layer and o the output layer to produce the NN estimate of the 
output: �̂�𝑦 = 𝑜𝑜(ℎ(𝑥𝑥)) .
Key design choices
Some NN design choices resemble those for other supervised learning models. For 
example, the output is dictated by the type of the ML problem such as regression, 
classification, or ranking. Given the output, we need to select a cost function to measure 
prediction success and failure, and an algorithm that optimizes the network parameters to 
minimize the cost. 

NN-specific choices include the numbers of layers and nodes per layer, the connections 
between nodes of different layers, and the type of activation functions.



Chapter 17

[ 521 ]

A key concern is training efficiency: the functional form of activations can facilitate or 
hinder the flow of the gradient information available to the backpropagation algorithm that 
adjusts the weights in response to training errors. Functions with flat regions for large input 
value ranges have a very low gradient and can impede training progress when parameter 
values get stuck in such a range.

Some architectures add skip connections that establish direct links beyond neighboring 
layers to facilitate the flow of gradient information. On the other hand, the deliberate 
omission of connections can reduce the number of parameters to limit the network's capacity 
and possibly lower the generalization error, while also cutting the computational cost.

Hidden units and activation functions

Several nonlinear activation functions besides the sigmoid function have been used 
successfully. Their design remains an area of research because they are the key element 
that allows the NN to learn nonlinear relationships. They also have a critical impact on 
the training process because their derivatives determine how errors translate into weight 
adjustments.

A very popular activation function is the rectified linear unit (ReLU). The activation is 
computed as g(z) = max(0, z) for a given activation z, resulting in a functional form similar 
to the payoff for a call option. The derivative is constant whenever the unit is active. ReLUs 
are usually combined with an affine input transformation that requires the presence of a 
bias node. Their discovery has greatly improved the performance of feedforward networks 
compared to sigmoid units, and they are often recommended as the default. There are 
several ReLU extensions that aim to address the limitations of ReLU to learn via gradient 
descent when they are not active and their gradient is zero (Goodfellow, Bengio, and 
Courville, 2016).

Another alternative to the logistic function σ is the hyperbolic tangent function tanh, 
which produces output values in the ranges [-1, 1]. They are closely related because tanh(𝑧𝑧) = 2𝜎𝜎(2𝑧𝑧) − 1 . Both functions suffer from saturation because their gradient becomes very 
small for very low and high input values. However, tanh often performs better because it 
more closely resembles the identity function so that for small activation values, the network 
behaves more like a linear model, which in turn facilitates training.

Output units and cost functions
The choice of NN output format and cost function depends on the type of supervised 
learning problem:

• Regression problems use a linear output unit that computes the dot product of its 
weights with the final hidden layer activations, typically in conjunction with mean 
squared error cost

• Binary classification uses sigmoid output units to model a Bernoulli distribution 
just like logistic regression with hidden activations as input

• Multiclass problems rely on softmax units that generalize the logistic sigmoid and 
model a discrete distribution over more than two classes, as demonstrated earlier
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Binary and multiclass problems typically use cross-entropy loss, which significantly 
improves training efficacy compared to mean squared error (see Chapter 6, The Machine 
Learning Process, for additional information on loss functions).

How to regularize deep NNs
The downside of the capacity of NNs to approximate arbitrary functions is the greatly 
increased risk of overfitting. The best protection against overfitting is to train the model on 
a larger dataset. Data augmentation, such as creating slightly modified versions of images, 
is a powerful alternative approach. The generation of synthetic financial training data for 
this purpose is an active research area that we will address in Chapter 20, Autoencoders for 
Conditional Risk Factors and Asset Pricing (see, for example, Fu et al. 2019).

As an alternative or complement to obtaining more data, regularization can help mitigate 
the risk of overfitting. For all models discussed so far in this book, there is some form 
of regularization that modifies the learning algorithm to reduce its generalization error 
without negatively affecting its training error. Examples include the penalties added to the 
ridge and lasso regression objectives and the split or depth constraints used with decision 
trees and tree-based ensemble models.

Frequently, regularization takes the form of a soft constraint on the parameter values 
that trades off some additional bias for lower variance. A common practical finding is 
that the model with the lowest generalization error is not the model with the exact right 
size of parameters, but rather a larger model that has been well regularized. Popular 
NN regularization techniques that can be used in combination include parameter norm 
penalties, early stopping, and dropout.

Parameter norm penalties

We encountered parameter norm penalties for lasso and ridge regression as L1 and 

L2 regularization, respectively, in Chapter 7, Linear Models – From Risk Factors to Return 
Forecasts. In the NN context, parameter norm penalties similarly modify the objective 
function by adding a term that represents the L1 or L2 norm of the parameters, weighted 
by a hyperparameter that requires tuning. For NN, the bias parameters are usually not 
constrained, only the weights. 

L1 regularization can produce sparse parameter estimates by reducing weights all the way 
to zero. L2 regularization, in contrast, preserves directions along which the parameters 
significantly reduce the cost function. Penalties or hyperparameter values can vary across 
layers, but the added tuning complexity quickly becomes prohibitive.

Early stopping

We encountered early stopping as a regularization technique in Chapter 12, Boosting Your 
Trading Strategy. It is perhaps the most common NN regularization method because it 
is both effective and simple to use: it monitors the model's performance on a validation 
set and stops training when the performance ceases to improve for a certain number of 
observations to prevent overfitting.
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Early stopping can be viewed as efficient hyperparameter selection that automatically 
determines the correct amount of regularization, whereas parameter penalties require 
hyperparameter tuning to identify the ideal weight decay. Just be careful to avoid 
lookahead bias: backtest results will be exceedingly positive when early stopping uses out-
of-sample data that would not be available during a real-life implementation of the strategy. 

Dropout

Dropout refers to the randomized omission of individual units with a given probability 
during forward or backward propagation. As a result, these omitted units do not contribute 
to the training error or receive updates. 

The technique is computationally inexpensive and does not constrain the choice of model 
or training procedure. While more iterations are necessary to achieve the same amount of 
learning, each iteration is faster due to the lower computational cost. Dropout reduces the 
risk of overfitting by preventing units from compensating for mistakes made by other units 
during the training process.

Training faster – optimizations for deep learning
Backprop refers to the computation of the gradient of the cost function with respect to 
the internal parameter we wish to update and the use of this information to update the 
parameter values. The gradient is useful because it indicates the direction of parameter 
change that causes the maximal increase in the cost function. Hence, adjusting the 
parameters according to the negative gradient produces an optimal cost reduction, at least 
for a region very close to the observed samples. See Ruder (2017) for an excellent overview 
of key gradient descent optimization algorithms.

Training deep NNs can be time-consuming due to the nonconvex objective function and 
the potentially large number of parameters. Several challenges can significantly delay 
convergence, find a poor optimum, or cause oscillations or divergence from the target:

• Local minima can prevent convergence to a global optimum and cause poor 
performance

• Flat regions with low gradients that are not a local minimum can also prevent 
convergence while most likely being distant from the global optimum

• Steep regions with high gradients resulting from multiplying several large weights 
can cause excessive adjustments

• Deep architectures or long-term dependencies in an RNN require the multiplication 
of many weights during backpropagation, leading to vanishing gradients so that at 
least parts of the NN receive few or no updates

Several algorithms have been developed to address some of these challenges, namely 
variations of stochastic gradient descent and approaches that use adaptive learning rates. 
There is no single best algorithm, although adaptive learning rates have shown some 
promise.
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Stochastic gradient descent

Gradient descent iteratively adjusts these parameters using the gradient information. 
For a given parameter 𝜃𝜃 , the basic gradient descent rule adjusts the value by the negative 
gradient of the loss function with respect to this parameter, multiplied by a learning rate 𝜂𝜂 :𝜃𝜃 = 𝜃𝜃   − 𝜂𝜂⏟Learning Rate  .   ∇𝜃𝜃𝐽𝐽(𝜃𝜃)⏟    Gradient 
The gradient can be evaluated for all training data, a randomized batch of data, or 
individual observations (called online learning). Random samples give rise to stochastic 
gradient descent (SGD), which often leads to faster convergence if random samples are an 
unbiased estimate of the gradient direction throughout the training process.

However, there are numerous challenges: it can be difficult to define a learning rate or a 
rate schedule that facilitates efficient convergence ex ante—too low a rate prolongs the 
process, and too high a rate can lead to repeated overshooting and oscillation around 
or even divergence from a minimum. Furthermore, the same learning rate may not be 
adequate for all parameters, that is, in all directions of change.

Momentum

A popular refinement of basic gradient descent adds momentum to accelerate the 
convergence to a local minimum. Illustrations of momentum often use the example of a 
local optimum at the center of an elongated ravine (while in practice the dimensionality 
would be much higher than three). It implies a minimum inside a deep and narrow canyon 
with very steep walls that have a large gradient on one side and a much gentler slope 
towards a local minimum at the bottom of this region on the other side. Gradient descent 
naturally follows the steep gradient and will make repeated adjustments up and down the 
walls of the canyons with much slower movements towards the minimum.

Momentum aims to address such a situation by tracking recent directions and adjusting 
the parameters by a weighted average of the most recent gradient and the currently 
computed value. It uses a momentum term γ  to weigh the contribution of the latest 
adjustment to this iteration's update v

t
:𝜐𝜐𝑡𝑡 = 𝛾𝛾𝜐𝜐𝑡𝑡−1 + 𝜂𝜂∇𝜃𝜃𝐽𝐽(𝜃𝜃) 

Nesterov momentum is a simple change to normal momentum. Here, the gradient term is 

not computed at the current parameter space position  but instead from an intermediate 
position. The goal is to correct for the momentum term overshooting or pointing in the 
wrong direction (Sutskever et al. 2013).

Adaptive learning rates

The choice of the appropriate learning rate is very challenging as highlighted in the 
previous subsection on stochastic gradient descent. At the same time, it is one of the most 
important parameters that strongly impacts training time and generalization performance. 



Chapter 17

[ 525 ]

While momentum addresses some of the issues with learning rates, it does so at the expense 
of introducing another hyperparameter, the momentum rate. Several algorithms aim to 
adapt the learning rate throughout the training process based on gradient information.

AdaGrad

AdaGrad accumulates all historical, parameter-specific gradient information and continues 
to rescale the learning rate inversely proportional to the squared cumulative gradient for 
a given parameter. The goal is to slow down changes for parameters that have already 
changed a lot and to encourage adjustments for those that haven't.

AdaGrad is designed to perform well on convex functions and has had a mixed 
performance in a DL context because it can reduce the learning rate too quickly based on 
early gradient information.

RMSProp

RMSProp modifies AdaGrad to use an exponentially weighted average of the cumulative 
gradient information. The goal is to put more emphasis on recent gradients. It also 
introduces a new hyperparameter that controls the length of the moving average.

RMSProp is a popular algorithm that often performs well, provided by the various libraries 
that we will introduce later and routinely used in practice.

Adam

Adam stands for adaptive moment derivation and combines aspects of RMSProp with 
Momentum. It is considered fairly robust and often used as the default optimization 
algorithm (Kingma and Ba, 2014).

Adam has several hyperparameters with recommended default values that may benefit 
from some tuning:

• alpha: The learning rate or step size determines how much weights are updated 
so that larger (smaller) values speed up (slow down) learning before the rate is 
updated; many libraries use the 0.001 default

• beta
1
: The exponential decay rate for the first moment estimates; typically set to 0.9

• beta
2
. The exponential decay rate for the second-moment estimates; usually set to 

0.999

• epsilon: A very small number to prevent division by zero; often set to 1e-8

Summary – how to tune key hyperparameters
Hyperparameter optimization aims at tuning the capacity of the model so that it matches 
the complexity of the relationship between the input of the data. Excess capacity makes 
overfitting likely and requires either more data that introduces additional information into 
the learning process, reducing the size of the model, or more aggressive use of the various 
regularization tools just described.
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The principal diagnostic tool is the behavior of training and validation error described in 
Chapter 6, The Machine Learning Process: if the validation error worsens while the training 
error continues to drop, the model is overfitting because its capacity is too high. On the 
other hand, if performance falls short of expectations, increasing the size of the model may 
be called for.

The most important aspect of parameter optimization is the architecture itself as it largely 
determines the number of parameters: other things being equal, more or wider hidden 
layers increase the capacity. As mentioned before, the best performance is often associated 
with models that have excess capacity but are well regularized using mechanisms like 
dropout or L1/L2 penalties.

In addition to balancing model size and regularization, it is important to tune the learning 
rate because it can undermine the optimization process and reduce the effective model 
capacity. The adaptive optimization algorithms offer a good starting point as described for 
Adam, the most popular option.

A neural network from scratch in Python
To gain a better understanding of how NNs work, we will formulate the single-layer 
architecture and forward propagation computations displayed in Figure 17.2 using matrix 
algebra and implement it using NumPy. You can find the code samples in the notebook 
build_and_train_feedforward_nn.

The input layer
The architecture shown in Figure 17.2 is designed for two-dimensional input data X that 
represents two different classes Y. In matrix form, both X and Y are of shape 𝑁𝑁 × 2 :

𝑋𝑋 = [𝑥𝑥11 𝑥𝑥12⋮ ⋮𝑥𝑥𝑁𝑁1 𝑥𝑥𝑁𝑁2]             𝑌𝑌 = [𝑦𝑦11 𝑦𝑦12⋮ ⋮𝑦𝑦𝑁𝑁1 𝑦𝑦𝑁𝑁2] 

We will generate 50,000 random binary samples in the form of two concentric circles with 
different radius using scikit-learn's make_circles function so that the classes are not linearly 
separable:

N = 50000

factor = 0.1

noise = 0.1

X, y = make_circles(n_samples=N, shuffle=True,
                   factor=factor, noise=noise)
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We then convert the one-dimensional output into a two-dimensional array:

Y = np.zeros((N, 2))

for c in [0, 1]:

   Y[y == c, c] = 1

'Shape of: X: (50000, 2) | Y: (50000, 2) | y: (50000,)'

Figure 17.3 shows a scatterplot of the data that is clearly not linearly separable:

Figure 17.3: Synthetic data for binary classification

The hidden layer
The hidden layer h projects the two-dimensional input into a three-dimensional space 
using the weights Wh and translates the result by the bias vector bh. To perform this affine 
transformation, the hidden layer weights are represented by a 2 × 3  matrix Wh, and the 
hidden layer bias vector by a three-dimensional vector:𝐖𝐖ℎ2 × 3 = [𝑤𝑤ℎ11 𝑤𝑤ℎ12 𝑤𝑤ℎ13𝑤𝑤ℎ21 𝑤𝑤ℎ22 𝑤𝑤ℎ23]     𝐛𝐛ℎ1 × 3[𝑏𝑏ℎ1 𝑏𝑏ℎ2 𝑏𝑏ℎ3] 

The hidden layer activations H result from the application of the sigmoid function to the 
dot product of the input data and the weights after adding the bias vector:𝐇𝐇𝑁𝑁 𝑁 𝑁 = 𝜎𝜎(X ∙ Wℎ + 𝑏𝑏ℎ) =  11 + 𝑒𝑒−(X∙Wℎ+𝑏𝑏ℎ) =  [ℎ11 ℎ12 ℎ13⋮ ⋮ ⋮ℎ𝑁𝑁1 ℎ𝑁𝑁2 ℎ𝑁𝑁3] 

To implement the hidden layer using NumPy, we first define the logistic sigmoid 
function:

def logistic(z):

   """Logistic function."""

   return 1 / (1 + np.exp(-z))
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We then define a function that computes the hidden layer activations as a function of the 
relevant inputs, weights, and bias values:

def hidden_layer(input_data, weights, bias):

   """Compute hidden activations"""

   return logistic(input_data @ weights + bias)

The output layer
The output layer compresses the three-dimensional hidden layer activations H back to two 
dimensions using a 3 × 2  weight matrix Wo and a two-dimensional bias vector bo:𝐖𝐖𝑜𝑜3 × 2 = [w𝑜𝑜11 w𝑜𝑜12w𝑜𝑜21 w𝑜𝑜22w𝑜𝑜31 w𝑜𝑜32]            𝐛𝐛𝑜𝑜1 × 2 = [b𝑜𝑜1 b𝑜𝑜2] 
The linear combination of the hidden layer outputs results in an 𝑁𝑁 × 2  matrix Zo:𝐙𝐙𝑜𝑜𝑁𝑁 𝑁 𝑁 =  𝐇𝐇𝑁𝑁 𝑁 𝑁 ∙ 𝐖𝐖𝑜𝑜𝑁 𝑁 𝑁 + 𝐛𝐛𝑜𝑜1 𝑁 𝑁 

The output layer activations are computed by the softmax function 𝜍𝜍  that normalizes the Zo 
to conform to the conventions used for discrete probability distributions:𝐘𝐘𝑁𝑁 𝑁 𝑁 =  𝜍𝜍(𝐇𝐇 𝐇 𝐇𝐇𝑜𝑜 + 𝐛𝐛𝑜𝑜) = [𝑦𝑦11 𝑦𝑦12⋮ ⋮𝑦𝑦𝑛𝑛1 𝑦𝑦𝑛𝑛2] 

We create a softmax function in Python as follows:

def softmax(z):

   """Softmax function"""

   return np.exp(z) / np.sum(np.exp(z), axis=1, keepdims=True)

As defined here, the output layer activations depend on the hidden layer activations and 
the output layer weights and biases:

def output_layer(hidden_activations, weights, bias):

   """Compute the output y_hat"""

   return softmax(hidden_activations @ weights + bias)

Now we have all the components we need to integrate the layers and compute the NN 
output directly from the input.
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Forward propagation
The forward_prop function combines the previous operations to yield the output activations 
from the input data as a function of weights and biases:

def forward_prop(data, hidden_weights, hidden_bias, output_weights, output_
bias):

   """Neural network as function."""

   hidden_activations = hidden_layer(data, hidden_weights, hidden_bias)

   return output_layer(hidden_activations, output_weights, output_bias)

The predict function produces the binary class predictions given weights, biases, and input 
data:

def predict(data, hidden_weights, hidden_bias, output_weights, output_bias):

   """Predicts class 0 or 1"""

   y_pred_proba = forward_prop(data,

                               hidden_weights,

                               hidden_bias,

                               output_weights,

                               output_bias)

   return np.around(y_pred_proba)

The cross-entropy cost function
The final piece is the cost function to evaluate the NN output based on the given label. The 
cost function J uses the cross-entropy loss 𝜉𝜉 , which sums the deviations of the predictions 
for each class c from the actual outcome:

𝐽𝐽(𝐘𝐘𝐘 𝐘𝐘) = ∑ 𝜉𝜉(𝑦𝑦𝑖𝑖 𝐘 𝑦𝑦𝑦𝑖𝑖)𝑛𝑛
𝑖𝑖𝑖𝑖 = − ∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖 ∙  𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦𝑦𝑖𝑖𝑖𝑖)𝐶𝐶

𝑖𝑖𝑖𝑖𝑖
𝑁𝑁

𝑖𝑖𝑖𝑖  

It takes the following form in Python:

def loss(y_hat, y_true):

   """Cross-entropy"""

   return - (y_true * np.log(y_hat)).sum()

How to implement backprop using Python
To update the NN weights and bias values using backprop, we need to compute the 
gradient of the cost function. The gradient represents the partial derivative of the cost 
function with respect to the target parameter.
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How to compute the gradient

The NN composes a set of nested functions as highlighted earlier. Hence, the gradient of 
the loss function with respect to internal, hidden parameters is computed using the chain 
rule of calculus.

For scalar values, given the functions z = h(x) and y = o(h(x)) = o (z), we compute the 
derivative of y with respect to x using the chain rule as follows:𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

For vectors, with 𝑧𝑧 𝑧 𝑧𝑚𝑚  and 𝑥𝑥 𝑥 𝑥𝑛𝑛  so that the hidden layer h maps from Rn to Rm and z = 
h(x) and y = o (z), we get: 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖 =∑ 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑗𝑗 𝜕𝜕𝜕𝜕𝑗𝑗𝜕𝜕𝜕𝜕𝑖𝑖𝑗𝑗  

We can express this more concisely using matrix notation using the 𝑚𝑚 × 𝑛𝑛  Jacobian matrix 
of h: 𝑚𝑚 𝑚 𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

which contains the partial derivatives for each of the m components of z with respect to 
each of the n inputs x. The gradient ∇  of y with respect to x contains all partial derivatives 
and can thus be written as: ∇𝐱𝐱𝑦𝑦 𝑦 𝑦𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)𝑇𝑇 ∇𝐳𝐳𝑦𝑦 

The loss function gradient

The derivative of the cross-entropy loss function J with respect to each output layer 
activation i = 1, ..., N is a very simple expression (see the notebook for details), shown below 
on the left for scalar values and on the right in matrix notation:𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑖𝑖0 =  𝑦𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖           ∇𝐳𝐳0𝜕𝜕 = 𝐽𝐽 − 𝐽𝐽 = 𝐘𝐘0 

We define loss_gradient function accordingly:

def loss_gradient(y_hat, y_true):

   """output layer gradient"""

   return y_hat - y_true

The output layer gradients

To propagate the update back to the output layer weights, we use the gradient of the loss 
function J with respect to the weight matrix:
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𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕0 = 𝐻𝐻𝑇𝑇 ∙ (𝐘𝐘 − 𝐘𝐘) = 𝐻𝐻𝑇𝑇 ∙ 𝛿𝛿0 

and for the bias: 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕0 =  𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕0  𝜕𝜕𝜕𝜕0𝜕𝜕𝜕𝜕0 =  ∑ 1 ∙ 𝑁𝑁
𝑖𝑖𝑖𝑖 (�̂�𝒚𝑖𝑖 − 𝒚𝒚𝑖𝑖) =  ∑ 𝛿𝛿𝑖𝑖0𝑁𝑁

𝑖𝑖𝑖𝑖  

We can now define output_weight_gradient and output_bias_gradient accordingly, both 
taking the loss gradient 𝛿𝛿0  as input:

def output_weight_gradient(H, loss_grad):

   """Gradients for the output layer weights"""

   return  H.T @ loss_grad

def output_bias_gradient(loss_grad):

   """Gradients for the output layer bias"""

   return np.sum(loss_grad, axis=0, keepdims=True)

The hidden layer gradients

The gradient of the loss function with respect to the hidden layer values computes as 
follows, where ∘  refers to the element-wise matrix product:∇𝐙𝐙ℎ𝐽𝐽 𝐽 𝐽𝐽 𝐽 (1 − 𝐽𝐽) 𝐽 [𝛿𝛿0 ∙ (𝐖𝐖0)𝑇𝑇] 𝐽  δℎ 

We define a hidden_layer_gradient function to encode this result:

def hidden_layer_gradient(H, out_weights, loss_grad):

   """Error at the hidden layer.

   H * (1-H) * (E . Wo^T)"""

   return H * (1 - H) * (loss_grad @ out_weights.T)

The gradients for hidden layer weights and biases are:

∇𝐖𝐖ℎ𝐽𝐽 𝐽 𝐽 𝐽𝐽𝑇𝑇 ∙ 𝛿𝛿ℎ𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽∇𝐛𝐛ℎ𝐽𝐽 𝐽 𝐽 𝐽 𝛿𝛿ℎ𝑗𝑗𝑁𝑁
𝑗𝑗𝑗𝑗  

The corresponding functions are:

def hidden_weight_gradient(X, hidden_layer_grad):

   """Gradient for the weight parameters at the hidden layer"""

   return X.T @ hidden_layer_grad

  

def hidden_bias_gradient(hidden_layer_grad):

   """Gradient for the bias parameters at the output layer"""

   return np.sum(hidden_layer_grad, axis=0, keepdims=True)
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Putting it all together

To prepare for the training of our network, we create a function that combines the previous 
gradient definition and computes the relevant weight and bias updates from the training 
data and labels, and the current weight and bias values:

def compute_gradients(X, y_true, w_h, b_h, w_o, b_o):

   """Evaluate gradients for parameter updates"""

   # Compute hidden and output layer activations

   hidden_activations = hidden_layer(X, w_h, b_h)

   y_hat = output_layer(hidden_activations, w_o, b_o)

   # Compute the output layer gradients

   loss_grad = loss_gradient(y_hat, y_true)

   out_weight_grad = output_weight_gradient(hidden_activations, loss_grad)

   out_bias_grad = output_bias_gradient(loss_grad)

   # Compute the hidden layer gradients

   hidden_layer_grad = hidden_layer_gradient(hidden_activations,  
                                             w_o, loss_grad)

   hidden_weight_grad = hidden_weight_gradient(X, hidden_layer_grad)

   hidden_bias_grad = hidden_bias_gradient(hidden_layer_grad)

   return [hidden_weight_grad, hidden_bias_grad, out_weight_grad, out_bias_grad]

Testing the gradients

The notebook contains a test function that compares the gradient derived previously 
analytically using multivariate calculus to a numerical estimate that we obtain by slightly 
perturbing individual parameters. The test function validates that the resulting change in 
output value is similar to the change estimated by the analytical gradient.

Implementing momentum updates using Python

To incorporate momentum into the parameter updates, define an update_momentum function 
that combines the results of the compute_gradients function we just used with the most 
recent momentum updates for each parameter matrix:

def update_momentum(X, y_true, param_list, Ms, momentum_term, learning_rate):

   """Compute updates with momentum."""

   gradients = compute_gradients(X, y_true, *param_list)

   return [momentum_term * momentum - learning_rate * grads

           for momentum, grads in zip(Ms, gradients)]

The update_params function performs the actual updates:

def update_params(param_list, Ms):

   """Update the parameters."""

   return [P + M for P, M in zip(param_list, Ms)]
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Training the network

To train the network, we first randomly initialize all network parameters using a standard 
normal distribution (see the notebook). For a given number of iterations or epochs, we run 
momentum updates and compute the training loss as follows:

def train_network(iterations=1000, lr=.01, mf=.1):

   # Initialize weights and biases

   param_list = list(initialize_weights())

   # Momentum Matrices = [MWh, Mbh, MWo, Mbo]

   Ms = [np.zeros_like(M) for M in param_list]

   train_loss = [loss(forward_prop(X, *param_list), Y)]

   for i in range(iterations):

       # Update the moments and the parameters

       Ms = update_momentum(X, Y, param_list, Ms, mf, lr)

       param_list = update_params(param_list, Ms)

       train_loss.append(loss(forward_prop(X, *param_list), Y))

   return param_list, train_loss

Figure 17.4 plots the training loss over 50,000 iterations for 50,000 training samples with 
a momentum term of 0.5 and a learning rate of 1e-4. It shows that it takes over 5,000 
iterations for the loss to start to decline but then does so very fast. We have not used SGD, 
which would have likely accelerated convergence significantly.

Figure 17.4: Training loss per iteration

The plots in Figure 17.5 show the function learned by the neural network with a three-
dimensional hidden layer from two-dimensional data with two classes that are not 
linearly separable. The left panel displays the source data and the decision boundary that 
misclassifies very few data points and would further improve with continued training.

The center panel shows the representation of the input data learned by the hidden layer. 
The network learns weights so that the projection of the input from two to three dimensions 
enables the linear separation of the two classes. The right plot shows how the output layer 
implements the linear separation in the form of a cutoff value of 0.5 in the output dimension:
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Figure 17.5: Visualizing the function learned by the neural network

To sum up: we have seen how a very simple network with a single hidden layer with three 
nodes and a total of 17 parameters is able to learn how to solve a nonlinear classification 
problem using backprop and gradient descent with momentum.

We will next review how to use popular DL libraries that facilitate the design and 
fast training of complex architectures while using sophisticated techniques to prevent 
overfitting and evaluate the results.

Popular deep learning libraries
Currently, the most popular DL libraries are TensorFlow (supported by Google), Keras (led 
by Francois Chollet, now at Google), and PyTorch (supported by Facebook). Development 
is very active with PyTorch at version 1.4 and TensorFlow at 2.2 as of March 2020. 
TensorFlow 2.0 adopted Keras as its main interface, effectively combining both libraries 
into one.

All libraries provide the design choices, regularization methods, and backprop 
optimizations we discussed previously in this chapter. They also facilitate fast training 
on one or several graphics processing units (GPUs). The libraries differ slightly in their 
focus with TensorFlow originally designed for deployment in production and prevalent in 
the industry, while PyTorch has been popular among academic researchers; however, the 
interfaces are gradually converging.

We will illustrate the use of TensorFlow and PyTorch using the same network architecture 
and dataset as in the previous section.

Leveraging GPU acceleration
DL is very computationally intensive, and good results often require large datasets. As a 
result, model training and evaluation can become rather time-consuming. GPUs are highly 
optimized for the matrix operations required by deep learning models and tend to have 
more processing power, rendering speedups of 10x or more not uncommon. 
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All popular deep learning libraries support the use of a GPU, and some also allow for 
parallel training on multiple GPUs. The most common types of GPU are produced by 
NVIDIA, and configuration requires installation and setup of the CUDA environment. 
The process continues to evolve and can be somewhat challenging depending on your 
computational environment. 

A more straightforward way to leverage GPU is via the Docker virtualization platform. There 
are numerous images available that you can run in a local container managed by Docker 
that circumvents many of the driver and version conflicts that you may otherwise encounter. 
TensorFlow provides Docker images on its website that can also be used with Keras.

See GitHub for references and related instructions in the DL notebooks and the installation 
directory.

How to use TensorFlow 2
TensorFlow became the leading deep learning library shortly after its release in September 
2015, one year before PyTorch. TensorFlow 2 simplified the API that had grown 
increasingly complex over time by making the Keras API its principal interface. 

Keras was designed as a high-level API to accelerate the iterative workflow of designing 
and training deep neural networks with computational backends like TensorFlow, Theano, 
or CNTK. It has been integrated into TensorFlow in 2017. You can also combine code from 
both libraries to leverage Keras' high-level abstractions as well as customized TensorFlow 
graph operations.

In addition, TensorFlow adopts eager execution. Previously, you needed to define a 
complete computational graph for compilation into optimized operations. Running the 
compiled graph required the configuration of a session and the provision of the requisite 
data. Under eager execution, you can run TensorFlow operations on a line-by-line basis just 
like common Python code.

Keras supports both a slightly simpler Sequential API and a more flexible Functional API. 
We will introduce the former at this point and use the Functional API in more complex 
examples in the following chapters.

To create a model, we just need to instantiate a Sequential object and provide a list with the 
sequence of standard layers and their configurations, including the number of units, type of 
activation function, or name. 

The first hidden layer needs information about the number of features in the matrix it 
receives from the input layer via the input_shape argument. In our simple case, there are 
just two. Keras infers the number of rows it needs to process during training, through the 
batch_size argument that we will pass to the fit method later in this section. TensorFlow 
infers the sizes of the inputs received by other layers from the previous layer's units 
argument:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation
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model = Sequential([

    Dense(units=3, input_shape=(2,), name='hidden'),

    Activation('sigmoid', name='logistic'),

    Dense(2, name='output'),

    Activation('softmax', name='softmax'),

])

The Keras API provides numerous standard building blocks, including recurrent and 
convolutional layers, various options for regularization, a range of loss functions and 
optimizers, and also preprocessing, visualization, and logging (see the link to the 
TensorFlow documentation on GitHub for reference). It is also extensible.

The model's summary method produces a concise description of the network architecture, 
including a list of the layer types and shapes and the number of parameters:

model.summary()

Layer (type)                 Output Shape              Param #   

=================================================================

hidden (Dense)               (None, 3)                 9         

_________________________________________________________________

logistic (Activation)        (None, 3)                 0         

_________________________________________________________________

output (Dense)               (None, 2)                 8         

_________________________________________________________________

softmax (Activation)         (None, 2)                 0         

=================================================================

Total params: 17

Trainable params: 17

Non-trainable params: 0

Next, we compile the Sequential model to configure the learning process. To this end, we 
define the optimizer, the loss function, and one or several performance metrics to monitor 
during training:

model.compile(optimizer='rmsprop',

             loss='binary_crossentropy',

             metrics=['accuracy'])

Keras uses callbacks to enable certain functionality during training, such as logging 
information for interactive display in TensorBoard (see the next section):

tb_callback = TensorBoard(log_dir='./tensorboard',

                         histogram_freq=1,

                         write_graph=True,

                         write_images=True)
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To train the model, we call its fit method and pass several parameters in addition to the 
training data:

model.fit(X, Y,
         epochs=25,

         validation_split=.2,

         batch_size=128,

         verbose=1,

         callbacks=[tb_callback])

See the notebook for a visualization of the decision boundary that resembles the result from 
our earlier manual network implementation. The training with TensorFlow runs orders of 
magnitude faster, though.

How to use TensorBoard
TensorBoard is a great suite of visualization tools that comes with TensorFlow. It includes 
visualization tools to simplify the understanding, debugging, and optimization of NNs.

You can use it to visualize the computational graph, plot various execution and 
performance metrics, and even visualize image data processed by the network. It also 
permits comparisons of different training runs.

When you run the how_to_use_tensorflow notebook, with TensorFlow installed, you can 
launch TensorBoard from the command line:

tensorboard --logdir=/full_path_to_your_logs ## e.g. ./tensorboard

Alternatively, you can use it within your notebook by first loading the extension and then 
starting TensorBoard similarly by referencing the log directory:

%load_ext tensorboard

%tensorboard --logdir tensorboard/

For starters, the visualizations include train and validation metrics (see the left panel of 
Figure 17.6). 

In addition, you can view histograms of the weights and biases over various epochs (right 
panel of Figure 17.6; epochs evolve from back to front). This is useful because it allows 
you to monitor whether backpropagation succeeds in adjusting the weights as learning 
progresses and whether they are converging. 
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The values of weights should change from their initialization values over the course of 
several epochs and eventually stabilize:

Figure 17.6: TensorBoard learning process visualization

TensorBoard also lets you display and interactively explore the computational graph of 
your network, drilling down from the high-level structure to the underlying operations by 
clicking on the various nodes. The visualization for our simple example architecture (see 
the notebook) already includes numerous components but is very useful when debugging. 
For further reference, see the links on GitHub to more detailed tutorials.

How to use PyTorch 1.4
PyTorch was developed at the Facebook AI Research (FAIR) group led by Yann LeCunn, 
and the first alpha version released in September 2016. It provides deep integration with 
Python libraries like NumPy that can be used to extend its functionality, strong GPU 
acceleration, and automatic differentiation using its autograd system. It provides more 
granular control than Keras through a lower-level API and is mainly used as a deep 
learning research platform but can also replace NumPy while enabling GPU computation.

It employs eager execution, in contrast to the static computation graphs used by, for 
example, Theano or TensorFlow. Rather than initially defining and compiling a network 
for fast but static execution, it relies on its autograd package for automatic differentiation 
of tensor operations; that is, it computes gradients "on the fly" so that network structures 
can be partially modified more easily. This is called define-by-run, meaning that 
backpropagation is defined by how your code runs, which in turn implies that every single 
iteration can be different. The PyTorch documentation provides a detailed tutorial on this.

The resulting flexibility combined with an intuitive Python-first interface and speed of 
execution has contributed to its rapid rise in popularity and led to the development of 
numerous supporting libraries that extend its functionality.

Let's see how PyTorch and autograd work by implementing our simple network 
architecture (see the how_to_use_pytorch notebook for details).
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How to create a PyTorch DataLoader

We begin by converting the NumPy or pandas input data to torch tensors. Conversion 
from and to NumPy is very straightforward:

import torch

X_tensor = torch.from_numpy(X)

y_tensor = torch.from_numpy(y)

X_tensor.shape, y_tensor.shape

(torch.Size([50000, 2]), torch.Size([50000]))

We can use these PyTorch tensors to instantiate first a TensorDataset and, in a second step, 
a DataLoader that includes information about batch_size:

import torch.utils.data as utils

dataset = utils.TensorDataset(X_tensor,y_tensor)

dataloader = utils.DataLoader(dataset,

                              batch_size=batch_size,

                              shuffle=True)

How to define the neural network architecture
PyTorch defines an NN architecture using the Net() class. The central element is the 
forward function. autograd automatically defines the corresponding backward function that 
computes the gradients. 

Any legal tensor operation is fair game for the forward function, providing a log of design 
flexibility. In our simple case, we just link the tensor through functional input-output 
relations after initializing their attributes:

import torch.nn as nn

class Net(nn.Module):

    def __init__(self, input_size, hidden_size, num_classes):

        super(Net, self).__init__()  # Inherited from nn.Module

        self.fc1 = nn.Linear(input_size, hidden_size)  

        self.logistic = nn.LogSigmoid()                          

        self.fc2 = nn.Linear(hidden_size, num_classes)

        self.softmax = nn.Softmax(dim=1)

    

    def forward(self, x):

        """Forward pass: stacking each layer together"""

        out = self.fc1(x)

        out = self.logistic(out)

        out = self.fc2(out)

        out = self.softmax(out)

        return out



Deep Learning for Trading

[ 540 ]

We then instantiate a Net() object and can inspect the architecture as follows:

net = Net(input_size, hidden_size, num_classes)

net

Net(

  (fc1): Linear(in_features=2, out_features=3, bias=True)

  (logistic): LogSigmoid()

  (fc2): Linear(in_features=3, out_features=2, bias=True)

  (softmax): Softmax()

)

To illustrate eager execution, we can also inspect the initialized parameters in the first 
tensor:

list(net.parameters())[0]

Parameter containing:

tensor([[ 0.3008, -0.2117],

        [-0.5846, -0.1690],

        [-0.6639,  0.1887]], requires_grad=True)

To enable GPU processing, you can use net.cuda(). See the PyTorch documentation for 
placing tensors on CPU and/or one or more GPU units.

We also need to define a loss function and the optimizer, using some of the built-in options:

criterion = nn.CrossEntropyLoss()

optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate)

How to train the model

Model training consists of an outer loop for each epoch, that is, each pass over the training 
data, and an inner loop over the batches produced by the DataLoader. That executes the 
forward and backward passes of the learning algorithm. Some care needs to be taken to 
adjust data types to the requirements of the various objects and functions; for example, 
labels need to be integers and the features should be of type float:

for epoch in range(num_epochs):

    print(epoch)

    for i, (features, label) in enumerate(dataloader):

        

        features = Variable(features.float())         
        label = Variable(label.long())

        # Initialize the hidden weights

        optimizer.zero_grad()  

        

        # Forward pass: compute output given features

        outputs = net(features)
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        # Compute the loss

        loss = criterion(outputs, label)

        # Backward pass: compute the gradients

        loss.backward()

        # Update the weights

        optimizer.step()

The notebook also contains an example that uses the livelossplot package to plot losses 
throughout the training process as provided by Keras out of the box.

How to evaluate the model predictions

To obtain predictions from our trained model, we pass it feature data and convert the 
prediction to a NumPy array. We get softmax probabilities for each of the two classes:

test_value = Variable(torch.from_numpy(X)).float()
prediction = net(test_value).data.numpy()

Prediction.shape

(50000, 2)

From here on, we can proceed as before to compute loss metrics or visualize the result that 
again reproduces a version of the decision boundary we found earlier.

Alternative options
The huge interest in DL has led to the development of several competing libraries that 
facilitate the design and training of NNs. The most prominent include the following 
examples (also see references on GitHub).

Apache MXNet

MXNet, incubated at the Apache Foundation, is an open source DL software framework 
used to train and deploy deep NNs. It focuses on scalability and fast model training. They 
included the Gluon high-level interface to make it easy to prototype, train, and deploy DL 
models. MXNet has been picked by Amazon for deep learning on AWS.

Microsoft Cognitive Toolkit (CNTK)

The Cognitive Toolkit, previously known as CNTK, is Microsoft's contribution to the 
deep learning library collection. It describes an NN as a series of computational steps via 
a directed graph, similar to TensorFlow. In this directed graph, leaf nodes represent input 
values or network parameters, while other nodes represent matrix operations upon their 
inputs. CNTK allows users to build and combine popular model architectures ranging from 
deep feedforward NNs, convolutional networks, and recurrent networks (RNNs/LSTMs).
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Fastai

The fastai library aims to simplify training NNs that are fast and accurate using modern 
best practices. These practices have emerged from research into DL at the company that 
makes both the software and accompanying courses available for free. Fastai includes 
support for models that process image, text, tabular, and collaborative filtering data.

Optimizing an NN for a long-short strategy
In practice, we need to explore variations for the design options for the NN architecture 
and how we train it from those we outlined previously because we can never be sure from 
the outset which configuration best suits the data. In this section, we will explore various 
architectures for a simple feedforward NN to predict daily stock returns using the dataset 
developed in Chapter 12 (see the notebook preparing_the_model_data in the GitHub 
directory for that chapter).

To this end, we will define a function that returns a TensorFlow model based on 
several architectural input parameters and cross-validate alternative designs using the 
MultipleTimeSeriesCV we introduced in Chapter 7, Linear Models – From Risk Factors to 
Return Forecasts. To assess the signal quality of the model predictions, we build a simple 
ranking-based long-short strategy based on an ensemble of the models that perform best 
during the in-sample cross-validation period. To limit the risk of false discoveries, we then 
evaluate the performance of this strategy for an out-of-sample test period.

See the optimizing_a_NN_architecture_for_trading notebook for details. 

Engineering features to predict daily stock returns
To develop our trading strategy, we use the daily stock returns for 995 US stocks for the 
eight-year period from 2010 to 2017. We will use the features developed in Chapter 12, 

Boosting Your Trading Strategy that include volatility and momentum factors, as well as 
lagged returns with cross-sectional and sectoral rankings. We load the data as follows:

data = pd.read_hdf('../12_gradient_boosting_machines/data/data.h5', 

                   'model_data').dropna()

outcomes = data.filter(like='fwd').columns.tolist()
lookahead = 1

outcome= f'r{lookahead:02}_fwd'

X = data.loc[idx[:, :'2017'], :].drop(outcomes, axis=1)

y = data.loc[idx[:, :'2017'], outcome]

Defining an NN architecture framework
To automate the generation of our TensorFlow model, we create a function that constructs 
and compiles the model based on arguments that can later be passed during cross-validation 
iterations.
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The following make_model function illustrates how to flexibly define various architectural 
elements for the search process. The dense_layers argument defines both the depth and 
width of the network as a list of integers. We also use dropout for regularization, expressed 
as a float in the range [0, 1] to define the probability that a given unit will be excluded from 
a training iteration:

def make_model(dense_layers, activation, dropout):

    '''Creates a multi-layer perceptron model

    

    dense_layers: List of layer sizes; one number per layer

    '''

    model = Sequential()

    for i, layer_size in enumerate(dense_layers, 1):

        if i == 1:

            model.add(Dense(layer_size, input_dim=X_cv.shape[1]))

            model.add(Activation(activation))

        else:

            model.add(Dense(layer_size))

            model.add(Activation(activation))

    model.add(Dropout(dropout))

    model.add(Dense(1))

    model.compile(loss='mean_squared_error',

                  optimizer='Adam')

    return model

Now we can turn to the cross-validation process to evaluate various NN architectures.

Cross-validating design options to tune the NN
We use the MultipleTimeSeriesCV to split the data into rolling training and validation sets 
comprising of 24 * 12 months of data, while keeping the final 12 * 21 days of data (starting 
November 30, 2016) as a holdout test. We train each model for 48 21-day periods and 
evaluate its results over 3 21-day periods, implying 12 splits for cross-validation and test 
periods combined:

n_splits = 12

train_period_length=21 * 12 * 4

test_period_length=21 * 3

cv = MultipleTimeSeriesCV(n_splits=n_splits,

                          train_period_length=train_period_length,

                          test_period_length=test_period_length,

                          lookahead=lookahead)
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Next, we define a set of configurations for cross-validation. These include several options 
for two hidden layers and dropout probabilities; we'll only use tanh activations because 
a trial run did not suggest significant differences compared to ReLU. (We could also try 
out different optimizers. but I recommend you do not run this experiment, to limit what is 
already a computationally intensive effort):

dense_layer_opts = [(16, 8), (32, 16), (32, 32), (64, 32)]

dropout_opts = [0, .1, .2]

param_grid = list(product(dense_layer_opts, activation_opts, dropout_opts))

np.random.shuffle(param_grid)
len(param_grid)

12

To run the cross-validation, we define a function that produces the train and validation 
data based on the integer indices produced by the MultipleTimeSeriesCV as follows:

def get_train_valid_data(X, y, train_idx, test_idx):

    x_train, y_train = X.iloc[train_idx, :], y.iloc[train_idx]

    x_val, y_val = X.iloc[test_idx, :], y.iloc[test_idx]

    return x_train, y_train, x_val, y_val

During cross-validation, we train a model using one set of parameters from the previously 
defined grid for 20 epochs. After each epoch, we store a checkpoint that contains 
the learned weights that we can reload to quickly generate predictions for the best 
configuration without retraining.

After each epoch, we compute and store the information coefficient (IC) for the validation 
set by day:

ic = []

scaler = StandardScaler()

for params in param_grid:

    dense_layers, activation, dropout = params

    for batch_size in [64, 256]:

        checkpoint_path = checkpoint_dir / str(dense_layers) / activation /

                          str(dropout) / str(batch_size)

        for fold, (train_idx, test_idx) in enumerate(cv.split(X_cv)):

            x_train, y_train, x_val, y_val = get_train_valid_data(X_cv, y_cv,

                                             train_idx, test_idx)

            x_train = scaler.fit_transform(x_train)
            x_val = scaler.transform(x_val)

            preds = y_val.to_frame('actual')

            r = pd.DataFrame(index=y_val.groupby(level='date').size().index)

            model = make_model(dense_layers, activation, dropout)

            for epoch in range(20):            

                model.fit(x_train, y_train,
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                          batch_size=batch_size,

                          epochs=1, validation_data=(x_val, y_val))

                model.save_weights( 
                    (checkpoint_path / f'ckpt_{fold}_{epoch}').as_posix())

                preds[epoch] = model.predict(x_val).squeeze()

                r[epoch] = preds.groupby(level='date').apply(lambda x: 
spearmanr(x.actual, x[epoch])[0]).to_frame(epoch)

            ic.append(r.assign(dense_layers=str(dense_layers), 

                               activation=activation, 

                               dropout=dropout,

                               batch_size=batch_size,

                               fold=fold))

With an NVIDIA GTX 1080 GPU, 20 epochs takes a bit over one hour with batches of 64 
samples, and around 20 minutes with 256 samples.

Evaluating the predictive performance
Let's first take a look at the five models that achieved the highest median daily IC during 
the cross-validation period. The following code computes these values:

dates = sorted(ic.index.unique())

cv_period = 24 * 21

cv_dates = dates[:cv_period]

ic_cv = ic.loc[cv_dates]

(ic_cv.drop('fold', axis=1).groupby(params).median().stack()

 .to_frame('ic').reset_index().rename(columns={'level_3': 'epoch'})

 .nlargest(n=5, columns='ic'))

The resulting table shows that the architectures using 32 units in both layers and 16/8 in 
the first/second layer, respectively, performed best. These models also use dropout and 
were trained with batch sizes of 64 samples with the given number of epochs for all folds. 
The median IC values vary between 0.0236 and 0.0246:

Dense Layers Dropout Batch Size Epoch IC

(32, 32) 0.1 64 7 0.0246

(16, 8) 0.2 64 14 0.0241

(16, 8) 0.1 64 3 0.0238

(32, 32) 0.1 64 10 0.0237

(16, 8) 0.2 256 3 0.0236

Next, we'll take a look at how the parameter choices impact the predictive performance.
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First, we visualize the daily information coefficient (averaged per fold) for different 
configurations by epoch to understand how the duration of training affects the predictive 
accuracy. The plots in Figure 17.7, however, highlight few conclusive patterns; the IC varies 
little across models and not particularly systematically across epochs:

Figure 17.7: Information coefficients for various model configurations 

For more statistically robust insights, we run a linear regression using ordinary least 

squares (OLS) (see Chapter 7, Linear Models – From Risk Factors to Return Forecasts) using 
dummy variables for the layer, dropout, and batch size choices as well as for each epoch:

data = pd.melt(ic, id_vars=params, var_name='epoch', value_name='ic')

data = pd.get_dummies(data, columns=['epoch'] + params, drop_first=True)
model = sm.OLS(endog=data.ic, exog=sm.add_constant(data.drop('ic', axis=1)))

The chart in Figure 17.8 plots the confidence interval for each regression coefficient; if 
it does not include zero, then the coefficient is significant at the five percent level. The 
IC values on the y-axis reflect the differential from the constant (0.0027, p-value: 0.017) 
that represents the sample average over the configuration excluded while dropping one 
category of each dummy variable.

Across all configurations, batch size 256 and a dropout of 0.2 made significant (but small) 
positive contributions to performance. Similarly, training for seven epochs yielded slightly 
superior results. The regression is overall significant according to the F statistic but has a 
very low R2 value close to zero, underlining the high degree of noise in the data relative to 
the signal conveyed by the parameter choices.
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Figure 17.8: OLS coefficients and confidence intervals

Backtesting a strategy based on ensembled signals
To translate our NN model into a trading strategy, we generate predictions, evaluate their 
signal quality, create rules that define how to trade on these predictions, and backtest the 
performance of a strategy that implements these rules. See the notebook backtesting_with_
zipline for the code examples in this section.

Ensembling predictions to produce tradeable signals

To reduce the variance of the predictions and hedge against in-sample overfitting, we 
combine the predictions of the best three models listed in the table in the previous section 
and average the result.

To this end, we define the following generate_predictions() function, which receives 
the model parameters as inputs, loads the weights for the models for the desired epoch, 
and creates forecasts for the cross-validation and out-of-sample periods (showing only the 
essentials here to save some space):

def generate_predictions(dense_layers, activation, dropout,  
                         batch_size, epoch):

    checkpoint_dir = Path('logs')

    checkpoint_path = checkpoint_dir / dense_layers / activation /

                      str(dropout) / str(batch_size)

        

    for fold, (train_idx, test_idx) in enumerate(cv.split(X_cv)):

        x_train, y_train, x_val, y_val = get_train_valid_data(X_cv, y_cv, 

                                                              train_idx, 

                                                              test_idx)

        x_val = scaler.fit(x_train).transform(x_val)
        model = make_model(dense_layers, activation, dropout, input_dim)
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        status = model.load_weights( 
            (checkpoint_path / f'ckpt_{fold}_{epoch}').as_posix())

        status.expect_partial()

        predictions.append(pd.Series(model.predict(x_val).squeeze(), 

                                     index=y_val.index))

    return pd.concat(predictions)        

We store the results for evaluation with Alphalens and a Zipline backtest.

Evaluating signal quality using Alphalens

To gain some insight into the signal content of the ensembled model predictions, we use 
Alphalens to compute the return differences for investments into five equal-weighted 
portfolios differentiated by the forecast quantiles (see Figure 17.9). The spread between 
the top and the bottom quintile equals around 8 bps for a one-day holding period, which 
implies an alpha of 0.094 and a beta of 0.107:

Figure 17.9: Signal quality evaluation

Backtesting the strategy using Zipline

Based on the Alphalens analysis, our strategy will enter long and short positions for the 50 
stocks with the highest positive and lowest negative predicted returns, respectively, as long 
as there are at least 10 options on either side. The strategy trades every day.

The charts in Figure 17.10 show that the strategy performs well in- and out-of-sample 
(before transaction costs):
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Figure 17.10: In- and out-of-sample backtest performance 

It produces annualized returns of 22.8 percent over the 36-month period, 16.5 percent for 
the 24 in-sample months, and 35.7 percent for the 12 out-of-sample months. The Sharpe 
ratio is 0.72 in-sample and 2.15 out-of-sample, delivering an alpha of 0.18 (0.29) and a beta 
of 0.24 (0.16) in/out of sample.

How to further improve the results
The relatively simple architecture yields some promising results. To further improve 
performance, you can first and foremost add new features and more data to the model.

Alternatively, you can use more sophisticated architectures, including RNNs and CNNs, 
which are well suited to sequential data, whereas vanilla feedforward NNs are not 
designed to capture the ordered nature of the features.

We will turn to these specialized architectures in the following chapter.

Summary
In this chapter, we introduced DL as a form of representation learning that extracts 
hierarchical features from high-dimensional, unstructured data. We saw how to design, 
train, and regularize feedforward neural networks using NumPy. We demonstrated how to 
use the popular DL libraries PyTorch and TensorFlow that are suitable for use cases from 
rapid prototyping to production deployments.

Most importantly, we designed and tuned an NN using TensorFlow and were able to 
generate tradeable signals that delivered attractive returns during both the in-sample and 
out-of-sample periods.

In the next chapter, we will explore CNNs, which are particularly well suited for image 
data but are also well-suited for sequential data.
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18
CNNs for Financial Time  

Series and Satellite Images

In this chapter, we introduce the first of several specialized deep learning architectures 
that we will cover in Part 4. Deep convolutional neural networks (CNNs) have enabled 
superhuman performance in various computer vision tasks such as classifying images 
and video and detecting and recognizing objects in images. CNNs can also extract signals 
from time-series data that shares certain characteristics with image data and have been 
successfully applied to speech recognition (Abdel-Hamid et al. 2014). Moreover, they 
have been shown to deliver state-of-the-art performance on time-series classification 
across various domains (Ismail Fawaz et al. 2019).

CNNs are named after a linear algebra operation called a convolution that replaces the 
general matrix multiplication typical of feedforward networks (discussed in the last 
chapter) in at least one of their layers. We will show how convolutions work and why 
they are particularly well suited to data with a certain regular structure typically found 
in images but also present in time series.

Research into CNN architectures has proceeded very rapidly, and new architectures that 
improve benchmark performance continue to emerge. We will describe a set of building 
blocks consistently used by successful applications. We will also demonstrate how transfer 
learning can speed up learning by using pretrained weights for CNN layers closer to the 
input while fine-tuning the final layers to a specific task. We will also illustrate how to use 
CNNs for the specific computer vision task of object detection.

CNNs can help build a trading strategy by generating signals from images or (multiple) 
time-series data:

• Satellite data may signal future commodity trends, including the supply of certain 
crops or raw materials via aerial images of agricultural areas, mines, or transport 
networks like oil tankers. Surveillance camera footage, for example, from shopping 
malls, could be used to track and predict consumer activity.
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• Time-series data encompasses a very broad range of data sources and CNNs 
have been shown to deliver high-quality classification results by exploiting their 
structural similarity with images.

We will create a trading strategy based on predictions of a CNN that uses time-series data 
that's been deliberately formatted like images and demonstrate how to build a CNN to 
classify satellite images. 

More specifically, in this chapter, you will learn about the following:

• How CNNs employ several building blocks to efficiently model grid-like data
• Training, tuning, and regularizing CNNs for images and time-series data using 

TensorFlow

• Using transfer learning to streamline CNNs, even with less data

• Designing a trading strategy using return predictions by a CNN trained  
on time-series data formatted like images

• How to classify satellite images

How CNNs learn to model grid-like data
CNNs are conceptually similar to feedforward neural networks (NNs): they consist of 
units with parameters called weights and biases, and the training process adjusts these 
parameters to optimize the network's output for a given input according to a loss function. 
They are most commonly used for classification. Each unit uses its parameters to apply 
a linear operation to the input data or activations received from other units, typically 
followed by a nonlinear transformation.

The overall network models a differentiable function that maps raw data, such as image 
pixels, to class probabilities using an output activation function like softmax. CNNs use 
an objective function such as cross-entropy loss to measure the quality of the output with 
a single metric. They also rely on the gradients of the loss with respect to the network 
parameter to learn via backpropagation.

Feedforward NNs with fully connected layers do not scale well to high-dimensional image 
data with a large number of pixel values. Even the low-resolution images included in the 
CIFAR-10 dataset that we'll use in the next section contain 32×32 pixels with up to 256 
different color values represented by 8 bits each. With three channels, for example, for the 
red, green, and blue channels of the RGB color model, a single unit in a fully connected 
input layer implies 32 × 32 × 3=3,072 weights. A more standard resolution of 640×480 pixels 
already yields closer to 1 million weights for a single input unit. Deep architectures with 
several layers of meaningful width quickly lead to an exploding number of parameters that 
make overfitting during training all but certain.

You can find the code samples for this chapter and links to 
additional resources in the corresponding directory of the GitHub 
repository. The notebooks include color versions of the images.
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A fully connected feedforward NN makes no assumptions about the local structure of the 
input data so that arbitrarily reordering the features has no impact on the training result. By 
contrast, CNNs make the key assumption that the data has a grid-like topology and that 
the local structure matters. In other words, they encode the assumption that the input has 
a structure typically found in image data: pixels form a two-dimensional grid, possibly with 
several channels to represent the components of the color signal. Furthermore, the values of 
nearby pixels are likely more relevant to detect key features such as edges and corners than 
faraway data points. Naturally, initial CNN applications such as handwriting recognition 
focused on image data. 

Over time, however, researchers recognized similar characteristics in time-series data, 
broadening the scope for the productive use of CNNs. Time-series data consists of 
measurements at regular intervals that create a one-dimensional grid along the time axis, 
such as the lagged returns for a given ticker. There can also be a second dimension with 
additional features for this ticker and the same time periods. Finally, we could represent 
additional tickers using the third dimension. 

A common CNN use case beyond images includes audio data, either in a one-dimensional 
waveform in the time domain or, after a Fourier transform, as a two-dimensional spectrum 
in the frequency domain. CNNs also play a key role in AlphaGo, the first algorithm to win a 
game of Go against humans, where they evaluated different positions on the grid-like board.

The most important element to encode the assumption of a grid-like topology is the 
convolution operation that gives CNNs their name, combined with pooling. We will see 
that the specific assumptions about the functional relationship between input and output 
data imply that CNNs need far fewer parameters and compute more efficiently.

In this section, we will explain how convolution and pooling layers learn filters that extract 
local features and why these operations are particularly suitable for data with the structure 
just described. State-of-the-art CNNs combine many of these basic building blocks to 
achieve the layered representation learning described in the previous chapter. We conclude 
by describing key architectural innovations over the last decade that saw enormous 
performance improvements.

From hand-coding to learning filters from data
For image data, this local structure has traditionally motivated the development of  
hand-coded filters that extract such patterns for the use as features in machine learning 
(ML) models.

Figure 18.1 displays the effect of simple filters designed to detect certain edges. The 
notebook filter_example.ipynb illustrates how to use hand-coded filters in a convolutional 
network and visualizes the resulting transformation of the image. The filters are simple 
[-1, 1] patterns arranged in a 2 × 2  matrix, shown in the upper right of the figure. Below 
each filter, its effects are shown; they are a bit subtle and will be easier to spot in the 
accompanying notebook.
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Figure 18.1: The result of basic edge filters applied to an image

Convolutional layers, by contrast, are designed to learn such local feature representations 
from the data. A key insight is to restrict their input, called the receptive field, to a small 
area of the input so it captures basic pixel constellations that reflect common patterns like 
edges or corners. Such patterns may occur anywhere in an image, though, so CNNs also 
need to recognize similar patterns in different locations and possibly with small variations.

Subsequent layers then learn to synthesize these local features to detect higher-order 
features. The linked resources on GitHub include examples of how to visualize the filters 
learned by a deep CNN using some of the deep architectures that we present in the next 
section on reference architectures.

How the elements of a convolutional layer operate
Convolutional layers integrate three architectural ideas that enable the learning of feature 
representations that are to some degree invariant to shifts, changes in scale, and distortion: 

• Sparse rather than dense connectivity

• Weight sharing

• Spatial or temporal downsampling 

Moreover, convolutional layers allow for inputs of variable size. We will walk through a 
typical convolutional layer and describe each of these ideas in turn.

Figure 18.2 outlines the set of operations that typically takes place in a three-dimensional 
convolutional layer, assuming image data is input with the three dimensions of height, 
width, and depth, or the number of channels. The range of pixel values depends on the bit 
representation, for example, [0, 255] for 8 bits. Alternatively, the width axis could represent 
time, the height different features, and the channels could capture observations on distinct 
objects such as tickers. 
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Figure 18.2: Typical operations in a two-dimensional convolutional layer

Successive computations process the input through the convolutional, detector, and 
pooling stages that we describe in the next three sections. In the example depicted in Figure 
18.2, the convolutional layer receives three-dimensional input and produces an output of 
the same dimensionality. 

State-of-the-art CNNs are composed of several such layers of varying sizes that are either 
stacked on top of each other or operate in parallel on different branches. With each layer, 
the network can detect higher-level, more abstract features.

The convolution stage – extracting local features

The first stage applies a filter, also called the kernel, to overlapping patches of the input 
image. The filter is a matrix of a much smaller size than the input so that its receptive 
field is limited to a few contiguous values such as pixels or time-series values. As a result, 
it focuses on local patterns and dramatically reduces the number of parameters and 
computations relative to a fully connected layer.

A complete convolutional layer has several feature maps organized as depth slices 
(depicted in Figure 18.2) so that each layer can extract multiple features.

From filters to feature maps
While scanning the input, the kernel is convolved with each input segment covered by 
its receptive field. The convolution operation is simply the dot product between the filter 
weights and the values of the matching input area after both have been reshaped to vectors. 
Each convolution thus produces a single number, and the entire scan yields a feature map. 
Since the dot product is maximized for identical vectors, the feature map indicates the 
degree of activation for each input region.
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Figure 18.3 illustrates the result of the scan of a 5 × 5  input using a 3 × 3  filter with given 
values, and how the activation in the upper-right corner of the feature map results from the 
dot product of the flattened input region and the kernel:

Figure 18.3: From convolutions to a feature map

The most important aspect is that the filter values are the parameters of the convolutional 
layers, learned from the data during training to minimize the chosen loss function. In other 
words, CNNs learn useful feature representations by finding kernel values that activate 
input patterns that are most useful for the task at hand.

How to scan the input – strides and padding

The stride defines the step size used for scanning the input, that is, the number of pixels 
to shift horizontally and vertically. Smaller strides scan more (overlapping) areas but are 
computationally more expensive. Four options are commonly used when the filter does not 
fit the input perfectly and partially crosses the image boundary during the scan:

• Valid convolution: Discards scans where the image and filter do not perfectly 
match

• Same convolution: Zero-pads the input to produce a feature map of equal size

• Full convolution: Zero-pads the input so that each pixel is scanned an equal 
number of times, including pixels at the border (to avoid oversampling pixels 
closer to the center)

• Causal: Zero-pads the input only on the left so that the output does not depend 
on an input from a later period; maintains the temporal order for time-series data

The choices depend on the nature of the data and where useful features are most likely 
located. In combination with the number of depth slices, they determine the output size 
of the convolution stage. The Stanford lecture notes by Andrew Karpathy (see GitHub) 
contain helpful examples using NumPy.
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Parameter sharing for robust features and fast computation

The location of salient features may vary due to distortion or shifts. Furthermore, 
elementary feature detectors are likely useful across the entire image. CNNs encode 
these assumptions by sharing or tying the weights for the filter in a given depth slice.

As a result, each depth slice specializes in a certain pattern and the number of parameters 
is further reduced. Weight sharing works less well, however, when images are spatially 
centered and key patterns are less likely to be uniformly distributed across the input area.

The detector stage – adding nonlinearity

The feature maps are usually passed through a nonlinear transformation. The rectified 
linear unit (ReLU) that we encountered in the last chapter is a common function for this 
purpose. ReLUs replace negative activations element-wise by zero and mitigate the risk of 
vanishing gradients found in other activation functions such as tanh (see Chapter 17, Deep 
Learning for Trading). 

A popular alternative is the softplus function: 𝑓𝑓(𝑥𝑥) = ln(1 + 𝑒𝑒𝑥𝑥) 

In contrast to ReLU, it has a derivative everywhere, namely the sigmoid function that 
we used for logistic regression (see Chapter 7, Linear Models – From Risk Factors to Return 
Forecasts).

The pooling stage – downsampling the feature maps

The last stage of the convolutional layer may downsample the feature map's input 
representation to do the following:

• Reduce its dimensionality and prevent overfitting 
• Lower the computational cost

• Enable basic translation invariance 

This assumes that the precise location of the features is not only less important for 
identifying a pattern but can even be harmful because it will likely vary for different 
instances of the target. Pooling lowers the spatial resolution of the feature map as a simple 
way to render the location information less precise. However, this step is optional and 
many architectures use pooling only for some layers or not at all.

A common pooling operation is max pooling, which uses only the maximum activation 
value from (typically) non-overlapping subregions. For a small 4 × 4  feature map, for 
instance, 2 × 2  max pooling outputs the maximum for each of the four non-overlapping 2 × 2  areas. Less common pooling operators use the average or the median. Pooling does 
not add or learn new parameters but the size of the input window and possibly the stride 
are additional hyperparameters.
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The evolution of CNN architectures – key innovations
Several CNN architectures have pushed performance boundaries over the past two 
decades by introducing important innovations. Predictive performance growth accelerated 
dramatically with the arrival of big data in the form of ImageNet (Fei-Fei 2015) with 14 
million images assigned to 20,000 classes by humans via Amazon's Mechanical Turk. The 
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) became the focal point of 
CNN progress around a slightly smaller set of 1.2 million images from 1,000 classes.

It is useful to be familiar with the reference architectures dominating these competitions 
for practical reasons. As we will see in the next section on working with CNNs for image 
data, they offer a good starting point for standard tasks. Moreover, transfer learning allows 
us to address many computer vision tasks by building on a successful architecture with 
pretrained weights. Transfer learning not only speeds up architecture selection and training 
but also enables successful applications on much smaller datasets.

In addition, many publications refer to these architectures, and they often serve as a basis 
for networks tailored to segmentation or localization tasks. We will further describe some 
landmark architectures in the section on image classification and transfer learning.

Performance breakthroughs and network size

The left side of Figure 18.4 plots the top-1 accuracy against the computational cost of a 
variety of network architectures. It suggests a positive relationship between the number of 
parameters and performance, but also shows that the marginal benefit of more parameters 
declines and that architectural design and innovation also matter.

The right side plots the top-1 accuracy per parameter for all networks. Several new 
architectures target use cases on less powerful devices such as mobile phones. While 
they do not achieve state-of-the-art performance, they have found much more efficient 
implementations. See the resources on GitHub for more details on these architectures and 
the analysis behind these charts.

Figure 18.4: Predictive performance and computational complexity
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Lessons learned

Some of the lessons learned from 20 years of CNN architecture developments, especially 
since 2012, include the following:

• Smaller convolutional filters perform better (possibly except at the first 
layer) because several small filters can substitute for a larger filter at a lower 
computational cost.

• 1 × 1 convolutions reduce the dimensionality of feature maps so that the network 
can learn a larger number overall.

• Skip connections are able to create multiple paths through the network and enable 
the training of much higher-capacity CNNs.

CNNs for satellite images and object detection
In this section, we demonstrate how to solve key computer vision tasks such as image 
classification and object detection. As mentioned in the introduction and in Chapter 3, 
Alternative Data for Finance – Categories and Use Cases, image data can inform a trading 
strategy by providing clues about future trends, changing fundamentals, or specific events 
relevant to a target asset class or investment universe. Popular examples include exploiting 
satellite images for clues about the supply of agricultural commodities, consumer and 
economic activity, or the status of manufacturing or raw material supply chains. Specific 
tasks might include the following, for example: 

• Image classification: Identifying whether cultivated land for certain crops is 
expanding, or predicting harvest quality and quantities

• Object detection: Counting the number of oil tankers on a certain transport route 
or the number of cars in a parking lot, or identifying the locations of shoppers 
in a mall

In this section, we'll demonstrate how to design CNNs to automate the extraction of such 
information, both from scratch using popular architectures and via transfer learning that 
fine-tunes pretrained weights to a given task. We'll also demonstrate how to detect objects 
in a given scene. 

We will introduce key CNN architectures for these tasks, explain why they work well, 
and show how to train them using TensorFlow 2. We will also demonstrate how to source 
pretrained weights and fine-tune time. Unfortunately, satellite images with information 
directly relevant for a trading strategy are very costly to obtain and are not readily 
available. We will, however, demonstrate how to work with the EuroSat dataset to build 
a classifier that identifies different land uses. This brief introduction to CNNs for computer 
vision aims to demonstrate how to approach common tasks that you will likely need to 
tackle when aiming to design a trading strategy based on images relevant to the investment 
universe of your choice.
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All the libraries we introduced in the last chapter provide support for convolutional layers; 
we'll focus on the Keras interface of TensorFlow 2. We are first going to illustrate the 
LeNet5 architecture using the MNIST handwritten digit dataset. Next, we'll demonstrate 
the use of data augmentation with AlexNet on CIFAR-10, a simplified version of the 
original ImageNet. Then we'll continue with transfer learning based on state-of-the-art 
architectures before we apply what we've learned to actual satellite images. We conclude 
with an example of object detection in real-life scenes.

LeNet5 – The first CNN with industrial applications
Yann LeCun, now the Director of AI Research at Facebook, was a leading pioneer in CNN 
development. In 1998, after several iterations starting in the 1980s, LeNet5 became the 
first modern CNN used in real-world applications that introduced several architectural 
elements still relevant today.

LeNet5 was published in a very instructive paper, Gradient-Based Learning Applied to 
Document Recognition (LeCun et al. 1989), that laid out many of the central concepts. Most 
importantly, it promoted the insight that convolutions with learnable filters are effective 
at extracting related features at multiple locations with few parameters. Given the limited 
computational resources at the time, efficiency was of paramount importance.

LeNet5 was designed to recognize the handwriting on checks and was used by several banks. 
It established a new benchmark for classification accuracy, with a result of 99.2 percent on the 
MNIST handwritten digit dataset. It consists of three convolutional layers, each containing 
a nonlinear tanh transformation, a pooling operation, and a fully connected output layer. 
Throughout the convolutional layers, the number of feature maps increases while their 
dimensions decrease. It has a total of 60,850 trainable parameters (Lecun et al. 1998).

"Hello World" for CNNs – handwritten digit classification
In this section, we'll implement a slightly simplified version of LeNet5 to demonstrate how 
to build a CNN using a TensorFlow implementation. The original MNIST dataset contains 
60,000 grayscale images in 28 × 28  pixel resolution, each containing a single handwritten 
digit from 0 to 9. A good alternative is the more challenging but structurally similar Fashion 
MNIST dataset that we encountered in Chapter 13, Data-Driven Risk Factors and Asset 
Allocation with Unsupervised Learning. See the digit_classification_with_lenet5 notebook 
for implementation details.

We can load it in Keras out of the box:

from tensorflow.keras.datasets import mnist
(X_train, y_train), (X_test, y_test) = mnist.load_data()

X_train.shape, X_test.shape

((60000, 28, 28), (10000, 28, 28))

Figure 18.5 shows the first ten images in the dataset and highlights significant variation 
among instances of the same digit. On the right, it shows how the pixel values for an 
individual image range from 0 to 255:
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Figure 18.5: MNIST sample images

We rescale the pixel values to the range [0, 1] to normalize the training data and facilitate 
the backpropagation process and convert the data to 32-bit floats, which reduce memory 
requirements and computational cost while providing sufficient precision for our use case:

X_train = X_train.astype('float32')/255
X_test = X_test.astype('float32')/255

Defining the LeNet5 architecture
We can define a simplified version of LeNet5 that omits the original final layer containing 
radial basis functions as follows, using the default "valid" padding and single-step strides 
unless defined otherwise:

lenet5 = Sequential([

    Conv2D(filters=6, kernel_size=5, activation='relu', 
           input_shape=(28, 28, 1), name='CONV1'),

    AveragePooling2D(pool_size=(2, 2), strides=(1, 1), 

                     padding='valid', name='POOL1'),

    Conv2D(filters=16, kernel_size=(5, 5), activation='tanh', name='CONV2'),
    AveragePooling2D(pool_size=(2, 2), strides=(2, 2), name='POOL2'),

    Conv2D(filters=120, kernel_size=(5, 5), activation='tanh', name='CONV3'),
    Flatten(name='FLAT'),

    Dense(units=84, activation='tanh', name='FC6'),

    Dense(units=10, activation='softmax', name='FC7')

])

The summary indicates that the model thus defined has over 300,000 parameters:

Layer (type)                 Output Shape              Param #   

CONV1 (Conv2D)               (None, 24, 24, 6)         156       

POOL1 (AveragePooling2D)     (None, 23, 23, 6)         0         

CONV2 (Conv2D)               (None, 19, 19, 16)        2416      

_________________________________________________________________

POOL2 (AveragePooling2D)     (None, 9, 9, 16)          0         

_________________________________________________________________

CONV3 (Conv2D)               (None, 5, 5, 120)         48120     
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_________________________________________________________________

FLAT (Flatten)               (None, 3000)              0         
_________________________________________________________________
FC6 (Dense)                  (None, 84)                252084    
________________________________________________________________
FC7 (Dense)                  (None, 10)                850        
=================================================================
Total params: 303,626
Trainable params: 303,626

We compile with sparse_crossentropy_loss, which accepts integers rather than one-hot-
encoded labels and the original stochastic gradient optimizer:

lenet5.compile(loss='sparse_categorical_crossentropy',

               optimizer='SGD',

               metrics=['accuracy'])

Training and evaluating the model

Now we are ready to train the model. The model expects four-dimensional input, so we 
reshape accordingly. We use the standard batch size of 32 and an 80:20 train-validation 
split. Furthermore, we leverage checkpointing to store the model weights if the validation 
error improves, and make sure the dataset is randomly shuffled. We also define an early_
stopping callback to interrupt training once the validation accuracy no longer improves for 
20 iterations:

lenet_history = lenet5.fit(X_train.reshape(-1, 28, 28, 1),
                          y_train,

                          batch_size=32,

                          epochs=100,

                          validation_split=0.2, # use 0 to train on all data

                          callbacks=[checkpointer, early_stopping],

                          verbose=1,

                          shuffle=True)

The training history records the last improvement after 81 epochs that take around 4 
minutes on a single GPU. The test accuracy of this sample run is 99.09 percent, almost 
exactly the same result as for the original LeNet5:

accuracy = lenet5.evaluate(X_test.reshape(-1, 28, 28, 1), y_test, verbose=0)
[1]

print('Test accuracy: {:.2%}'.format(accuracy))

Test accuracy: 99.09%

For comparison, a simple two-layer feedforward network achieves "only" 97.04 percent 
test accuracy (see the notebook). The LeNet5 improvement on MNIST is, in fact, modest. 
Non-neural methods have also achieved classification accuracies greater than or equal to 
99 percent, including K-nearest neighbors and support vector machines. CNNs really shine 
with more challenging datasets as we will see next.
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AlexNet – reigniting deep learning research
AlexNet, developed by Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton at the University 
of Toronto, dramatically reduced the error rate and significantly outperformed the runner-
up at the 2012 ILSVRC, achieving a top-5 error of 16 percent versus 26 percent (Krizhevsky, 
Sutskever, and Hinton 2012). This breakthrough triggered a renaissance in ML research and 
put deep learning for computer vision firmly on the global technology map.

The AlexNet architecture is similar to LeNet, but much deeper and wider. It is often 
credited with discovering the importance of depth with around 60 million parameters, 
exceeding LeNet5 by a factor of 1,000, a testament to increased computing power, especially 
the use of GPUs, and much larger datasets. 

It included convolutions stacked on top of each other rather than combining each convolution 
with a pooling stage, and successfully used dropout for regularization and ReLU for efficient 
nonlinear transformations. It also employed data augmentation to increase the number 
of training samples, added weight decay, and used a more efficient implementation of 
convolutions. It also accelerated training by distributing the network over two GPUs.

The notebook image_classification_with_alexnet.ipynb has a slightly simplified version 
of AlexNet tailored to the CIFAR-10 dataset that contains 60,000 images from 10 of the 
original 1,000 classes. It has been compressed to a 32 × 32  pixel resolution from the original 224 × 224 , but still has three color channels.

See the notebook image_classification_with_alexnet for implementation details; we will 
skip over some repetitive steps here.

Preprocessing CIFAR-10 data using image augmentation

CIFAR-10 can also be downloaded using TensorFlow's Keras interface, and we rescale the 
pixel values and one-hot encode the ten class labels as we did with MNIST in the previous 
section.

We first train a two-layer feedforward network on 50,000 training samples for 45 epochs 
to achieve a test accuracy of 45.78 percent. We also experiment with a three-layer 
convolutional net with over 528,000 parameters that achieves 74.51 percent test accuracy 
(see the notebook).

A common trick to enhance performance is to artificially increase the size of the training 
set by creating synthetic data. This involves randomly shifting or horizontally flipping the 
image or introducing noise into the image. TensorFlow includes an ImageDataGenerator 
class for this purpose. We can configure it and fit the training data as follows:

from tensorflow.keras.preprocessing.image import ImageDataGenerator
datagen = ImageDataGenerator(
    width_shift_range=0.1,   # randomly horizontal shift
    height_shift_range=0.1,  # randomly vertical shift
    horizontal_flip=True)    # randomly horizontal flip
datagen.fit(X_train)
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The result shows how the augmented images (in low 32×32 resolution) have been altered in 
various ways as expected:

Figure 18.6: Original and augmented samples

The test accuracy for the three-layer CNN improves modestly to 76.71 percent after training 
on the larger, augmented data.

Defining the model architecture
We need to adapt the AlexNet architecture to the lower dimensionality of CIFAR-10 images 
relative to the ImageNet samples used in the competition. To this end, we use the original 
number of filters but make them smaller (see the notebook for implementation details).

The summary (see the notebook) shows the five convolutional layers followed by two 
fully connected layers with frequent use of batch normalization, for a total of 21.5 million 
parameters.

Comparing AlexNet performance

In addition to AlexNet, we trained a 2-layer feedforward NN and a 3-layer CNN, the 
latter with and without image augmentation. After 100 epochs (with early stopping if 
the validation accuracy does not improve for 20 rounds), we obtain the cross-validation 
trajectories and test accuracy for the four models, as displayed in Figure 18.7:

Figure 18.7: Validation performance and test accuracy on CIFAR-10 
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AlexNet achieves the highest test accuracy with 79.33 percent after some 35 epochs, closely 
followed by the shallower CNN with augmented images at 78.29 percent that trains for 
longer due to the larger dataset. The feedforward NN performs much worse than on 
MNIST on this more complex dataset, with a test accuracy of 43.05 percent.

Transfer learning – faster training with less data
In practice, sometimes we do not have enough data to train a CNN from scratch with 
random initialization. Transfer learning is an ML technique that repurposes a model 
trained on one set of data for another task. Naturally, it works if the learning from the first 
task carries over to the task of interest. If successful, it can lead to better performance and 
faster training that requires less labeled data than training a neural network from scratch 
on the target task.

Alternative approaches to transfer learning

The transfer learning approach to CNN relies on pretraining on a very large dataset like 
ImageNet. The goal is for the convolutional filters to extract a feature representation that 
generalizes to new images. In a second step, it leverages the result to either initialize and 
retrain a new CNN or use it as input to a new network that tackles the task of interest.

As discussed, CNN architectures typically use a sequence of convolutional layers to detect 
hierarchical patterns, adding one or more fully connected layers to map the convolutional 
activations to the outcome classes or values. The output of the last convolutional layer 
that feeds into the fully connected part is called the bottleneck features. We can use the 
bottleneck features of a pretrained network as inputs into a new fully connected network, 
usually after applying a ReLU activation function.

In other words, we freeze the convolutional layers and replace the dense part of the 
network. An additional benefit is that we can then use inputs of different sizes because it is 
the dense layers that constrain the input size.

Alternatively, we can use the bottleneck features as inputs into a different machine 
learning algorithm. In the AlexNet architecture, for instance, the bottleneck layer computes 
a vector with 4,096 entries for each 224 × 224  input image. We then use this vector as 
features for a new model.

We also can go a step further and not only replace and retrain the final layers using new 
data but also fine-tune the weights of the pretrained CNN. To achieve this, we continue 
training, either only for later layers while freezing the weights of some earlier layers, or for 
all layers. The motivation is presumably to preserve more generic patterns learned by lower 
layers, such as edge or color blob detectors, while allowing later layers of the CNN to adapt 
to the details of a new task. ImageNet, for example, contains a wide variety of dog breeds, 
which may lead to feature representations specifically useful for differentiating between 
these classes.
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Building on state-of-the-art architectures

Transfer learning permits us to leverage top-performing architectures without incurring 
the potentially fairly GPU- and data-intensive training. We briefly outline the key 
characteristics of a few additional popular architectures that are popular starting points.

VGGNet – more depth and smaller filters
The runner-up in ILSVRC 2014 was developed by Oxford University's Visual Geometry 
Group (VGG, Simonyan 2015). It demonstrated the effectiveness of much smaller 3 ×  3  
convolutional filters combined in sequence and reinforced the importance of depth for 
strong performance. VGG16 contains 16 convolutional and fully connected layers that only 
perform 3 ×  3  convolutions and 2 ×  2  pooling (see Figure 18.5).

VGG16 has 140 million parameters that increase the computational costs of training and 
inference as well as the memory requirements. However, most parameters are in the fully 
connected layers that were since discovered not to be essential so that removing them 
greatly reduces the number of parameters without negatively impacting performance.

GoogLeNet – fewer parameters through Inception 

Christian Szegedy at Google reduced the computational costs using more efficient CNN 
implementations to facilitate practical applications at scale. The resulting GoogLeNet 
(Szegedy et al. 2015) won the ILSVRC 2014 with only 4 million parameters due to the 
Inception module, compared to AlexNet's 60 million and VGG16's 140 million.

The Inception module builds on the network-in-network concept that uses 1 × 1  
convolutions to compress a deep stack of convolutional filters and thus reduce the cost 
of computation. The module uses parallel 1 × 1 , 3 × 3 , and 5 × 5  filters, combining the 
latter two with 1 × 1  convolutions to reduce the dimensionality of the filters passed in by 
the previous layer.

In addition, it uses average pooling instead of fully connected layers on top of the 
convolutional layers to eliminate many of the less impactful parameters. There have been 
several enhanced versions, most recently Inception-v4.

ResNet – shortcut connections beyond human performance

The residual network (ResNet) architecture was developed at Microsoft and won 
the ILSVRC 2015. It pushed the top-5 error to 3.7 percent, below the level of human 
performance on this task of around 5 percent (He et al. 2015).

It introduces identity shortcut connections that skip several layers and overcome some 
of the challenges of training deep networks, enabling the use of hundreds or even over a 
thousand layers. It also heavily uses batch normalization, which was shown to allow higher 
learning rates and be more forgiving about weight initialization. The architecture also omits 
the fully connected final layers. 
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As mentioned in the last chapter, the training of deep networks faces the notorious 
vanishing gradient challenge: as the gradient propagates to earlier layers, repeated 
multiplication of small weights risks shrinking the gradient toward zero. Hence, 
increasing depth may limit learning.

The shortcut connection that skips two or more layers has become one of the most popular 
developments in CNN architectures and triggered numerous research efforts to refine and 
explain its performance. See the references on GitHub for additional information.

Transfer learning with VGG16 in practice

Modern CNNs can take weeks to train on multiple GPUs on ImageNet, but fortunately, 
many researchers share their final weights. TensorFlow 2, for example, contains pretrained 
models for several of the reference architectures discussed previously, namely VGG16 
and its larger version, VGG19, ResNet50, InceptionV3, and InceptionResNetV2, as well 
as MobileNet, DenseNet, NASNet, and MobileNetV2.

How to extract bottleneck features

The notebook bottleneck_features.ipynb illustrates how to download the pretrained 
VGG16 model, either with the final layers to generate predictions or without the final 
layers, as illustrated in Figure 18.8, to extract the outputs produced by the bottleneck 
features:

Figure 18.8: The VGG16 architecture

TensorFlow 2 makes it very straightforward to download and use pretrained models:

from tensorflow.keras.applications.vgg16 import VGG16
vgg16 = VGG16()
vgg16.summary()
Layer (type)                 Output Shape              Param #   
input_1 (InputLayer)         (None, 224, 224, 3)       0            
… several layers omitted... 
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block5_conv4 (Conv2D)        (None, 14, 14, 512)       2359808   

_________________________________________________________________

block5_pool (MaxPooling2D)   (None, 7, 7, 512)         0         

_________________________________________________________________

flatten (Flatten)            (None, 25088)             0         
fc1 (Dense)                  (None, 4096)              102764544 

fc2 (Dense)                  (None, 4096)              16781312  

predictions (Dense)          (None, 1000)              4097000   

Total params: 138,357,544

Trainable params: 138,357,544

You can use this model for predictions like any other Keras model: we pass in seven sample 
images and obtain class probabilities for each of the 1,000 ImageNet categories:

y_pred = vgg16.predict(img_input)

Y_pred.shape

(7, 1000)

To exclude the fully connected layers, just add the keyword include_top=False. Predictions 
are now output by the final convolutional layer block5_pool and match this layer's shape:

vgg16 = VGG16(include_top=False)

vgg16.predict(img_input).shape

(7, 7, 7, 512)

By omitting the fully connected layers and keeping only the convolutional modules, we 
are no longer forced to use a fixed input size for the model such as the original 224 × 224  
ImageNet format. Instead, we can adapt the model to arbitrary input sizes.

How to fine-tune a pretrained model
We will demonstrate how to freeze some or all of the layers of a pretrained model and 
continue training using a new fully-connected set of layers and data with a different format 
(see the notebook transfer_learning.ipynb for code examples, adapted from a TensorFlow 
2 tutorial). 

We use the VGG16 weights, pretrained on ImageNet with TensorFlow's built-in cats versus 
dogs images (see the notebook on how to source the dataset). 

Preprocessing resizes all images to 160 × 160  pixels. We indicate the new input size as we 
instantiate the pretrained VGG16 instance and then freeze all weights:

vgg16 = VGG16(input_shape=IMG_SHAPE, include_top=False, weights='imagenet')

vgg16.trainable = False

vgg16.summary()

Layer (type)                 Output Shape              Param #   

... omitted layers...

block5_conv3 (Conv2D)        (None, 10, 10, 512)         2359808   

block5_pool (MaxPooling2D)   (None, 5, 5, 512)         0         
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Total params: 14,714,688

Trainable params: 0

Non-trainable params: 14,714,688

The shape of the model output for 32 sample images now matches that of the last 
convolutional layer in the headless model:

feature_batch = vgg16(image_batch)

Feature_batch.shape

TensorShape([32, 5, 5, 512])

We can append new layers to the headless model using either the Sequential or the 
Functional API. For the Sequential API, adding GlobalAveragePooling2D, Dense, and 
Dropout layers works as follows:

global_average_layer = GlobalAveragePooling2D()

dense_layer = Dense(64, activation='relu')

dropout = Dropout(0.5)

prediction_layer = Dense(1, activation='sigmoid')

seq_model = tf.keras.Sequential([vgg16, 

                                 global_average_layer, 

                                 dense_layer, 

                                 dropout, 

                                 prediction_layer])

seq_model.compile(loss = tf.keras.losses.BinaryCrossentropy(from logits=True),

                       optimizer = 'Adam', 

                       metrics=["accuracy"])

We set from_logits=True for the BinaryCrossentropy loss because the model provides a 
linear output. The summary shows how the new model combines the pretrained VGG16 
convolutional layers and the new final layers:

seq_model.summary()

Layer (type)                 Output Shape              Param #   

vgg16 (Model)                (None, 5, 5, 512)         14714688  

global_average_pooling2d (Gl (None, 512)               0         

dense_7 (Dense)              (None, 64)                32832     

dropout_3 (Dropout)          (None, 64)                0         

dense_8 (Dense)              (None, 1)                 65        

Total params: 14,747,585

Trainable params: 11,831,937

Non-trainable params: 2,915,648

See the notebook for the Functional API version.
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Prior to training the new final layer, the pretrained VGG16 delivers a validation accuracy of 
48.75 percent. Now we proceed to train the model for 10 epochs as follows, adjusting only 
the final layer weights:

history = transfer_model.fit(train_batches,
                            epochs=initial_epochs,

                            validation_data=validation_batches)

10 epochs boost validation accuracy above 94 percent. To fine-tune the model, we can 
unfreeze the VGG16 models and continue training. Note that you should only do so after 
training the new final layers: randomly initialized classification layers will likely produce 
large gradient updates that can eliminate the pretraining results.

To unfreeze parts of the model, we select a layer, after which we set the weights to 
trainable; in this case, layer 12 of the total 19 layers in the VGG16 architecture:

vgg16.trainable = True

len(vgg16.layers)

19

# Fine-tune from this layer onward

start_fine_tuning_at = 12
# Freeze all the layers before the 'fine_tune_at' layer
for layer in vgg16.layers[:start_fine_tuning_at]:
    layer.trainable =  False

Now just recompile the model and continue training for up to 50 epochs using early 
stopping, starting in epoch 10 as follows:

fine_tune_epochs = 50
total_epochs = initial_epochs + fine_tune_epochs
history_fine_tune = transfer_model.fit(train_batches,
                                     epochs=total_epochs,

                                     initial_epoch=history.epoch[-1],

                                     validation_data=validation_batches,

                                     callbacks=[early_stopping])

Figure 18.9 shows how the validation accuracy increases substantially, reaching 97.89 
percent after another 22 epochs:

Figure 18.9: Cross-validation performance: accuracy and cross-entropy loss
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Transfer learning is an important technique when training data is limited as is very often 
the case in practice. While cats and dogs are unlikely to produce tradeable signals, transfer 
learning could certainly help improve the accuracy of predictions on a relevant alternative 
dataset, such as the satellite images that we'll tackle next.

Classifying satellite images with transfer learning

Satellite images figure prominently among alternative data (see Chapter 3, Alternative Data 
for Finance – Categories and Use Cases). For instance, commodity traders may rely on satellite 
images to predict the supply of certain crops or resources by monitoring, activity on farms, 
at mining sites, or oil tanker traffic. 

The EuroSat dataset

To illustrate working with this type of data, we load the EuroSat dataset included in the 
TensorFlow 2 datasets (Helber et al. 2019). The EuroSat dataset includes around 27,000 
images in 64 × 64  format that represent 10 different types of land uses. Figure 18.10 displays 
an example for each label:

Figure 18.10: Ten types of land use contained in the dataset

A time series of similar data could be used to track the relative sizes of cultivated, 
industrial, and residential areas or the status of specific crops to predict harvest quantities 
or quality, for example, for wine.

Fine-tuning a very deep CNN – DenseNet201

Huang et al. (2018) developed a new architecture dubbed densely connected based on the 
insight that CNNs can be deeper, more accurate, and more efficient to train if they contain 
shorter connections between layers close to the input and those close to the output. 
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One architecture, labeled DenseNet201, connects each layer to every other layer in 
a feedforward fashion. It uses the feature maps of all preceding layers as inputs, while 
each layer's own feature maps become inputs into all subsequent layers.

We download the DenseNet201 architecture from tensorflow.keras.applications 
and replace its final layers with the following dense layers interspersed with batch 
normalization to mitigate exploding or vanishing gradients in this very deep network 
with over 700 layers:

Layer (type)                 Output Shape              Param #   

densenet201 (Model)          (None, 1920)              18321984  

batch_normalization (BatchNo (None, 1920)              7680      

dense (Dense)                (None, 2048)              3934208   

batch_normalization_1 (Batch (None, 2048)              8192      

dense_1 (Dense)              (None, 2048)              4196352   

batch_normalization_2 (Batch (None, 2048)              8192      

dense_2 (Dense)              (None, 2048)              4196352   

batch_normalization_3 (Batch (None, 2048)              8192      

dense_3 (Dense)              (None, 2048)              4196352   

batch_normalization_4 (Batch (None, 2048)              8192      

dense_4 (Dense)              (None, 10)                20490     

Total params: 34,906,186

Trainable params: 34,656,906

Non-trainable params: 249,280

Model training and results evaluation

We use 10 percent of the training images for validation purposes and achieve the best 
out-of-sample classification accuracy of 97.96 percent after 10 epochs. This exceeds the 
performance cited in the original paper for the best-performing ResNet-50 architecture with 
a 90-10 split.

Figure 18.11: Cross-validation performance

There would likely be additional performance gains from augmenting the relatively small 
training set.
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Object detection and segmentation
Image classification is a fundamental computer vision task that requires labeling an image 
based on certain objects it contains. Many practical applications, including investment and 
trading strategies, require additional information:

• The object detection task requires not only the identification but also the spatial 
location of all objects of interest, typically using bounding boxes. Several algorithms 
have been developed to overcome the inefficiency of brute-force sliding-window 
approaches, including region proposal methods (R-CNN; see for example Ren et al. 
2015) and the You Only Look Once (YOLO) real-time object detection algorithm 
(Redmon 2016).

• The object segmentation task goes a step further and requires a class label and an 
outline of every object in the input image. This may be useful to count objects such 
as oil tankers, individuals, or cars in an image and evaluate a level of activity. 

• Semantic segmentation, also called scene parsing, makes dense predictions to 
assign a class label to each pixel in the image. As a result, the image is divided 
into semantic regions and each pixel is assigned to its enclosing object or region.

Object detection requires the ability to distinguish between several classes of objects and to 
decide how many and which of these objects are present in an image.

Object detection in practice
A prominent example is Ian Goodfellow's identification of house numbers from Google's 
Street View House Numbers (SVHN) dataset (Goodfellow 2014). It requires the model to 
identify the following:

• How many of up to five digits make up the house number
• The correct digit for each component

• The proper order of the constituent digits

We will show how to preprocess the irregularly shaped source images, adapt the VGG16 
architecture to produce multiple outputs, and train the final layer, before fine-tuning the 
pretrained weights to address the task.

Preprocessing the source images

The notebook svhn_preprocessing.ipynb contains code to produce a simplified, cropped 
dataset that uses bounding box information to create regularly shaped 32 × 32  images 
containing the digits; the original images are of arbitrary shape (Netzer 2011).
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Figure 18.12: Cropped sample images of the SVHN dataset

The SVHN dataset contains house numbers with up to five digits and uses the class 10 if a 
digit is not present. However, since there are very few examples with five digits, we limit 
the images to those including up to four digits only.

Transfer learning with a custom final layer 
The notebook svhn_object_detection.ipynb illustrates how to apply transfer learning 
to a deep CNN based on the VGG16 architecture, as outlined in the previous section. We 
will describe how to create new final layers that produce several outputs to meet the three 
SVHN task objectives, including one prediction of how many digits are present, and one for 
the value of each digit in the order they appear. 

The best-performing architecture on the original dataset has eight convolutional layers and 
two final fully connected layers. We will use transfer learning, departing from the VGG16 
architecture. As before, we import the VGG16 network pretrained on ImageNet weights, 
remove the layers after the convolutional blocks, freeze the weights, and create new dense 
and predictive layers as follows using the Functional API:

vgg16 = VGG16(input_shape=IMG_SHAPE, include_top=False, weights='imagenet')

vgg16.trainable = False

x = vgg16.output

x = Flatten()(x)

x = BatchNormalization()(x)

x = Dense(256)(x)

x = BatchNormalization()(x)

x = Activation('relu')(x)

x = Dense(128)(x)

x = BatchNormalization()(x)

x = Activation('relu')(x)

n_digits = Dense(SEQ_LENGTH, activation='softmax', name='n_digits')(x)

digit1 = Dense(N_CLASSES-1, activation='softmax', name='d1')(x)

digit2 = Dense(N_CLASSES, activation='softmax', name='d2')(x)

digit3 = Dense(N_CLASSES, activation='softmax', name='d3')(x)

digit4 = Dense(N_CLASSES, activation='softmax', name='d4')(x)

predictions = Concatenate()([n_digits, digit1, digit2, digit3, digit4])
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The prediction layer combines the four-class output for the number of digits n_digits with 
four outputs that predict which digit is present at that position. 

Creating a custom loss function and evaluation metrics

The custom output requires us to define a loss function that captures how well the model 
is meeting its objective. We would also like to measure accuracy in a way that reflects 
predictive accuracy tailored to the specific labels.

For the custom loss, we average the cross-entropy over the five categorical outputs, namely 
the number of digits and their respective values:

def weighted_entropy(y_true, y_pred):

    cce = tf.keras.losses.SparseCategoricalCrossentropy()

    n_digits = y_pred[:, :SEQ_LENGTH]

    digits = {}

    for digit, (start, end) in digit_pos.items():

        digits[digit] = y_pred[:, start:end]

    return (cce(y_true[:, 0], n_digits) +

            cce(y_true[:, 1], digits[1]) +

            cce(y_true[:, 2], digits[2]) +

            cce(y_true[:, 3], digits[3]) +

            cce(y_true[:, 4], digits[4])) / 5

To measure predictive accuracy, we compare the five predictions with the corresponding 
label values and average the share of correct matches over the batch of samples:

def weighted_accuracy(y_true, y_pred):

    n_digits_pred = K.argmax(y_pred[:, :SEQ_LENGTH], axis=1)

    digit_preds = {}

    for digit, (start, end) in digit_pos.items():

        digit_preds[digit] = K.argmax(y_pred[:, start:end], axis=1)

    preds = tf.dtypes.cast(tf.stack((n_digits_pred,

                                     digit_preds[1],

                                     digit_preds[2],

                                     digit_preds[3],

                                     digit_preds[4]), axis=1), tf.float32)

    return K.mean(K.sum(tf.dtypes.cast(K.equal(y_true, preds), tf.int64), 
axis=1) / 5)
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Finally, we integrate the base and final layers and compile the model with the custom loss 
and accuracy metric as follows:

model = Model(inputs=vgg16.input, outputs=predictions)

model.compile(optimizer='adam',

              loss=weighted_entropy,

              metrics=[weighted_accuracy])

Fine-tuning the VGG16 weights and final layer
We train the new final layers for 14 periods and continue fine-tuning all VGG16 weights, as 
in the previous section, for another 23 epochs (using early stopping in both cases).

The following charts show the training and validation accuracy and the loss over the entire 
training period. As we unfreeze the VGG16 weights after the initial training period, the 
accuracy drops and then improves, achieving a validation performance of 94.52 percent:

Figure 18.13: Cross-validation performance

See the notebook for additional implementation details and an evaluation of the results.

Lessons learned

We can achieve decent levels of accuracy using only the small training set. However, state-
of-the-art performance achieves an error rate of only 1.02 percent (https://benchmarks.ai/
svhn). To get closer, the most important step is to increase the amount of training data. 

There are two easy ways to accomplish this: we can include the larger number of samples 
included in the extra dataset, and we can use image augmentation (see the AlexNet: 
reigniting deep learning research section). The currently best-performing approach relies 
heavily on augmentation learned from data (Cubuk 2019).

https://benchmarks.ai/svhn
https://benchmarks.ai/svhn
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CNNs for time-series data – predicting returns
CNNs were originally developed to process image data and have achieved superhuman 
performance on various computer vision tasks. As discussed in the first section, time-series 
data has a grid-like structure similar to that of images, and CNNs have been successfully 
applied to one-, two- and three-dimensional representations of temporal data. 

The application of CNNs to time series will most likely bear fruit if the data meets the 
model's key assumption that local patterns or relationships help predict the outcome. 
In the time-series context, local patterns could be autocorrelation or similar non-linear 
relationships at relevant intervals. Along the second and third dimensions, local patterns 
imply systematic relationships among different components of a multivariate series or 
among these series for different tickers. Since locality matters, it is important that the data is 
organized accordingly, in contrast to feed-forward networks where shuffling the elements 
of any dimension does not negatively affect the learning process.

In this section, we provide a relatively simple example using a one-dimensional 
convolution to model an autoregressive process (see Chapter 9, Time-Series Models for 
Volatility Forecasts and Statistical Arbitrage) that predicts future returns based on lagged 
returns. Then we replicate a recent research paper that achieved good results by formatting 
multivariate time-series data like images to predict returns. We will also develop and test a 
trading strategy based on the signals contained in the predictions.

An autoregressive CNN with 1D convolutions
We will introduce the time series use case for CNN using a univariate autoregressive asset 
return model. More specifically, the model receives the most recent 12 months of returns 
and uses a single layer of one-dimensional convolutions to predict the subsequent month.

The requisite steps are as follows: 

1. Creating the rolling 12 months of lagged returns and corresponding outcomes

2. Defining the model architecture
3. Training the model and evaluating the results

In the following sections, we'll describe each step in turn; the notebook time_series_
prediction contains the code samples for this section.
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Preprocessing the data

First, we'll select the adjusted close price for all Quandl Wiki stocks since 2000 as follows:

prices = (pd.read_hdf('../data/assets.h5', 'quandl/wiki/prices')

          .adj_close

          .unstack().loc['2000':])

prices.info()

DatetimeIndex: 2896 entries, 2007-01-01 to 2018-03-27

Columns: 3199 entries, A to ZUMZ

Next, we resample the price data to month-end frequency, compute returns, and set 
monthly returns over 100 percent to missing as they likely represent data errors. Then we 
drop tickers with missing observations, retaining 1,511 stocks with 215 observations each:

returns = (prices

           .resample('M')

           .last()

           .pct_change()

           .dropna(how='all')

           .loc['2000': '2017']

           .dropna(axis=1)

           .sort_index(ascending=False))

# remove outliers likely representing data errors

returns = returns.where(returns<1).dropna(axis=1)

returns.info()

DatetimeIndex: 215 entries, 2017-12-31 to 2000-02-29

Columns: 1511 entries, A to ZQK

To create the rolling series of 12 lagged monthly returns with their corresponding outcome, 
we iterate over rolling 13-month slices and append the transpose of each slice to a list after 
assigning the outcome date to the index. After completing the loop, we concatenate the 
DataFrames in the list as follows:

n = len(returns)

nlags = 12

lags = list(range(1, nlags + 1))

cnn_data = []

for i in range(n-nlags-1):

    df = returns.iloc[i:i+nlags+1]        # select outcome and lags

    date = df.index.max()                 # use outcome date

    cnn_data.append(df.reset_index(drop=True)  # append transposed series

                    .transpose()

                    .assign(date=date)

                    .set_index('date', append=True)

                    .sort_index(1, ascending=True))
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cnn_data = (pd.concat(cnn_data)

            .rename(columns={0: 'label'})

            .sort_index())

We end up with over 305,000 pairs of outcomes and lagged returns for the 2001-2017 
period:

cnn_data.info(null_counts=True)

MultiIndex: 305222 entries, ('A', Timestamp('2001-03-31 00:00:00')) to 

                            ('ZQK', Timestamp('2017-12-31 00:00:00'))

Data columns (total 13 columns):

...

When we compute the information coefficient for each lagged return and the outcome, we 
find that only lag 5 is not statistically significant:

Figure 18.14: Information coefficient with respect to forward return by lag

Defining the model architecture
Now we'll define the model architecture using TensorFlow's Keras interface. We combine a 
one-dimensional convolutional layer with max pooling and batch normalization to produce 
a real-valued scalar output:

model = Sequential([Conv1D(filters=32,
                           kernel_size=4,

                           activation='relu',

                           padding='causal',

                           input_shape=(12, 1),

                           use_bias=True,

                           kernel_regularizer=regularizers.l1_l2(l1=1e-5,

                                                                 l2=1e-5)),

                    MaxPooling1D(pool_size=4),

                    Flatten(),

                    BatchNormalization(),

                    Dense(1, activation='linear')])
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The one-dimensional convolution computes the sliding dot product of a (regularized) 
vector of length 4 with each input sequence of length 12, using causal padding to maintain 
the temporal order (see the How to scan the input: strides and padding section). The resulting 
32 feature maps have the same length, 12, as the input that max pooling in groups of size 4 
reduces to 32 vectors of length 3.

The model outputs the weighted average plus the bias of the flattened and normalized 
single vector of length 96, and has 449 trainable parameters:

Layer (type)                 Output Shape              Param #   

conv1d (Conv1D)              (None, 12, 32)            160       

max_pooling1d (MaxPooling1D) (None, 3, 32)             0         

flatten (Flatten)            (None, 96)                0         
batch_normalization (BatchNo (None, 96)                384       

dense (Dense)                (None, 1)                 97        

Total params: 641

Trainable params: 449

Non-trainable params: 192

The notebook wraps the model generation and subsequent compilation into a get_model() 
function that parametrizes the model configuration to facilitate experimentation.

Model training and performance evaluation

We train the model on five years of data for each ticker to predict the first month after this 
period and repeat this procedure 36 times using the MultipleTimeSeriesCV we developed 
in Chapter 7, Linear Models – From Risk Factors to Return Forecasts. See the notebook for the 
training loop that follows the pattern demonstrated in the previous chapter.

We use early stopping after five epochs to simplify the exposition, resulting in a positive 
bias so that the results have only illustrative character. Training length varies from 1 to 27 
epochs, with a median of 5 epochs, which demonstrates that the model can often only learn 
very limited amounts of systematic information from the past returns. Thus cherry-picking 
the results yields a cumulative average information coefficient of around 4, as shown in 
Figure 18.15:

Figure 18.15: (Biased) out-of-sample information coefficients for best epochs
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We'll now proceed to a more complex example of using CNNs for multiple time-series data.

CNN-TA – clustering time series in 2D format
To exploit the grid-like structure of time-series data, we can use CNN architectures for 
univariate and multivariate time series. In the latter case, we consider different time series 
as channels, similar to the different color signals.

An alternative approach converts a time series of alpha factors into a two-dimensional 
format to leverage the ability of CNNs to detect local patterns. Sezer and Ozbayoglu (2018) 
propose CNN-TA, which computes 15 technical indicators for different intervals and uses 
hierarchical clustering (see Chapter 13, Data-Driven Risk Factors and Asset Allocation with 
Unsupervised Learning) to locate indicators that behave similarly close to each other in a two-
dimensional grid.

The authors train a CNN similar to the CIFAR-10 example we used earlier to predict 
whether to buy, hold, or sell an asset on a given day. They compare the CNN performance 
to "buy-and-hold" and other models and find that it outperforms all alternatives using daily 
price series for Dow 30 stocks and the nine most-traded ETFs over the 2007-2017 time period.

In this section, we experiment with this approach using daily US equity price data and 
demonstrate how to compute and convert a similar set of indicators into image format. 
Then we train a CNN to predict daily returns and evaluate a simple long-short strategy 
based on the resulting signals.

Creating technical indicators at different intervals
We first select a universe of the 500 most-traded US stocks from the Quandl Wiki dataset by 
dollar volume for rolling five-year periods for 2007-2017. See the notebook engineer_cnn_
features.ipynb for the code examples in this section and some additional implementation 
details.

Our features consist of 15 technical indicators and risk factors that we compute for 15 
different intervals and then arrange them in a 15 × 15  grid. The following table lists some 
of the technical indicators; in addition, we follow the authors in using the following metrics 
(see the Appendix for additional information):

• Weighted and exponential moving averages (WMA and EMA) of the close price

• Rate of change (ROC) of the close price

• Chande Momentum Oscillator (CMO)

• Chaikin A/D Oscillators (ADOSC)

• Average Directional Movement Index (ADX)
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Figure 8.16: Technical indicators

For each indicator, we vary the time period from 6 to 20 to obtain 15 distinct measurements. 
For example, the following code example computes the relative strength index (RSI):

T = list(range(6, 21))

for t in T:

    universe[f'{t:02}_RSI'] = universe.groupby(level='symbol').close.
apply(RSI, timeperiod=t)

For the Normalized Average True Range (NATR) that requires several inputs, the 
computation works as follows:

for t in T:

    universe[f'{t:02}_NATR'] = universe.groupby(

                        level='symbol', group_keys=False).apply(

                        lambda x: NATR(x.high, x.low, x.close, timeperiod=t))

See the TA-Lib documentation for further details. 

Computing rolling factor betas for different horizons
We also use five Fama-French risk factors (Fama and French, 2015; see Chapter 4, Financial 
Feature Engineering – How to Research Alpha Factors). They reflect the sensitivity of a stock's 
returns to factors consistently demonstrated to impact equity returns. We capture these 
factors by computing the coefficients of a rolling OLS regression of a stock's daily returns 
on the returns of portfolios designed to reflect the underlying drivers:

• Equity risk premium: Value-weighted returns of US stocks minus the 1-month US 
Treasury bill rate

• Size (SMB): Returns of stocks categorized as Small (by market cap) Minus those of 
Big equities
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• Value (HML): Returns of stocks with High book-to-market value Minus those with 
a Low value

• Investment (CMA): Returns differences for companies with Conservative 
investment expenditures Minus those with Aggressive spending

• Profitability (RMW): Similarly, return differences for stocks with Robust 
profitability Minus that with a Weak metric.

We source the data from Kenneth French's data library using pandas_datareader (see 
Chapter 4, Financial Feature Engineering – How to Research Alpha Factors): 

import pandas_datareader.data as web

factor_data = (web.DataReader('F-F_Research_Data_5_Factors_2x3_daily', 

                              'famafrench', start=START)[0])

Next, we apply statsmodels' RollingOLS() to run regressions over windowed periods of 
different lengths, ranging from 15 to 90 days. We set the params_only parameter on the 
.fit() method to speed up computation and capture the coefficients using the .params 
attribute of the fitted factor_model:

factors = [Mkt-RF, 'SMB', 'HML', 'RMW', 'CMA']

windows = list(range(15, 90, 5))

for window in windows:

    betas = []

    for symbol, data in universe.groupby(level='symbol'):

        model_data = data[[ret]].merge(factor_data, on='date').dropna()

        model_data[ret] -= model_data.RF

        rolling_ols = RollingOLS(endog=model_data[ret], 

                                 exog=sm.add_constant(model_data[factors]), 

                                                      window=window)

        factor_model = rolling_ols.fit(params_only=True).params.drop('const', 
                                                                    axis=1)

        result = factor_model.assign(symbol=symbol).set_index('symbol', 

                                                              append=True)

        betas.append(result)

    betas = pd.concat(betas).rename(columns=lambda x: f'{window:02}_{x}')

    universe = universe.join(betas)

Features selecting based on mutual information

The next step is to select the 15 most relevant features from the 20 candidates to fill the 
15×15 input grid. The code examples for the following steps are in the notebook convert_
cnn_features_to_image_format.
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To this end, we estimate the mutual information for each indicator and the 15 intervals 
with respect to our target, the one-day forward returns. As discussed in Chapter 4, Financial 
Feature Engineering – How to Research Alpha Factors, scikit-learn provides the mutual_
info_regression() function that makes this straightforward, albeit time-consuming and 
memory-intensive. To accelerate the process, we randomly sample 100,000 observations:

df = features.join(targets[target]).dropna().sample(n=100000)

X = df.drop(target, axis=1)

y = df[target]

mi[t] = pd.Series(mutual_info_regression(X=X, y=y), index=X.columns)

The left panel in Figure 18.16 shows the mutual information, averaged across the 15 
intervals for each indicator. NATR, PPO, and Bollinger Bands are most important from this 
metric's perspective:

Figure 18.17: Mutual information and two-dimensional grid layout for time series

Hierarchical feature clustering

The right panel in Figure 18.16 sketches the 15 X 15 two-dimensional feature grid that we 
will feed into our CNN. As discussed in the first section of this chapter, CNNs rely on 
the locality of relevant patterns that is typically found in images where nearby pixels are 
closely related and changes from one pixel to the next are often gradual. 

To organize our indicators in a similar fashion, we will follow Sezer and Ozbayoglu's 
approach of applying hierarchical clustering. The goal is to identify features that behave 
similarly and order the columns and the rows of the grid accordingly.

We can build on SciPy's pairwise_distance(), linkage(), and dendrogram() functions that 
we introduced in Chapter 13, Data-Driven Risk Factors and Asset Allocation with Unsupervised 
Learning alongside other forms of clustering. We create a helper function that standardizes 
the input column-wise to avoid distorting distances among features due to differences in 
scale, and use the Ward criterion that merges clusters to minimize variance. The function 
returns the order of the leaf nodes in the dendrogram that in turn displays the successive 
formation of larger clusters:
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def cluster_features(data, labels, ax, title):

    data = StandardScaler().fit_transform(data)
    pairwise_distance = pdist(data)

    Z = linkage(data, 'ward')

    dend = dendrogram(Z,

                      labels=labels,

                      orientation='top',

                      leaf_rotation=0.,

                      leaf_font_size=8.,

                      ax=ax)

    return dend['ivl']

To obtain the optimized order of technical indicators in the columns and the different 
intervals in the rows, we use NumPy's .reshape() method to ensure that the dimension 
we would like to cluster appears in the columns of the two-dimensional array we pass to 
cluster_features():

labels = sorted(best_features)

col_order = cluster_features(features.dropna().values.reshape(-1, 15).T, 

                             labels)

labels = list(range(1, 16))

row_order = cluster_features(

    features.dropna().values.reshape(-1, 15, 15).transpose((0, 2, 1)).
reshape(-1, 15).T, labels)

Figure 18.18 shows the dendrograms for both the row and column features:

Figure 18.18: Dendrograms for row and column features

We reorder the features accordingly and store the result as inputs for the CNN that we will 
create in the next step.

Creating and training a convolutional neural network

Now we are ready to design, train, and evaluate a CNN following the steps outlined in the 
previous section. The notebook cnn_for_trading.ipynb contains the relevant code examples.
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We again closely follow the authors in creating a CNN with 2 convolutional layers with 
kernel size 3 and 16 and 32 filters, respectively, followed by a max pooling layer of size 2. 
We flatten the output of the last stack of filters and connect the resulting 1,568 outputs to a 
dense layer of size 32, applying 25 and 50 percent dropout probability to the incoming and 
outcoming connections to mitigate overfitting. The following table summarizes the CNN 
structure that contains 55,041 trainable parameters:

Layer (type)                 Output Shape              Param #   

CONV1 (Conv2D)               (None, 15, 15, 16)        160       

CONV2 (Conv2D)               (None, 15, 15, 32)        4640      

POOL1 (MaxPooling2D)         (None, 7, 7, 32)          0         

DROP1 (Dropout)              (None, 7, 7, 32)          0         

FLAT1 (Flatten)              (None, 1568)              0         

FC1 (Dense)                  (None, 32)                50208     

DROP2 (Dropout)              (None, 32)                0         

FC2 (Dense)                  (None, 1)                 33        

Total params: 55,041

Trainable params: 55,041

Non-trainable params: 0

We cross-validate the model with the MutipleTimeSeriesCV train and validation set index 
generator introduced in Chapter 7, Linear Models – From Risk Factors to Return Forecasts. We 
provide 5 years of trading days during the training period in batches of 64 random samples 
and validate using the subsequent 3 months, covering the years 2014-2017. 

We scale the features to the range [-1, 1] and again use NumPy's .reshape() method to 
create the requisite  format:

def get_train_valid_data(X, y, train_idx, test_idx):

    x_train, y_train = X.iloc[train_idx, :], y.iloc[train_idx]

    x_val, y_val = X.iloc[test_idx, :], y.iloc[test_idx]

    scaler = MinMaxScaler(feature_range=(-1, 1))

    x_train = scaler.fit_transform(x_train)
    x_val = scaler.transform(x_val)

    return (x_train.reshape(-1, size, size, 1), y_train,

            x_val.reshape(-1, size, size, 1), y_val)

Training and validation follow the process laid out in Chapter 17, Deep Learning for Trading, 
relying on checkpointing to store weights after each epoch and generate predictions for the 
best-performing iterations without the need for costly retraining. 

To evaluate the model's predictive accuracy, we compute the daily information coefficient 
(IC) for the validation set like so:

checkpoint_path = Path('models', 'cnn_ts')

for fold, (train_idx, test_idx) in enumerate(cv.split(features)):

    X_train, y_train, X_val, y_val = get_train_valid_data(features, target, 
train_idx, test_idx)
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    preds = y_val.to_frame('actual')

    r = pd.DataFrame(index=y_val.index.unique(level='date')).sort_index()

    model = make_model(filter1=16, act1='relu', filter2=32, 
                       act2='relu', do1=.25, do2=.5, dense=32)

    for epoch in range(n_epochs):            

        model.fit(X_train, y_train,
                  batch_size=batch_size,

                  validation_data=(X_val, y_val),

                  epochs=1, verbose=0, shuffle=True)
        model.save_weights(

            (checkpoint_path / f'ckpt_{fold}_{epoch}').as_posix())

        preds[epoch] = model.predict(X_val).squeeze()

        r[epoch] = preds.groupby(level='date').apply(

            lambda x: spearmanr(x.actual, x[epoch])[0]).to_frame(epoch)

We train the model for up to 10 epochs using stochastic gradient descent with Nesterov 
momentum (see Chapter 17, Deep Learning for Trading) and find that the best performing 
epochs, 8 and 9, achieve a (low) daily average IC of around 0.009.

Assembling the best models to generate tradeable signals
To reduce the variance of the test-period forecasts, we generate and average the predictions 
for the 3 models that perform best during cross-validation, which here correspond to 
training for 4, 8, and 9 epochs. As in the previous time-series example, the relatively short 
training period underscores that the amount of signals in financial time series is low 
compared to the systematic information contained in, for example, image data.  

The generate_predictions() function reloads the model weights and returns the forecasts 
for the target period:

def generate_predictions(epoch):

    predictions = []

    for fold, (train_idx, test_idx) in enumerate(cv.split(features)):

        X_train, y_train, X_val, y_val = get_train_valid_data(

            features, target, train_idx, test_idx)

        preds = y_val.to_frame('actual')

        model = make_model(filter1=16, act1='relu', filter2=32, 
                       act2='relu', do1=.25, do2=.5, dense=32)

        status = model.load_weights(

            (checkpoint_path / f'ckpt_{fold}_{epoch}').as_posix())

        status.expect_partial()

        predictions.append(pd.Series(model.predict(X_val).squeeze(), 

                                     index=y_val.index))

    return pd.concat(predictions)   

preds = {}

for i, epoch in enumerate(ic.drop('fold', axis=1).mean().nlargest(3).index):

    preds[i] = generate_predictions(epoch)



CNNs for Financial Time Series and Satellite Images

[ 588 ]

We store the predictions and proceed to backtest a trading strategy based on these daily 
return forecasts.

Backtesting a long-short trading strategy

To get a sense of the signal quality, we compute the spread between equally weighted 
portfolios invested in stocks selected according to the signal quintiles using Alphalens (see 
Chapter 4, Financial Feature Engineering – How to Research Alpha Factors).

Figure 18.19 shows that for a one-day investment horizon, this naive strategy would have 
earned a bit over four basis points per day during the 2013-2017 period:

Figure 18.19: Alphalens signal quality evaluation

We translate this slightly encouraging result into a simple strategy that enters long (short) 
positions for the 25 stocks with the highest (lowest) return forecasts, trading on a daily 
basis. Figure 18.20 shows that this strategy is competitive with the S&P 500 benchmark over 
much of the backtesting period (left panel), resulting in a 35.6 percent cumulative return 
and a Sharpe ratio of 0.53 (before transaction costs; right panel)

Figure 18.20: Backtest performance in- and out-of-sample
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Summary and lessons learned

It appears that the CNN is able to extract meaningful information from the time series 
of alpha factors converted into a two-dimensional grid. Experimentation with different 
architectures and training parameters shows that the result is not very robust and slight 
modifications can yield significantly worse performance. 

Tuning attempts also surface the notorious difficulties in successfully training a deep 
NN, especially when the signal-to-noise ratio is low: too complex a network or the wrong 
optimizer can lead the CNN to a local optimum where it always predicts a constant value. 

The most important step to improve the results and obtain a performance closer to that 
achieved by the authors (using different outcomes) would be to revisit the features. There 
are many alternatives to different intervals of a limited set of technical indicators. Any 
appropriate number of time-series features could be arranged in a rectangular n×m format 
and benefit from the CNN's ability to learn local patterns. The choice of n indicators and m 
intervals just makes it easier to organize the rows and the columns of the two-dimensional 
grid. Give it a shot!

Furthermore, the authors take a classification approach to the algorithmically labeled buy, 
hold, and sell outcomes (see the paper for an outline of the computation), whereas our 
experiment applied regression to the daily returns. The Alphalens chart in Figure 18.18 
suggests that longer holding periods (especially 10 days) might work better, so there is also 
scope for adjusting the strategy accordingly or switching to a classification approach.

Summary
In this chapter, we introduced CNNs, a specialized NN architecture that has taken cues 
from our (limited) understanding of human vision and performs particularly well on grid-
like data. We covered the central operation of convolution or cross-correlation that drives 
the discovery of filters that in turn detect features useful to solve the task at hand. 

We reviewed several state-of-the-art architectures that are good starting points, especially 
because transfer learning enables us to reuse pretrained weights and reduce the otherwise 
rather computationally and data-intensive training effort. We also saw that Keras makes it 
relatively straightforward to implement and train a diverse set of deep CNN architectures. 

In the next chapter, we turn our attention to recurrent neural networks that are designed 
specifically for sequential data, such as time-series data, which is central to investment 
and trading.
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19
RNNs for Multivariate Time  

Series and Sentiment Analysis

The previous chapter showed how convolutional neural networks (CNNs) are designed 
to learn features that represent the spatial structure of grid-like data, especially images, but 
also time series. This chapter introduces recurrent neural networks (RNNs) that specialize 
in sequential data where patterns evolve over time and learning typically requires memory 
of preceding data points.

Feedforward neural networks (FFNNs) treat the feature vectors for each sample 
as independent and identically distributed. Consequently, they do not take prior data 
points into account when evaluating the current observation. In other words, they have 
no memory.

The one- and two-dimensional convolutional filters used by CNNs can extract features 
that are a function of what is typically a small number of neighboring data points. 
However, they only allow shallow parameter-sharing: each output results from 
applying the same filter to the relevant time steps and features.

The major innovation of the RNN model is that each output is a function of both the 
previous output and new information. RNNs can thus incorporate information on prior 
observations into the computation they perform using the current feature vector. This 
recurrent formulation enables parameter-sharing across a much deeper computational 
graph (Goodfellow, Bengio, and Courville, 2016). In this chapter, you will encounter 
long short-term memory (LSTM) units and gated recurrent units (GRUs), which aim 
to overcome the challenge of vanishing gradients associated with learning long-range 
dependencies, where errors need to be propagated over many connections.



RNNs for Multivariate Time Series and Sentiment Analysis

[ 592 ]

Successful RNN use cases include various tasks that require mapping one or more input 
sequences to one or more output sequences and prominently feature natural language 
applications. We will explore how RNNs can be applied to univariate and multivariate 
time series to predict asset prices using market or fundamental data. We will also cover 
how RNNs can leverage alternative text data using word embeddings, which we covered 
in Chapter 16, Word Embeddings for Earnings Calls and SEC Filings, to classify the sentiment 
expressed in documents. Finally, we will use the most informative sections of SEC filings to 
learn word embeddings and predict returns around filing dates.

More specifically, in this chapter, you will learn about the following:

• How recurrent connections allow RNNs to memorize patterns and model a 
hidden state

• Unrolling and analyzing the computational graph of RNNs

• How gated units learn to regulate RNN memory from data to enable long-range 
dependencies

• Designing and training RNNs for univariate and multivariate time series in Python

• How to learn word embeddings or use pretrained word vectors for sentiment 
analysis with RNNs

• Building a bidirectional RNN to predict stock returns using custom word 
embeddings

You can find the code examples and additional resources in the GitHub repository's 
directory for this chapter.

How recurrent neural nets work
RNNs assume that the input data has been generated as a sequence such that previous 
data points impact the current observation and are relevant for predicting subsequent 
values. Thus, they allow more complex input-output relationships than FFNNs and CNNs, 
which are designed to map one input vector to one output vector using a given number 
of computational steps. RNNs, in contrast, can model data for tasks where the input, the 
output, or both, are best represented as a sequence of vectors. For a good overview, refer to 
Chapter 10 in Goodfellow, Bengio, and Courville (2016).

The diagram in Figure 19.1, inspired by Andrew Karpathy's 2015 blog post The Unreasonable 
Effectiveness of Recurrent Neural Networks (see GitHub for a link), illustrates mappings from 
input to output vectors using nonlinear transformations carried out by one or more neural 
network layers:
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Figure 19.1: Various types of sequence-to-sequence models

The left panel shows a one-to-one mapping between vectors of fixed sizes, typical for 
FFNs and CNNs covered in the last two chapters. The other three panels show various 
RNN applications that map input vectors to output vectors by applying a recurrent 
transformation to the new input and the state produced by the previous iteration. The x 
input vectors to an RNN are also called context.

The vectors are time-indexed, as usually required by trading-related applications, but they 
could also be labeled by a different set of sequential values. Generic sequence-to-sequence 
mapping tasks and sample applications include:

• One-to-many: Image captioning, for example, takes a single vector of pixels (as in 
the previous chapter) and maps it to a sequence of words.

• Many-to-one: Sentiment analysis takes a sequence of words or tokens (see Chapter 

14, Text Data for Trading – Sentiment Analysis) and maps it to an output scalar or 
vector.

• Many-to-many: Machine translation or labeling of video frame map sequences of 
input vectors to sequences of output vectors, either in a synchronized (as shown) or 
asynchronous fashion. Multistep prediction of multivariate time series also maps 
several input vectors to several output vectors.

Note that input and output sequences can be of arbitrary lengths because the recurrent 
transformation that is fixed but learned from the data can be applied as many times as 
needed.

Just as CNNs easily scale to large images and some CNNs can process images of variable 
size, RNNs scale to much longer sequences than networks not tailored to sequence-based 
tasks. Most RNNs can also process sequences of variable length.
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Unfolding a computational graph with cycles
RNNs are called recurrent because they apply the same transformations to every element 
of a sequence in a way that the RNN's output depends on the outcomes of prior iterations. 
As a result, RNNs maintain an internal state that captures information about previous 
elements in the sequence, just like memory.

Figure 19.2 shows the computational graph implied by a single hidden RNN unit that 
learns two weight matrices during training:

• W
hh

: applied to the previous hidden state, ht-1

• Whx: applied to the current input, x
t

The RNN's output, y
t
, is a nonlinear transformation of the sum of the two matrix 

multiplications using, for example, the tanh or ReLU activation functions:𝑦𝑦𝑡𝑡 = 𝑔𝑔𝑔𝑔𝑔ℎℎℎ𝑡𝑡𝑡𝑡 +𝑔𝑔𝑥𝑥ℎ𝑥𝑥𝑡𝑡) 

Figure 19.2: Recurrent and unrolled view of the computational graph of an RNN with a single hidden unit

The right side of the equation shows the effect of unrolling the recurrent relationship 
depicted in the right panel of the figure. It highlights the repeated linear algebra 
transformations and the resulting hidden state that combines information from past 
sequence elements with the current input, or context. An alternative formulation connects 
the context vector to the first hidden state only; we will outline additional options to 
modify this baseline architecture in the subsequent section.

Backpropagation through time
The unrolled computational graph in the preceding figure highlights that the learning 
process necessarily encompasses all time steps of the given input sequence. The 
backpropagation algorithm that updates the weights during training involves a forward 
pass from left to right along with the unrolled computational graph, followed by a 
backward pass in the opposite direction.
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As discussed in Chapter 17, Deep Learning for Trading, the backpropagation algorithm 
evaluates a loss function and computes its gradient with respect to the parameters to 
update the weights accordingly. In the RNN context, backpropagation runs from right to 
left in the computational graph, updating the parameters from the final time step all the 
way to the initial time step. Therefore, the algorithm is called backpropagation through 
time (Werbos 1990).

It highlights both the power of an RNN to model long-range dependencies by sharing 
parameters across an arbitrary number of sequence elements while maintaining a 
corresponding state. On the other hand, it is computationally quite expensive, and the 
computations for each time step cannot be parallelized due to its inherently sequential nature.

Alternative RNN architectures
Just like the FFNN and CNN architectures we covered in the previous two chapters, RNNs 
can be optimized in a variety of ways to capture the dynamic relationship between input 
and output data.

In addition to modifying the recurrent connections between the hidden states, alternative 
approaches include recurrent output relationships, bidirectional RNNs, and encoder-
decoder architectures. Refer to GitHub for background references to complement this brief 
summary.

Output recurrence and teacher forcing

One way to reduce the computational complexity of hidden state recurrences is to connect a 
unit's hidden state to the prior unit's output rather than its hidden state. The resulting RNN 
has a lower capacity than the architecture discussed previously, but different time steps are 
now decoupled and can be trained in parallel.

However, to successfully learn relevant past information, the training output samples 
need to reflect this information so that backpropagation can adjust the network parameters 
accordingly. To the extent that asset returns are independent of their lagged values, 
financial data may not meet this requirement. The use of previous outcome values 
alongside the input vectors is called teacher forcing (Williams and Zipser, 1989).

Connections from the output to the subsequent hidden state can also be used 
in combination with hidden recurrence. However, training requires backpropagation 
through time and cannot be run in parallel.

Bidirectional RNNs

For some tasks, it can be realistic and beneficial for the output to depend not only on past 
sequence elements, but also on future elements (Schuster and Paliwal, 1997). Machine 
translation or speech and handwriting recognition are examples where subsequent 
sequence elements are both informative and realistically available to disambiguate 
competing outputs.
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For a one-dimensional sequence, bidirectional RNNs combine an RNN that moves forward 
with another RNN that scans the sequence in the opposite direction. As a result, the output 
comes to depend on both the future and the past of the sequence. Applications in the 
natural language and music domains (Sigtia et al., 2014) have been very successful (see 
Chapter 16, Word Embeddings for Earnings Calls and SEC Filings, and the last example in this 
chapter using SEC filings).

Bidirectional RNNs can also be used with two-dimensional image data. In this case, one 
pair of RNNs performs the forward and backward processing of the sequence in each 
dimension.

Encoder-decoder architectures, attention, and transformers

The architectures discussed so far assumed that the input and output sequences have 
equal length. Encoder-decoder architectures, also called sequence-to-sequence (seq2seq) 
architectures, relax this assumption and have become very popular for machine translation 
and other applications with this characteristic (Prabhavalkar et al., 2017).

The encoder is an RNN that maps the input space to a different space, also called latent 
space, whereas the decoder function is a complementary RNN that maps the encoded input 
to the target space (Cho et al., 2014). In the next chapter, we will cover autoencoders that 
learn a feature representation in an unsupervised setting using a variety of deep learning 
architectures.

Encoder and decoder RNNs are trained jointly so that the input of the final encoder hidden 
state becomes the input to the decoder, which, in turn, learns to match the training samples.

The attention mechanism addresses a limitation of using fixed-size encoder inputs when 
input sequences themselves vary in size. The mechanism converts raw text data into a 
distributed representation (see Chapter 16, Word Embeddings for Earnings Calls and SEC 
Filings), stores the result, and uses a weighted average of these feature vectors as context. 
The weights are learned by the model and alternate between putting more weight or 
attention to different elements of the input.

A recent transformer architecture dispenses with recurrence and convolutions and 
exclusively relies on this attention mechanism to learn input-output mappings. It has 
achieved superior quality on machine translation tasks while requiring much less time 
for training, not least because it can be parallelized (Vaswani et al., 2017).

How to design deep RNNs
The unrolled computational graph in Figure 19.2 shows that each transformation involves 
a linear matrix operation followed by a nonlinear transformation that could be jointly 
represented by a single network layer.

In the two preceding chapters, we saw how adding depth allows FFNNs, and CNNs 
in particular, to learn more useful hierarchical representations. RNNs also benefit from 
decomposing the input-output mapping into multiple layers. For RNNs, this mapping 
typically transforms:



Chapter 19

[ 597 ]

• The input and the prior hidden state into the current hidden state

• The hidden state into the output

A common approach is to stack recurrent layers on top of each other so that they learn 
a hierarchical temporal representation of the input data. This means that a lower layer 
may capture higher-frequency patterns, synthesized by a higher layer into lower-
frequency characteristics that prove useful for the classification or regression task. 
We will demonstrate this approach in the next section.

Less popular alternatives include adding layers to the connections from input to the hidden 
state, between hidden states, or from the hidden state to the output. These designs employ 
skip connections to avoid a situation where the shortest path between time steps increases 
and training becomes more difficult.

The challenge of learning long-range dependencies
In theory, RNNs can make use of information in arbitrarily long sequences. However, in 
practice, they are limited to looking back only a few steps. More specifically, RNNs struggle 
to derive useful context information from time steps far apart from the current observation 
(Hochreiter et al., 2001).

The fundamental problem is the impact of repeated multiplication on gradients during 
backpropagation over many time steps. As a result, the gradients tend to either vanish and 
decrease toward zero (the typical case), or explode and grow toward infinity (less frequent, 
but rendering optimization very difficult).

Even if parameters allow stability and the network is able to store memories, long-term 
interactions will receive exponentially smaller weights due to the multiplication of many 
Jacobians, the matrices containing the gradient information. Experiments have shown that 
stochastic gradient descent faces serious challenges in training RNNs for sequences with 
only 10 or 20 elements.

Several RNN design techniques have been introduced to address this challenge, including 
echo state networks (Jaeger, 2001) and leaky units (Hihi and Bengio, 1996). The latter 
operate at different time scales, focusing part of the model on higher-frequency and other 
parts on lower-frequency representations to deliberately learn and combine different 
aspects from the data. Other strategies include connections that skip time steps or units 
that integrate signals from different frequencies.

The most successful approaches use gated units that are trained to regulate how much past 
information a unit maintains in its current state and when to reset or forget this information. 
As a result, they are able to learn dependencies over hundreds of time steps. The most 
popular examples include long short-term memory (LSTM) units and gated recurrent units 
(GRUs). An empirical comparison by Chung et al. (2014) finds both units superior to simpler 
recurrent units such as tanh units, while performing equally well on various speech and 
music modeling tasks.



RNNs for Multivariate Time Series and Sentiment Analysis

[ 598 ]

Long short-term memory – learning how much to forget

RNNs with an LSTM architecture have more complex units that maintain an internal state. 
They contain gates to keep track of dependencies between elements of the input sequence 
and regulate the cell's state accordingly. These gates recurrently connect to each other 
instead of the hidden units we encountered earlier. They aim to address the problem of 
vanishing and exploding gradients due to the repeated multiplication of possibly very 
small or very large values by letting gradients pass through unchanged (Hochreiter and 
Schmidhuber, 1996).

The diagram in Figure 19.3 shows the information flow for an unrolled LSTM unit and 
outlines its typical gating mechanism:

Figure 19.3: Information flow through an unrolled LSTM cell

A typical LSTM unit combines four parameterized layers that interact with each other 
and the cell state by transforming and passing along vectors. These layers usually involve 
an input gate, an output gate, and a forget gate, but there are variations that may have 
additional gates or lack some of these mechanisms. The white nodes in Figure 19.4 identify 
element-wise operations, and the gray elements represent layers with weight and bias 
parameters learned during training:

Figure 19.4: The logic of, and math behind, an LSTM cell
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The cell state, c, passes along the horizontal connection at the top of the cell. The cell state's 
interaction with the various gates leads to a series of recurrent decisions:

1. The forget gate controls how much of the cell's state should be voided to regulate 
the network's memory. It receives the prior hidden state, ht-1, and the current input, 
x

t
, as inputs, computes a sigmoid activation, and multiplies the resulting value, f

t
, 

which has been normalized to the [0, 1] range, by the cell state, reducing or keeping 
it accordingly.

2. The input gate also computes a sigmoid activation from ht-1 and x
t
 that produces 

update candidates. A tan
h
 activation in the range from [-1, 1] multiplies the update 

candidates, u
t
, and, depending on the resulting sign, adds or subtracts the result 

from the cell state.

3. The output gate filters the updated cell state using a sigmoid activation, o
t
, and 

multiplies it by the cell state normalized to the range [-1, 1] using a tan
h
 activation.

Gated recurrent units
GRUs simplify LSTM units by omitting the output gate. They have been shown to achieve 
similar performance on certain language modeling tasks, but do better on smaller datasets.

GRUs aim for each recurrent unit to adaptively capture dependencies of different time 
scales. Similar to the LSTM unit, the GRU has gating units that modulate the flow of 
information inside the unit but discard separate memory cells (see references on GitHub for 
additional details).

RNNs for time series with TensorFlow 2
In this section, we illustrate how to build recurrent neural nets using the TensorFlow 
2 library for various scenarios. The first set of models includes the regression and 
classification of univariate and multivariate time series. The second set of tasks focuses on 
text data for sentiment analysis using text data converted to word embeddings (see Chapter 

16, Word Embeddings for Earnings Calls and SEC Filings).

More specifically, we'll first demonstrate how to prepare time-series data to predict the next 
value for univariate time series with a single LSTM layer to predict stock index values.

Next, we'll build a deep RNN with three distinct inputs to classify asset price movements. 
To this end, we'll combine a two-layer, stacked LSTM with learned embeddings and one-
hot encoded categorical data. Finally, we will demonstrate how to model multivariate time 
series using an RNN.
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Univariate regression – predicting the S&P 500
In this subsection, we will forecast the S&P 500 index values (refer to the  
univariate_time_series_regression notebook for implementation details).

We'll obtain data for 2010-2019 from the Federal Reserve Bank's Data Service (FRED; see 
Chapter 2, Market and Fundamental Data – Sources and Techniques):

sp500 = web.DataReader('SP500', 'fred', start='2010', end='2020').dropna()

sp500.info()

DatetimeIndex: 2463 entries, 2010-03-22 to 2019-12-31

Data columns (total 1 columns):

 #   Column  Non-Null Count  Dtype

---  ------  --------------  -----  

 0   SP500   2463 non-null   float64

We preprocess the data by scaling it to the [0, 1] interval using scikit-learn's MinMaxScaler() 
class:

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

sp500_scaled = pd.Series(scaler.fit_transform(sp500).squeeze(), 
                         index=sp500.index)

How to get time series data into shape for an RNN
We generate sequences of 63 consecutive trading days, approximately three months, and 
use a single LSTM layer with 20 hidden units to predict the scaled index value one time 
step ahead.

The input to every LSTM layer must have three dimensions, namely:

• Batch size: One sequence is one sample. A batch contains one or more samples.

• Time steps: One time step is a single observation in the sample.

• Features: One feature is one observation at a time step.

The following figure visualizes the shape of the input tensor:
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Figure 19.5: The three dimensions of an RNN input tensor

Our S&P 500 sample has 2,463 observations or time steps. We will create overlapping 
sequences using a window of 63 observations each. Using a simpler window of size T = 5 
to illustrate this autoregressive sequence pattern, we obtain input-output pairs where each 
output is associated with its first five lags, as shown in the following table:

Figure 19.6: Input-output pairs with a T=5 size window

We can use the create_univariate_rnn_data() function to stack the overlapping sequences 
that we select using a rolling window:

def create_univariate_rnn_data(data, window_size):

    y = data[window_size:]

    data = data.values.reshape(-1, 1) # make 2D

    n = data.shape[0]

    X = np.hstack(tuple([data[i: n-j, :] for i, j in enumerate(range(

                                                     window_size, 0, -1))]))

    return pd.DataFrame(X, index=y.index), y
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We apply this function to the rescaled stock index using window_size=63 to obtain a two-
dimensional dataset with a shape of the number of samples x the number of time steps:

X, y = create_univariate_rnn_data(sp500_scaled, window_size=63)

X.shape

(2356, 63)

We will use data from 2019 as our test set and reshape the features to add a requisite third 
dimension:

X_train = X[:'2018'].values.reshape(-1, window_size, 1)

y_train = y[:'2018']

# keep the last year for testing

X_test = X['2019'].values.reshape(-1, window_size, 1)

y_test = y['2019']

How to define a two-layer RNN with a single LSTM layer
Now that we have created autoregressive input/output pairs from our time series and 
split the pairs into training and test sets, we can define our RNN architecture. The Keras 
interface of TensorFlow 2 makes it very straightforward to build an RNN with two hidden 
layers with the following specifications:

• Layer 1: An LSTM module with 10 hidden units (with input_shape = (window_
size,1); we will define batch_size in the omitted first dimension during training)

• Layer 2: A fully connected module with a single unit and linear activation

• Loss: mean_squared_error to match the regression objective

Just a few lines of code create the computational graph:

rnn = Sequential([

    LSTM(units=10,

         input_shape=(window_size, n_features), name='LSTM'),

    Dense(1, name='Output')

])

The summary shows that the model has 491 parameters:

rnn.summary()

Layer (type)                 Output Shape              Param #   

LSTM (LSTM)                  (None, 10)                480       

Output (Dense)               (None, 1)                 11        

Total params: 491

Trainable params: 491
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Training and evaluating the model

We train the model using the RMSProp optimizer recommended for RNN with default 
settings and compile the model with mean_squared_error for this regression problem:

optimizer = keras.optimizers.RMSprop(lr=0.001,

                                     rho=0.9,

                                     epsilon=1e-08,

                                     decay=0.0)

rnn.compile(loss='mean_squared_error', optimizer=optimizer)

We define an EarlyStopping callback and train the model for 500 episodes:

early_stopping = EarlyStopping(monitor='val_loss', 

                              patience=50,

                              restore_best_weights=True)

lstm_training = rnn.fit(X_train,
                       y_train,

                       epochs=500,

                       batch_size=20,

                       validation_data=(X_test, y_test),

                       callbacks=[checkpointer, early_stopping],

                       verbose=1)

Training stops after 138 epochs. The loss history in Figure 19.7 shows the 5-epoch rolling 
average of the training and validation RMSE, highlights the best epoch, and shows that the 
loss is 0.998 percent:

loss_history = pd.DataFrame(lstm_training.history).pow(.5)

loss_history.index += 1

best_rmse = loss_history.val_loss.min()

best_epoch = loss_history.val_loss.idxmin()

loss_history.columns=['Training RMSE', 'Validation RMSE']

title = f'Best Validation RMSE: {best_rmse:.4%}'

loss_history.rolling(5).mean().plot(logy=True, lw=2, title=title, ax=ax)
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Figure 19.7: Cross-validation performance

Re-scaling the predictions

We use the inverse_transform() method of MinMaxScaler() to rescale the model 
predictions to the original S&P 500 range of values:

test_predict_scaled = rnn.predict(X_test)

test_predict = (pd.Series(scaler.inverse_transform(test_predict_scaled)

                          .squeeze(), 

                          index=y_test.index))

The four plots in Figure 19.8 illustrate the forecast performance based on the rescaled 
predictions that track the 2019 out-of-sample S&P 500 data with a test information 
coefficient (IC) of 0.9889:

Figure 19.8: RNN performance on S&P 500 predictions
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Stacked LSTM – predicting price moves and returns
We'll now build a deeper model by stacking two LSTM layers using the Quandl stock price 
data (see the stacked_lstm_with_feature_embeddings.ipynb notebook for implementation 
details). Furthermore, we will include features that are not sequential in nature, namely, 
indicator variables identifying the equity and the month.

Figure 19.9 outlines the architecture that illustrates how to combine different data sources 
in a single deep neural network. For example, instead of, or in addition to, one-hot encoded 
months, you could add technical or fundamental features:

Figure 19.9: Stacked LSTM architecture with additional features

Preparing the data – how to create weekly stock returns

We load the Quandl adjusted stock price data (see instructions on GitHub on how to obtain 
the source data) as follows (refer to the build_dataset.ipynb notebook):

prices = (pd.read_hdf('../data/assets.h5', 'quandl/wiki/prices')

          .adj_close

          .unstack().loc['2007':])

prices.info()

DatetimeIndex: 2896 entries, 2007-01-01 to 2018-03-27

Columns: 3199 entries, A to ZUMZ

We start by generating weekly returns for close to 2,500 stocks with complete data for the 
2008-17 period:

returns = (prices

           .resample('W')

           .last()

           .pct_change()

           .loc['2008': '2017']

           .dropna(axis=1)

           .sort_index(ascending=False))
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returns.info()

DatetimeIndex: 2576 entries, 2017-12-29 to 2008-01-01

Columns: 2489 entries, A to ZUMZ

We create and stack rolling sequences of 52 weekly returns for each ticker and week as 
follows:

n = len(returns)

T = 52

tcols = list(range(T))

tickers = returns.columns

data = pd.DataFrame()

for i in range(n-T-1):

    df = returns.iloc[i:i+T+1]

    date = df.index.max()    

    data = pd.concat([data, (df.reset_index(drop=True).T

                             .assign(date=date, ticker=tickers)

                             .set_index(['ticker', 'date']))])

We winsorize outliers at the 1 and 99 percentile level and create a binary label that indicates 
whether the weekly return was positive:

data[tcols] = (data[tcols].apply(lambda x: x.clip(lower=x.quantile(.01),

                                                  upper=x.quantile(.99))))

data['label'] = (data['fwd_returns'] > 0).astype(int)

As a result, we obtain 1.16 million observations on over 2,400 stocks with 52 weeks of 
lagged returns each (plus the label):

data.shape

(1167341, 53)

Now we are ready to create the additional features, split the data into training and test sets, 
and bring them into the three-dimensional format required for the LSTM.

How to create multiple inputs in RNN format

This example illustrates how to combine several input data sources, namely:

• Rolling sequences of 52 weeks of lagged returns

• One-hot encoded indicator variables for each of the 12 months

• Integer-encoded values for the tickers
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The following code generates the two additional features:

data['month'] = data.index.get_level_values('date').month

data = pd.get_dummies(data, columns=['month'], prefix='month')
data['ticker'] = pd.factorize(data.index.get_level_values('ticker'))[0]

Next, we create a training set covering the 2009-2016 period and a separate test set with 
data for 2017, the last full year with data:

train_data = data[:'2016']

test_data = data['2017']

For training and test datasets, we generate a list containing the three input arrays as shown 
in Figure 19.9:

• The lagged return series (using the format described in Figure 19.5)

• The integer-encoded stock ticker as a one-dimensional array

• The month dummies as a two-dimensional array with one column per month

window_size=52

sequence = list(range(1, window_size+1))

X_train = [

    train_data.loc[:, sequence].values.reshape(-1, window_size , 1),

    train_data.ticker,

    train_data.filter(like='month')
]

y_train = train_data.label

[x.shape for x in X_train], y_train.shape

[(1035424, 52, 1), (1035424,), (1035424, 12)], (1035424,)

How to define the architecture using Keras' Functional API
Keras' Functional API makes it easy to design an architecture like the one outlined at the 
beginning of this section with multiple inputs (or several outputs, as in the SVHN example 
in Chapter 18, CNNs for Financial Time Series and Satellite Images). This example illustrates a 
network with three inputs:

1. Two stacked LSTM layers with 25 and 10 units, respectively

2. An embedding layer that learns a 10-dimensional real-valued representation of the 
equities

3. A one-hot encoded representation of the month
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We begin by defining the three inputs with their respective shapes:

n_features = 1

returns = Input(shape=(window_size, n_features), name='Returns')

tickers = Input(shape=(1,), name='Tickers')

months = Input(shape=(12,), name='Months')

To define stacked LSTM layers, we set the return_sequences keyword for the first layer to 
True. This ensures that the first layer produces an output in the expected three-dimensional 
input format. Note that we also use dropout regularization and how the Functional API 
passes the tensor outputs from one layer to the subsequent layer's input:

lstm1 = LSTM(units=lstm1_units,

             input_shape=(window_size, n_features),

             name='LSTM1',

             dropout=.2,

             return_sequences=True)(returns)

lstm_model = LSTM(units=lstm2_units,

             dropout=.2,

             name='LSTM2')(lstm1)

The TensorFlow 2 guide for RNNs highlights the fact that GPU support is only available 
when using the default values for most LSTM settings (https://www.tensorflow.org/guide/
keras/rnn).

The embedding layer requires:

• The input_dim keyword, which defines how many embeddings the layer will learn 
• The output_dim keyword, which defines the size of the embedding
• The input_length parameter, which sets the number of elements passed to the layer 

(here, only one ticker per sample) 

The goal of the embedding layer is to learn vector representations that capture the relative 
locations of the feature values to one another with respect to the outcome. We'll choose a 
five-dimensional embedding for the roughly 2,500 ticker values to combine the embedding 
layer with the LSTM layer and the month dummies we need to reshape (or flatten) it:

ticker_embedding = Embedding(input_dim=n_tickers,

                             output_dim=5,

                             input_length=1)(tickers)

ticker_embedding = Reshape(target_shape=(5,))(ticker_embedding)

Now we can concatenate the three tensors, followed by BatchNormalization:

merged = concatenate([lstm_model, ticker_embedding, months], name='Merged')

bn = BatchNormalization()(merged)

https://www.tensorflow.org/guide/keras/rnn
https://www.tensorflow.org/guide/keras/rnn
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The fully connected final layers learn a mapping from these stacked LSTM layers, ticker 
embeddings, and month indicators to the binary outcome that reflects a positive or negative 
return over the following week. We formulate the complete RNN by defining its inputs and 
outputs with the implicit data flow we just defined:

hidden_dense = Dense(10, name='FC1')(bn)

output = Dense(1, name='Output', activation='sigmoid')(hidden_dense)

rnn = Model(inputs=[returns, tickers, months], outputs=output)

The summary lays out this slightly more sophisticated architecture with 16,984 parameters:

Layer (type)                    Output Shape         Param #     Connected to

Returns (InputLayer)            [(None, 52, 1)]      0

Tickers (InputLayer)            [(None, 1)]          0

LSTM1 (LSTM)                    (None, 52, 25)       2700        Returns[0]
[0]

embedding (Embedding)           (None, 1, 5)         12445       Tickers[0]
[0]

LSTM2 (LSTM)                    (None, 10)           1440        LSTM1[0][0]

reshape (Reshape)               (None, 5)           0          embedding[0]
[0]

Months (InputLayer)             [(None, 12)]         0

Merged (Concatenate)            (None, 27)           0           LSTM2[0][0]

                                                                 reshape[0]
[0]

                                                                 Months[0][0]

batch_normalization (BatchNorma (None, 27)           108         Merged[0][0]

FC1 (Dense)                     (None, 10)           280         

atch_normalization[0][0]

Output (Dense)                  (None, 1)            11          FC1[0][0]

Total params: 16,984

Trainable params: 16,930

Non-trainable params: 54

We compile the model using the recommended RMSProp optimizer with default settings 
and compute the AUC metric that we'll use for early stopping:

optimizer = tf.keras.optimizers.RMSprop(lr=0.001,

                                        rho=0.9,

                                        epsilon=1e-08,

                                        decay=0.0)

rnn.compile(loss='binary_crossentropy',

            optimizer=optimizer,

            metrics=['accuracy', 

                     tf.keras.metrics.AUC(name='AUC')])
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We train the model for 50 epochs by using early stopping:

result = rnn.fit(X_train,
                 y_train,

                 epochs=50,

                 batch_size=32,

                 validation_data=(X_test, y_test),

                 callbacks=[early_stopping])

The following plots show that training stops after 8 epochs, each of which takes around 
three minutes on a single GPU. It results in a test AUC of 0.6816 and a test accuracy of 
0.6193 for the best model:

Figure 19.10: Stacked LSTM classification—cross-validation performance

The IC for the test prediction and actual weekly returns is 0.32.

Predicting returns instead of directional price moves

The stacked_lstm_with_feature_embeddings_regression.ipynb notebook illustrates how 
to adapt the model to the regression task of predicting returns rather than binary price 
changes.

The required changes are minor; just do the following:

1. Select the fwd_returns outcome instead of the binary label.

2. Convert the model output to linear (the default) instead of sigmoid.

3. Update the loss to mean squared error (and early stopping references).

4. Remove or update optional metrics to match the regression task.

Using otherwise the same training parameters (except that the Adam optimizer with 
default settings yields a better result in this case), the validation loss improves for nine 
epochs. The average weekly IC is 3.32, and 6.68 for the entire period while significant at the 
1 percent level. The average weekly return differential between the equities in the top and 
bottom quintiles of predicted returns is slightly above 20 basis points:
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Figure 19.11: Stacked LSTM regression—out-of-sample performance

Multivariate time-series regression for macro data
So far, we have limited our modeling efforts to a single time series. RNNs are well-
suited to multivariate time series and represent a nonlinear alternative to the vector 

autoregressive (VAR) models we covered in Chapter 9, Time-Series Models for Volatility 
Forecasts and Statistical Arbitrage. Refer to the multivariate_timeseries notebook for 
implementation details.

Loading sentiment and industrial production data

We'll show how to model and forecast multiple time series using RNNs with the same 
dataset we used for the VAR example. It has monthly observations over 40 years on 
consumer sentiment and industrial production from the Federal Reserve's FRED service:

df = web.DataReader(['UMCSENT', 'IPGMFN'], 'fred', '1980', '2019-12').
dropna()

df.columns = ['sentiment', 'ip']

df.info()

DatetimeIndex: 480 entries, 1980-01-01 to 2019-12-01

Data columns (total 2 columns):

sentiment    480 non-null float64
ip           480 non-null float64

Making the data stationary and adjusting the scale

We apply the same transformation—annual difference for both series, prior log-transform 
for industrial production—to achieve stationarity (see Chapter 9, Time-Series Models for 
Volatility Forecasts and Statistical Arbitrage for details). We also rescale it to the [0, 1] range to 
ensure that the network gives both series equal weight during training:

df_transformed = (pd.DataFrame({'ip': np.log(df.ip).diff(12),
                               'sentiment': df.sentiment.diff(12)}).dropna())
df_transformed = df_transformed.apply(minmax_scale)
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Figure 19.12 displays the original and transformed macro time series:

Figure 19.12: Original and transformed time series

Creating multivariate RNN inputs

The create_multivariate_rnn_data() function transforms a dataset of several time series 
into the three-dimensional shape required by TensorFlow's RNN layers, formed as n_
samples × window_size × n_series:

def create_multivariate_rnn_data(data, window_size):

    y = data[window_size:]

    n = data.shape[0]

    X = np.stack([data[i: j] for i, j in enumerate(range(window_size, n))],

                 axis=0)

    return X, y

A window_size value of 18 ensures that the entries in the second dimension are the lagged 
18 months of the respective output variable. We thus obtain the RNN model inputs for each 
of the two features as follows:

X, y = create_multivariate_rnn_data(df_transformed, window_size=window_size)

X.shape, y.shape

((450, 18, 2), (450, 2))

Finally, we split our data into a training and a test set, using the last 24 months to test the 
out-of-sample performance:

test_size = 24

train_size = X.shape[0]-test_size

X_train, y_train = X[:train_size], y[:train_size]

X_test, y_test = X[train_size:], y[train_size:]

X_train.shape, X_test.shape

((426, 18, 2), (24, 18, 2))
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Defining and training the model
Given the relatively small dataset, we use a simpler RNN architecture than in the previous 
example. It has a single LSTM layer with 12 units, followed by a fully connected layer with 
6 units. The output layer has two units, one for each time series.

We compile using mean absolute loss and the recommended RMSProp optimizer:

n_features = output_size = 2

lstm_units = 12

dense_units = 6

rnn = Sequential([

    LSTM(units=lstm_units,

         dropout=.1,

         recurrent_dropout=.1,

         input_shape=(window_size, n_features), name='LSTM',

         return_sequences=False),

    Dense(dense_units, name='FC'),

    Dense(output_size, name='Output')

])

rnn.compile(loss='mae', optimizer='RMSProp')

The model still has 812 parameters, compared to 10 for the VAR(1, 1) model from Chapter 

9, Time-Series Models for Volatility Forecasts and Statistical Arbitrage:

Layer (type)                 Output Shape              Param #   

LSTM (LSTM)                  (None, 12)                720       

FC (Dense)                   (None, 6)                 78        

Output (Dense)               (None, 2)                 14        

Total params: 812

Trainable params: 812

We train for 100 epochs with a batch_size of 20 using early stopping:

result = rnn.fit(X_train,
                y_train,

                epochs=100,

                batch_size=20,

                shuffle=False,
                validation_data=(X_test, y_test),

                callbacks=[checkpointer, early_stopping],

                verbose=1)

Training stops early after 62 epochs, yielding a test MAE of 0.034, an almost 25 percent 
improvement over the test MAE for the VAR model of 0.043 on the same task.
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However, the two results are not fully comparable because the RNN produces 18 1-step-
ahead forecasts whereas the VAR model uses its own predictions as input for its out-of-
sample forecast. You may want to tweak the VAR setup to obtain comparable forecasts and 
compare the performance.

Figure 19.13 highlights training and validation errors, and the out-of-sample predictions for 
both series:

Figure 19.13: Cross-validation and test results for RNNs with multiple macro series

RNNs for text data 
RNNs are commonly applied to various natural language processing tasks, from machine 
translation to sentiment analysis, that we already encountered in Part 3 of this book. In this 
section, we will illustrate how to apply an RNN to text data to detect positive or negative 
sentiment (easily extensible to a finer-grained sentiment scale) and to predict stock returns.

More specifically, we'll use word embeddings to represent the tokens in the documents. 
We covered word embeddings in Chapter 16, Word Embeddings for Earnings Calls and SEC 
Filings. They are an excellent technique for converting a token into a dense, real-value 
vector because the relative location of words in the embedding space encodes useful 
semantic aspects of how they are used in the training documents.

We saw in the previous stacked RNN example that TensorFlow has a built-in embedding 
layer that allows us to train vector representations specific to the task at hand. 
Alternatively, we can use pretrained vectors. We'll demonstrate both approaches in the 
following three sections.

LSTM with embeddings for sentiment classification
This example shows how to learn custom embedding vectors while training an RNN on 
the classification task. This differs from the word2vec model that learns vectors while 
optimizing predictions of neighboring tokens, resulting in their ability to capture certain 
semantic relationships among words (see Chapter 16, Word Embeddings for Earnings Calls 
and SEC Filings). Learning word vectors with the goal of predicting sentiment implies that 
embeddings will reflect how a token relates to the outcomes it is associated with.
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Loading the IMDB movie review data

To keep the data manageable, we will illustrate this use case with the IMDB reviews 
dataset, which contains 50,000 positive and negative movie reviews, evenly split into a 
training set and a test set, with balanced labels in each dataset. The vocabulary consists 
of 88,586 tokens. Alternatively, you could use the much larger Yelp review data (after 
converting the text into numerical sequences; see the next section on using pretrained 
embeddings or TensorFlow 2 docs).

The dataset is bundled into TensorFlow and can be loaded so that each review is 
represented as an integer-encoded sequence. We can limit the vocabulary to  
num_words while filtering out frequent and likely less informative words using skip_top 
as well as sentences longer than maxlen. We can also choose the oov_char value, which 
represents tokens we chose to exclude from the vocabulary on frequency grounds:

from tensorflow.keras.datasets import imdb
vocab_size = 20000
(X_train, y_train), (X_test, y_test) = imdb.load_data(seed=42, 
                                                      skip_top=0,
                                                      maxlen=None, 
                                                      oov_char=2, 
                                                      index_from=3,
                                                      num_words=vocab_size)

In the second step, convert the lists of integers into fixed-size arrays that we can stack 
and provide as an input to our RNN. The pad_sequence function produces arrays of equal 
length, truncated and padded to conform to maxlen:

maxlen = 100
X_train_padded = pad_sequences(X_train, 
                        truncating='pre', 
                        padding='pre', 
                        maxlen=maxlen)

Defining embedding and the RNN architecture
Now we can set up our RNN architecture. The first layer learns the word embeddings. We 
define the embedding dimensions as before, using the following:

• The input_dim keyword, which sets the number of tokens that we need to embed

• The output_dim keyword, which defines the size of each embedding 
• The input_len parameter, which specifies how long each input sequence is going 

to be

Note that we are using GRU units this time that train faster and perform better on smaller 
amounts of data. We are also using recurrent dropout for regularization:

embedding_size = 100

rnn = Sequential([
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    Embedding(input_dim=vocab_size, 

              output_dim= embedding_size, 

              input_length=maxlen),

    GRU(units=32,

        dropout=0.2, # comment out to use optimized GPU implementation

        recurrent_dropout=0.2),

    Dense(1, activation='sigmoid')

])

The resulting model has over 2 million trainable parameters:

Layer (type)                 Output Shape              Param #   

embedding (Embedding)        (None, 100, 100)          2000000   

gru (GRU)                    (None, 32)                12864     

dense (Dense)                (None, 1)                 33        

Total params: 2,012,897

Trainable params: 2,012,897

We compile the model to use the AUC metric and train with early stopping:

rnn.fit(X_train_padded, 
       y_train, 

       batch_size=32, 

       epochs=25, 

       validation_data=(X_test_padded, y_test),

       callbacks=[early_stopping],

       verbose=1)

Training stops after 12 epochs, and we recover the weights for the best models to find a 
high test AUC of 0.9393:

y_score = rnn.predict(X_test_padded)

roc_auc_score(y_score=y_score.squeeze(), y_true=y_test)

0.9393289376

Figure 19.14 displays the cross-validation performance in terms of accuracy and AUC:

Figure 19.14: Cross-validation for RNN using IMDB data with custom embeddings
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Sentiment analysis with pretrained word vectors
In Chapter 16, Word Embeddings for Earnings Calls and SEC Filings, we discussed how to 
learn domain-specific word embeddings. Word2vec and related learning algorithms 
produce high-quality word vectors but require large datasets. Hence, it is common that 
research groups share word vectors trained on large datasets, similar to the weights for 
pretrained deep learning models that we encountered in the section on transfer learning 
in the previous chapter.

We are now going to illustrate how to use pretrained global vectors for word 
representation (GloVe) provided by the Stanford NLP group with the  
IMDB review dataset (refer to GitHub for references and the  
sentiment_analysis_pretrained_embeddings notebook for implementation details).

Preprocessing the text data

We are going to load the IMDB dataset from the source to manually preprocess it (see the 
notebook). TensorFlow provides a Tokenizer, which we'll use to convert the text documents 
to integer-encoded sequences:

num_words = 10000

t = Tokenizer(num_words=num_words,

              lower=True, 

              oov_token=2)

t.fit_on_texts(train_data.review)
vocab_size = len(t.word_index) + 1

train_data_encoded = t.texts_to_sequences(train_data.review)

test_data_encoded = t.texts_to_sequences(test_data.review)

We also use the pad_sequences function to convert the list of lists (of unequal length) to 
stacked sets of padded and truncated arrays for both the training and test data:

max_length = 100

X_train_padded = pad_sequences(train_data_encoded, 

                               maxlen=max_length, 

                               padding='post',

                               truncating='post')

y_train = train_data['label']

X_train_padded.shape

(25000, 100)

Loading the pretrained GloVe embeddings

We downloaded and unzipped the GloVe data to the location indicated in the code and will 
now create a dictionary that maps GloVe tokens to 100-dimensional, real-valued vectors:

glove_path = Path('data/glove/glove.6B.100d.txt')

embeddings_index = dict()
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for line in glove_path.open(encoding='latin1'):

    values = line.split()

    word = values[0]

    coefs = np.asarray(values[1:], dtype='float32')
    embeddings_index[word] = coefs

There are around 340,000 word vectors that we use to create an embedding matrix that 
matches the vocabulary so that the RNN can access embeddings by the token index:

embedding_matrix = np.zeros((vocab_size, 100))

for word, i in t.word_index.items():

    embedding_vector = embeddings_index.get(word)

    if embedding_vector is not None:

        embedding_matrix[i] = embedding_vector

Defining the architecture with frozen weights
The difference with the RNN setup in the previous example is that we are going to pass 
the embedding matrix to the embedding layer and set it to not trainable so that the weights 
remain fixed during training:

rnn = Sequential([

    Embedding(input_dim=vocab_size,

              output_dim=embedding_size,

              input_length=max_length,

              weights=[embedding_matrix],

              trainable=False),

    GRU(units=32,  dropout=0.2, recurrent_dropout=0.2),

    Dense(1, activation='sigmoid')])

From here on, we proceed as before. Training continues for 32 epochs, as shown in Figure 
19.15, and we obtain a test AUC score of 0.9106. This is slightly worse than our result in the 
previous sections where we learned custom embedding for this domain, underscoring the 
value of training your own word embeddings:

Figure 19.15: Cross-validation and test results for RNNs with multiple macro series
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You may want to apply these techniques to the larger financial text datasets that we used in 
Part 3.

Predicting returns from SEC filing embeddings
In Chapter 16, Word Embeddings for Earnings Calls and SEC Filings, we discussed important 
differences between product reviews and financial text data. While the former was useful 
to illustrate important workflows, in this section, we will tackle more challenging but also 
more relevant financial documents. More specifically, we will use the SEC filings data 
introduced in Chapter 16, Word Embeddings for Earnings Calls and SEC Filings, to learn word 
embeddings tailored to predicting the return of the ticker associated with the disclosures 
from before publication to one week after.

The sec_filings_return_prediction notebook contains the code examples for this section. 
See the sec_preprocessing notebook in Chapter 16, Word Embeddings for Earnings Calls and 
SEC Filings, and instructions in the data folder on GitHub on how to obtain the data.

Source stock price data using yfinance
There are 22,631 filings for the period 2013-16. We use yfinance to obtain stock price data 
for the related 6,630 tickers because it achieves higher coverage than Quandl's WIKI 
Data. We use the ticker symbol and filing date from the filing index (see Chapter 16, Word 
Embeddings for Earnings Calls and SEC Filings) to download daily adjusted stock prices for 
three months before and one month after the filing data as follows, capturing both the price 
data and unsuccessful tickers in the process:

yf_data, missing = [], []

for i, (symbol, dates) in enumerate(filing_index.groupby('ticker').date_filed, 
                                    1):

    ticker = yf.Ticker(symbol)

    for idx, date in dates.to_dict().items():

        start = date - timedelta(days=93)

        end = date + timedelta(days=31)

        df = ticker.history(start=start, end=end)

        if df.empty:

            missing.append(symbol)

        else:

            yf_data.append(df.assign(ticker=symbol, filing=idx))

We obtain data on 3,954 tickers and source prices for a few hundred missing tickers using 
the Quandl Wiki data (see the notebook) and end up with 16,758 filings for 4,762 symbols.
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Preprocessing SEC filing data
Compared to product reviews, financial text documents tend to be longer and have a 
more formal structure. In addition, in this case, we rely on data sourced from EDGAR that 
requires parsing of the XBRL source (see Chapter 2, Market and Fundamental Data – Sources 
and Techniques) and may have errors such as including material other than the desired 
sections. We take several steps during preprocessing to address outliers and format the text 
data as integer sequences of equal length, as required by the model that we will build in the 
next section:

1. Remove all sentences that contain fewer than 5 or more than 50 tokens; this affects 
approximately. 5 percent of sentences.

2. Create 28,599 bigrams, 10,032 trigrams, and 2,372 n-grams with 4 elements.

3. Convert filings to a sequence of integers that represent the token frequency rank, 
removing filings with fewer than 100 tokens and truncating sequences at 20,000 
elements.

Figure 19.16 highlights some corpus statistics for the remaining 16,538 filings with 
179,214,369 tokens, around 204,206 of which are unique. The left panel shows the token 
frequency distribution on a log-log scale; the most frequent terms, "million," "business," 
"company," and "products" occur more than 1 million times each. As usual, there is a very 
long tail, with 60 percent of tokens occurring fewer than 25 times.

The central panel shows the distribution of the sentence lengths with a mode of around 
10 tokens. Finally, the right panel shows the distribution of the filing length with a peak 
at 20,000 due to truncation:

Figure 19.16: Cross-validation and test results for RNNs with multiple macro series

Preparing data for the RNN model

Now we need an outcome for our model to predict. We'll compute (somewhat arbitrarily) 
five-day forward returns for the day of filing (or the day before if there are no prices for 
that date), assuming that filing occurred after market hours. Clearly, this assumption could 
be wrong, underscoring the need for point-in-time data emphasized in Chapter 2, Market 
and Fundamental Data – Sources and Techniques, and Chapter 3, Alternative Data for Finance – 
Categories and Use Cases. We'll ignore this issue as the hidden cost of using free data.
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We compute the forward returns as follows, removing outliers with weekly returns below 
50 or above 100 percent:

fwd_return = {}

for filing in filings:
    date_filed = filing_index.at[filing, 'date_filed']
    price_data = prices[prices.filing==filing].close.sort_index()
    

    try:

        r = (price_data

             .pct_change(periods=5)

             .shift(-5)

             .loc[:date_filed]
             .iloc[-1])

    except:

        continue

    if not np.isnan(r) and -.5 < r < 1:

        fwd_return[filing] = r

This leaves us with 16,355 data points. Now we combine these outcomes with their 
matching filing sequences and convert the list of returns to a NumPy array:

y, X = [], []

for filing_id, fwd_ret in fwd_return.items():
    X.append(np.load(vector_path / f'{filing_id}.npy') + 2)
    y.append(fwd_ret)

y = np.array(y)

Finally, we create a 90:10 training/test split and use the pad_sequences function introduced 
in the first example in this section to generate fixed-length sequences of 20,000 elements 
each:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.1)

X_train = pad_sequences(X_train, 

                        truncating='pre', 

                        padding='pre', 

                        maxlen=maxlen)

X_test = pad_sequences(X_test, 

                       truncating='pre', 

                       padding='pre', 

                       maxlen=maxlen)

X_train.shape, X_test.shape

((14719, 20000), (1636, 20000))
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Building, training, and evaluating the RNN model

Now we can define our RNN architecture. The first layer learns the word embeddings. 
We define the embedding dimensions as previously, setting the following:

• The input_dim keyword to the size of the vocabulary

• The output_dim keyword to the size of each embedding

• The input_length parameter to how long each input sequence is going to be

For the recurrent layer, we use a bidirectional GRU unit that scans the text both forward 
and backward and concatenates the resulting output. We also add batch normalization 
and dropout for regularization with a five-unit dense layer before the linear output:

embedding_size = 100

input_dim = X_train.max() + 1

rnn = Sequential([

    Embedding(input_dim=input_dim, 

              output_dim=embedding_size, 

              input_length=maxlen,

             name='EMB'),

    BatchNormalization(name='BN1'),

    Bidirectional(GRU(32), name='BD1'),

    BatchNormalization(name='BN2'),

    Dropout(.1, name='DO1'),

    Dense(5, name='D'),

    Dense(1, activation='linear', name='OUT')])

The resulting model has over 2.5 million trainable parameters:

rnn.summary()

Layer (type)                 Output Shape              Param #   

EMB (Embedding)              (None, 20000, 100)        2500000   

BN1 (BatchNormalization)     (None, 20000, 100)        400       

BD1 (Bidirectional)          (None, 64)                25728     

BN2 (BatchNormalization)     (None, 64)                256       

DO1 (Dropout)                (None, 64)                0         

D (Dense)                    (None, 5)                 325       

OUT (Dense)                  (None, 1)                 6         

Total params: 2,526,715

Trainable params: 2,526,387

Non-trainable params: 328

We compile using the Adam optimizer, targeting the mean squared loss for this regression 
task while also tracking the square root of the loss and the mean absolute error as optional 
metrics:

rnn.compile(loss='mse', 
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            optimizer='Adam',

            metrics=[RootMeanSquaredError(name='RMSE'),

                     MeanAbsoluteError(name='MAE')])

With early stopping, we train for up to 100 epochs on batches of 32 observations each:

early_stopping = EarlyStopping(monitor='val_MAE', 

                               patience=5,

                               restore_best_weights=True)

training = rnn.fit(X_train,
                   y_train,

                   batch_size=32,

                   epochs=100,

                   validation_data=(X_test, y_test),

                   callbacks=[early_stopping],

                   verbose=1)

The mean absolute error improves for only 4 epochs, as shown in the left panel of Figure 
19.17:

Figure 19.17: Cross-validation test results for RNNs using SEC filings to predict weekly returns

On the test set, the best model achieves a highly significant IC of 6.02:

y_score = rnn.predict(X_test)

rho, p = spearmanr(y_score.squeeze(), y_test)

print(f'{rho*100:.2f} ({p:.2%})')

6.02 (1.48%)

Lessons learned and next steps

The model is capable of generating return predictions that are significantly better than 
chance using only text data. There are both caveats that suggest taking the results with 
a grain of salt and reasons to believe we could improve on the result of this experiment.

On the one hand, the quality of both the stock price data and the parsed SEC filings is far 
from perfect. It's unclear whether price data issues bias the results positively or negatively, 
but they certainly increase the margin of error. More careful parsing and cleaning of the 
SEC filings would most likely improve the results by removing noise.
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On the other hand, there are numerous optimizations that may well improve the result. 
Starting with the text input, we did not attempt to parse the filing content beyond selecting 
certain sections; there may be value in removing boilerplate language or otherwise trying to 
pick the most meaningful statements. We also made somewhat arbitrary choices about the 
maximum length of filings and the size of the vocabulary that we could revisit. We could 
also shorten or lengthen the weekly prediction horizon. Furthermore, there are multiple 
aspects of the model architecture that we could refine, from the size of the embeddings to 
the number and size of layers and the degree of regularization.

Most fundamentally, we could combine the text input with a richer set of complementary 
features, as demonstrated in the previous section, using stacked LSTM with multiple 
inputs. Finally, we would certainly want a larger set of filings.

Summary
In this chapter, we presented the specialized RNN architecture that is tailored to sequential 
data. We covered how RNNs work, analyzed the computational graph, and saw how RNNs 
enable parameter-sharing over numerous steps to capture long-range dependencies that 
FFNNs and CNNs are not well suited for.

We also reviewed the challenges of vanishing and exploding gradients and saw how gated 
units like long short-term memory cells enable RNNs to learn dependencies over hundreds 
of time steps. Finally, we applied RNNs to challenges common in algorithmic trading, 
such as predicting univariate and multivariate time series and sentiment analysis using 
SEC filings.

In the next chapter, we will introduce unsupervised deep learning techniques like 
autoencoders and generative adversarial networks and their applications to investment 
and trading strategies.
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20
Autoencoders for Conditional Risk 

Factors and Asset Pricing

This chapter shows how unsupervised learning can leverage deep learning for trading. 
More specifically, we'll discuss autoencoders that have been around for decades but 
have recently attracted fresh interest.

Unsupervised learning addresses practical ML challenges such as the limited availability 
of labeled data and the curse of dimensionality, which requires exponentially more samples 
for successful learning from complex, real-life data with many features. At a conceptual 
level, unsupervised learning resembles human learning and the development of common 
sense much more closely than supervised and reinforcement learning, which we'll cover 
in the next chapter. It is also called predictive learning because it aims to discover structure 
and regularities from data so that it can predict missing inputs, that is, fill in the blanks 
from the observed parts.

An autoencoder is a neural network (NN) trained to reproduce the input while 
learning a new representation of the data, encoded by the parameters of a hidden layer. 
Autoencoders have long been used for nonlinear dimensionality reduction and manifold 
learning (see Chapter 13, Data-Driven Risk Factors and Asset Allocation with Unsupervised 
Learning). A variety of designs leverage the feedforward, convolutional, and recurrent 
network architectures we covered in the last three chapters. We will see how autoencoders 
can underpin a trading strategy: we will build a deep neural network that uses an 
autoencoder to extract risk factors and predict equity returns, conditioned on a range 
of equity attributes (Gu, Kelly, and Xiu 2020).

More specifically, in this chapter you will learn about:

• Which types of autoencoders are of practical use and how they work

• Building and training autoencoders using Python

• Using autoencoders to extract data-driven risk factors that take into account asset 
characteristics to predict returns
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Autoencoders for nonlinear feature extraction
In Chapter 17, Deep Learning for Trading, we saw how neural networks succeed at 
supervised learning by extracting a hierarchical feature representation useful for the 
given task. Convolutional neural networks (CNNs), for example, learn and synthesize 
increasingly complex patterns from grid-like data, for example, to identify or detect objects 
in an image or to classify time series. 

An autoencoder, in contrast, is a neural network designed exclusively to learn a new 
representation that encodes the input in a way that helps solve another task. To this end, 
the training forces the network to reproduce the input. Since autoencoders typically use 
the same data as input and output, they are also considered an instance of self-supervised 
learning. In the process, the parameters of a hidden layer h become the code that represents 
the input, similar to the word2vec model covered in Chapter 16, Word Embeddings for 
Earnings Calls and SEC Filings. 

More specifically, the network can be viewed as consisting of an encoder function h=f(x) 
that learns the hidden layer's parameters from input x, and a decoder function g that learns 
to reconstruct the input from the encoding h. Rather than learning the identity function:𝑥𝑥 𝑥 𝑥𝑥(𝑓𝑓(𝑥𝑥)) 
which simply copies the input, autoencoders use constraints that force the hidden layer 
to prioritize which aspects of the data to encode. The goal is to obtain a representation of 
practical value.

Autoencoders can also be viewed as a special case of a feedforward neural network (see 
Chapter 17, Deep Learning for Trading) and can be trained using the same techniques. Just 
as with other models, excess capacity will lead to overfitting, preventing the autoencoder 
from producing an informative encoding that generalizes beyond the training samples. See 
Chapters 14 and 15 of Goodfellow, Bengio, and Courville (2016) for additional background.

Generalizing linear dimensionality reduction
A traditional use case includes dimensionality reduction, achieved by limiting the size of 
the hidden layer and thus creating a "bottleneck" so that it performs lossy compression. 
Such an autoencoder is called undercomplete, and the purpose is to learn the most salient 
properties of the data by minimizing a loss function L of the form:𝐿𝐿(𝑥𝑥𝑥 𝑥𝑥(𝑓𝑓(𝑥𝑥𝑓𝑓) 

You can find the code samples for this chapter and links to 
additional resources in the corresponding directory of the GitHub 
repository. The notebooks include color versions of the images.
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An example loss function that we will explore in the next section is simply the mean 
squared error evaluated on the pixel values of the input images and their reconstruction. 
We will also use this loss function to extract risk factors from time series of financial 
features when we build a conditional autoencoder for trading.

Undercomplete autoencoders differ from linear dimensionality reduction methods like 
principal component analysis (PCA; see Chapter 13, Data-Driven Risk Factors and Asset 
Allocation with Unsupervised Learning) when they use nonlinear activation functions; 
otherwise, they learn the same subspace as PCA. They can thus be viewed as a nonlinear 
generalization of PCA capable of learning a wider range of encodings. 

Figure 20.1 illustrates the encoder-decoder logic of an undercomplete feedforward 
autoencoder with three hidden layers: the encoder and decoder have one hidden layer 
each plus a shared encoder output/decoder input layer containing the encoding. The three 
hidden layers use nonlinear activation functions, like rectified linear units (ReLU), sigmoid, 
or tanh (see Chapter 17, Deep Learning for Trading) and have fewer units than the input that 
the network aims to reconstruct.

Figure 20.1: Undercomplete encoder-decoder architecture

Depending on the task, a simple autoencoder with a single encoder and decoder layer 
may be adequate. However, deeper autoencoders with additional layers can have several 
advantages, just as for other neural networks. These advantages include the ability to learn 
more complex encodings, achieve better compression, and do so with less computational 
effort and fewer training samples, subject to the perennial risk of overfitting.

Convolutional autoencoders for image compression
As discussed in Chapter 18, CNNs for Financial Time Series and Satellite Images, fully 
connected feedforward architectures are not well suited to capture local correlations 
typical to data with a grid-like structure. Instead, autoencoders can also use convolutional 
layers to learn a hierarchical feature representation. Convolutional autoencoders leverage 
convolutions and parameter sharing to learn hierarchical patterns and features irrespective 
of their location, translation, or changes in size.
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We will illustrate different implementations of convolutional autoencoders for image data 
below. Alternatively, convolutional autoencoders could be applied to multivariate time 
series data arranged in a grid-like format as illustrated in Chapter 18, CNNs for Financial 
Time Series and Satellite Images.

Managing overfitting with regularized autoencoders
The powerful capabilities of neural networks to represent complex functions require tight 
controls of the capacity of encoders and decoders to extract signals rather than noise so that 
the encoding is more useful for a downstream task. In other words, when it is too easy for the 
network to recreate the input, it fails to learn only the most interesting aspects of the data and 
improve the performance of a machine learning model that uses the encoding as inputs.

Just as for other models with excessive capacity for the given task, regularization can help 
to address the overfitting challenge by constraining the autoencoder's learning process 
and forcing it to produce a useful representation (see, for instance, Chapter 7, Linear Models 
– From Risk Factors to Return Forecasts, on regularization for linear models, and Chapter 

17, Deep Learning for Trading, for neural networks). Ideally, we could precisely match the 
model's capacity to the complexity of the distribution of the data. In practice, the optimal 
model often combines (limited) excess capacity with appropriate regularization. To this 
end, we add a sparsity penalty Ω(ℎ)  that depends on the weights of the encoding layer 
h to the training objective: 𝐿𝐿 𝐿𝐿𝐿𝐿 𝐿𝐿(𝑓𝑓(𝐿𝐿))) + Ω(ℎ) 
A common approach that we explore later in this chapter is the use of L1 regularization, 
which adds a penalty to the loss function in the form of the sum of the absolute values of the 
weights. The L1 norm results in sparse encodings because it forces the values of parameters 
to zero if they do not capture independent variation in the data (see Chapter 7, Linear Models 
– From Risk Factors to Return Forecasts). As a result, even overcomplete autoencoders with 
hidden layers of a higher dimension than the input may be able to learn signal content.

Fixing corrupted data with denoising autoencoders
The autoencoders we have discussed so far are designed to reproduce the input despite 
capacity constraints. An alternative approach trains autoencoders with corrupted inputs 𝑥𝑥𝑥  
to output the desired, original data points. In this case, the autoencoder minimizes a loss L: 𝐿𝐿 𝐿𝐿𝐿𝐿 𝐿𝐿(𝑓𝑓(𝐿𝐿𝑥))) 

Corrupted inputs are a different way of preventing the network from learning the identity 
function and rather extracting the signal or salient features from the data. Denoising 
autoencoders have been shown to learn the data generating process of the original data and 
have become popular in generative modeling where the goal is to learn the probability 
distribution that gives rise to the input (Vincent et al., 2008).
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Seq2seq autoencoders for time series features
Recurrent neural networks (RNNs) have been developed for sequential data characterized 
by longitudinal dependencies between data points, potentially over long ranges 
(Chapter 19, RNNs for Multivariate Time Series and Sentiment Analysis). Similarly, sequence-
to-sequence (seq2seq) autoencoders aim to learn representations attuned to the nature of 
data generated in sequence (Srivastava, Mansimov, and Salakhutdinov, 2016).

Seq2seq autoencoders are based on RNN components like long short-term memory 
(LSTM) or gated recurrent unit. They learn a representation of sequential data and have 
been successfully applied to video, text, audio, and time series data.

As mentioned in the last chapter, encoder-decoder architectures allow RNNs to process input 
and output sequences with variable length. These architectures underpin many advances in 
complex sequence prediction tasks, like speech recognition and text translation, and are being 
increasingly applied to (financial) time series. At a high level, they work as follows: 

1. The LSTM encoder processes the input sequence step by step to learn a hidden state.

2. This state becomes a learned representation of the sequence in the form of 
a fixed-length vector.

3. The LSTM decoder receives this state as input and uses it to generate the output 
sequence.

See references linked on GitHub for examples on building sequence-to-sequence 
autoencoders to compress time series data and detect anomalies in time series to allow, for 
example, regulators to uncover potentially illegal trading activity.

Generative modeling with variational autoencoders 
Variational autoencoders (VAE) were developed more recently (Kingma and Welling, 
2014) and focus on generative modeling. In contrast to a discriminative model that learns 
a predictor given data, a generative model aims to solve the more general problem of 
learning a joint probability distribution over all variables. If successful, it could simulate 
how the data is produced in the first place. Learning the data-generating process is very 
valuable: it reveals underlying causal relationships and supports semi-supervised learning 
to effectively generalize from a small labeled dataset to a large unlabeled one.

More specifically, VAEs are designed to learn the latent (meaning unobserved) variables 
of the model responsible for the input data. Note that we encountered latent variables in 
Chapter 15, Topic Modeling – Summarizing Financial News, and Chapter 16, Word Embeddings 
for Earnings Calls and SEC Filings.

Just like the autoencoders discussed so far, VAEs do not let the network learn arbitrary 
functions as long as it faithfully reproduces the input. Instead, they aim to learn the 
parameters of a probability distribution that generates the input data. 
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In other words, VAEs are generative models because, if successful, you can generate new 
data points by sampling from the distribution learned by the VAE.

The operation of a VAE is more complex than the autoencoders discussed so far because it 
involves stochastic backpropagation, that is, taking derivatives of stochastic variables, and 
the details are beyond the scope of this book. They are able to learn high-capacity input 
encodings without regularization that are useful because the models aim to maximize 
the probability of the training data rather than to reproduce the input. For a detailed 
introduction, see Kingma and Welling (2019).

The variational_autoencoder.ipynb notebook includes a sample VAE implementation 
applied to the Fashion MNIST data, adapted from a Keras tutorial by Francois Chollet to 
work with TensorFlow 2. The resources linked on GitHub contain a VAE tutorial with 
references to PyTorch and TensorFlow 2 implementations and many additional references. 
See Wang et al. (2019) for an application that combines a VAE with an RNN using LSTM 
and outperforms various benchmark models in futures markets.

Implementing autoencoders with TensorFlow 2
In this section, we'll illustrate how to implement several of the autoencoder models 
introduced in the previous section using the Keras interface of TensorFlow 2. We'll first 
load and prepare an image dataset that we'll use throughout this section. We will use 
images instead of financial time series because it makes it easier to visualize the results of 
the encoding process. The next section shows how to use an autoencoder with financial 
data as part of a more complex architecture that can serve as the basis for a trading strategy.

After preparing the data, we'll proceed to build autoencoders using deep feedforward nets, 
sparsity constraints, and convolutions and apply the latter to denoise images.

How to prepare the data
For illustration, we'll use the Fashion MNIST dataset, a modern drop-in replacement for the 
classic MNIST handwritten digit dataset popularized by Lecun et al. (1998) with LeNet. We 
also relied on this dataset in Chapter 13, Data-Driven Risk Factors and Asset Allocation with 
Unsupervised Learning, on unsupervised learning.

Keras makes it easy to access the 60,000 training and 10,000 test grayscale samples with a 
resolution of 28 × 28 pixels:

from tensorflow.keras.datasets import fashion_mnist
(X_train, y_train), (X_test, y_test) = fashion_mnist.load_data()
X_train.shape, X_test.shape
((60000, 28, 28), (10000, 28, 28))

The data contains clothing items from 10 classes. Figure 20.2 plots a sample image for 
each class:
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Figure 20.2: Fashion MNIST sample images

We reshape the data so that each image is represented by a flat one-dimensional pixel 
vector with 28 × 28 = 784 elements normalized to the range [0, 1]:

image_size = 28              # pixels per side

input_size = image_size ** 2 # 784

def data_prep(x, size=input_size):

    return x.reshape(-1, size).astype('float32')/255

X_train_scaled = data_prep(X_train)

X_test_scaled = data_prep(X_test)

X_train_scaled.shape, X_test_scaled.shape

((60000, 784), (10000, 784))

One-layer feedforward autoencoder
We start with a vanilla feedforward autoencoder with a single hidden layer to illustrate 
the general design approach using the Functional Keras API and establish a performance 
baseline. 

The first step is a placeholder for the flattened image vectors with 784 elements:

input_ = Input(shape=(input_size,), name='Input')

The encoder part of the model consists of a fully connected layer that learns the new, 
compressed representation of the input. We use 32 units for a compression ratio of 24.5:

encoding_size = 32 # compression factor: 784 / 32 = 24.5

encoding = Dense(units=encoding_size,

                 activation='relu',

                 name='Encoder')(input_)
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The decoding part reconstructs the compressed data to its original size in a single step:

decoding = Dense(units=input_size,

                 activation='sigmoid',

                 name='Decoder')(encoding)

We instantiate the Model class with the chained input and output elements that implicitly 
define the computational graph as follows:

autoencoder = Model(inputs=input_,

                    outputs=decoding,

                    name='Autoencoder')

The encoder-decoder computation thus defined uses almost 51,000 parameters:

Layer (type)                 Output Shape              Param #   

Input (InputLayer)           (None, 784)               0         

Encoder (Dense)              (None, 32)                25120     

Decoder (Dense)              (None, 784)               25872     

Total params: 50,992

Trainable params: 50,992

Non-trainable params: 0

The Functional API allows us to use parts of the model's chain as separate encoder and 
decoder models that use the autoencoder's parameters learned during training.

Defining the encoder
The encoder just uses the input and hidden layer with about half the total parameters:

encoder = Model(inputs=input_, outputs=encoding, name='Encoder')

encoder.summary()

Layer (type)                 Output Shape              Param #   

Input (InputLayer)           (None, 784)               0         

Encoder (Dense)              (None, 32)                25120     

Total params: 25,120

Trainable params: 25,120

Non-trainable params: 0

We will see shortly that, once we train the autoencoder, we can use the encoder to compress 
the data.
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Defining the decoder
The decoder consists of the last autoencoder layer, fed by a placeholder for the 
encoded data:

encoded_input = Input(shape=(encoding_size,), name='Decoder_Input')

decoder_layer = autoencoder.layers[-1](encoded_input)

decoder = Model(inputs=encoded_input, outputs=decoder_layer)

decoder.summary()

Layer (type)                 Output Shape              Param #   

Decoder_Input (InputLayer)   (None, 32)                0         

Decoder (Dense)              (None, 784)               25872     

Total params: 25,872

Trainable params: 25,872

Non-trainable params: 0

Training the model

We compile the model to use the Adam optimizer (see Chapter 17, Deep Learning for 
Trading) to minimize the mean squared error between the input data and the reproduction 
achieved by the autoencoder. To ensure that the autoencoder learns to reproduce the input, 
we train the model using the same input and output data:

autoencoder.compile(optimizer='adam', loss='mse')

autoencoder.fit(x=X_train_scaled, y=X_train_scaled,
                epochs=100, batch_size=32,

                shuffle=True, validation_split=.1,
                callbacks=[tb_callback, early_stopping, checkpointer])

Evaluating the results

Training stops after some 20 epochs with a test RMSE of 0.1121:

mse = autoencoder.evaluate(x=X_test_scaled, y=X_test_scaled)

f'MSE: {mse:.4f} | RMSE {mse**.5:.4f}'

'MSE: 0.0126 | RMSE 0.1121'

To encode data, we use the encoder we just defined like so:

encoded_test_img = encoder.predict(X_test_scaled)

Encoded_test_img.shape

(10000, 32)
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The decoder takes the compressed data and reproduces the output according to the 
autoencoder training results:

decoded_test_img = decoder.predict(encoded_test_img)

decoded_test_img.shape

(10000, 784)

Figure 20.3 shows 10 original images and their reconstruction by the autoencoder and 
illustrates the loss after compression:

Figure 20.3: Sample Fashion MNIST images, original and reconstructed

Feedforward autoencoder with sparsity constraints
The addition of regularization is fairly straightforward. We can apply it to the dense 
encoder layer using Keras' activity_regularizer as follows:

encoding_l1 = Dense(units=encoding_size,

                    activation='relu',

                    activity_regularizer=regularizers.l1(10e-5),

                    name='Encoder_L1')(input_)

The input and decoding layers remain unchanged. In this example with compression of 
factor 24.5, regularization negatively affects performance with a test RMSE of 0.1229. 

Deep feedforward autoencoder
To illustrate the benefit of adding depth to the autoencoder, we will build a three-layer 
feedforward model that successively compresses the input from 784 to 128, 64, and 32 units, 
respectively:

input_ = Input(shape=(input_size,))

x = Dense(128, activation='relu', name='Encoding1')(input_)

x = Dense(64, activation='relu', name='Encoding2')(x)

encoding_deep = Dense(32, activation='relu', name='Encoding3')(x)

x = Dense(64, activation='relu', name='Decoding1')(encoding_deep)

x = Dense(128, activation='relu', name='Decoding2')(x)

decoding_deep = Dense(input_size, activation='sigmoid', name='Decoding3')(x)

autoencoder_deep = Model(input_, decoding_deep)
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The resulting model has over 222,000 parameters, more than four times the capacity of the 
previous single-layer model:

Layer (type)                 Output Shape              Param #   

=================================================================

input_1 (InputLayer)         (None, 784)               0         

_________________________________________________________________

Encoding1 (Dense)            (None, 128)               100480    

_________________________________________________________________

Encoding2 (Dense)            (None, 64)                8256      

_________________________________________________________________

Encoding3 (Dense)            (None, 32)                2080      

_________________________________________________________________

Decoding1 (Dense)            (None, 64)                2112      

_________________________________________________________________

Decoding2 (Dense)            (None, 128)               8320      

_________________________________________________________________

Decoding3 (Dense)            (None, 784)               101136    

=================================================================

Total params: 222,384

Trainable params: 222,384

Non-trainable params: 0

Training stops after 45 epochs and results in a 14 percent reduction of the test RMSE to 
0.097. Due to the low resolution, it is difficult to visually note the better reconstruction.

Visualizing the encoding

We can use the manifold learning technique t-distributed Stochastic Neighbor Embedding 
(t-SNE; see Chapter 13, Data-Driven Risk Factors and Asset Allocation with Unsupervised 
Learning) to visualize and assess the quality of the encoding learned by the autoencoder's 
hidden layer.

If the encoding is successful in capturing the salient features of the data, then the 
compressed representation of the data should still reveal a structure aligned with the 10 
classes that differentiate the observations. We use the output of the deep encoder we just 
trained to obtain the 32-dimensional representation of the test set:

tsne = TSNE(perplexity=25, n_iter=5000)

train_embed = tsne.fit_transform(encoder_deep.predict(X_train_scaled))
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Figure 20.4 shows that the 10 classes are well separated, suggesting that the encoding is 
useful as a lower-dimensional representation that preserves the key characteristics of the 
data (see the variational_autoencoder.ipynb notebook for a color version):

Figure 20.4: t-SNE visualization of the Fashion MNIST autoencoder embedding

Convolutional autoencoders
The insights from Chapter 18, CNNs for Financial Time Series and Satellite Images, on CNNs 
suggest we incorporate convolutional layers into the autoencoder to extract information 
characteristic of the grid-like structure of image data.

We define a three-layer encoder that uses 2D convolutions with 32, 16, and 8 filters, 
respectively, ReLU activations, and 'same' padding to maintain the input size. The 
resulting encoding size at the third layer is 4 × 4 × 8 = 128 , higher than for the previous 
examples:

x = Conv2D(filters=32,
           kernel_size=(3, 3),

           activation='relu',

           padding='same',

           name='Encoding_Conv_1')(input_)
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x = MaxPooling2D(pool_size=(2, 2), padding='same', name='Encoding_Max_1')(x)

x = Conv2D(filters=16,
           kernel_size=(3, 3),

           activation='relu',

           padding='same',

           name='Encoding_Conv_2')(x)

x = MaxPooling2D(pool_size=(2, 2), padding='same', name='Encoding_Max_2')(x)

x = Conv2D(filters=8,
           kernel_size=(3, 3),

           activation='relu',

           padding='same',

           name='Encoding_Conv_3')(x)

encoded_conv = MaxPooling2D(pool_size=(2, 2),

                            padding='same',

                            name='Encoding_Max_3')(x)

We also define a matching decoder that reverses the number of filters and uses 2D 
upsampling instead of max pooling to reverse the reduction of the filter sizes. The three-
layer autoencoder has 12,785 parameters, a little more than 5 percent of the capacity of the 
deep autoencoder. 

Training stops after 67 epochs and results in a further 9 percent reduction in the test RMSE, 
due to a combination of the ability of convolutional filters to learn more efficiently from 
image data and the larger encoding size.

Denoising autoencoders
The application of an autoencoder to a denoising task only affects the training stage. In this 
example, we add noise from a standard normal distribution to the Fashion MNIST data 
while maintaining the pixel values in the range [0, 1] as follows:

def add_noise(x, noise_factor=.3):

    return np.clip(x  + noise_factor * np.random.normal(size=x.shape), 0, 1)

X_train_noisy = add_noise(X_train_scaled)

X_test_noisy = add_noise(X_test_scaled)

We then proceed to train the convolutional autoencoder on noisy inputs, the objective being 
to learn how to generate the uncorrupted originals:

autoencoder_denoise.fit(x=X_train_noisy,
                        y=X_train_scaled,

                        ...)
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The test RMSE after 60 epochs is 0.0931, unsurprisingly higher than before. Figure 20.5 
shows, from top to bottom, the original images as well as the noisy and denoised versions. 
It illustrates that the autoencoder is successful in producing compressed encodings from 
the noisy images that are quite similar to those produced from the original images:

Figure 20.5: Denoising input and output examples

A conditional autoencoder for trading
Recent research by Gu, Kelly, and Xiu (GKX, 2019) developed an asset pricing model based 
on the exposure of securities to risk factors. It builds on the concept of data-driven risk 

factors that we discussed in Chapter 13, Data-Driven Risk Factors and Asset Allocation with 
Unsupervised Learning, when introducing PCA as well as the risk factor models covered in 
Chapter 4, Financial Feature Engineering – How to Research Alpha Factors. They aim to show 
that the asset characteristics used by factor models to capture the systematic drivers of 
"anomalies" are just proxies for the time-varying exposure to risk factors that cannot be 
directly measured. In this context, anomalies are returns in excess of those explained by the 
exposure to aggregate market risk (see the discussion of the capital asset pricing model in 
Chapter 5, Portfolio Optimization and Performance Evaluation).

The Fama-French factor models discussed in Chapter 4 and Chapter 7 explain returns by 
specifying risk factors like firm size based on empirical observations of differences in average 
stock returns beyond those due to aggregate market risk. Given such specific risk factors, 
these models are able to measure the reward an investor receives for taking on factor risk using 
portfolios designed accordingly: sort stocks by size, buy the smallest quintile, sell the largest 
quintile, and compute the return. The observed risk factor return then allows linear regression 
to estimate the sensitivity of assets to these factors (called factor loadings), which in turn helps 
to predict the returns of (many) assets based on forecasts of (far fewer) factor returns.

In contrast, GKX treat risk factors as latent, or non-observable, drivers of covariance 
among a number of assets large enough to prevent investors from avoiding exposure 
through diversification. Therefore, investors require a reward that adjusts like any price 
to achieve equilibrium, providing in turn an economic rationale for return differences that 
are no longer anomalous. In this view, risk factors are purely statistical in nature while the 
underlying economic forces can be of arbitrary and varying origin.
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In another recent paper (Kelly, Pruitt, and Su, 2019), Kelly—who teaches finance at Yale, 
works with AQR, and is one of the pioneers in applying ML to trading—and his coauthors 
developed a linear model dubbed Instrumented Principal Component Analysis (IPCA) to 
estimate latent risk factors and the assets' factor loadings from data. IPCA extends PCA 
to include asset characteristics as covariates and produce time-varying factor loadings. 
(See Chapter 13, Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning, 
for coverage of PCA.) By conditioning asset exposure to factors on observable asset 
characteristics, IPCA aims to answer whether there is a set of common latent risk factors 
that explain an observed anomaly rather than whether there is a specific observable factor 
that can do so.

GKX creates a conditional autoencoder architecture to reflect the nonlinear nature of 
return dynamics ignored by the linear Fama-French models and the IPCA approach. The 
result is a deep neural network that simultaneously learns the premia on a given number 
of unobservable factors using an autoencoder, and the factor loadings for a large universe 
of equities based on a broad range of time-varying asset characteristics using a feedforward 
network. The model succeeds in explaining and predicting asset returns. It demonstrates 
a relationship that is both statistically and economically significant, yielding an attractive 
Sharpe ratio when translated into a long-short decile spread strategy similar to the 
examples we have used throughout this book.

In this section, we'll create a simplified version of this model to demonstrate how you can 
leverage autoencoders to generate tradeable signals. To this end, we'll build a new dataset 
of close to 4,000 US stocks over the 1990-2019 period using yfinance, because it provides 
some additional information that facilitates the computation of the asset characteristics. We'll 
take a few shortcuts, such as using fewer assets and only the most important characteristics. 
We'll also omit some implementation details to simplify the exposition. We'll highlight the 
most important differences so that you can enhance the model accordingly.

We'll first show how to prepare the data before we explain, build, and train the model 
and evaluate its predictive performance. Please see the above references for additional 
background on the theory and implementation.

Sourcing stock prices and metadata information
The GKX reference implementation uses stock price and firm characteristic data for over 
30,000 US equities from the Center for Research in Security Prices (CRSP) from 1957-2016 at 
a monthly frequency. It computes 94 metrics that include a broad range of asset attributes 
suggested as predictive of returns in previous academic research and listed in Green, Hand, 
and Zhang (2017), who set out to verify these claims.

Since we do not have access to the high-quality but costly CRSP data, we leverage yfinance 
(see Chapter 2, Market and Fundamental Data – Sources and Techniques) to download price and 
metadata from Yahoo Finance. There are downsides to choosing free data, including:
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• The lack of quality control regarding adjustments 

• Survivorship bias because we cannot get data for stocks that are no longer listed

• A smaller scope in terms of both the number of equities and the length of their history 

The build_us_stock_dataset.ipynb notebook contains the relevant code examples for this 
section.

To obtain the data, we get a list of the 8,882 currently traded symbols from NASDAQ using 
pandas-datareader (see Chapter 2, Market and Fundamental Data – Sources and Techniques):

from pandas_datareader.nasdaq_trader import get_nasdaq_symbols

traded_symbols = get_nasdaq_symbols()

We remove ETFs and create yfinance Ticker() objects for the remainder:

import yfinance as yf
tickers = yf.Tickers(traded_symbols[~traded_symbols.ETF].index.to_list())

Each ticker's .info attribute contains data points scraped from Yahoo Finance, ranging 
from the outstanding number of shares and other fundamentals to the latest market 
capitalization; coverage varies by security:

info = []

for ticker in tickers.tickers:

    info.append(pd.Series(ticker.info).to_frame(ticker.ticker))

info = pd.concat(info, axis=1).dropna(how='all').T

info = info.apply(pd.to_numeric, errors='ignore')

For the tickers with metadata, we download both adjusted and unadjusted prices, the latter 
including corporate actions like stock splits and dividend payments that we could use to 
create a Zipline bundle for strategy backtesting (see Chapter 8, The ML4T Workflow – From 
Model to Strategy Backtesting).

We get adjusted OHLCV data on 4,314 stocks as follows:

prices_adj = []

with pd.HDFStore('chunks.h5') as store:

    for i, chunk in enumerate(chunks(tickers, 100)):

        print(i, end=' ', flush=True)
        prices_adj.append(yf.download(chunk,

                                      period='max',

                                      auto_adjust=True).stack(-1))

prices_adj = (pd.concat(prices_adj)

              .dropna(how='all', axis=1)

              .rename(columns=str.lower)

              .swaplevel())

prices_adj.index.names = ['ticker', 'date']
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Absent any quality control regarding the underlying price data and the adjustments for 
stock splits, we remove equities with suspicious values such as daily returns above 100 
percent or below -100 percent:

df = prices_adj.close.unstack('ticker')

pmax = df.pct_change().max()

pmin = df.pct_change().min()

to_drop = pmax[pmax > 1].index.union(pmin[pmin<-1].index)

This removes around 10 percent of the tickers, leaving us with close to 3,900 assets for the 
1990-2019 period.

Computing predictive asset characteristics
GKX tested 94 asset attributes based on Green et al. (2017) and identified the 20 most 
influential metrics while asserting that feature importance drops off quickly thereafter. The 
top 20 stock characteristics fall into three categories, namely:

• Price trend, including (industry) momentum, short- and long-term reversal, or the 
recent maximum return

• Liquidity, such as turnover, dollar volume, or market capitalization

• Risk measures, for instance, total and idiosyncratic return volatility or market beta

Of these 20, we limit the analysis to 16 for which we have or can approximate the relevant 
inputs. The conditional_autoencoder_for_trading_data.ipynb notebook demonstrates 
how to calculate the relevant metrics. We highlight a few examples in this section; see also 
the Appendix, Alpha Factor Library.

Some metrics require information like sector, market cap, and outstanding shares, so we 
limit our stock price dataset to the securities with relevant metadata:

tickers_with_metadata = (metadata[metadata.sector.isin(sectors) & 

                                 metadata.marketcap.notnull() &

                                 metadata.sharesoutstanding.notnull() & 

                                (metadata.sharesoutstanding > 0)]

                                 .index.drop(tickers_with_errors))

We run our analysis at a weekly instead of monthly return frequency to compensate for the 
50 percent shorter time period and around 80 percent lower number of stocks. We obtain 
weekly returns as follows:

returns = (prices.close

           .unstack('ticker')

           .resample('W-FRI').last()

           .sort_index().pct_change().iloc[1:])
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Most metrics are fairly straightforward to compute. Stock momentum, the 11-month 
cumulative stock returns ending 1 month before the current date, can be derived as follows:

MONTH = 21

mom12m = (close

            .pct_change(periods=11 * MONTH)

            .shift(MONTH)

            .resample('W-FRI')

            .last()

            .stack()

            .to_frame('mom12m'))

The Amihud Illiquidity measure is the ratio of a stock's absolute returns relative to its 
dollar volume, measured as a rolling 21-day average:

dv = close.mul(volume)

ill = (close.pct_change().abs()

       .div(dv)

       .rolling(21)

       .mean()

       .resample('W-FRI').last()

       .stack()

       .to_frame('ill'))

Idiosyncratic volatility is measured as the standard deviation of a regression of residuals of 
weekly returns on the returns of equally weighted market index returns for the prior three 
years. We compute this computationally intensive metric using statsmodels:

index = close.resample('W-FRI').last().pct_change().mean(1).to_frame('x')

def get_ols_residuals(y, x=index):

    df = x.join(y.to_frame('y')).dropna()

    model = sm.OLS(endog=df.y, exog=sm.add_constant(df[['x']]))

    result = model.fit()
    return result.resid.std()

idiovol = (returns.apply(lambda x: x.rolling(3 * 52)

                         .apply(get_ols_residuals)))

For the market beta, we can use statsmodels' RollingOLS class with the weekly asset returns 
as outcome and the equal-weighted index as input:

def get_market_beta(y, x=index):

    df = x.join(y.to_frame('y')).dropna()

    model = RollingOLS(endog=df.y, 

                       exog=sm.add_constant(df[['x']]),

                       window=3*52)

    return model.fit(params_only=True).params['x']
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beta = (returns.dropna(thresh=3*52, axis=1)

        .apply(get_market_beta).stack().to_frame('beta'))

We end up with around 3 million observations on 16 metrics for some 3,800 securities over 
the 1990-2019 period. Figure 20.6 displays a histogram of the number of stock returns per 
week (the left panel) and boxplots outlining the distribution of the number of observations 
for each characteristic:

Figure 20.6: Number of tickers over time and per - stock characteristic

To limit the influence of outliers, we follow GKX and rank-normalize the characteristics to 
the [-1, 1] interval:

data.loc[:, characteristics] = (data.loc[:, characteristics]

                                .groupby(level='date')

                                .apply(lambda x:

                                      pd.DataFrame(quantile_transform(

                                      x, 

                                      copy=True, 

                                      n_quantiles=x.shape[0]),

                                      columns=characteristics,

                                        index=x.index.get_level_values('ticker'))

                                      )

                               .mul(2).sub(1))

Since the neural network cannot handle missing data, we set missing values to -2, which 
lies outside the range for both weekly returns and the characteristics.

The authors apply additional methods to avoid overweighting microcap stocks like market-
value-weighted least-squares regression. They also adjust for data-snooping biases by 
factoring in conservative reporting lags for the characteristics.

Creating the conditional autoencoder architecture
The conditional autoencoder proposed by GKX allows for time-varying return distributions 
that take into account changing asset characteristics. To this end, the authors extend 
standard autoencoder architectures that we discussed in the first section of this chapter to 
allow for features to shape the encoding.
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Figure 20.7 illustrates the architecture that models the outcome (asset returns, top) as a 
function of both asset characteristics (left input) and, again, individual asset returns (right 
input). The authors allow for asset returns to be individual stock returns or portfolios that 
are formed from the stocks in the sample based on the asset characteristics, similar to the 
Fama-French factor portfolios we discussed in Chapter 4, Financial Feature Engineering – 
How to Research Alpha Factors, and summarized in the introduction to this section (hence the 
dotted lines from stocks to portfolios in the lower-right box). We will use individual stock 
returns; see GKX for details on how and why to use portfolios instead.

Figure 20.7: Conditional autoencoder architecture designed by GKX

The feedforward neural network on the left side of the conditional autoencoder models the 
K factor loadings (beta output) of N individual stocks as a function of their P characteristics 
(input). In our case, N is around 3,800 and P equals 16. The authors experiment with up to 
three hidden layers with 32, 16, and 8 units, respectively, and find two layers to perform 
best. Due to the smaller number of characteristics, we only use a similar layer and find 8 
units most effective.

The right side of this architecture is a traditional autoencoder when used with individual 
asset returns as inputs because it maps N asset returns onto themselves. The authors use it 
in this way to measure how well the derived factors explain contemporaneous returns. In 
addition, they use the autoencoder to predict future returns by using input returns from 
period t-1 with output returns from period t. We will focus on the use of the architecture 
for prediction, underlining that autoencoders are a special case of a feedforward neural 
network as mentioned in the first section of this chapter.
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The model output is the dot product of the 𝑁𝑁 𝑁𝑁𝑁  factor loadings on the left with the 𝐾𝐾 𝐾 𝐾  
factor premia on the right. The authors experiment with values of K in the range 2-6, similar 
to established factor models.

To create this architecture using TensorFlow 2, we use the Functional Keras API and define 
a make_model() function that automates the model compilation process as follows:

def make_model(hidden_units=8, n_factors=3):
    input_beta = Input((n_tickers, n_characteristics), name='input_beta')
    input_factor = Input((n_tickers,), name='input_factor')

    hidden_layer = Dense(units=hidden_units,
                         activation='relu',
                         name='hidden_layer')(input_beta)
    batch_norm = BatchNormalization(name='batch_norm')(hidden_layer)
    
    output_beta = Dense(units=n_factors, name='output_beta')(batch_norm)

    output_factor = Dense(units=n_factors,
                          name='output_factor')(input_factor)

    output = Dot(axes=(2,1),
                 name='output_layer')([output_beta, output_factor])

    model = Model(inputs=[input_beta, input_factor], outputs=output)
    model.compile(loss='mse', optimizer='adam')

    return model

We follow the authors in using batch normalization and compile the model to use mean 
squared error for this regression task and the Adam optimizer. This model has 12,418 
parameters (see the notebook).

The authors use additional regularization techniques such as L1 penalties on network 
weights and combine the results of various networks with the same architecture but using 
different random seeds. They also use early stopping.

We cross-validate using 20 years for training and predict the following year of weekly 
returns with five folds corresponding to the years 2015-2019. We evaluate combinations 
of numbers of factors K from 2 to 6 and 8, 16, or 32 hidden layer units by computing the 
information coefficient (IC) for the validation set as follows:

factor_opts = [2, 3, 4, 5, 6]
unit_opts = [8, 16, 32]
param_grid = list(product(unit_opts, factor_opts))

for units, n_factors in param_grid:
    scores = []
    model = make_model(hidden_units=units, n_factors=n_factors)
    for fold, (train_idx, val_idx) in enumerate(cv.split(data)):
        X1_train, X2_train, y_train, X1_val, X2_val, y_val = \
            get_train_valid_data(data, train_idx, val_idx)
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        for epoch in range(250):         
            model.fit([X1_train, X2_train], y_train,
                      batch_size=batch_size,

                      validation_data=([X1_val, X2_val], y_val),

                      epochs=epoch + 1,

                      initial_epoch=epoch, 

                      verbose=0, shuffle=True)
            result = (pd.DataFrame({'y_pred': model.predict([X1_val,

                                                             X2_val])

                                   .reshape(-1),

                                    'y_true': y_val.stack().values},

                                  index=y_val.stack().index)

                      .replace(-2, np.nan).dropna())

            r0 = spearmanr(result.y_true, result.y_pred)[0]

            r1 = result.groupby(level='date').apply(lambda x: 

                                                    spearmanr(x.y_pred, 

                                                              x.y_true)[0])

            scores.append([units, n_factors, fold, epoch, r0, r1.mean(),

                           r1.std(), r1.median()])

Figure 20.8 plots the validation IC averaged over the five annual folds by epoch for the 
five-factor count and three hidden-layer size combinations. The upper panel shows the IC 
across the 52 weeks and the lower panel shows the average weekly IC (see the notebook for 
the color version):

Figure 20.8: Cross-validation performance for all factor and hidden-layer size combinations

The results suggest that more factors and fewer hidden layer units work better; in 
particular, four and six factors with eight units perform best with overall IC values in the 
range of 0.02-0.03. 
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To evaluate the economic significance of the model's predictive performance, we generate 
predictions for a four-factor model with eight units trained for 15 epochs. Then we use 
Alphalens to compute the spreads between equal-weighted portfolios invested by a 
quintile of the predictions for each point in time, while ignoring transaction costs (see the 
alphalens_analysis.ipynb notebook).

Figure 20.9 shows the mean spread for holding periods from 5 to 21 days. For the shorter 
end that also reflects the prediction horizon, the spread between the bottom and the top 
decile is around 10 basis points:

Figure 20.9: Mean period-wise spread by prediction quintile

To evaluate how the predictive performance might translate into returns over time, we lot 
the cumulative returns of similarly invested portfolios, as well as the cumulative return for 
a long-short portfolio invested in the top and bottom half, respectively:

Figure 20.10: Cumulative returns of quintile-based and long-short portfolios

The results show significant spreads between quintile portfolios and positive cumulative 
returns for the broader-based long-short portfolio over time. This supports the hypothesis 
that the conditional autoencoder model could contribute to a profitable trading strategy.



Autoencoders for Conditional Risk Factors and Asset Pricing

[ 648 ]

Lessons learned and next steps
The conditional autoencoder combines a nonlinear version of the data-driven risk factors 
we explored using PCA in Chapter 13, Data-Driven Risk Factors and Asset Allocation with 
Unsupervised Learning, with the risk factor approach to modeling returns discussed in 
Chapter 4 and Chapter 7. It illustrates how deep neural network architectures can be 
flexibly adapted to various tasks as well as the fluid boundary between autoencoders and 
feedforward neural networks. 

The numerous simplifications from the data source to the architecture point to several 
avenues for improvements. Besides sourcing more data of better quality that also allows the 
computation of additional characteristics, the following modifications are a starting point—
there are certainly many more:

• Experiment with data frequencies other than weekly and forecast horizons other 
than annual, where shorter periods will also increase the amount of training data

• Modify the model architecture, especially if using more data, which might reverse 
the finding that an even smaller hidden layer would estimate better factor loadings

Summary
In this chapter, we introduced how unsupervised learning leverages deep learning. 
Autoencoders learn sophisticated, nonlinear feature representations that are capable of 
significantly compressing complex data while losing little information. As a result, they 
are very useful to counter the curse of dimensionality associated with rich datasets that 
have many features, especially common datasets with alternative data. We also saw how to 
implement various types of autoencoders using TensorFlow 2.

Most importantly, we implemented recent academic research that extracts data-driven risk 
factors from data to predict returns. Different from our linear approach to this challenge 
in Chapter 13, Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning, 
autoencoders capture nonlinear relationships. Moreover, the flexibility of deep learning 
allowed us to incorporate numerous key asset characteristics to model more sensitive 
factors that helped predict returns.

In the next chapter, we focus on generative adversarial networks, which have often been 
called one of the most exciting recent developments in artificial intelligence, and see how 
they are capable of creating synthetic training data.
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21
Generative Adversarial Networks 

for Synthetic Time-Series Data

Following the coverage of autoencoders in the previous chapter, this chapter introduces 
a second unsupervised deep learning technique: generative adversarial networks (GANs). 
As with autoencoders, GANs complement the methods for dimensionality reduction 
and clustering introduced in Chapter 13, Data-Driven Risk Factors and Asset Allocation 
with Unsupervised Learning.

GANs were invented by Goodfellow et al. in 2014. Yann LeCun has called GANs the 
"most exciting idea in AI in the last ten years." A GAN trains two neural networks, called 
the generator and discriminator, in a competitive setting. The generator aims to produce 
samples that the discriminator is unable to distinguish from a given class of training data. 
The result is a generative model capable of producing synthetic samples representative 
of a certain target distribution but artificially and, thus, inexpensively created.

GANs have produced an avalanche of research and successful applications in many 
domains. While originally applied to images, Esteban, Hyland, and Rätsch (2017) applied 
GANs to the medical domain to generate synthetic time-series data. Experiments with 
financial data ensued (Koshiyama, Firoozye, and Treleaven 2019; Wiese et al. 2019; Zhou 
et al. 2018; Fu et al. 2019) to explore whether GANs can generate data that simulates 
alternative asset price trajectories to train supervised or reinforcement algorithms, or 
to backtest trading strategies. We will replicate the Time-Series GAN presented at the 
2019 NeurIPS by Yoon, Jarrett, and van der Schaar (2019) to illustrate the approach and 
demonstrate the results.
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More specifically, in this chapter you will learn about the following:

• How GANs work, why they are useful, and how they can be applied to trading

• Designing and training GANs using TensorFlow 2

• Generating synthetic financial data to expand the inputs available for training ML 
models and backtesting

Creating synthetic data with GANs
This book mostly focuses on supervised learning algorithms that receive input data 
and predict an outcome, which we can compare to the ground truth to evaluate their 
performance. Such algorithms are also called discriminative models because they learn to 
differentiate between different output values.

GANs are an instance of generative models like the variational autoencoder we 
encountered in the previous chapter. As described there, a generative model takes a 
training set with samples drawn from some distribution p

data
 and learns to represent an 

estimate p
model

 of that data-generating distribution.

As mentioned in the introduction, GANs are considered one of the most exciting recent 
machine learning innovations because they appear capable of generating high-quality 
samples that faithfully mimic a range of input data. This is very attractive given the absence 
or high cost of labeled data required for supervised learning.

GANs have triggered a wave of research that initially focused on the generation of 
surprisingly realistic images. More recently, GAN instances have emerged that produce 
synthetic time series with significant potential for trading since the limited availability of 
historical market data is a key driver of the risk of backtest overfitting.

In this section, we explain in more detail how generative models and adversarial training 
work and review various GAN architectures. In the next section, we will demonstrate how 
to design and train a GAN using TensorFlow 2. In the last section, we will describe how to 
adapt a GAN so that it creates synthetic time-series data.

You can find the code samples for this chapter and links to 
additional resources in the corresponding directory of the GitHub 
repository. The notebooks include color versions of the images.
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Comparing generative and discriminative models
Discriminative models learn how to differentiate among outcomes y, given input data X. In 
other words, they learn the probability of the outcome given the data: p(y | X). Generative 
models, on the other hand, learn the joint distribution of inputs and outcome p(y, X). While 
generative models can be used as discriminative models using Bayes' rule to compute 
which class is most likely (see Chapter 10, Bayesian ML – Dynamic Sharpe Ratios and Pairs 
Trading), it often seems preferable to solve the prediction problem directly rather than by 
solving the more general generative challenge first (Ng and Jordan 2002).

GANs have a generative objective: they produce complex outputs, such as realistic images, 
given simple inputs that can even be random numbers. They achieve this by modeling a 
probability distribution over the possible outputs. This probability distribution can have 
many dimensions, for example, one for each pixel in an image, each character or token in a 
document, or each value in a time series. As a result, the model can generate outputs that 
are very likely representative of the class of outputs.

Richard Feynman's quote "What I cannot create, I do not understand" emphasizes that 
modeling generative distributions is an important step towards more general AI and 
resembles human learning, which succeeds using much fewer samples.

Generative models have several use cases beyond their ability to generate additional 
samples from a given distribution. For example, they can be incorporated into model-based 
reinforcement learning (RL) algorithms (see the next chapter). Generative models can also 
be applied to time-series data to simulate alternative past or possible future trajectories 
that can be used for planning in RL or supervised learning more generally, including 
for the design of trading algorithms. Other use cases include semi-supervised learning 
where GANs facilitate feature matching to assign missing labels with much fewer training 
samples than current approaches.

Adversarial training – a zero-sum game of trickery
The key innovation of GANs is a new way of learning the data-generating probability 
distribution. The algorithm sets up a competitive, or adversarial game between two neural 
networks called the generator and the discriminator.

The generator's goal is to convert random noise input into fake instances of a specific class 
of objects, such as images of faces or stock price time series. The discriminator, in turn, aims 
to differentiate the generator's deceptive output from a set of training data containing true 
samples of the target objects. The overall GAN objective is for both networks to get better at 
their respective tasks so that the generator produces outputs that a machine can no longer 
distinguish from the originals (at which point we don't need the discriminator, which is no 
longer necessary, and can discard it).
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Figure 21.1 illustrates adversarial training using a generic GAN architecture designed to 
generate images. We assume the generator uses a deep CNN architecture (such as the 
VGG16 example from Chapter 18, CNNs for Financial Time Series and Satellite Images) that 
is reversed just like the decoder part of the convolutional autoencoder we discussed in 
the previous chapter. The generator receives an input image with random pixel values 
and produces a fake output image that is passed on to the discriminator network, which 
uses a mirrored CNN architecture. The discriminator network also receives real samples 
that represent the target distribution and predicts the probability that the input is real, as 
opposed to fake. Learning takes place by backpropagating the gradients of the discriminator 
and generator losses to the respective network's parameters:

Figure 21.1: GAN architecture

The recent GAN Lab is a great interactive tool inspired by TensorFlow Playground, which 
allows the user to design GANs and visualize various aspects of the learning process and 
performance over time (see resource links on GitHub).

The rapid evolution of the GAN architecture zoo
Since the publication of the paper by Goodfellow et al. in 2014, GANs have attracted an 
enormous amount of interest and triggered a corresponding flurry of research.

The bulk of this work has refined the original architecture to adapt it to different domains 
and tasks, as well as expanding it to include additional information and create conditional 
GANs. Additional research has focused on improving methods for the challenging training 
process, which requires achieving a stable game-theoretic equilibrium between two 
networks, each of which can be tricky to train on its own. 

The GAN landscape has become more diverse than we can cover here; see Creswell et al. 
(2018) and Pan et al. (2019) for recent surveys, and Odena (2019) for a list of open questions.
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Deep convolutional GANs for representation learning

Deep convolutional GANs (DCGANs) were motivated by the successful application of 
CNNs to supervised learning for grid-like data (Radford, Metz, and Chintala 2016). The 
architecture pioneered the use of GANs for unsupervised learning by developing a feature 
extractor based on adversarial training. It is also easier to train and generates higher-quality 
images. It is now considered a baseline implementation, with numerous open source 
examples available (see references on GitHub).

A DCGAN network takes uniformly distributed random numbers as input and outputs 
a color image with a resolution of 64×64 pixels. As the input changes incrementally, 
so do the generated images. The network consists of standard CNN components, 
including deconvolutional layers that reverse convolutional layers as in the convolutional 
autoencoder example in the previous chapter, or fully connected layers.

The authors experimented exhaustively and made several recommendations, such as the 
use of batch normalization and ReLU activations in both networks. We will explore a 
TensorFlow implementation later in this chapter.

Conditional GANs for image-to-image translation

Conditional GANs (cGANs) introduce additional label information into the training 
process, resulting in better quality and some control over the output. 

cGANs alter the baseline architecture displayed previously in Figure 21.1 by adding a third 
input to the discriminator that contains class labels. These labels, for example, could convey 
gender or hair color information when generating images. 

Extensions include the generative adversarial what-where network (GAWWN; Reed et al. 
2016), which uses bounding box information not only to generate synthetic images but also 
to place objects at a given location.

GAN applications to images and time-series data
Alongside a large variety of extensions and modifications of the original architecture, 
numerous applications to images, as well as sequential data like speech and music, have 
emerged. Image applications are particularly diverse, ranging from image blending and 
super-resolution to video generation and human pose identification. Furthermore, GANs 
have been used to improve supervised learning performance. 

We will look at a few salient examples and then take a closer look at applications to time-
series data that may become particularly relevant to algorithmic trading and investment. 
See Alqahtani, Kavakli-Thorne, and Kumar (2019) for a recent survey and GitHub 
references for additional resources.
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CycleGAN – unpaired image-to-image translation

Supervised image-to-image translation aims to learn a mapping between aligned input 
and output images. CycleGAN solves this task when paired images are not available and 
transforms images from one domain to match another. 

Popular examples include the synthetic "painting" of horses as zebras and vice versa. It also 
includes the transfer of styles, by generating a realistic sample of an impressionistic print 
from an arbitrary landscape photo (Zhu et al. 2018).

StackGAN – text-to-photo image synthesis

One of the earlier applications of GANs to domain-transfer is the generation of images 
based on text. Stacked GAN, often shortened to StackGAN, uses a sentence as input and 
generates multiple images that match the description.

The architecture operates in two stages, where the first stage yields a low-resolution sketch 
of shape and colors, and the second stage enhances the result to a high-resolution image 
with photorealistic details (Zhang et al. 2017).

SRGAN – photorealistic single image super-resolution

Super-resolution aims at producing higher-resolution photorealistic images from low-
resolution input. GANs applied to this task have deep CNN architectures that use batch 
normalization, ReLU, and skip connection as encountered in ResNet (see Chapter 18, CNNs 
for Financial Time Series and Satellite Images) to produce impressive results that are already 
finding commercial applications (Ledig et al. 2017).

Synthetic time series with recurrent conditional GANs

Recurrent GANs (RGANs) and recurrent conditional GANs (RCGANs) are two model 
architectures that aim to synthesize realistic real-valued multivariate time series (Esteban, 
Hyland, and Rätsch 2017). The authors target applications in the medical domain, but the 
approach could be highly valuable to overcome the limitations of historical market data. 

RGANs rely on recurrent neural networks (RNNs) for the generator and the discriminator. 
RCGANs add auxiliary information in the spirit of cGANs (see the previous Conditional 
GANs for image-to-image translation section). 

The authors succeed in generating visually and quantitatively compelling realistic samples. 
Furthermore, they evaluate the quality of the synthetic data, including synthetic labels, by 
using it to train a model with only minor degradation of the predictive performance on 
a real test set. The authors also demonstrate the successful application of RCGANs to an 
early warning system using a medical dataset of 17,000 patients from an intensive care unit. 
Hence, the authors illustrate that RCGANs are capable of generating time-series data useful 
for supervised training. We will apply this approach to financial market data this chapter in 
the TimeGAN – adversarial training for synthetic financial data section.
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How to build a GAN using TensorFlow 2
To illustrate the implementation of a GAN using Python, we will use the DCGAN example 
discussed earlier in this section to synthesize images from the Fashion-MNIST dataset 
that we first encountered in Chapter 13, Data-Driven Risk Factors and Asset Allocation with 
Unsupervised Learning.

See the notebook deep_convolutional_generative_adversarial_network for 
implementation details and references.

Building the generator network
Both generator and discriminator use a deep CNN architecture along the lines illustrated 
in Figure 20.1, but with fewer layers. The generator uses a fully connected input layer, 
followed by three convolutional layers, as defined in the following build_generator() 
function, which returns a Keras model instance:

def build_generator():

    return Sequential([Dense(7 * 7 * 256, 

                             use_bias=False,

                             input_shape=(100,), 

                             name='IN'),

                       BatchNormalization(name='BN1'),

                       LeakyReLU(name='RELU1'),

                       Reshape((7, 7, 256), name='SHAPE1'),

                       Conv2DTranspose(128, (5, 5), 

                                       strides=(1, 1),

                                       padding='same', 

                                       use_bias=False,

                                       name='CONV1'),

                       BatchNormalization(name='BN2'),

                       LeakyReLU(name='RELU2'),

                       Conv2DTranspose(64, (5, 5), 

                                       strides=(2, 2),

                                       padding='same',

                                       use_bias=False,

                                       name='CONV2'),

                       BatchNormalization(name='BN3'),

                       LeakyReLU(name='RELU3'),

                       Conv2DTranspose(1, (5, 5), 

                                       strides=(2, 2),

                                       padding='same', 

                                       use_bias=False,

                                       activation='tanh', 

                                       name='CONV3')],

                      name='Generator')
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The generator accepts 100 one-dimensional random values as input, and it produces images 
that are 28 pixels wide and high and, thus, contain 784 data points. 

A call to the .summary() method of the model returned by this function shows that 
this network has over 2.3 million parameters (see the notebook for details, including a 
visualization of the generator output prior to training).

Creating the discriminator network
The discriminator network uses two convolutional layers that translate the input received 
from the generator into a single output value. The model has around 212,000 parameters:

def build_discriminator():

    return Sequential([Conv2D(64, (5, 5), 

                              strides=(2, 2), 

                              padding='same',

                              input_shape=[28, 28, 1], 

                              name='CONV1'),

                       LeakyReLU(name='RELU1'),

                       Dropout(0.3, name='DO1'),

                       Conv2D(128, (5, 5), 

                              strides=(2, 2),

                              padding='same', 

                              name='CONV2'),

                       LeakyReLU(name='RELU2'),

                       Dropout(0.3, name='DO2'),

                       Flatten(name='FLAT'),

                       Dense(1, name='OUT')],

                      name='Discriminator')

Figure 21.2 depicts how the random input flows from the generator to the discriminator, as 
well as the input and output shapes of the various network components:
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Figure 21.2: DCGAN TensorFlow 2 model architecture

Setting up the adversarial training process
Now that we have built the generator and the discriminator models, we will design and 
execute the adversarial training process. To this end, we will define the following:

• The loss functions for both models that reflect their competitive interaction 
• A single training step that runs the backpropagation algorithm

• The training loop that repeats the training step until the model performance meets 
our expectations
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Defining the generator and discriminator loss functions
The generator loss reflects the discriminator's decision regarding the fake input. It will be 
low if the discriminator mistakes an image produced by the generator for a real image, and 
high otherwise; we will define the interaction between both models when we create the 
training step.

The generator loss is measured by the binary cross-entropy loss function as follows:

cross_entropy = BinaryCrossentropy(from_logits=True)
def generator_loss(fake_output):
    return cross_entropy(tf.ones_like(fake_output), fake_output)

The discriminator receives both real and fake images as input. It computes a loss for each and 
attempts to minimize the sum with the goal of accurately recognizing both types of inputs:

def discriminator_loss(true_output, fake_output):
    true_loss = cross_entropy(tf.ones_like(true_output), true_output)
    fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
    return true_loss + fake_loss

To train both models, we assign each an Adam optimizer with a learning rate lower than 
the default:

gen_optimizer = Adam(1e-4)
dis_optimizer = Adam(1e-4)

The core – designing the training step

Each training step implements one round of stochastic gradient descent using the Adam 
optimizer. It consists of five steps:

1. Providing the minibatch inputs to each model

2. Getting the models' outputs for the current weights

3. Computing the loss given the models' objective and output

4. Obtaining the gradients for the loss with respect to each model's weights

5. Applying the gradients according to the optimizer's algorithm

The function train_step() carries out these five steps. We use the @tf.function decorator 
to speed up execution by compiling it to a TensorFlow operation rather than relying on 
eager execution (see the TensorFlow documentation for details):

@tf.function
def train_step(images):
    # generate the random input for the generator
    noise = tf.random.normal([BATCH_SIZE, noise_dim])
    with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:     
        # get the generator output

        generated_img = generator(noise, training=True)
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        # collect discriminator decisions regarding real and fake input

        true_output = discriminator(images, training=True)

        fake_output = discriminator(generated_img, training=True)

        # compute the loss for each model

        gen_loss = generator_loss(fake_output)

        disc_loss = discriminator_loss(true_output, fake_output)

    # compute the gradients for each loss with respect to the model variables

    grad_generator = gen_tape.gradient(gen_loss,

                                       generator.trainable_variables)

    grad_discriminator = disc_tape.gradient(disc_loss,

                                            discriminator.trainable_variables)

    # apply the gradient to complete the backpropagation step

    gen_optimizer.apply_gradients(zip(grad_generator,

                                      generator.trainable_variables))

    dis_optimizer.apply_gradients(zip(grad_discriminator,
                                      discriminator.trainable_variables))

Putting it together – the training loop

The training loop is very straightforward to implement once we have the training step 
properly defined. It consists of a simple for loop, and during each iteration, we pass a new 
batch of real images to the training step. We also will sample some synthetic images and 
occasionally save the model weights. 

Note that we track progress using the tqdm package, which shows the percentage complete 
during training:

def train(dataset, epochs, save_every=10):

    for epoch in tqdm(range(epochs)):

        for img_batch in dataset:

            train_step(img_batch)

        # produce images for the GIF as we go

        display.clear_output(wait=True)

        generate_and_save_images(generator, epoch + 1, seed)

        # Save the model every 10 EPOCHS

        if (epoch + 1) % save_every == 0:

            checkpoint.save(file_prefix=checkpoint_prefix)
        # Generator after final epoch
    display.clear_output(wait=True)

    generate_and_save_images(generator, epochs, seed)

train(train_set, EPOCHS)
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Evaluating the results
After 100 epochs that only take a few minutes, the synthetic images created from random 
noise clearly begin to resemble the originals, as you can see in Figure 21.3 (see the notebook 
for the best visual quality):

Figure 21.3: A sample of synthetic Fashion-MNIST images

The notebook also creates a dynamic GIF image that visualizes how the quality of the 
synthetic images improves during training. 

Now that we understand how to build and train a GAN using TensorFlow 2, we will move 
on to a more complex example that produces synthetic time series from stock price data.

TimeGAN for synthetic financial data
Generating synthetic time-series data poses specific challenges above and beyond those 
encountered when designing GANs for images. In addition to the distribution over 
variables at any given point, such as pixel values or the prices of numerous stocks, a 
generative model for time-series data should also learn the temporal dynamics that shape 
how one sequence of observations follows another. (Refer also to the discussion in Chapter 

9, Time-Series Models for Volatility Forecasts and Statistical Arbitrage).

Very recent and promising research by Yoon, Jarrett, and van der Schaar, presented at 
NeurIPS in December 2019, introduces a novel time-series generative adversarial network 
(TimeGAN) framework that aims to account for temporal correlations by combining 
supervised and unsupervised training. The model learns a time-series embedding space 
while optimizing both supervised and adversarial objectives, which encourage it to adhere 
to the dynamics observed while sampling from historical data during training. The authors 
test the model on various time series, including historical stock prices, and find that the 
quality of the synthetic data significantly outperforms that of available alternatives.

In this section, we will outline how this sophisticated model works, highlight key 
implementation steps that build on the previous DCGAN example, and show how to evaluate 
the quality of the resulting time series. Please see the paper for additional information.



Chapter 21

[ 661 ]

Learning to generate data across features and time
A successful generative model for time-series data needs to capture both the cross-sectional 
distribution of features at each point in time and the longitudinal relationships among these 
features over time. Expressed in the image context we just discussed, the model needs to 
learn not only what a realistic image looks like, but also how one image evolves from the 
previous as in a video.

Combining adversarial and supervised training

As mentioned in the first section, prior attempts at generating time-series data, like 
RGANs and RCGANs, relied on RNNs (see Chapter 19, RNNs for Multivariate Time Series 
and Sentiment Analysis) in the roles of generator and discriminator. TimeGAN explicitly 
incorporates the autoregressive nature of time series by combining the unsupervised 
adversarial loss on both real and synthetic sequences familiar from the DCGAN example 
with a stepwise supervised loss with respect to the original data. The goal is to reward the 
model for learning the distribution over transitions from one point in time to the next that 
are present in the historical data.

Furthermore, TimeGAN includes an embedding network that maps the time-series 
features to a lower-dimensional latent space to reduce the complexity of the adversarial 
space. The motivation is to capture the drivers of temporal dynamics that often have 
lower dimensionality. (Refer also to the discussions of manifold learning in Chapter 13, 
Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning and nonlinear 
dimensionality reduction in Chapter 20, Autoencoders for Conditional Risk Factors and 
Asset Pricing). 

A key element of the TimeGAN architecture is that both the generator and the embedding 
(or autoencoder) network are responsible for minimizing the supervised loss that measures 
how well the model learns the dynamic relationship. As a result, the model learns a latent 
space conditioned on facilitating the generator's task to faithfully reproduce the temporal 
relationships observed in the historical data. In addition to time-series data, the model can 
also process static data that does not change or changes less frequently over time.

The four components of the TimeGAN architecture

The TimeGAN architecture combines an adversarial network with an autoencoder and thus 
has four network components, as depicted in Figure 21.4:

1. Autoencoder: embedding and recovery networks

2. Adversarial network: sequence generator and sequence discriminator components
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The authors emphasize the joint training of the autoencoder and the adversarial 
networks by means of three different loss functions. The reconstruction loss optimizes 
the autoencoder, the unsupervised loss trains the adversarial net, and the supervised 
loss enforces the temporal dynamics. As a result of this key insight, the TimeGAN 
simultaneously learns to encode features, generate representations, and iterate across time. 
More specifically, the embedding network creates the latent space, the adversarial network 
operates within this space, and supervised loss synchronizes the latent dynamics of both 
real and synthetic data.

Figure 21.4: The components of the TimeGAN architecture

The embedding and recovery components of the autoencoder map the feature space into 
the latent space and vice versa. This facilitates the learning of the temporal dynamics by the 
adversarial network, which learns in a lower-dimensional space. The authors implement 
the embedding and recovery network using a stacked RNN and a feedforward network. 
However, these choices can be flexibly adapted to the task at hand as long as they are 
autoregressive and respect the temporal order of the data.

The generator and the discriminator elements of the adversarial network differ from the 
DCGAN not only because they operate on sequential data but also because the synthetic 
features are generated in the latent space that the model learns simultaneously. The authors 
chose an RNN as the generator and a bidirectional RNN with a feedforward output layer 
for the discriminator.

Joint training of an autoencoder and adversarial network

The three loss functions displayed in Figure 21.4 drive the joint optimization of the network 
elements just described while training on real and randomly generated time series. In more 
detail, they aim to accomplish the following:
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• The reconstruction loss is familiar from our discussion of autoencoders in Chapter 

20, Autoencoders for Conditional Risk Factors and Asset Pricing; it compares how well 
the reconstruction of the encoded data resembles the original. 

• The unsupervised loss reflects the competitive interaction between the generator 
and the discriminator described in the DCGAN example; while the generator aims 
to minimize the probability that the discriminator classifies its output as fake, the 
discriminator aims to optimize the correct classification or real and fake inputs.

• The supervised loss captures how well the generator approximates the actual next 
time step in latent space when receiving encoded real data for the prior sequence.

Training takes place in three phases:

1. Training the autoencoder on real time series to optimize reconstruction

2. Optimizing the supervised loss using real time series to capture the temporal 
dynamics of the historical data

3. Jointly training the four components while minimizing all three loss functions

TimeGAN includes several hyperparameters used to weigh the components of composite 
loss functions; however, the authors find the network to be less sensitive to these settings 
than one might expect given the notorious difficulties of GAN training. In fact, they do 
not discover significant challenges during training and suggest that the embedding task 
serves to regularize adversarial learning because it reduces its dimensionality while the 
supervised loss constrains the stepwise dynamics of the generator.

We now turn to the TimeGAN implementation using TensorFlow 2; see the paper for  
an in-depth explanation of the math and methodology of the approach.

Implementing TimeGAN using TensorFlow 2
In this section, we will implement the TimeGAN architecture just described. The authors 
provide sample code using TensorFlow 1 that we will port to TensorFlow 2. Building and 
training TimeGAN requires several steps:

1. Selecting and preparing real and random time series inputs

2. Creating the key TimeGAN model components

3. Defining the various loss functions and training steps used during the three training 
phases

4. Running the training loops and logging the results

5. Generating synthetic time series and evaluating the results

We'll walk through the key items for each of these steps; please refer to the notebook 
TimeGAN_TF2 for the code examples in this section (unless otherwise noted), as well 
as additional implementation details.
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Preparing the real and random input series

The authors demonstrate the applicability of TimeGAN to financial data using 15 years of 
daily Google stock prices downloaded from Yahoo Finance with six features, namely open, 
high, low, close and adjusted close price, and volume. We'll instead use close to 20 years 
of adjusted close prices for six different tickers because it introduces somewhat higher 
variability. We will follow the original paper in targeting synthetic series with 24 time steps. 

Among the stocks with the longest history in the Quandl Wiki dataset are those displayed 
in normalized format, that is, starting at 1.0, in Figure 21.5. We retrieve the adjusted close 
from 2000-2017 and obtain over 4,000 observations. The correlation coefficient among the 
series ranges from 0.01 for GE and CAT to 0.94 for DIS and KO.

Figure 21.5: The TimeGAN input—six real stock prices series

We scale each series to the range [0, 1] using scikit-learn's MinMaxScaler class, which we will 
later use to rescale the synthetic data:

df = pd.read_hdf(hdf_store, 'data/real')

scaler = MinMaxScaler()

scaled_data = scaler.fit_transform(df).astype(np.float32)

In the next step, we create rolling windows containing overlapping sequences of 24 
consecutive data points for the six series:

data = []

for i in range(len(df) - seq_len):

    data.append(scaled_data[i:i + seq_len])

n_series = len(data)
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We then create a tf.data.Dataset instance from the list of NumPy arrays, ensure the data 
gets shuffled while training, and set a batch size of 128:

real_series = (tf.data.Dataset

               .from_tensor_slices(data)

               .shuffle(buffer_size=n_windows)
               .batch(batch_size))

real_series_iter = iter(real_series.repeat())

We also need a random time-series generator that produces simulated data with 24 
observations on the six series for as long as the training continues. 

To this end, we will create a generator that draws the requisite data uniform at random 
and feeds the result into a second tf.data.Dataset instance. We set this dataset to produce 
batches of the desired size and to repeat the process for as long as necessary:

def make_random_data():

    while True:

        yield np.random.uniform(low=0, high=1, size=(seq_len, n_seq))

random_series = iter(tf.data.Dataset

                     .from_generator(make_random_data,

                                     output_types=tf.float32)
                     .batch(batch_size)

                     .repeat())

We'll now proceed to define and instantiate the TimeGAN model components.

Creating the TimeGAN model components

We'll now create the two autoencoder components and the two adversarial network 
elements, as well as the supervisor that encourages the generator to learn the temporal 
dynamic of the historical price series.

We will follow the authors' sample code in creating RNNs with three hidden layers, each 
with 24 GRU units, except for the supervisor, which uses only two hidden layers. The 
following make_rnn function automates the network creation:

def make_rnn(n_layers, hidden_units, output_units, name):

    return Sequential([GRU(units=hidden_units,

                           return_sequences=True,

                           name=f'GRU_{i + 1}') for i in range(n_layers)] +

                      [Dense(units=output_units,

                             activation='sigmoid',

                             name='OUT')], name=name)
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The autoencoder consists of the embedder and the recovery networks that we 
instantiate here:

embedder = make_rnn(n_layers=3, 

                    hidden_units=hidden_dim, 

                    output_units=hidden_dim, 

                    name='Embedder')

recovery = make_rnn(n_layers=3, 

                    hidden_units=hidden_dim, 

                    output_units=n_seq, 

                    name='Recovery')

We then create the generator, the discriminator, and the supervisor like so:

generator = make_rnn(n_layers=3, 

                     hidden_units=hidden_dim, 

                     output_units=hidden_dim, 

                     name='Generator')

discriminator = make_rnn(n_layers=3, 

                         hidden_units=hidden_dim, 

                         output_units=1, 

                         name='Discriminator')

supervisor = make_rnn(n_layers=2, 

                      hidden_units=hidden_dim, 

                      output_units=hidden_dim, 

                      name='Supervisor')

We also define two generic loss functions, namely MeanSquaredError and 
BinaryCrossEntropy, which we will use later to create the various specific loss functions 
during the three phases:

mse = MeanSquaredError()

bce = BinaryCrossentropy()

Now it's time to start the training process.

Training phase 1 – autoencoder with real data

The autoencoder integrates the embedder and the recovery functions, as we saw in the 
previous chapter:

H = embedder(X)

X_tilde = recovery(H)

autoencoder = Model(inputs=X,

                    outputs=X_tilde,
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                    name='Autoencoder')

autoencoder.summary()

Model: "Autoencoder"

_________________________________________________________________

Layer (type)                 Output Shape              Param #   

=================================================================

RealData (InputLayer)        [(None, 24, 6)]           0         

_________________________________________________________________

Embedder (Sequential)        (None, 24, 24)            10104     

_________________________________________________________________

Recovery (Sequential)        (None, 24, 6)             10950     

=================================================================

Trainable params: 21,054

It has 21,054 parameters. We will now instantiate the optimizer for this training phase and 
define the training step. It follows the pattern introduced with the DCGAN example, using 
tf.GradientTape to record the operations that generate the reconstruction loss. This allows 
us to rely on the automatic differentiation engine to obtain the gradients with respect to the 
trainable embedder and recovery network weights that drive backpropagation:

autoencoder_optimizer = Adam()

@tf.function

def train_autoencoder_init(x):

    with tf.GradientTape() as tape:

        x_tilde = autoencoder(x)

        embedding_loss_t0 = mse(x, x_tilde)

        e_loss_0 = 10 * tf.sqrt(embedding_loss_t0)

    var_list = embedder.trainable_variables + recovery.trainable_variables

    gradients = tape.gradient(e_loss_0, var_list)

    autoencoder_optimizer.apply_gradients(zip(gradients, var_list))

    return tf.sqrt(embedding_loss_t0)

The reconstruction loss simply compares the autoencoder outputs with its inputs. We train 
for 10,000 steps in a little over one minute using this training loop that records the step loss 
for monitoring with TensorBoard:

for step in tqdm(range(train_steps)):

    X_ = next(real_series_iter)

    step_e_loss_t0 = train_autoencoder_init(X_)

    with writer.as_default():

        tf.summary.scalar('Loss Autoencoder Init', step_e_loss_t0, step=step)
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Training phase 2 – supervised learning with real data

We already created the supervisor model so we just need to instantiate the optimizer and 
define the train step as follows:

supervisor_optimizer = Adam()

@tf.function

def train_supervisor(x):

    with tf.GradientTape() as tape:

        h = embedder(x)

        h_hat_supervised = supervisor(h)

        g_loss_s = mse(h[:, 1:, :], h_hat_supervised[:, 1:, :])

    var_list = supervisor.trainable_variables

    gradients = tape.gradient(g_loss_s, var_list)

    supervisor_optimizer.apply_gradients(zip(gradients, var_list))

    return g_loss_s

In this case, the loss compares the output of the supervisor with the next timestep for 
the embedded sequence so that it learns the temporal dynamics of the historical price 
sequences; the training loop works similarly to the autoencoder example in the previous 
chapter.

Training phase 3 – joint training with real and random data

The joint training involves all four network components, as well as the supervisor. It 
uses multiple loss functions and combinations of the base components to achieve the 
simultaneous learning of latent space embeddings, transition dynamics, and synthetic data 
generation. 

We will highlight a few salient examples; please see the notebook for the full 
implementation that includes some repetitive steps that we will omit here.

To ensure that the generator faithfully reproduces the time series, TimeGAN includes a 
moment loss that penalizes when the mean and variance of the synthetic data deviate from 
the real version:

def get_generator_moment_loss(y_true, y_pred):

    y_true_mean, y_true_var = tf.nn.moments(x=y_true, axes=[0])

    y_pred_mean, y_pred_var = tf.nn.moments(x=y_pred, axes=[0])

    g_loss_mean = tf.reduce_mean(tf.abs(y_true_mean - y_pred_mean))

    g_loss_var = tf.reduce_mean(tf.abs(tf.sqrt(y_true_var + 1e-6) - 

                                       tf.sqrt(y_pred_var + 1e-6)))

    return g_loss_mean + g_loss_var

The end-to-end model that produces synthetic data involves the generator, supervisor, and 
recovery components. It is defined as follows and has close to 30,000 trainable parameters:



Chapter 21

[ 669 ]

E_hat = generator(Z)

H_hat = supervisor(E_hat)

X_hat = recovery(H_hat)

synthetic_data = Model(inputs=Z,

                       outputs=X_hat,

                       name='SyntheticData')

Model: "SyntheticData"

_________________________________________________________________

Layer (type)                 Output Shape              Param #   

=================================================================

RandomData (InputLayer)      [(None, 24, 6)]           0         

_________________________________________________________________

Generator (Sequential)       (None, 24, 24)            10104     

_________________________________________________________________

Supervisor (Sequential)      (None, 24, 24)            7800      

_________________________________________________________________

Recovery (Sequential)        (None, 24, 6)             10950     

=================================================================

Trainable params: 28,854

The joint training involves three optimizers for the autoencoder, the generator, and the 
discriminator:

generator_optimizer = Adam()

discriminator_optimizer = Adam()

embedding_optimizer = Adam()

The train step for the generator illustrates the use of four loss functions and corresponding 
combinations of network components to achieve the desired learning outlined at the 
beginning of this section:

@tf.function

def train_generator(x, z):

    with tf.GradientTape() as tape:

        y_fake = adversarial_supervised(z)

        generator_loss_unsupervised = bce(y_true=tf.ones_like(y_fake),

                                          y_pred=y_fake)

        y_fake_e = adversarial_emb(z)

        generator_loss_unsupervised_e = bce(y_true=tf.ones_like(y_fake_e),

                                            y_pred=y_fake_e)

        h = embedder(x)

        h_hat_supervised = supervisor(h)

        generator_loss_supervised = mse(h[:, 1:, :], 

                                        h_hat_supervised[:, 1:, :])
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        x_hat = synthetic_data(z)

        generator_moment_loss = get_generator_moment_loss(x, x_hat)

        generator_loss = (generator_loss_unsupervised +

                          generator_loss_unsupervised_e +

                          100 * tf.sqrt(generator_loss_supervised) +

                          100 * generator_moment_loss)

    var_list = generator.trainable_variables + supervisor.trainable_variables

    gradients = tape.gradient(generator_loss, var_list)

    generator_optimizer.apply_gradients(zip(gradients, var_list))

    return (generator_loss_unsupervised, generator_loss_supervised,

            generator_moment_loss)

Finally, the joint training loop pulls the various training steps together and builds on the 
learning from phase 1 and 2 to train the TimeGAN components on both real and random 
data. We run the loop for 10,000 iterations in under 40 minutes:

for step in range(train_steps):

    # Train generator (twice as often as discriminator)

    for kk in range(2):

        X_ = next(real_series_iter)

        Z_ = next(random_series)

        # Train generator

        step_g_loss_u, step_g_loss_s, step_g_loss_v = train_generator(X_, Z_)

        # Train embedder

        step_e_loss_t0 = train_embedder(X_)

    X_ = next(real_series_iter)

    Z_ = next(random_series)

    step_d_loss = get_discriminator_loss(X_, Z_)

    if step_d_loss > 0.15:

        step_d_loss = train_discriminator(X_, Z_)

    if step % 1000 == 0:

        print(f'{step:6,.0f} | d_loss: {step_d_loss:6.4f} | '

              f'g_loss_u: {step_g_loss_u:6.4f} | '

              f'g_loss_s: {step_g_loss_s:6.4f} | '

              f'g_loss_v: {step_g_loss_v:6.4f} | '

              f'e_loss_t0: {step_e_loss_t0:6.4f}')
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    with writer.as_default():

        tf.summary.scalar('G Loss S', step_g_loss_s, step=step)

        tf.summary.scalar('G Loss U', step_g_loss_u, step=step)

        tf.summary.scalar('G Loss V', step_g_loss_v, step=step)

        tf.summary.scalar('E Loss T0', step_e_loss_t0, step=step)

        tf.summary.scalar('D Loss', step_d_loss, step=step)

Now we can finally generate synthetic time series!

Generating synthetic time series

To evaluate the TimeGAN results, we will generate synthetic time series by drawing random 
inputs and feeding them to the synthetic_data network just described in the preceding 
section. More specifically, we'll create roughly as many artificial series with 24 observations 
on the six tickers as there are overlapping windows in the real dataset:

generated_data = []

for i in range(int(n_windows / batch_size)):

    Z_ = next(random_series)

    d = synthetic_data(Z_)

    generated_data.append(d)

len(generated_data)

35

The result is 35 batches containing 128 samples, each with the dimensions 24×6, that we 
stack like so:

generated_data = np.array(np.vstack(generated_data))

generated_data.shape

(4480, 24, 6)

We can use the trained MinMaxScaler to revert the synthetic output to the scale of the input 
series:

generated_data = (scaler.inverse_transform(generated_data

                                           .reshape(-1, n_seq))

                  .reshape(-1, seq_len, n_seq))

Figure 21.6 displays samples of the six synthetic series and the corresponding real series. 
The synthetic data generally reflects a variation of behavior not unlike its real counterparts 
and, after rescaling, roughly (due to the random input) matches its range:
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Figure 21.6: TimeGAN output—six synthetic prices series and their real counterparts

Now it's time to take a closer look at how to more thoroughly evaluate the quality of the 
synthetic data.

Evaluating the quality of synthetic time-series data
The TimeGAN authors assess the quality of the generated data with respect to three 
practical criteria:

• Diversity: The distribution of the synthetic samples should roughly match that of 
the real data.

• Fidelity: The sample series should be indistinguishable from the real data. 

• Usefulness: The synthetic data should be as useful as its real counterparts for 
solving a predictive task.

They apply three methods to evaluate whether the synthetic data actually exhibits these 
characteristics:

• Visualization: For a qualitative diversity assessment of diversity, we use 
dimensionality reduction—principal component analysis (PCA) and t-SNE 
(see Chapter 13, Data-Driven Risk Factors and Asset Allocation with Unsupervised 
Learning)—to visually inspect how closely the distribution of the synthetic samples 
resembles that of the original data.

• Discriminative score: For a quantitative assessment of fidelity, the test error of a 
time-series classifier, such as a two-layer LSTM (see Chapter 18, CNNs for Financial 
Time Series and Satellite Images), lets us evaluate whether real and synthetic time 
series can be differentiated or are, in fact, indistinguishable.
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• Predictive score: For a quantitative measure of usefulness, we can compare the test 
errors of a sequence prediction model trained on, alternatively, real or synthetic 
data to predict the next time step for the real data.

We'll apply and discuss the results of each method in the following sections. See the 
notebook evaluating_synthetic_data for the code samples and additional details.

Assessing diversity – visualization using PCA and t-SNE

To visualize the real and synthetic series with 24 time steps and six features, we will reduce 
their dimensionality so that we can plot them in two dimensions. To this end, we will 
sample 250 normalized sequences with six features each and reshape them to obtain data 
with the dimensionality 1,500×24 (showing only the steps for real data; see the notebook for 
the synthetic data):

# same steps to create real sequences for training

real_data = get_real_data()

# reload synthetic data

synthetic_data = np.load('generated_data.npy')

synthetic_data.shape

(4480, 24, 6)

# ensure same number of sequences

real_data = real_data[:synthetic_data.shape[0]]

sample_size = 250

idx = np.random.permutation(len(real_data))[:sample_size]

real_sample = np.asarray(real_data)[idx]

real_sample_2d = real_sample.reshape(-1, seq_len)

real_sample_2d.shape

(1500, 24)

PCA is a linear method that identifies a new basis with mutually orthogonal vectors that, 
successively, capture the directions of maximum variance in the data. We will compute the 
first two components using the real data and then project both real and synthetic samples 
onto the new coordinate system:

pca = PCA(n_components=2)

pca.fit(real_sample_2d)
pca_real = (pd.DataFrame(pca.transform(real_sample_2d))

            .assign(Data='Real'))

pca_synthetic = (pd.DataFrame(pca.transform(synthetic_sample_2d))

                 .assign(Data='Synthetic'))

t-SNE is a nonlinear manifold learning method for the visualization of high-dimensional 
data. It converts similarities between data points to joint probabilities and aims to minimize 
the Kullback-Leibler divergence between the joint probabilities of the low-dimensional 
embedding and the high-dimensional data (see Chapter 13, Data-Driven Risk Factors and 
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Asset Allocation with Unsupervised Learning). We compute t-SNE for the combined real and 
synthetic data as follows:

tsne_data = np.concatenate((real_sample_2d,  

                            synthetic_sample_2d), axis=0)

tsne = TSNE(n_components=2, perplexity=40)

tsne_result = tsne.fit_transform(tsne_data)

Figure 21.7 displays the PCA and t-SNE results for a qualitative assessment of the similarity 
of the real and synthetic data distributions. Both methods reveal strikingly similar patterns 
and significant overlap, suggesting that the synthetic data captures important aspects of the 
real data characteristics.

Figure 21.7: 250 samples of real and synthetic data in two dimensions

Assessing fidelity – time-series classification performance
The visualization only provides a qualitative impression. For a quantitative assessment of 
the fidelity of the synthetic data, we will train a time-series classifier to distinguish between 
real and fake data and evaluate its performance on a held-out test set.

More specifically, we will select the first 80 percent of the rolling sequences for training and 
the last 20 percent as a test set, as follows:

synthetic_data.shape

(4480, 24, 6)

n_series = synthetic_data.shape[0]

idx = np.arange(n_series)

n_train = int(.8*n_series)

train_idx, test_idx = idx[:n_train], idx[n_train:]

train_data = np.vstack((real_data[train_idx], 

                        synthetic_data[train_idx]))

test_data = np.vstack((real_data[test_idx], 
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                       synthetic_data[test_idx]))

n_train, n_test = len(train_idx), len(test_idx)

train_labels = np.concatenate((np.ones(n_train),

                               np.zeros(n_train)))

test_labels = np.concatenate((np.ones(n_test),

                              np.zeros(n_test)))

Then we will create a simple RNN with six units that receives mini batches of real and 
synthetic series with the shape 24×6 and uses a sigmoid activation. We will optimize it 
using binary cross-entropy loss and the Adam optimizer, while tracking the AUC and 
accuracy metrics:

ts_classifier = Sequential([GRU(6, input_shape=(24, 6), name='GRU'),
                            Dense(1, activation='sigmoid', name='OUT')])

ts_classifier.compile(loss='binary_crossentropy',
                      optimizer='adam',

                      metrics=[AUC(name='AUC'), 'accuracy'])

Model: "Time Series Classifier"
_________________________________________________________________

Layer (type)                 Output Shape              Param #   

=================================================================

GRU (GRU)                    (None, 6)                 252       

_________________________________________________________________

OUT (Dense)                  (None, 1)                 7         

=================================================================

Total params: 259

Trainable params: 259

The model has 259 trainable parameters. We will train it for 250 epochs on batches of 128 
randomly selected samples and track the validation performance:

result = ts_classifier.fit(x=train_data,
                           y=train_labels,

                           validation_data=(test_data, test_labels),

                           epochs=250, batch_size=128)

Once the training completes, evaluation of the test set yields a classification error of almost 
56 percent on the balanced test set and a very low AUC of 0.15:

ts_classifier.evaluate(x=test_data, y=test_labels)
56/56 [==============================] - 0s 2ms/step - loss: 3.7510 - AUC: 
0.1596 - accuracy: 0.4403
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Figure 21.8 plots the accuracy and AUC performance metrics for both train and test data 
over the 250 training epochs:

Figure 21.8: Train and test performance of the time-series classifier over 250 epochs

The plot shows that that model is not able to learn the difference between the real and 
synthetic data in a way that generalizes to the test set. This result suggests that the quality 
of the synthetic data meets the fidelity standard.

Assessing usefulness – train on synthetic, test on real

Finally, we want to know how useful synthetic data is when it comes to solving a prediction 
problem. To this end, we will train a time-series prediction model alternatively on the 
synthetic and the real data to predict the next time step and compare the performance on a 
test set created from the real data.

More specifically, we will select the first 23 time steps of each sequence as input, and the 
final time step as output. At the same time, we will split the real data into train and test sets 
using the same temporal split as in the previous classification example:

real_data.shape, synthetic_data.shape

((4480, 24, 6), (4480, 24, 6))

real_train_data = real_data[train_idx, :23, :]

real_train_label = real_data[train_idx, -1, :]

real_test_data = real_data[test_idx, :23, :]

real_test_label = real_data[test_idx, -1, :]

real_train_data.shape, real_train_label.shape

((3584, 23, 6), (3584, 6))

We will select the complete synthetic data for training since abundance is one of the reasons 
we generated it in the first place:

synthetic_train = synthetic_data[:, :23, :]

synthetic_label = synthetic_data[:, -1, :]

synthetic_train.shape, synthetic_label.shape

((4480, 23, 6), (4480, 6))
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We will create a one-layer RNN with 12 GRU units that predicts the last time steps for 
the six stock price series and, thus, has six linear output units. The model uses the Adam 
optimizer to minimize the mean absolute error (MAE):

def get_model():

    model = Sequential([GRU(12, input_shape=(seq_len-1, n_seq)),

                        Dense(6)])

    model.compile(optimizer=Adam(), 

                  loss=MeanAbsoluteError(name='MAE'))

    return model

We will train the model twice using the synthetic and real data for training, respectively, 
and the real test set to evaluate the out-of-sample performance. Training on synthetic data 
works as follows; training on real data works analogously (see the notebook):

ts_regression = get_model()

synthetic_result = ts_regression.fit(x=synthetic_train,
                                     y=synthetic_label,

                                     validation_data=(

                                         real_test_data, 

                                         real_test_label),

                                     epochs=100,

                                     batch_size=128)

Figure 21.9 plots the MAE on the train and test sets (on a log scale so we can spot the 
differences) for both models. It turns out that the MAE is slightly lower after training on the 
synthetic dataset:

Figure 21.9: Train and test performance of the time-series prediction model over 100 epochs

The result shows that synthetic training data may indeed be useful. On the specific 
predictive task of predicting the next daily stock price for six tickers, a simple model 
trained on synthetic TimeGAN data delivers equal or better performance than training 
on real data.
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Lessons learned and next steps
The perennial problem of overfitting that we encountered throughout this book implies 
that the ability to generate useful synthetic data would be quite valuable. The TimeGAN 
example justifies cautious optimism in this regard. At the same time, there are some 
caveats: we generated price data for a small number of assets at a daily frequency. In 
reality, we are probably interested in returns for a much larger number of assets, possibly at 
a higher frequency. The cross-sectional and temporal dynamics will certainly become more 
complex and may require adjustments to the TimeGAN architecture and training process.

These limitations of the experiment, however promising, imply natural next steps: we 
need to expand the scope to higher-dimensional time series containing information other 
than prices and also need to test their usefulness in the context of more complex models, 
including for feature engineering. These are very early days for synthetic training data, but 
this example should equip you to pursue your own research agenda towards more realistic 
solutions.

Summary
In this chapter, we introduced GANs that learn a probability distribution over the input 
data and are thus capable of generating synthetic samples that are representative of the 
target data. 

While there are many practical applications for this very recent innovation, they could be 
particularly valuable for algorithmic trading if the success in generating time-series training 
data in the medical domain can be transferred to financial market data. We learned how 
to set up adversarial training using TensorFlow. We also explored TimeGAN, a recent 
example of such a model, tailored to generating synthetic time-series data.

In the next chapter, we focus on reinforcement learning where we will build agents that 
interactively learn from their (market) environment.
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22
Deep Reinforcement Learning – 

Building a Trading Agent
In this chapter, we'll introduce reinforcement learning (RL), which takes a different 
approach to machine learning (ML) than the supervised and unsupervised algorithms 
we have covered so far. RL has attracted enormous attention as it has been the main 
driver behind some of the most exciting AI breakthroughs, like AlphaGo. David Silver, 
AlphaGo's creator and the lead RL researcher at Google-owned DeepMind, recently 
won the prestigious 2019 ACM Prize in Computing "for breakthrough advances in 
computer game-playing." We will see that the interactive and online nature of RL 
makes it particularly well-suited to the trading and investment domain.

RL models goal-directed learning by an agent that interacts with a typically stochastic 
environment that the agent has incomplete information about. RL aims to automate how 
the agent makes decisions to achieve a long-term objective by learning the value of states 
and actions from a reward signal. The ultimate goal is to derive a policy that encodes 
behavioral rules and maps states to actions.

RL is considered most similar to human learning that results from taking actions in the 
real world and observing the consequences. It differs from supervised learning because it 
optimizes the agent's behavior one trial-and-error experience at a time based on a scalar 
reward signal, rather than by generalizing from correctly labeled, representative samples 
of the target concept. Moreover, RL does not stop at making predictions. Instead, it takes 
an end-to-end perspective on goal-oriented decision-making by including actions and their 
consequences.

In this chapter, you will learn how to formulate an RL problem and apply various solution 
methods. We will cover model-based and model-free methods, introduce the OpenAI 
Gym environment, and combine deep learning with RL to train an agent that navigates a 
complex environment. Finally, we'll show you how to adapt RL to algorithmic trading by 
modeling an agent that interacts with the financial market to optimize its profit objective.
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More specifically, after reading this chapter, you will be able to:

• Define a Markov decision problem (MDP)

• Use value and policy iteration to solve an MDP

• Apply Q-learning in an environment with discrete states and actions

• Build and train a deep Q-learning agent in a continuous environment

• Use OpenAI Gym to train an RL trading agent

Elements of a reinforcement learning system
RL problems feature several elements that set them apart from the ML settings we have 
covered so far. The following two sections outline the key features required for defining 
and solving an RL problem by learning a policy that automates decisions. We'll use the 
notation and generally follow Reinforcement Learning: An Introduction (Sutton and Barto 
2018) and David Silver's UCL Courses on RL (https://www.davidsilver.uk/teaching/), 
which are recommended for further study beyond the brief summary that the scope of 
this chapter permits.

RL problems aim to solve for actions that optimize the agent's objective, given some 
observations about the environment. The environment presents information about its state 
to the agent, assigns rewards for actions, and transitions the agent to new states, subject 
to probability distributions the agent may or may not know. It may be fully or partially 
observable, and it may also contain other agents. The structure of the environment has 
a strong impact on the agent's ability to learn a given task, and typically requires significant 
up-front design effort to facilitate the training process.

RL problems differ based on the complexity of the environment's state and agent's action 
spaces, which can be either discrete or continuous. Continuous actions and states, unless 
discretized, require machine learning to approximate a functional relationship between 
states, actions, and their values. They also require generalization because the agent almost 
certainly experiences only a subset of the potentially infinite number of states and actions 
during training.

Solving complex decision problems usually requires a simplified model that isolates the key 
aspects. Figure 22.1 highlights the salient features of an RL problem. These typically include:

• Observations by the agent on the state of the environment

• A set of actions available to the agent

• A policy that governs the agent's decisions

You can find the code samples for this chapter and links to 
additional resources in the corresponding directory of the GitHub 
repository. The notebooks include color versions of the images.

https://www.davidsilver.uk/teaching/
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Figure 22.1: Components of an RL system

In addition, the environment emits a reward signal (that may be negative) as the agent's 
action leads to a transition to a new state. At its core, the agent usually learns a value 
function that informs its judgment of the available actions. The agent's objective function 
processes the reward signal and translates the value judgments into an optimal policy.

The policy – translating states into actions
At any point in time, the policy defines the agent's behavior. It maps any state the agent 
may encounter to one or several actions. In an environment with a limited number of states 
and actions, the policy can be a simple lookup table that's filled in during training.

With continuous states and actions, the policy takes the form of a function that machine 
learning can help to approximate. The policy may also involve significant computation, 
as in the case of AlphaZero, which uses tree search to decide on the best action for a given 
game state. The policy may also be stochastic and assign probabilities to actions, given a 
state.

Rewards – learning from actions
The reward signal is a single value that the environment sends to the agent at each time 
step. The agent's objective is typically to maximize the total reward received over time. 
Rewards can also be a stochastic function of the state and the actions. They are typically 
discounted to facilitate convergence and reflect the time decay of value.

Rewards are the only way for the agent to learn about the value of its decisions in a given 
state and to modify the policy accordingly. Due to its critical impact on the agent's learning, 
the reward signal is often the most challenging part of designing an RL system.

Rewards need to clearly communicate what the agent should accomplish (as opposed 
to how it should do so) and may require domain knowledge to properly encode this 
information. For example, the development of a trading agent may need to define rewards 
for buy, hold, and sell decisions. These may be limited to profit and loss, but also may need 
to include volatility and risk considerations, such as drawdown.
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The value function – optimal choice for the long run
The reward provides immediate feedback on actions. However, solving an RL problem 
requires decisions that create value in the long run. This is where the value function comes 
in: it summarizes the utility of states or of actions in a given state in terms of their long-term 
reward.

In other words, the value of a state is the total reward an agent can expect to obtain in the 
future when starting in that state. The immediate reward may be a good proxy of future 
rewards, but the agent also needs to account for cases where low rewards are followed by 
much better outcomes that are likely to follow (or the reverse).

Hence, value estimates aim to predict future rewards. Rewards are the key inputs, and the 
goal of making value estimates is to achieve more rewards. However, RL methods focus on 
learning accurate values that enable good decisions while efficiently leveraging the (often 
limited) experience.

There are also RL approaches that do not rely on value functions, such as randomized 
optimization methods like genetic algorithms or simulated annealing, which aim to find 
optimal behaviors by efficiently exploring the policy space. The current interest in RL, 
however, is mostly driven by methods that directly or indirectly estimate the value of states 
and actions.

Policy gradient methods are a new development that relies on a parameterized, 
differentiable policy that can be directly optimized with respect to the objective using 
gradient descent (Sutton et al. 2000). See the resources on GitHub that include abstracts 
of key papers and algorithms beyond the scope of this chapter.

With or without a model – look before you leap?
Model-based RL approaches learn a model of the environment to allow the agent to 
plan ahead by predicting the consequences of its actions. Such a model may be used, for 
example, to predict the next state and reward based on the current state and action. This is 
the basis for planning, that is, deciding on the best course of action by considering possible 
futures before they materialize.

Simpler model-free methods, in contrast, learn from trial and error. Modern RL methods 
span the gamut from low-level trial-and-error methods to high-level, deliberative planning. 
The right approach depends on the complexity and learnability of the environment.

How to solve reinforcement learning problems
RL methods aim to learn from experience how to take actions that achieve a long-term goal. 
To this end, the agent and the environment interact over a sequence of discrete time steps via 
the interface of actions, state observations, and rewards described in the previous section.
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Key challenges in solving RL problems
Solving RL problems requires addressing two unique challenges: the credit-assignment 
problem and the exploration-exploitation trade-off.

Credit assignment

In RL, reward signals can occur significantly later than actions that contributed to the 
result, complicating the association of actions with their consequences. For example, when 
an agent takes 100 different positions and trades repeatedly, how does it realize that certain 
holdings performed much better than others if it only learns about the portfolio return?

The credit-assignment problem is the challenge of accurately estimating the benefits and 
costs of actions in a given state, despite these delays. RL algorithms need to find a way to 
distribute the credit for positive and negative outcomes among the many decisions that 
may have been involved in producing it.

Exploration versus exploitation

The dynamic and interactive nature of RL implies that the agent needs to estimate the value 
of the states and actions before it has experienced all relevant trajectories. While it is able to 
select an action at any stage, these decisions are based on incomplete learning, yet generate 
the agent's first insights into the optimal choices of its behavior.

Partial visibility into the value of actions creates the risk of decisions that only exploit past 
(successful) experience rather than exploring uncharted territory. Such choices limit the 
agent's exposure and prevent it from learning an optimal policy.

An RL algorithm needs to balance this exploration-exploitation trade-off—too little 
exploration will likely produce biased value estimates and suboptimal policies, whereas too 
little exploitation prevents learning from taking place in the first place.

Fundamental approaches to solving RL problems
There are numerous approaches to solving RL problems, all of which involve finding rules 
for the agent's optimal behavior:

• Dynamic programming (DP) methods make the often unrealistic assumption of 
complete knowledge of the environment, but they are the conceptual foundation for 
most other approaches.

• Monte Carlo (MC) methods learn about the environment and the costs and benefits 
of different decisions by sampling entire state-action-reward sequences.

• Temporal difference (TD) learning significantly improves sample efficiency by 
learning from shorter sequences. To this end, it relies on bootstrapping, which is 
defined as refining its estimates based on its own prior estimates.
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When an RL problem includes well-defined transition probabilities and a limited number 
of states and actions, it can be framed as a finite Markov decision process (MDP) for which 
DP can compute an exact solution. Much of the current RL theory focuses on finite MDPs, 
but practical applications are used for (and require) more general settings. Unknown 
transition probabilities require efficient sampling to learn about their distribution.

Approaches to continuous state and/or action spaces often leverage machine learning 
to approximate a value or policy function. They integrate supervised learning and, in 
particular, deep learning methods like those discussed in the previous four chapters. 
However, these methods face distinct challenges in the RL context:

• The reward signal does not directly reflect the target concept, like a labeled training 
sample.

• The distribution of the observations depends on the agent's actions and the policy, 
which is itself the subject of the learning process.

The following sections will introduce and demonstrate various solution methods. We'll 
start with the DP methods value iteration and policy iteration, which are limited to finite 
MDP with known transition probabilities. As we will see in the following section, they 
are the foundation for Q-learning, which is based on TD learning and does not require 
information about transition probabilities. It aims for similar outcomes as DP but with 
less computation and without assuming a perfect model of the environment. Finally, we'll 
expand the scope to continuous states and introduce deep Q-learning.

Solving dynamic programming problems
Finite MDPs are a simple yet fundamental framework. We will introduce the trajectories 
of rewards that the agent aims to optimize, define the policy and value functions used to 
formulate the optimization problem, and the Bellman equations that form the basis for the 
solution methods.

Finite Markov decision problems
MDPs frame the agent-environment interaction as a sequential decision problem over 
a series of time steps t =1, …, T that constitute an episode. Time steps are assumed as 
discrete, but the framework can be extended to continuous time.

The abstraction afforded by MDPs makes its application easily adaptable to many contexts. 
The time steps can be at arbitrary intervals, and actions and states can take any form that 
can be expressed numerically.

The Markov property implies that the current state completely describes the process, that 
is, the process has no memory. Information from past states adds no value when trying 
to predict the process's future. Due to these properties, the framework has been used to 
model asset prices subject to the efficient market hypothesis discussed in Chapter 5, Portfolio 
Optimization and Performance Evaluation.
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Sequences of states, actions, and rewards

MDPs proceed in the following fashion: at each step t, the agent observes the environment's 
state 𝑆𝑆𝑡𝑡 ∈ 𝑆𝑆  and selects an action 𝐴𝐴𝑡𝑡 ∈ 𝐴𝐴 , where S and A are the sets of states and actions, 
respectively. At the next time step t+1, the agent receives a reward 𝑅𝑅𝑡𝑡𝑡𝑡 ∈ 𝑅𝑅  and transitions 
to state S

t+1
. Over time, the MDP gives rise to a trajectory S

0
, A

0
, R

1
, S

1
, A

1
, R

1
, … that 

continues until the agent reaches a terminal state and the episode ends.

Finite MDPs with a limited number of actions A, states S, and rewards R include well-
defined discrete probability distributions over these elements. Due to the Markov property, 
these distributions only depend on the previous state and action.

The probabilistic nature of trajectories implies that the agent maximizes the expected sum 
of future rewards. Furthermore, rewards are typically discounted using a factor 0 ≤ 𝛾𝛾 ≤ 𝛾  
to reflect their time value. In the case of tasks that are not episodic but continue indefinitely, 
a discount factor strictly less than 1 is necessary to avoid infinite rewards and ensure 
convergence. Therefore, the agent maximizes the discounted, expected sum of future 
returns R

t
, denoted as G

t
:

𝐺𝐺𝑡𝑡 = 𝐄𝐄[𝑅𝑅𝑡𝑡𝑡𝑡 + 𝛾𝛾𝑅𝑅𝑡𝑡𝑡𝑡 + 𝛾𝛾𝑡𝑅𝑅𝑡𝑡𝑡𝑡+. . . ] =∑𝛾𝛾𝑠𝑠𝐄𝐄[𝑅𝑅𝑡𝑡𝑡𝑠𝑠]𝑇𝑇
𝑠𝑠𝑠𝑠  

This relationship can also be defined recursively because the sum starting at the second step 
is the same as G

t+1
 discounted once: 𝐺𝐺𝑡𝑡 = 𝑅𝑅𝑡𝑡𝑡𝑡 + 𝛾𝛾𝐺𝐺𝑡𝑡𝑡𝑡 

We will see later that this type of recursive relationship is frequently used to formulate 
RL algorithms.

Value functions – how to estimate the long-run reward

As introduced previously, a policy 𝜋𝜋  maps all states to probability distributions over 
actions so that the probability of choosing action A

t
 in state S

t
 can be expressed as 𝜋𝜋(𝑎𝑎|𝑠𝑠) = 𝑃𝑃(𝐴𝐴𝑡𝑡 = 𝑎𝑎|𝑆𝑆𝑡𝑡 = 𝑠𝑠) . The value function estimates the long-run return for each state 

or state-action pair. It is fundamental to find the policy that is the optimal mapping of states 
to actions.

The state-value function 𝑣𝑣𝜋𝜋(𝑠𝑠)  for policy 𝜋𝜋  gives the long-term value v of a specific state s 
as the expected return G for an agent that starts in s and then always follows policy 𝜋𝜋 . It is 
defined as follows, where 𝐸𝐸𝜋𝜋  refers to the expected value when the agent follows policy 𝜋𝜋 :𝑣𝑣𝜋𝜋(𝑠𝑠) = 𝐄𝐄𝜋𝜋[𝐺𝐺𝑡𝑡|𝑆𝑆𝑡𝑡 = 𝑠𝑠] = 𝐄𝐄𝜋𝜋 [∑ 𝛾𝛾𝑘𝑘𝑅𝑅𝑡𝑡𝑡𝑘𝑘𝑡𝑡|𝑠𝑠𝑡𝑡 = 𝑠𝑠∞

𝑘𝑘𝑘𝑘 ] 
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Similarly, we can compute the state-action value function q(s,a) as the expected return of 
starting in state s, taking action, and then always following the policy 𝜋𝜋 :𝑞𝑞𝜋𝜋(𝑠𝑠𝑠 𝑠𝑠) =  𝐄𝐄𝜋𝜋[𝐺𝐺𝑡𝑡|𝑆𝑆𝑡𝑡 = 𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 = 𝑠𝑠] = 𝐄𝐄𝜋𝜋 [∑ 𝛾𝛾𝑘𝑘𝑅𝑅𝑡𝑡𝑡𝑘𝑘𝑡𝑡|𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑠 𝑠𝑠𝑡𝑡 = 𝑠𝑠∞𝑘𝑘𝑘𝑘 ] 

The Bellman equations

The Bellman equations define a recursive relationship between the value functions 
for all states s in S and any of their successor states s′ under a policy 𝜋𝜋 . They do so by 
decomposing the value function into the immediate reward and the discounted value  
of the next state:𝑣𝑣𝜋𝜋(𝑠𝑠) =. 𝐄𝐄[𝐺𝐺𝑡𝑡|𝑆𝑆𝑡𝑡 = 𝑠𝑠]

 = 𝐄𝐄 [𝑅𝑅𝑡𝑡𝑡𝑡⏟reward+ 𝛾𝛾𝑣𝑣(𝑆𝑆𝑡𝑡𝑡𝑡)⏟      discounted value] = ∑𝜋𝜋(𝑎𝑎|𝑠𝑠)𝑎𝑎 ∑∑𝑝𝑝(𝑠𝑠′, 𝑟𝑟|𝑠𝑠, 𝑎𝑎) [𝑟𝑟 + 𝛾𝛾 𝑣𝑣𝜋𝜋(𝑠𝑠′)]𝑟𝑟𝑠𝑠′      ∀𝑠𝑠
 

This equation says that for a given policy, the value of a state must equal the expected 
value of its successor states under the policy, plus the expected reward earned from 
arriving at that successor state.

This implies that, if we know the values of the successor states for the currently available 
actions, we can look ahead one step and compute the expected value of the current state. 
Since it holds for all states S, the expression defines a set of 𝑛𝑛 𝑛 |𝑆𝑆|  equations. An analogous 
relationship holds for 𝑞𝑞(𝑠𝑠𝑠 𝑠𝑠) .
Figure 22.2 summarizes this recursive relationship: in the current state, the agent selects 
an action a based on the policy 𝜋𝜋 . The environment responds by assigning a reward that 
depends on the resulting new state s′:

Figure 22.2: The recursive relationship expressed by the Bellman equation



Chapter 22

[ 687 ]

From a value function to an optimal policy

The solution to an RL problem is a policy that optimizes the cumulative reward. Policies 
and value functions are closely connected: an optimal policy yields a value estimate for 
each state 𝑣𝑣𝜋𝜋(𝑠𝑠)  or state-action pair 𝑞𝑞𝜋𝜋(𝑠𝑠𝑠 𝑠𝑠)  that is at least as high as for any other policy 
since the value is the cumulative reward under the given policy. Hence, the optimal value 
functions 𝑣𝑣∗(𝑠𝑠) = 𝑚𝑚𝑚𝑚𝑚𝑚𝜋𝜋𝑣𝑣𝜋𝜋(𝑠𝑠)  and 𝑞𝑞∗(𝑠𝑠𝑠 𝑠𝑠) = 𝑚𝑚𝑠𝑠𝑚𝑚𝜋𝜋𝑞𝑞𝜋𝜋(𝑠𝑠𝑠 𝑠𝑠)  implicitly define optimal 
policies and solve the MDP.

The optimal value functions 𝑣𝑣∗  and 𝑞𝑞∗  also satisfy the Bellman equations from the previous 
section. These Bellman optimality equations can omit the explicit reference to a policy as it 
is implied by 𝑣𝑣∗  and 𝑞𝑞∗ . For 𝑣𝑣∗(𝑠𝑠𝑠 , the recursive relationship equates the current value to 
the sum of the immediate reward from choosing the best action in the current state, as well 
as the expected discounted value of the successor states:𝑠𝑠∗(𝑠𝑠) = max𝑎𝑎𝑞𝑞∗(𝑠𝑠𝑠 𝑠𝑠) = max𝑎𝑎𝑅𝑅𝑡𝑡 + 𝛾𝛾𝛾 𝛾𝛾(𝑠𝑠′|𝑠𝑠𝑠 𝑠𝑠)𝑠𝑠∗(𝑠𝑠′)𝑠𝑠′  

For the optimal state-action value function 𝑞𝑞∗(𝑠𝑠𝑠 𝑠𝑠) , the Bellman optimality equation 
decomposes the current state-action value into the sum of the reward for the implied 
current action and the discounted expected value of the best action in all successor states:𝑞𝑞∗(𝑠𝑠) = 𝑅𝑅𝑡𝑡 + 𝛾𝛾𝛾 𝛾𝛾(𝑠𝑠′|𝑠𝑠𝑠 𝑠𝑠)𝑠𝑠∗(𝑠𝑠)𝑠𝑠′ = 𝑅𝑅𝑡𝑡 + 𝛾𝛾𝛾 𝛾𝛾(𝑠𝑠′|𝑠𝑠𝑠 𝑠𝑠)𝑠𝑠′ max𝑎𝑎𝑞𝑞∗(𝑠𝑠𝑠 𝑠𝑠) 
The optimality conditions imply that the best policy is to always select the action that 
maximizes the expected value in a greedy fashion, that is, to only consider the result 
of a single time step.

The optimality conditions defined by the two previous expressions are nonlinear due to the 
max operator and lack a closed-form solution. Instead, MDP solutions rely on an iterative 
solution - like policy and value iteration or Q-learning, which we will cover next.

Policy iteration
DP is a general method for solving problems that can be decomposed into smaller, 
overlapping subproblems with a recursive structure that permit the reuse of intermediate 
results. MDPs fit the bill due to the recursive Bellman optimality equations and the 
cumulative nature of the value function. More specifically, the principle of optimality 
applies because an optimal policy consists of picking an optimal action and then following 
an optimal policy.

DP requires knowledge of the MDP's transition probabilities. This is often not the case, 
but many methods for more general cases follow an approach similar to DP and learn the 
missing information from the data.

DP is useful for prediction tasks that estimate the value function and the control task that 
focuses on optimal decisions and outputs a policy (while also estimating a value function in 
the process).



Deep Reinforcement Learning – Building a Trading Agent

[ 688 ]

The policy iteration algorithm to find an optimal policy repeats the following two steps 
until the policy has converged, that is, no longer changes more than a given threshold:

1. Policy evaluation: Update the value function based on the current policy.

2. Policy improvement: Update the policy so that actions maximize the expected 
one-step value.

Policy evaluation relies on the Bellman equation to estimate the value function. More 
specifically, it selects the action determined by the current policy and sums the resulting 
reward, as well as the discounted value of the next state, to update the value for the current 
state.

Policy improvement, in turn, alters the policy so that for each state, the policy produces the 
action that produces the highest value in the next state. This improvement is called greedy 
because it only considers the return of a single time step. Policy iteration always converges 
to an optimal policy and often does so in relatively few iterations.

Value iteration
Policy iteration requires the evaluation of the policy for all states after each iteration. The 
evaluation can be costly, as discussed previously, for search-tree-based policies, for example.

Value iteration simplifies this process by collapsing the policy evaluation and 
improvement step. At each time step, it iterates over all states and selects the best greedy 
action based on the current value estimate for the next state. Then, it uses the one-step 
lookahead implied by the Bellman optimality equation to update the value function for the 
current state.

The corresponding update rule for the value function 𝑣𝑣𝑘𝑘𝑘𝑘(𝑠𝑠)  is almost identical to the 
policy evaluation update; it just adds the maximization over the available actions:𝑣𝑣𝑘𝑘𝑘𝑘(𝑠𝑠) ⟵ max𝑎𝑎 ∑  ∑ 𝑝𝑝(𝑠𝑠′, 𝑟𝑟|𝑠𝑠, 𝑠𝑠)𝑟𝑟 [𝑟𝑟 𝑟 𝑟𝑟𝑣𝑣𝑘𝑘(𝑠𝑠′)]𝑠𝑠′  

The algorithm stops when the value function has converged and outputs the greedy  
policy derived from its value function estimate. It is also guaranteed to converge to an 
optimal policy.

Generalized policy iteration
In practice, there are several ways to truncate policy iteration; for example, by evaluating 
the policy k times before improving it. This just means that the max operator will only be 
applied at every kth iteration.

Most RL algorithms estimate value and policy functions and rely on the interaction of 
policy evaluation and improvement to converge to a solution, as illustrated in Figure 
22.3. The general approach improves the policy with respect to the value function while 
adjusting the value function so that it matches the policy:
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Figure 22.3: Convergence of policy evaluation and improvement

Convergence requires that the value function be consistent with the policy, which, in turn, 
needs to stabilize while acting greedily with respect to the value function. Thus, both 
processes stabilize only when a policy has been found that is greedy with respect to its own 
evaluation function. This implies that the Bellman optimality equation holds, and thus that 
the policy and the value function are optimal.

Dynamic programming in Python
In this section, we'll apply value and policy iteration to a toy environment that consists  
of a 3 × 4  grid, as depicted in Figure 22.4, with the following features:

• States: 11 states represented as two-dimensional coordinates. One field is not 
accessible and the top two states in the right-most column are terminal, that is, they 
end the episode.

• Actions: Movements of one step up, down, left, or right. The environment is 
randomized so that actions can have unintended outcomes. For each action, there 
is an 80 percent probability of moving to the expected state, and 10 percent each 
of moving in an adjacent direction (for example, right or left instead of up, or up/
down instead of right).

• Rewards: As depicted in the left panel, each state results in -.02 except the +1/-1 
rewards in the terminal states.

Figure 22.4: 3×4 gridworld rewards, value function, and optimal policy
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Setting up the gridworld

We will begin by defining the environment parameters:

grid_size = (3, 4)

blocked_cell = (1, 1)

baseline_reward = -0.02

absorbing_cells = {(0, 3): 1, (1, 3): -1}

actions = ['L', 'U', 'R', 'D']

num_actions = len(actions)

probs = [.1, .8, .1, 0]

We will frequently need to convert between 1D and 2D representations, so we will 
define two helper functions for this purpose; states are one-dimensional, and cells are the 
corresponding 2D coordinates:

to_1d = lambda x: np.ravel_multi_index(x, grid_size)

to_2d = lambda x: np.unravel_index(x, grid_size)

Furthermore, we will precompute some data points to make the code more concise:

num_states = np.product(grid_size)

cells = list(np.ndindex(grid_size))

states = list(range(len(cells)))

cell_state = dict(zip(cells, states))

state_cell= dict(zip(states, cells))

absorbing_states = {to_1d(s):r for s, r in absorbing_cells.items()}

blocked_state = to_1d(blocked_cell)

We store the rewards for each state:

state_rewards = np.full(num_states, baseline_reward)

state_rewards[blocked_state] = 0

for state, reward in absorbing_states.items():

    state_rewards[state] = reward

state_rewards

array([-0.02, -0.02, -0.02,  1.  , -0.02,  0.  , -0.02, -1.  , -0.02,

       -0.02, -0.02, -0.02])

To account for the probabilistic environment, we also need to compute the probability 
distribution over the actual move for a given action:

action_outcomes = {}

for i, action in enumerate(actions):

    probs_ = dict(zip([actions[j % 4] for j in range(i, 

                                               num_actions + i)], probs))

    action_outcomes[actions[(i + 1) % 4]] = probs_
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Action_outcomes

{'U': {'L': 0.1, 'U': 0.8, 'R': 0.1, 'D': 0},

 'R': {'U': 0.1, 'R': 0.8, 'D': 0.1, 'L': 0},

 'D': {'R': 0.1, 'D': 0.8, 'L': 0.1, 'U': 0},

 'L': {'D': 0.1, 'L': 0.8, 'U': 0.1, 'R': 0}}

Now, we are ready to compute the transition matrix, which is the key input to the MDP.

Computing the transition matrix

The transition matrix defines the probability of ending up in a certain state S for each 
previous state and action A 𝑃𝑃𝑃𝑃𝑃′|𝑃𝑃𝑠 𝑠𝑠𝑠 . We will demonstrate pymdptoolbox and use one of 
the formats available to specify transitions and rewards. For both transition probabilities, 
we will create a NumPy array with dimensions 𝐴𝐴 × 𝑆𝑆 × 𝑆𝑆 .

We first compute the target cell for each starting cell and move:

def get_new_cell(state, move):

    cell = to_2d(state)

    if actions[move] == 'U':

        return cell[0] - 1, cell[1]

    elif actions[move] == 'D':

        return cell[0] + 1, cell[1]

    elif actions[move] == 'R':

        return cell[0], cell[1] + 1

    elif actions[move] == 'L':

        return cell[0], cell[1] - 1

The following function uses the arguments starting state, action, and outcome to fill in the 
transition probabilities and rewards:

def update_transitions_and_rewards(state, action, outcome):

    if state in absorbing_states.keys() or state == blocked_state:

        transitions[action, state, state] = 1

    else:

        new_cell = get_new_cell(state, outcome)

        p = action_outcomes[actions[action]][actions[outcome]]

        if new_cell not in cells or new_cell == blocked_cell:

            transitions[action, state, state] += p

            rewards[action, state, state] = baseline_reward

        else:

            new_state= to_1d(new_cell)

            transitions[action, state, new_state] = p

            rewards[action, state, new_state] = state_rewards[new_state]
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We generate the transition and reward values by creating placeholder data structures and 
iterating over the Cartesian product of 𝐴𝐴 × 𝑆𝑆 × 𝑆𝑆 , as follows:

rewards = np.zeros(shape=(num_actions, num_states, num_states))

transitions = np.zeros((num_actions, num_states, num_states))

actions_ = list(range(num_actions))

for action, outcome, state in product(actions_, actions_, states):

    update_transitions_and_rewards(state, action, outcome)

rewards.shape, transitions.shape

((4,12,12), (4,12,12))

Implementing the value iteration algorithm

We first create the value iteration algorithm, which is slightly simpler because it 
implements policy evaluation and improvement in a single step. We capture the states for 
which we need to update the value function, excluding terminal states that have a value of 
0 for lack of rewards (+1/-1 are assigned to the starting state), and skip the blocked cell:

skip_states = list(absorbing_states.keys())+[blocked_state]

states_to_update = [s for s in states if s not in skip_states]

Then, we initialize the value function and set the discount factor gamma and the 
convergence threshold epsilon:

V = np.random.rand(num_states)

V[skip_states] = 0

gamma = .99

epsilon = 1e-5

The algorithm updates the value function using the Bellman optimality equation, as 
described previously, and terminates when the L1 norm of V changes to less than epsilon in 
absolute terms:

while True:

    V_ = np.copy(V)

    for state in states_to_update:

        q_sa = np.sum(transitions[:, state] * (rewards[:, state] + gamma* V), 

                      axis=1)

        V[state] = np.max(q_sa)

    if np.sum(np.fabs(V - V_)) < epsilon:

        break

The algorithm converges in 16 iterations and 0.0117s. It produces the following optimal 
value estimate, which, together with the implied optimal policy, is depicted in the right 
panel of Figure 22.4, earlier in this section:
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pd.DataFrame(V.reshape(grid_size))

         0         1         2         3

0.884143  0.925054  0.961986  0.000000

1  0.848181  0.000000  0.714643  0.000000

2  0.808344  0.773327  0.736099  0.516082

Defining and running policy iteration
Policy iterations involve separate evaluation and improvement steps. We define the 
improvement part by selecting the action that maximizes the sum of the expected reward 
and next-state value. Note that we temporarily fill in the rewards for the terminal states to 
avoid ignoring actions that would lead us there:

def policy_improvement(value, transitions):

    for state, reward in absorbing_states.items():

        value[state] = reward

    return np.argmax(np.sum(transitions * value, 2),0)

We initialize the value function as before and also include a random starting policy:

pi = np.random.choice(list(range(num_actions)), size=num_states)

The algorithm alternates between policy evaluation for a greedily selected action and policy 
improvement until the policy stabilizes:

iterations = 0

converged = False

while not converged:

    pi_ = np.copy(pi)

    for state in states_to_update:

        action = policy[state]

        V[state] = np.dot(transitions[action, state], 

                                      rewards[action, state] + gamma* V)

        pi = policy_improvement(V.copy(), transitions)

    if np.array_equal(pi_, pi):

        converged = True

    iterations += 1

Policy iteration converges after only three iterations. The policy stabilizes before the 
algorithm finds the optimal value function, and the optimal policy differs slightly, most 
notably by suggesting "up" instead of the safer "left" for the field next to the negative 
terminal state. This can be avoided by tightening the convergence criteria, for example, by 
requiring a stable policy of several rounds or by adding a threshold for the value function.

Solving MDPs using pymdptoolbox

We can also solve MDPs using the Python library pymdptoolbox, which includes a few other 
algorithms, including Q-learning.
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To run value iteration, just instantiate the corresponding object with the desired 
configuration options, rewards, and transition matrices before calling the .run() method:

vi = mdp.ValueIteration(transitions=transitions,

                        reward=rewards,

                        discount=gamma,

                        epsilon=epsilon)

vi.run()

The value function estimate matches the result in the previous section:

np.allclose(V.reshape(grid_size), np.asarray(vi.V).reshape(grid_size))

Policy iteration works similarly:

pi = mdp.PolicyIteration(transitions=transitions,

                        reward=rewards,

                        discount=gamma,

                        max_iter=1000)

pi.run()

It also yields the same policy, but the value function varies by run and does not need to 
achieve the optimal value before the policy converges.

Lessons learned

The right panel we saw earlier in Figure 22.4 shows the optimal value estimate produced by 
value iteration and the corresponding greedy policy. The negative rewards, combined with 
the uncertainty in the environment, produce an optimal policy that involves moving away 
from the negative terminal state.

The results are sensitive to both the rewards and the discount factor. The cost of the 
negative state affects the policy in the surrounding fields, and you should modify the 
example in the corresponding notebook to identify threshold levels that alter the optimal 
action selection.

Q-learning – finding an optimal policy on the go
Q-learning was an early RL breakthrough when developed by Chris Watkins for his 
PhD thesis (http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf) (1989). It introduces 
incremental dynamic programming to learn to control an MDP without knowing or 
modeling the transition and reward matrices that we used for value and policy iteration 
in the previous section. A convergence proof followed 3 years later (Christopher J. C. H. 
Watkins and Dayan 1992).

http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
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Q-learning directly optimizes the action-value function q to approximate q*. The learning 
proceeds "off-policy," that is, the algorithm does not need to select actions based on the 
policy implied by the value function alone. However, convergence requires that all state-
action pairs continue to be updated throughout the training process. A straightforward way 
to ensure this is through an 𝜀𝜀 -greedy policy.

Exploration versus exploitation – 𝛆𝛆 -greedy policy
An 𝛆𝛆 -greedy policy is a simple policy that ensures the exploration of new actions in a 
given state while also exploiting the learning experience . It does this by randomizing the 
selection of actions. An 𝜀𝜀 -greedy policy selects an action randomly with a probability of 𝜀𝜀 , 
and the best action according to the value function otherwise.

The Q-learning algorithm
The algorithm keeps improving a state-action value function after random initialization for 
a given number of episodes. At each time step, it chooses an action based on an 𝜀𝜀 -greedy 
policy, and uses a learning rate 𝛼𝛼  to update the value function, as follows:

𝑄𝑄(𝑆𝑆𝑡𝑡, 𝐴𝐴𝑡𝑡) ⟵ 𝑄𝑄(𝑆𝑆𝑡𝑡, 𝐴𝐴𝑡𝑡) + 𝛼𝛼 [𝑅𝑅𝑡𝑡 + 𝛾𝛾𝛾𝛾𝛾𝑎𝑎 𝑄𝑄(𝑆𝑆𝑡𝑡𝑡𝑡, 𝑎𝑎)⏟              TD Target − 𝑄𝑄(𝑆𝑆𝑡𝑡, 𝐴𝐴𝑡𝑡)⏟      Current Q−value]
⏞                          Temporal Difference

 

Note that the algorithm does not compute expected values based on the transition 
probabilities. Instead, it learns the Q function from the rewards R

t
 produced by the  𝜀𝜀 -greedy policy and its current estimate of the discounted value function for the next state.

The use of the estimated value function to improve this very estimate is called 
bootstrapping. The Q-learning algorithm is part of the temporal difference (TD) learning 
algorithms. TD learning does not wait until receiving the final reward for an episode. 
Instead, it updates its estimates using the values of intermediate states that are closer to the 
final reward. In this case, the intermediate state is one time step ahead.

How to train a Q-learning agent using Python
In this section, we will demonstrate how to build a Q-learning agent using the 3 × 4  grid of 
states from the previous section. We will train the agent for 2,500 episodes, using a learning 
rate of 𝛼𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼  and 𝜀𝜀𝜀 𝜀 𝜀𝜀𝜀5  for the 𝜀𝜀 -greedy policy (see the notebook gridworld_q_
learning.ipynb for details):

max_episodes = 2500

alpha = .1

epsilon = .05
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Then, we will randomly initialize the state-action value function as a NumPy array with 
dimensions number of states × number of actions:

Q = np.random.rand(num_states, num_actions)

Q[skip_states] = 0

The algorithm generates 2,500 episodes that start at a random location and proceed 
according to the 𝜀𝜀 -greedy policy until termination, updating the value function according 
to the Q-learning rule:

for episode in range(max_episodes):
    state = np.random.choice([s for s in states if s not in skip_states])
    while not state in absorbing_states.keys():
        if np.random.rand() < epsilon:
            action = np.random.choice(num_actions)
        else:
            action = np.argmax(Q[state])
        next_state = np.random.choice(states, p=transitions[action, state])
        reward = rewards[action, state, next_state]
        Q[state, action] += alpha * (reward + 
                            gamma * np.max(Q[next_state])-Q[state, action])
        state = next_state

The episodes take 0.6 seconds and converge to a value function fairly close to the result of the 
value iteration example from the previous section. The pymdptoolbox implementation works 
analogously to previous examples (see the notebook for details).

Deep RL for trading with the OpenAI Gym
In the previous section, we saw how Q-learning allows us to learn the optimal state-action 
value function q* in an environment with discrete states and discrete actions using iterative 
updates based on the Bellman equation.

In this section, we will take RL one step closer to the real world and upgrade the algorithm 
to continuous states (while keeping actions discrete). This implies that we can no longer 
use a tabular solution that simply fills an array with state-action values. Instead, we will see 
how to approximate q* using a neural network (NN), which results in a deep Q-network. 
We will first discuss how deep learning integrates with RL before presenting the deep 
Q-learning algorithm, as well as various refinements that accelerate its convergence and 
make it more robust.

Continuous states also imply a more complex environment. We will demonstrate how to 
work with OpenAI Gym, a toolkit for designing and comparing RL algorithms. First, we'll 
illustrate the workflow by training a deep Q-learning agent to navigate a toy spaceship in 
the Lunar Lander environment. Then, we'll proceed to customize OpenAI Gym to design 
an environment that simulates a trading context where an agent can buy and sell a stock 
while competing against the market.
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Value function approximation with neural networks
Continuous state and/or action spaces imply an infinite number of transitions that 
make it impossible to tabulate the state-action values, as in the previous section. Rather, 
we approximate the Q function by learning a continuous, parameterized mapping from 
training samples.

Motivated by the success of NNs in other domains, which we discussed in the previous 
chapters in Part 4, deep NNs have also become popular for approximating value functions. 
However, machine learning in the RL context, where the data is generated by the 
interaction of the model with the environment using a (possibly randomized) policy, 
faces distinct challenges:

• With continuous states, the agent will fail to visit most states and thus needs to 
generalize.

• Whereas supervised learning aims to generalize from a sample of independently and 
identically distributed samples that are representative and correctly labeled, in the RL 
context, there is only one sample per time step, so learning needs to occur online.

• Furthermore, samples can be highly correlated when sequential states are similar 
and the behavior distribution over states and actions is not stationary, but rather 
changes as a result of the agent's learning.

We will look at several techniques that have been developed to address these additional 
challenges.

The Deep Q-learning algorithm and extensions
Deep Q-learning estimates the value of the available actions for a given state using a 
deep neural network. DeepMind introduced this technique in Playing Atari with Deep 
Reinforcement Learning (Mnih et al. 2013), where agents learned to play games solely from 
pixel input.

The Deep Q-learning algorithm approximates the action-value function q by learning a set 
of weights 𝜃𝜃  of a multilayered deep Q-network (DQN) that maps states to actions so that 𝑞𝑞(𝑠𝑠𝑠 𝑠𝑠𝑠 𝑠𝑠) ≈ 𝑞𝑞∗(𝑠𝑠𝑠 𝑠𝑠) .
The algorithm applies gradient descent based on a loss function that computes the squared 
difference between the DQN's estimate of the target:𝑦𝑦𝑖𝑖 = 𝔼𝔼 [𝑟𝑟 𝑟 𝑟𝑟𝑟𝑟𝑟𝑎𝑎′ 𝑄𝑄𝑄𝑄𝑄′, 𝑎𝑎′; 𝜃𝜃𝑖𝑖𝑖𝑖|𝑄𝑄, 𝑎𝑎𝑠] 

 

and its estimate of the action-value of the current state-action pair 𝑄𝑄(𝑠𝑠𝑠 𝑠𝑠𝑠 𝑠𝑠)  to learn the 
network parameters:

𝐿𝐿𝑖𝑖(𝜃𝜃𝑖𝑖) = ( 𝑦𝑦𝑖𝑖⏟Q Target− 𝑄𝑄(𝑠𝑠𝑠 𝑠𝑠𝑠 𝜃𝜃)⏟      Current Prediction⏞                TD Error )2 
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Both the target and the current estimate depend on the DQN weights, underlining the 
distinction from supervised learning where targets are fixed prior to training.

Rather than computing the full gradient, the Q-learning algorithm uses stochastic gradient 
descent (SGD) and updates the weights 𝜃𝜃𝑖𝑖  after each time step i. To explore the state-action 
space, the agent uses an ϵ -greedy policy that selects a random action with probability 𝜖𝜖  and 
follows a greedy policy that selects the action with the highest predicted q-value otherwise.

The basic DQN architecture has been refined in several directions to make the learning 
process more efficient and improve the final result; Hessel et al. (2017) combined these 
innovations in the Rainbow agent and demonstrated how each contributes to significantly 
higher performance across the Atari benchmarks. The following subsections summarize 
some of these innovations.

(Prioritized) Experience replay – focusing on past mistakes

Experience replay stores a history of the state, action, reward, and next state transitions 
experienced by the agent. It randomly samples mini-batches from this experience to update 
the network weights at each time step before the agent selects an ε-greedy action.

Experience replay increases sample efficiency, reduces the autocorrelation of samples 
collected during online learning, and limits the feedback due to current weights producing 
training samples that can lead to local minima or divergence (Lin and Mitchell 1992).

This technique was later refined to prioritize experience that is more important from a 
learning perspective. Schaul et al. (2015) approximated the value of a transition by the size of 
the TD error that captures how "surprising" the event was for the agent. In practice, it samples 
historical state transitions using their associated TD error rather than uniform probabilities.

The target network – decorrelating the learning process

To further weaken the feedback loop from the current network parameters on the NN 
weight updates, the algorithm was extended by DeepMind in Human-level control through 
deep reinforcement learning (Mnih et al. 2015) to use a slowly-changing target network.

The target network has the same architecture as the Q-network, but its weights 𝜃𝜃−  are only 
updated periodically after 𝜏𝜏  steps when they are copied from the Q-network and held 
constant otherwise. The target network generates the TD target predictions, that is, it takes 
the place of the Q-network to estimate:𝑦𝑦𝑖𝑖 = 𝔼𝔼[𝑟𝑟 𝑟 𝑟𝑟𝑟𝑟𝑟𝑎𝑎′ 𝑄𝑄𝑄𝑄𝑄′, 𝑎𝑎′; 𝜃𝜃−|𝑄𝑄, 𝑎𝑎𝑠] 
Double deep Q-learning – decoupling action and prediction

Q-learning has been shown to overestimate the action values because it purposely samples 
maximal estimated action values. 
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This bias can negatively affect the learning process and the resulting policy if it does not 
apply uniformly and alters action preferences, as shown in Deep Reinforcement Learning with 
Double Q-learning (van Hasselt, Guez, and Silver 2015).

To decouple the estimation of action values from the selection of actions, the Double DQN 
(DDQN) algorithm uses the weights 𝜃𝜃  of one network to select the best action given the 
next state, as well as the weights 𝜃𝜃′  of another network, to provide the corresponding 
action value estimate: 𝑦𝑦𝑖𝑖 = 𝔼𝔼 [𝑟𝑟 𝑟 𝑟𝑟𝑟𝑟 𝑟𝑟𝑟′, argmax𝑎𝑎′ 𝑟𝑟(𝑆𝑆𝑡𝑡𝑡𝑡, 𝑎𝑎, 𝑎𝑎𝑡𝑡); 𝑎𝑎𝑡𝑡′)] 

. 

One option is to randomly select one of two identical networks for training at each iteration 
so that their weights will differ. A more efficient alternative is to rely on the target network 
to provide 𝜃𝜃′  instead.

Introducing the OpenAI Gym
OpenAI Gym is an RL platform that provides standardized environments to test and 
benchmark RL algorithms using Python. It is also possible to extend the platform and 
register custom environments.

The Lunar Lander v2 (LL) environment requires the agent to control its motion in two 
dimensions based on a discrete action space and low-dimensional state observations that 
include position, orientation, and velocity. At each time step, the environment provides an 
observation of the new state and a positive or negative reward. Each episode consists of up 
to 1,000 time steps. Figure 22.5 shows selected frames from a successful landing after 250 
episodes by the agent we will train later:

Figure 22.5: RL agent's behavior during the Lunar Lander episode

More specifically, the agent observes eight aspects of the state, including six continuous 
and two discrete elements. Based on the observed elements, the agent knows its location, 
direction, and speed of movement and whether it has (partially) landed. However, it 
does not know in which direction it should move, nor can it observe the inner state of the 
environment to understand the rules that govern its motion.

At each time step, the agent controls its motion using one of four discrete actions. It can 
do nothing (and continue on its current path), fire its main engine (to reduce downward 
motion), or steer toward the left or right using the respective orientation engines. There are 
no fuel limitations.



Deep Reinforcement Learning – Building a Trading Agent

[ 700 ]

The goal is to land the agent between two flags on a landing pad at coordinates (0, 0), but 
landing outside of the pad is possible. The agent accumulates rewards in the range of 100-140 
for moving toward the pad, depending on the exact landing spot. However, a move away 
from the target negates the reward the agent would have gained by moving toward the pad. 
Ground contact by each leg adds 10 points, while using the main engine costs -0.3 points.

An episode terminates if the agent lands or crashes, adding or subtracting 100 points, 
respectively, or after 1,000 time steps. Solving LL requires achieving a cumulative reward 
of at least 200 on average over 100 consecutive episodes.

How to implement DDQN using TensorFlow 2
The notebook 03_lunar_lander_deep_q_learning implements a DDQN agent using 
TensorFlow 2 that learns to solve OpenAI Gym's Lunar Lander 2.0 (LL) environment. The 
notebook 03_lunar_lander_deep_q_learning contains a TensorFlow 1 implementation 
that was discussed in the first edition and runs significantly faster because it does not rely 
on eager execution and also converges sooner. This section highlights key elements of the 
implementation; please see the notebook for much more extensive details.

Creating the DDQN agent

We create our DDQNAgent as a Python class to integrate the learning and execution logic with 
the key configuration parameters and performance tracking.

The agent's __init__() method takes, as arguments, information on:

• The environment characteristics, like the number of dimensions for the state 
observations and the number of actions available to the agent.

• The decay of the randomized exploration for the ε-greedy policy.

• The neural network architecture and the parameters for training and target 
network updates.

class DDQNAgent:

    def __init__(self, state_dim, num_actions, gamma,

                 epsilon_start, epsilon_end, epsilon_decay_steps,

                 epsilon_exp_decay,replay_capacity, learning_rate,

                 architecture, l2_reg, tau, batch_size,

                 log_dir='results'):

Adapting the DDQN architecture to the Lunar Lander 

The DDQN architecture was first applied to the Atari domain with high-dimensional 
image observations and relied on convolutional layers. The LL's lower-dimensional state 
representation makes fully connected layers a better choice (see Chapter 17, Deep Learning 
for Trading).



Chapter 22

[ 701 ]

More specifically, the network maps eight inputs to four outputs, representing the Q values 
for each action, so that it only takes a single forward pass to compute the action values. The 
DQN is trained on the previous loss function using the Adam optimizer. The agent's DQN 
uses three densely connected layers with 256 units each and L2 activity regularization. Using 
a GPU via the TensorFlow Docker image can significantly speed up NN training performance 
(see Chapter 17 and Chapter 18, CNNs for Financial Time Series and Satellite Images).

The DDQNAgent class's build_model() method creates the primary online and slow-moving 
target networks based on the architecture parameter, which specifies the number of layers 
and their number of units.

We set trainable to True for the primary online network and to False for the target 
network. This is because we simply periodically copy the online NN weights to update 
the target network:

    def build_model(self, trainable=True):

        layers = []

        for i, units in enumerate(self.architecture, 1):

            layers.append(Dense(units=units,

                                input_dim=self.state_dim if i == 1 else None,

                                activation='relu',

                                kernel_regularizer=l2(self.l2_reg),

                                trainable=trainable))

        layers.append(Dense(units=self.num_actions, 

                            trainable=trainable))

        model = Sequential(layers)

        model.compile(loss='mean_squared_error',

                      optimizer=Adam(lr=self.learning_rate))

        return model

Memorizing transitions and replaying the experience

To enable experience replay, the agent memorizes each state transition so it can randomly 
sample a mini-batch during training. The memorize_transition() method receives the 
observation on the current and next state provided by the environment, as well as the 
agent's action, the reward, and a flag that indicates whether the episode is completed.

It tracks the reward history and length of each episode, applies exponential decay to 
epsilon at the end of each period, and stores the state transition information in a buffer:

    def memorize_transition(self, s, a, r, s_prime, not_done):

        if not_done:

            self.episode_reward += r

            self.episode_length += 1

        else:

            self.episodes += 1

            self.rewards_history.append(self.episode_reward)

            self.steps_per_episode.append(self.episode_length)
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            self.episode_reward, self.episode_length = 0, 0

        self.experience.append((s, a, r, s_prime, not_done))

The replay of the memorized experience begins as soon as there are enough samples to 
create a full batch. The experience_replay() method predicts the Q values for the next 
states using the online network and selects the best action. It then selects the predicted q 
values for these actions from the target network to arrive at the TD targets.

Next, it trains the primary network using a single batch of current state observations as 
input, the TD targets as the outcome, and the mean-squared error as the loss function. 
Finally, it updates the target network weights every 𝛕𝛕  steps:

    def experience_replay(self):
        if self.batch_size > len(self.experience):
            return
        # sample minibatch from experience
        minibatch = map(np.array, zip(*sample(self.experience, 
                                              self.batch_size)))
        states, actions, rewards, next_states, not_done = minibatch

        # predict next Q values to select best action
        next_q_values = self.online_network.predict_on_batch(next_states)
        best_actions = tf.argmax(next_q_values, axis=1)

        # predict the TD target
        next_q_values_target = self.target_network.predict_on_batch(
            next_states)
        target_q_values = tf.gather_nd(next_q_values_target,
                                       tf.stack((self.idx, tf.cast(
                                          best_actions, tf.int32)), axis=1))
        targets = rewards + not_done * self.gamma * target_q_values

        # predict q values
        q_values = self.online_network.predict_on_batch(states)
        q_values[[self.idx, actions]] = targets

        # train model
        loss = self.online_network.train_on_batch(x=states, y=q_values)
        self.losses.append(loss)

        if self.total_steps % self.tau == 0:
            self.update_target()

    def update_target(self):
        self.target_network.set_weights(self.online_network.get_weights())

The notebook contains additional implementation details for the ε-greedy policy and the 
target network weight updates.
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Setting up the OpenAI environment

We will begin by instantiating and extracting key parameters from the LL environment:

env = gym.make('LunarLander-v2')

state_dim = env.observation_space.shape[0]  # number of dimensions in state

num_actions = env.action_space.n  # number of actions

max_episode_steps = env.spec.max_episode_steps  # max number of steps per 
episode

env.seed(42)

We will also use the built-in wrappers that permit the periodic storing of videos that 
display the agent's performance:

from gym import wrappers

env = wrappers.Monitor(env,

                       directory=monitor_path.as_posix(),

                       video_callable=lambda count: count % video_freq == 0,

                      force=True)

When running on a server or Docker container without a display, you can use 
pyvirtualdisplay.

Key hyperparameter choices

The agent's performance is quite sensitive to several hyperparameters. We will start with 
the discount and learning rates:

gamma=.99,  # discount factor

learning_rate=1e-4  # learning rate

We will update the target network every 100 time steps, store up to 1 million past episodes 
in the replay memory, and sample mini-batches of 1,024 from memory to train the agent:

tau=100  # target network update frequency

replay_capacity=int(1e6)

batch_size = 1024

The ε-greedy policy starts with pure exploration at ε = 1 , linear decay to 0.01 over 250 
episodes, and exponential decay thereafter:

epsilon_start=1.0

epsilon_end=0.01

epsilon_linear_steps=250

epsilon_exp_decay=0.99

The notebook contains the training loop, including experience replay, SGD, and slow target 
network updates.
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Lunar Lander learning performance

The preceding hyperparameter settings enable the agent to solve the environment in 
around 300 episodes using the TensorFlow 1 implementation.

The left panel of Figure 22.6 shows the episode rewards and their moving average over 
100 periods. The right panel shows the decay of exploration and the number of steps 
per episode. There is a stretch of some 100 episodes that often take 1,000 time steps each 
while the agent reduces exploration and "learns how to fly" before starting to land fairly 
consistently:

Figure 22.6: The DDQN agent's performance in the Lunar Lander environment

Creating a simple trading agent
In this and the following sections, we will adapt the deep RL approach to design an 
agent that learns how to trade a single asset. To train the agent, we will set up a simple 
environment with a limited set of actions, a relatively low-dimensional state with 
continuous observations, and other parameters.

More specifically, the environment samples a stock price time series for a single ticker 
using a random start date to simulate a trading period that, by default, contains 252 days 
or 1 year. Each state observation provides the agent with the historical returns for various 
lags and some technical indicators, like the relative strength index (RSI).

The agent can choose from three actions:

• Buy: Invest all capital for a long position in the stock.

• Flat: Hold cash only.

• Sell short: Take a short position equal to the amount of capital.

The environment accounts for trading cost, set to 10 basis points by default, and deducts 
one basis point per period without trades. The reward of the agent consists of the daily 
return minus trading costs.

The environment tracks the net asset value (NAV) of the agent's portfolio (consisting of a 
single stock) and compares it against the market portfolio, which trades frictionless to raise 
the bar for the agent. 
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An episode begins with a starting NAV of 1 unit of cash:

• If the NAV drops to 0, the episode ends with a loss.

• If the NAV hits 2.0, the agent wins.

This setting limits complexity as it focuses on a single stock and abstracts from position 
sizing to avoid the need for continuous actions or a larger number of discrete actions, as 
well as more sophisticated bookkeeping. However, it is useful to demonstrate how to 
customize an environment and permits for extensions.

How to design a custom OpenAI trading environment
To build an agent that learns how to trade, we need to create a market environment that 
provides price and other information, offers relevant actions, and tracks the portfolio to 
reward the agent accordingly. For a description of the efforts to build a large-scale, real-
world simulation environment, see Byrd, Hybinette, and Balch (2019).

OpenAI Gym allows for the design, registration, and utilization of environments  
that adhere to its architecture, as described in the documentation. The file  
trading_env.py contains the following code examples, which illustrate the process unless 
noted otherwise.

The trading environment consists of three classes that interact to facilitate the agent's 
activities. The DataSource class loads a time series, generates a few features, and provides 
the latest observation to the agent at each time step. TradingSimulator tracks the positions, 
trades and cost, and the performance. It also implements and records the results of a buy-
and-hold benchmark strategy. TradingEnvironment itself orchestrates the process. We will 
briefly describe each in turn; see the script for implementation details.

Designing a DataSource class

First, we code up a DataSource class to load and preprocess historical stock data to create 
the information used for state observations and rewards. In this example, we will keep 
it very simple and provide the agent with historical data on a single stock. Alternatively, 
you could combine many stocks into a single time series, for example, to train the agent on 
trading the S&P 500 constituents.

We will load the adjusted price and volume information for one ticker from the Quandl 
dataset, in this case for AAPL with data from the early 1980s until 2018:

class DataSource:

    """Data source for TradingEnvironment

    Loads & preprocesses daily price & volume data

    Provides data for each new episode.

    """

    def __init__(self, trading_days=252, ticker='AAPL'):
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        self.ticker = ticker

        self.trading_days = trading_days

    def load_data(self):

        idx = pd.IndexSlice

        with pd.HDFStore('../data/assets.h5') as store:

            df = (store['quandl/wiki/prices']

                  .loc[idx[:, self.ticker],

                       ['adj_close', 'adj_volume', 'adj_low', 'adj_high']])

        df.columns = ['close', 'volume', 'low', 'high']

        return df

The preprocess_data() method creates several features and normalizes them. The most 
recent daily returns play two roles:

• An element of the observations for the current state

• The net of trading costs and, depending on the position size, the reward for the last 
period

The method takes the following steps, among others (refer to the Appendix for details on the 
technical indicators):

def preprocess_data(self):

"""calculate returns and percentiles, then removes missing values"""

   self.data['returns'] = self.data.close.pct_change()

   self.data['ret_2'] = self.data.close.pct_change(2)

   self.data['ret_5'] = self.data.close.pct_change(5)

   self.data['rsi'] = talib.STOCHRSI(self.data.close)[1]

   self.data['atr'] = talib.ATR(self.data.high, 

                                self.data.low, self.data.close)

   self.data = (self.data.replace((np.inf, -np.inf), np.nan)

                .drop(['high', 'low', 'close'], axis=1)

                .dropna())

   if self.normalize:

       self.data = pd.DataFrame(scale(self.data),

                                columns=self.data.columns,

                                index=self.data.index)

The DataSource class keeps track of episode progress, provides fresh data to 
TradingEnvironment at each time step, and signals the end of the episodes:

def take_step(self):

    """Returns data for current trading day and done signal"""

    obs = self.data.iloc[self.offset + self.step].values
    self.step += 1
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    done = self.step > self.trading_days

    return obs, done

The TradingSimulator class

The trading simulator computes the agent's reward and tracks the net asset values of the 
agent and "the market," which executes a buy-and-hold strategy with reinvestment. It also 
tracks the positions and the market return, computes trading costs, and logs the results.

The most important method of this class is the take_step method, which computes the 
agent's reward based on its current position, the latest stock return, and the trading costs 
(slightly simplified; see the script for full details):

def take_step(self, action, market_return):

    """ Calculates NAVs, trading costs and reward

        based on an action and latest market return

        returns the reward and an activity summary"""

    start_position = self.positions[max(0, self.step - 1)]

    start_nav = self.navs[max(0, self.step - 1)]

    start_market_nav = self.market_navs[max(0, self.step - 1)]

    self.market_returns[self.step] = market_return

    self.actions[self.step] = action

    end_position = action - 1 # short, neutral, long

    n_trades = end_position – start_position

    self.positions[self.step] = end_position

    self.trades[self.step] = n_trades

    time_cost = 0 if n_trades else self.time_cost_bps

    self.costs[self.step] = abs(n_trades) * self.trading_cost_bps + time_cost

    if self.step > 0:

        reward = start_position * market_return - self.costs[self.step-1]

        self.strategy_returns[self.step] = reward

        self.navs[self.step] = start_nav * (1 + 

                                            self.strategy_returns[self.step])

        self.market_navs[self.step] = start_market_nav * (1 + 

                                            self.market_returns[self.step])

    self.step += 1

    return reward
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The TradingEnvironment class

The TradingEnvironment class subclasses gym.Env and drives the environment dynamics. 
It instantiates the DataSource and TradingSimulator objects and sets the action and state-
space dimensionality, with the latter depending on the ranges of the features defined by 
DataSource:

class TradingEnvironment(gym.Env):

    """A simple trading environment for reinforcement learning.

    Provides daily observations for a stock price series

    An episode is defined as a sequence of 252 trading days with random start
    Each day is a 'step' that allows the agent to choose one of three 
actions.

    """

    def __init__(self, trading_days=252, trading_cost_bps=1e-3,

                 time_cost_bps=1e-4, ticker='AAPL'):

        self.data_source = DataSource(trading_days=self.trading_days,

                                      ticker=ticker)

        self.simulator = TradingSimulator(

                steps=self.trading_days,

                trading_cost_bps=self.trading_cost_bps,

                time_cost_bps=self.time_cost_bps)

        self.action_space = spaces.Discrete(3)

        self.observation_space = spaces.Box(self.data_source.min_values,

                                            self.data_source.max_values)

The two key methods of TradingEnvironment are .reset() and .step(). The former 
initializes the DataSource and TradingSimulator instances, as follows:

def reset(self):

    """Resets DataSource and TradingSimulator; returns first observation"""
    self.data_source.reset()

    self.simulator.reset()

    return self.data_source.take_step()[0]

Each time step relies on DataSource and TradingSimulator to provide a state observation 
and reward the most recent action:

def step(self, action):

    """Returns state observation, reward, done and info"""

    assert self.action_space.contains(action), 

      '{} {} invalid'.format(action, type(action))

    observation, done = self.data_source.take_step()

    reward, info = self.simulator.take_step(action=action,

                                            market_return=observation[0])
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    return observation, reward, done, info

Registering and parameterizing the custom environment

Before using the custom environment, just as for the Lunar Lander environment, we need 
to register it with the gym package, provide information about the entry_point in terms of 
module and class, and define the maximum number of steps per episode (the following 
steps occur in the q_learning_for_trading notebook):

from gym.envs.registration import register

register(

        id='trading-v0',

        entry_point='trading_env:TradingEnvironment',

        max_episode_steps=252)

We can instantiate the environment using the desired trading costs and ticker:

trading_environment = gym.make('trading-v0')

trading_environment.env.trading_cost_bps = 1e-3

trading_environment.env.time_cost_bps = 1e-4

trading_environment.env.ticker = 'AAPL'

trading_environment.seed(42)

Deep Q-learning on the stock market
The notebook q_learning_for_trading contains the DDQN agent training code; we will 
only highlight noteworthy differences from the previous example.

Adapting and training the DDQN agent

We will use the same DDQN agent but simplify the NN architecture to two layers of 64 
units each and add dropout for regularization. The online network has 5,059 trainable 
parameters:

Layer (type)                 Output Shape              Param #   

Dense_1 (Dense)              (None, 64)                704       

Dense_2 (Dense)              (None, 64)                4160      

dropout (Dropout)            (None, 64)                0         

Output (Dense)               (None, 3)                 195       

Total params: 5,059

Trainable params: 5,059

The training loop interacts with the custom environment in a manner very similar to the 
Lunar Lander case. While the episode is active, the agent takes the action recommended by 
its current policy and trains the online network using experience replay after memorizing 
the current transition. The following code highlights the key steps:

for episode in range(1, max_episodes + 1):
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    this_state = trading_environment.reset()

    for episode_step in range(max_episode_steps):

        action = ddqn.epsilon_greedy_policy(this_state.reshape(-1, 

                                                               state_dim))

        next_state, reward, done, _ = trading_environment.step(action)

    

        ddqn.memorize_transition(this_state, action,

                                 reward, next_state,

                                 0.0 if done else 1.0)

        ddqn.experience_replay()

        if done:

            break

        this_state = next_state

trading_environment.close()

We let exploration continue for 2,000 1-year trading episodes, corresponding to about 
500,000 time steps; we use linear decay of ε from 1.0 to 0.1 over 500 periods with 
exponential decay at a factor of 0.995 thereafter.

Benchmarking DDQN agent performance

To compare the DDQN agent's performance, we not only track the buy-and-hold strategy 
but also generate the performance of a random agent. 

Figure 22.7 shows the rolling averages over the last 100 episodes of three cumulative return 
values for the 2,000 training periods (left panel), as well as the share of the last 100 episodes 
when the agent outperformed the buy-and-hold period (right panel). It uses AAPL stock 
data, for which there are some 9,000 daily price and volume observations:

Figure 22.7: Trading agent performance relative to the market

This shows how the agent's performance improves steadily after 500 episodes, from the 
level of a random agent, and starts to outperform the buy-and-hold strategy toward the end 
of the experiment more than half of the time.
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Lessons learned
This relatively simple agent uses no information beyond the latest market data and the 
reward signal compared to the machine learning models we covered elsewhere in this 
book. Nonetheless, it learns to make a profit and achieve performance similar to that of the 
market (after training on 2,000 years' worth of data, which takes only a fraction of the time 
on a GPU).

Keep in mind that using a single stock also increases the risk of overfitting to the data—by 
a lot. You can test your trained agent on new data using the saved model (see the notebook 
for Lunar Lander).

In summary, we have demonstrated the mechanics of setting up an RL trading 
environment and experimented with a basic agent that uses a small number of technical 
indicators. You should try to extend both the environment and the agent, for example, to 
choose from several assets, size the positions, and manage risks.

Reinforcement learning is often considered the most promising approach to algorithmic 
trading because it most accurately models the task an investor is facing. However, our 
dramatically simplified examples illustrate that creating a realistic environment poses 
a considerable challenge. Moreover, deep reinforcement learning that has achieved 
impressive breakthroughs in other domains may face greater obstacles given the noisy 
nature of financial data, which makes it even harder to learn a value function based on 
delayed rewards. 

Nonetheless, the substantial interest in this subject makes it likely that institutional 
investors are working on larger-scale experiments that may yield tangible results. 
An interesting complementary approach beyond the scope of this book is Inverse 
Reinforcement Learning, which aims to identify the reward function of an agent 
(for example, a human trader) given its observed behavior; see Arora and Doshi (2019) 
for a survey and Roa-Vicens et al. (2019) for an application on trading in the limit-order 
book context.

Summary
In this chapter, we introduced a different class of machine learning problems that focus 
on automating decisions by agents that interact with an environment. We covered the key 
features required to define an RL problem and various solution methods.

We saw how to frame and analyze an RL problem as a finite Markov decision problem, as 
well as how to compute a solution using value and policy iteration. We then moved on to 
more realistic situations, where the transition probabilities and rewards are unknown to 
the agent, and saw how Q-learning builds on the key recursive relationship defined by the 
Bellman optimality equation in the MDP case. We saw how to solve RL problems using 
Python for simple MDPs and more complex environments with Q-learning. 



Deep Reinforcement Learning – Building a Trading Agent

[ 712 ]

We then expanded our scope to continuous states and applied the Deep Q-learning 
algorithm to the more complex Lunar Lander environment. Finally, we designed a simple 
trading environment using the OpenAI Gym platform, and also demonstrated how to train 
an agent to learn how to make a profit while trading a single stock.

In the next and final chapter, we'll present a few conclusions and key takeaways from 
our journey through this book and lay out some steps for you to consider as you continue 
building your skills to use machine learning for trading.
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23
Conclusions and Next Steps

Our goal for this book was to enable you to apply machine learning (ML) to a variety of 
data sources and extract signals that add value to a trading strategy. To this end, we took 
a more comprehensive view of the investment process, from idea generation to strategy 
evaluation, and introduced ML as an important element of this process in the form of the 
ML4T workflow.

While demonstrating the use of a broad range of ML algorithms, from the fundamental to 
the advanced, we saw how ML can add value at multiple steps in the process of designing, 
testing, and executing a strategy. For the most part, however, we focused on the core ML 
value proposition, which consists of the ability to extract actionable information from much 
larger amounts of data more systematically than human experts would ever be able to.

This value proposition has really gained currency with the explosion of digital data that 
made it both more promising and necessary to leverage computing power to extract value 
from ever more diverse sets of information. However, the application of ML still requires 
significant human intervention and domain expertise to define objectives, select and curate 
data, design and optimize a model, and make appropriate use of the results.

Domain-specific aspects of using ML for trading include the nature of financial data and 
the environment of financial markets. The use of powerful models with a high capacity to 
learn patterns requires particular care to avoid overfitting when the signal-to-noise ratio 
is as low as is often the case with financial data. Furthermore, the competitive nature of 
trading implies that patterns evolve quickly as signals decay, requiring additional attention 
to performance monitoring and model maintenance.

In this concluding chapter, we will briefly summarize the key tools, applications, and 
lessons learned throughout the book to avoid losing sight of the big picture after so much 
detail. We will then identify areas that we did not cover but would be worthwhile to focus 
on as you expand on the many ML techniques we introduced and become productive in 
their daily use.



Conclusions and Next Steps

[ 714 ]

In sum, in this chapter, we will:

• Review key takeaways and lessons learned

• Point out the next steps to build on the techniques in this book

• Suggest ways to incorporate ML into your investment process

Key takeaways and lessons learned
A central goal of the book was to demonstrate the workflow of extracting signals from data 
using ML to inform a trading strategy. Figure 23.1 outlines this ML-for-trading workflow. The 
key takeaways summarized in this section relate to specific challenges we encounter when 
building sophisticated predictive models for large datasets in the context of financial markets:

Figure 23.1: Key elements of using ML for trading

Important insights to keep in mind as you proceed to the practice of ML for trading include 
the following:

• Data is the single most important ingredient that requires careful sourcing 
and handling.

• Domain expertise is key to realizing the value contained in data and avoiding some 
of the pitfalls of using ML.

• ML offers tools that you can adapt and combine to create solutions for your use case.
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• The choices of model objectives and performance diagnostics are key to 
productive iterations toward an optimal system.

• Backtest overfitting is a huge challenge that requires significant attention.
• Transparency of black-box models can help build confidence and facilitate the 

adoption of ML by skeptics.

We will elaborate a bit more on each of these ideas.

Data is the single most important ingredient
The rise of ML in trading and everywhere else largely complements the data explosion 
that we covered in great detail. We illustrated in Chapter 2, Market and Fundamental Data 
– Sources and Techniques, how to access and work with these data sources, historically the 
mainstay of quantitative investment. In Chapter 3, Alternative Data for Finance – Categories 
and Use Cases, we laid out a framework with criteria to assess the potential value of 
alternative datasets.

A key insight is that state-of-the-art ML techniques like deep neural networks are successful 
because their predictive performance continues to improve with more data. On the flip side, 
model and data complexity need to match to balance the bias-variance trade-off, which 
becomes more challenging the higher the noise-to-signal ratio of the data is. Managing data 
quality and integrating datasets are key steps in realizing the potential value.

The new oil? Quality control for raw and intermediate data

Just like oil, a popular comparison these days, data passes through a pipeline with several 
stages from its raw form to a refined product that can fuel a trading strategy. Careful 
attention to the quality of the final product is critical to getting the desired mileage out of it.

Sometimes, you get data in its raw form and control the numerous transformations 
required for your purposes. More often, you deal with an intermediate product and should 
get clarity about what exactly the data measures at this point.

Different from oil, there is often no objective quality standard as data sources continue to 
proliferate. Instead, the quality depends on its signal content, which in turn depends on your 
investment objectives. The cost-effective evaluation of new datasets requires a productive 
workflow, including appropriate infrastructure that we will address later in this chapter.

Data integration – the whole exceeds the sum of its parts

The value of data for an investment strategy often depends on combining complementary 
sources of market, fundamental, and alternative data. We saw that the predictive power of 
ML algorithms, like tree-based ensembles or neural networks, is in part due to their ability 
to detect nonlinear relationships, in particular interaction effects among variables.
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The ability to modulate the impact of a variable as a function of other model features 
thrives on data inputs that capture different aspects of a target outcome. The combination 
of asset prices with macro fundamentals, social sentiment, credit card payment, and 
satellite data will likely yield significantly more reliable predictions throughout different 
economic and market regimes than each source on its own (provided the amount of data is 
large enough to learn the hidden relationships).

Working with data from multiple sources increases the challenges of proper labeling. It is 
vital to assign accurate timestamps that accurately reflect historical publication. Otherwise, 
we introduce lookahead bias by testing an algorithm with data before it actually becomes 
available. For example, third-party data may have timestamps that require adjustments to 
reflect the point in time when the information would have been available for a live algorithm.

Domain expertise – telling the signal from the noise
We emphasized that informative data is a necessary condition for successful ML 
applications. However, domain expertise is equally essential to define the strategic 
direction, select relevant data, engineer informative features, and design robust models.

In any domain, practitioners have theories about the drivers of key outcomes and 
relationships among them. Finance is characterized by a large amount of available 
quantitative research, both theoretical and empirical. However, Marcos López de Prado 
and others (Cochrane 2011) criticize most empirical results: claims of predictive signals 
found in hundreds of variables are often based on pervasive data mining and are not robust 
to changes in the experimental setup. In other words, statistical significance often results 
from large-scale trial-and-error rather than a true systematic relationship, along the lines of 
"if you torture the data long enough, it will confess."

On the one hand, there exists a robust understanding of how financial markets work. This 
should inform the selection and use of data as well as the justification of strategies that 
rely on ML. An important reason is to prioritize ideas that are more likely to be successful 
and avoid the multiple testing trap that leads to unreliable results. We outlined key ideas 
in Chapter 4, Financial Feature Engineering – How to Research Alpha Factors, and Chapter 5, 
Portfolio Optimization and Performance Evaluation.

On the other hand, novel ML techniques will likely uncover new hypotheses about drivers 
of financial outcomes that will inform theory and should then be independently tested.

More than the raw data, feature engineering is often the key to making signals useful for an 
algorithm. Leveraging decades of research into risk factors that drive returns on theoretical 
and empirical grounds is a good starting point to prioritize data transformations that are 
more likely to reflect relevant information.

However, only creative feature engineering will lead to innovative strategies that can 
compete in the market over time. Even for new alpha factors, a compelling narrative that 
explains how they work given established ideas on market dynamics and investor behavior 
will provide more confidence to allocate capital.
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The risks of false discoveries and overfitting to historical data make it even more necessary 
to prioritize strategies prior to testing rather than "letting the data speak." We covered how 
to deflate the Sharpe ratio in Chapter 7, Linear Models – From Risk Factors to Return Forecasts, 
to account for the number of experiments.

ML is a toolkit for solving problems with data
ML offers algorithmic solutions and techniques that can be applied to many use cases.  
Parts 2, 3, and 4 of this book have presented ML as a diverse set of tools that can add value 
to various steps of the strategy process, including:

• Idea generation and alpha factor research

• Signal aggregation and portfolio optimization

• Strategy testing

• Trade execution

• Strategy evaluation

Moreover, ML algorithms are designed to be further developed, adapted, and combined to 
solve new problems in different contexts. For these reasons, it is important to understand 
key concepts and ideas underlying these algorithms, in addition to being able to apply 
them to data for productive experimentation and research as outlined in Chapter 6, The 
Machine Learning Process, and summarized in Figure 23.2:

Figure 23.2: The ML workflow

Furthermore, the best results are often achieved by human-in-the-loop solutions that 
combine humans with ML tools. In Chapter 1, Machine Learning for  
Trading – From Idea to Execution, we covered the quantamental investment style where 
discretionary and algorithmic trading converge. This approach will likely further grow in 
importance and depends on the flexible and creative application of the fundamental tools 
that we covered and their extensions to a variety of datasets.

Model diagnostics help speed up optimization

In Chapter 6, The Machine Learning Process, we outlined the most important ML-specific 
concepts. ML algorithms learn relationships between input data and a target by making 
assumptions about the functional form. If the learning is based on noise rather than signal, 
predictive performance will suffer.
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Of course, we do not know today how to separate signal and noise from the perspective 
of tomorrow's outcomes. Careful cross-validation that avoids lookahead bias and robust 
model diagnostics, such as learning curves and the optimization verification test, can 
help alleviate this fundamental challenge and calibrate the choice or configuration of an 
algorithm. This task can be made easier by defining focused model objectives and, for 
complex models, distinguishing between performance shortcomings due to issues with the 
optimization algorithm and those with the objective itself.

Making do without a free lunch

No system, whether a computer program or a human, can reliably predict outcomes 
for new examples beyond those it has observed during training. The only way out is to 
have some additional prior knowledge or make assumptions that go beyond the training 
examples. We covered a broad range of algorithms from linear models in Chapter 7, Linear 
Models – From Risk Factors to Return Forecasts, to nonlinear ensembles in Chapter 11, Random 
Forests – A Long-Short Strategy for Japanese Stocks, and Chapter 12, Boosting Your Trading 
Strategy, as well as neural networks in various chapters of Part 4 of this book.

We saw that a linear model makes the strong assumption that the relationship between 
inputs and outputs has a very simple form, whereas nonlinear models like gradient 
boosting or neural networks aim to learn more complex functions. While it's probably 
obvious that a simple model will fail in most circumstances, a complex model is not always 
better. If the true relationship is linear but the data is noisy, the complex model will learn 
the noise as part of the complex relationship that it assumes to exist. This is the basic idea 
behind the "no free lunch" theorem, which states that no algorithm is universally superior 
for all tasks. Good fit in some instances comes at the cost of poor performance elsewhere.

The key tools to tailor the choice of the algorithm to the data are data exploration and 
experiments based on an understanding of the assumptions the model makes.

Managing the bias-variance trade-off
A key challenge in adapting an algorithm to data is the trade-off between bias and variance, 
which both increase prediction errors beyond the natural noisiness of the data. A simple 
model that does not adequately capture the relationships in the data will underfit and exhibit 
bias, that is, make systematically wrong predictions. A model that is too complex will overfit 
and learn the noise in addition to any signal so that the result will show a lot of variance for 
different samples.

The key tool to diagnose this trade-off at any given iteration of the model selection and 
optimization process is the learning curve. It shows how training and validation errors 
depend on the sample size. This allows us to decide between different options to improve 
performance: adjust the complexity of the model or get more data points.

The closer the training error is to human performance or another benchmark, the more 
likely the model will overfit. A low validation error tells us that we are lucky and found 
a good model. If the validation error is high, we are not. If it continues to decline with 
the training size, however, more data may help. If the training error is high, more data is 
unlikely to help, and we should instead add features or use a more flexible algorithm.
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Defining targeted model objectives
One of the first steps in the ML process is the definition of an objective for the algorithm 
to optimize. Sometimes, the choice is simple, such as in a regression problem. A 
classification task can be more difficult, for example, when we care about precision and 
recall. Consolidating conflicting objectives into a single metric like the F1 score helps to 
focus optimization efforts. We can also include conditions that need to be met rather than 
optimized for. We also saw that reinforcement learning is all about defining the right 
reward function to guide the agent's learning process.

The optimization verification test
Andrew Ng emphasizes the distinction between performance shortcomings due to a 
problem with the learning algorithm or the optimization algorithm. Complex models like 
neural networks assume nonlinear relationships, and the search process of the optimization 
algorithm may end up in a local rather than a global optimum.

If a model fails to correctly translate a phrase, for example, the test compares the scores for 
the correct prediction and the solution discovered by the search algorithm. If the learning 
algorithm scores the correct solution higher, the search algorithm requires improvements. 
Otherwise, the learning algorithm is optimizing for the wrong objective.

Beware of backtest overfitting
We covered the risks of false discoveries due to overfitting to historical data repeatedly 
throughout the book. Chapter 5, Portfolio Optimization and Performance Evaluation, on 
strategy evaluation, lays out the main drivers and potential remedies. The low noise-to-
signal ratio and relatively small datasets (compared to web-scale image or text data) make 
this challenge particularly serious in the trading domain. Awareness is critical since the 
ease of access to data and tools to apply ML increases the risks significantly.

There are no easy answers because the risks are inevitable. However, we presented 
methods to adjust backtest metrics to account for repeated trials, such as the deflated 
Sharpe ratio. When working toward a live trading strategy, staged paper-trading and 
closely monitored performance during execution in the market need to be part of the 
implementation process.

How to gain insights from black-box models
Deep neural networks and complex ensembles can raise suspicion when they are 
considered impenetrable black-box models, particularly in light of the risks of backtest 
overfitting. We introduced several methods to gain insights into how these models make 
predictions in Chapter 12, Boosting Your Trading Strategy.
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In addition to conventional measures of feature importance, the recent game-theoretic 
innovation of SHapley Additive exPlanations (SHAP) is a significant step toward 
understanding the mechanics of complex models. SHAP values allow the exact attribution 
of features and their values to predictions so that it becomes easier to validate the logic of a 
model in the light of specific theories about market behavior for a given investment target. 
Besides justification, exact feature importance scores and attribution of predictions allow 
deeper insights into the drivers of the investment outcome of interest.

On the other hand, there is some controversy over how important transparency around 
model predictions should be. Geoffrey Hinton, one of the inventors of deep learning, 
argues that the reasons for human decisions are often obscure. Perhaps machines should be 
evaluated by their results, just as we do with investment managers.

ML for trading in practice
As you proceed to integrate the numerous tools and techniques into your investment and 
trading process, there are numerous things you can focus your efforts on. If your goal is 
to make better decisions, you should select projects that are realistic yet ambitious given 
your current skill set. This will help you to develop an efficient workflow underpinned by 
productive tools and gain practical experience.

We will briefly list some of the tools that are useful to expand on the Python ecosystem 
covered in this book. They include big data technologies that will eventually be necessary 
to implement ML-driven trading strategies at scale. We will also list some of the platforms 
that allow you to implement trading strategies using Python, possibly with access to data 
sources, and ML algorithms and libraries. Finally, we will point out good practices for 
adopting ML as an organization.

Data management technologies
The central role of data in the ML4T process requires familiarity with a range of 
technologies to store, transform, and analyze data at scale, including the use of cloud-based 
services like Amazon Web Services, Microsoft Azure, and Google Cloud.

Database systems

Data storage implies the use of databases. Historically, these have typically been relational 
database management systems (RDBMSes) that use SQL to store and retrieve data in a 
well-defined table format. These have included databases from commercial providers like 
Oracle and Microsoft and open-source implementations like PostgreSQL and MySQL. More 
recently, non-relational alternatives have emerged that are often collectively labeled NoSQL 
but are quite diverse, namely:

• Key-value storage: Fast read/write access to objects. We covered the HDF5 format 
in Chapter 2, Market and Fundamental Data – Sources and Techniques, which facilitates 
fast access to a pandas DataFrame.
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• Columnar storage: Capitalizes on the homogeneity of data in a column to facilitate 
compression and faster column-based operations like aggregation. This is used 
in the popular Amazon Redshift data warehouse solution, Apache Parquet, 
Cassandra, and Google's Big Table.

• Document store: Designed to store data that defies the rigid schema definition 
required by an RDBMS. This has been popularized by web applications that 
use JSON or XML format, which we encountered in Chapter 4, Financial Feature 
Engineering – How to Research Alpha Factors. It is used, for example, in MongoDB.

• Graph database: Designed to store networks that have nodes and edges and 
specializes in queries about network metrics and relationships. It is used in Neo4J 
and Apache Giraph.

There has been some convergence toward the conventions established by the relational 
database systems. The Python ecosystem facilitates the interaction with many standard data 
sources and provides the fast HDF5 and Parquet formats, as demonstrated throughout the 
book.

Big data technologies – from Hadoop to Spark

Data management at scale for hundreds of gigabytes and beyond requires the use of multiple 
machines that form a cluster to conduct read, write, and compute operations in parallel. 
In other words, you need a distributed system that operates on multiple machines in an 
integrated way.

The Hadoop ecosystem has emerged as an open-source software framework for distributed 
storage and processing of big data using the MapReduce programming model developed 
by Google. The ecosystem has diversified under the roof of the Apache Foundation and 
today includes numerous projects that cover different aspects of data management at scale.

Key tools within Hadoop include:

• Apache Pig: A data processing language, developed at Yahoo, for implementing 
large-scale extract-transform-load (ETL) pipelines using MapReduce.

• Apache Hive: The de facto standard for interactive SQL queries over petabytes of 
data. It was developed at Facebook.

• Apache HBASE: A NoSQL database for real-time read/write access that scales 
linearly to billions of rows and millions of columns. It can combine data sources 
using a variety of different schemas.

Apache Spark has become the most popular platform for interactive analytics on a cluster. 
The MapReduce framework allowed parallel computation but required repeated read/
write operations from disk to ensure data redundancy. Spark has dramatically accelerated 
computation at scale due to the resilient distributed data (RDD) structure, which allows 
highly optimized in-memory computation. This includes iterative computation as required 
for optimization, for example, gradient descent for numerous ML algorithms. Fortunately, 
the Spark DataFrame interface has been designed with pandas in mind so that your skills 
transfer relatively smoothly.
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ML tools
We covered many libraries of the Python ecosystem in this book. Python has evolved to 
become the language of choice for data science and ML. The set of open-source libraries 
continues to both diversify and mature, and is built on the robust core of scientific 
computing libraries NumPy and SciPy.

The popular pandas library has contributed significantly to popularizing the use of Python 
for data science and has matured with its 1.0 release in January 2020. The scikit-learn 
interface has become the standard for modern, specialized ML libraries like XGBoost or 
LightGBM that often interface with the workflow automation tools like GridSearchCV and 
Pipeline that we have used repeatedly throughout the book.

There are several providers that aim to facilitate the ML workflow:

• H2O.ai offers the H2O platform, which integrates cloud computing with ML 
automation. It allows users to fit thousands of potential models to their data to 
explore patterns in the data. It has interfaces in Python as well as R and Java.

• Datarobot aims to automate the model development process by providing a 
platform to rapidly build and deploy predictive models in the cloud or on-premises.

• Dataiku is a collaborative data science platform designed to help analysts and 
engineers explore, prototype, build, and deliver their own data products.

There are also several open-source initiatives led by companies that build on and expand 
the Python ecosystem:

• The quantitative hedge fund TwoSigma contributes quantitative analysis tools to 
the Jupyter Notebook environment under the BeakerX project.

• Bloomberg has integrated the Jupyter Notebook into its terminal to facilitate the 
interactive analysis of its financial data.

Online trading platforms
The main options to develop trading strategies that use ML are online platforms, which 
often look for and allocate capital to successful trading strategies. Popular solutions include 
Quantopian, Quantconnect, and QuantRocket. The more recent Alpha Trading Labs focuses 
on high-frequency trading. In addition, Interactive Brokers (IB) offers a Python API that 
you can use to develop your own trading solution.

Quantopian

We introduced the Quantopian platform and demonstrated the use of its research 
and trading environment to analyze and test trading strategies against historical data. 
Quantopian uses Python and offers a lot of educational material.
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Quantopian hosts competitions to recruit algorithms for its crowd-sourced hedge fund 
portfolio. It provides capital to the winning algorithm. Live trading was discontinued in 
September 2017, but the platform still provides a large range of historical data and attracts 
an active community of developers and traders. It is a good starting point to discuss ideas 
and learn from others.

QuantConnect

QuantConnect is another open-source, community-driven algorithmic trading platform that 
competes with Quantopian. It also provides an IDE to backtest and live trade algorithmic 
strategies using Python and other languages.

QuantConnect also has a dynamic, global community from all over the world, and provides 
access to numerous asset classes, including equities, futures, FOREX, and cryptocurrency. It 
offers live trading integration with various brokers, such as IB, OANDA, and GDAX.

QuantRocket

QuantRocket is a Python-based platform for researching, backtesting, and running 
automated quantitative trading strategies. It provides data collection tools, multiple data 
vendors, a research environment, multiple backtest engines, and live and paper trading 
through IB. It prides itself on support for international equity trading and sets itself apart 
with its flexibility (but Quantopian is working toward this as well).

QuantRocket supports multiple engines — its own Moonshot, as well as third-party engines 
as chosen by the user. While QuantRocket doesn't have a traditional IDE, it is integrated 
well with Jupyter to produce something similar. QuantRocket offers a free version with 
access to sample data, but access to a wider set of capabilities starts at $29 per month at the 
time of writing in early 2020.

Conclusion
We started by highlighting the explosion of digital data and the emergence of ML as a 
strategic capability for investment and trading strategies. This dynamic reflects global 
business and technology trends beyond finance and is much more likely to continue than 
to stall or reverse. Many investment firms are just getting started to leverage the range of 
artificial intelligence tools, just as individuals are acquiring the relevant skills and business 
processes are adapting to these new opportunities for value creation, as outlined in the 
introductory chapter.

There are also numerous exciting developments for the application of ML to trading on 
the horizon that are likely to propel the current momentum. They are likely to become 
relevant in the coming years and include the automation of the ML process, the generation 
of synthetic training data, and the emergence of quantum computing. The extraordinary 
vibrancy of the field implies that this alone could fill a book and the journey will continue 
to remain exciting.
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Alpha Factor Library

Throughout this book, we've described how to engineer features from market, 
fundamental, and alternative data to build machine learning (ML) models that yield 
signals for a trading strategy. The smart design of features, including appropriate 
preprocessing and denoising, is what typically leads to an effective strategy. This appendix 
synthesizes some of the lessons learned on feature engineering and provides additional 
information on this important topic.

Chapter 4, Financial Feature Engineering – How to Research Alpha Factors, summarized the 
long-standing efforts of academics and practitioners to identify information or variables 
that help reliably predict asset returns. This research led from the single-factor capital asset 
pricing model to a "zoo of new factors" (Cochrane, 2011). This factor zoo contains hundreds 
of firm characteristics and security price metrics presented as statistically significant 
predictors of equity returns in the anomalies literature since 1970 (see a summary in Green, 
Hand, and Zhang, 2017). 

Chapter 4, Financial Feature Engineering – How to Research Alpha Factors, categorized factors 
by the underlying risk they represent and for which an investor would earn a reward above 
and beyond the market return. These categories include value versus growth, quality, and 
sentiment, as well as volatility, momentum, and liquidity. Throughout this book, we used 
numerous metrics to capture these risk factors. This appendix expands on those examples 
and collects popular indicators so you can use it as a reference or inspiration for your own 
strategy development. It also shows you how to compute them and includes some steps to 
evaluate these indicators. 

To this end, we'll focus on the broad range of indicators implemented by TA-Lib (see 
Chapter 4, Financial Feature Engineering – How to Research Alpha Factors) and the 101 
Formulaic Alphas paper (Kakushadze 2016), which presents real-life quantitative trading 
factors used in production with an average holding period of 0.6-6.4 days. To facilitate 
replication, we'll limit this review to indicators that rely on readily available market data. 
This restriction notwithstanding, the vast and rapidly evolving scope of potentially useful 
data sources and features implies that this overview is far from comprehensive.

Throughout this chapter, we will use P
t
 for the closing price and V

t
 for the trading volume 

of an asset at time t. Where necessary, superscripts like 𝑃𝑃𝑡𝑡high  or 𝑃𝑃𝑡𝑡H  differentiate between 
open, high, low, or close prices. r

t
 denotes the simple return for the period return at time t.𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = {𝑝𝑝𝑡𝑡𝑡𝑡𝑡 𝑡 𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 … 𝑡 𝑝𝑝𝑡𝑡}  and 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = {𝑟𝑟𝑡𝑡𝑡𝑡𝑡 𝑡 𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 … 𝑡 𝑟𝑟𝑡𝑡}  refer to a time series of prices 

and returns, respectively, from t-d to t.
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Common alpha factors implemented in TA-Lib
The TA-Lib library is widely used to perform technical analysis of financial market data by 
trading software developers. It includes over 150 popular indicators from multiple categories 
that range from overlap studies, including moving averages and Bollinger Bands, to statistic 
functions such as linear regression. The following table summarizes the main categories:

Function Group # Indicators

Overlap Studies 17

Momentum Indicators 30

Volume Indicators 3

Volatility Indicators 3

Price Transform 4

Cycle Indicators 5

Math Operators 11

Math Transform 15

Statistic Functions 9

There are also over 60 functions that aim to recognize candlestick patterns popular with 
traders that rely on the visual inspection of charts. Given the mixed evidence on their 
predictive ability (Horton 2009; Marshall, Young, and Rose 2006), and the goal of learning 
such patterns from data using the ML algorithms covered in this book, we will focus on 
the categories listed in the preceding table. Specifically, we will focus on moving averages, 
overlap studies, momentum, volume and liquidity, volatility, and fundamental risk factors 
in this section.

See the notebook common_alpha_factors for the code examples in this section and 
additional implementation details regarding TA-Lib indicators. We'll demonstrate how to 
compute selected indicators for an individual stock, as well as a sample of the 500 most-
traded US stocks over the 2007-2016 period (see the notebook sample_selection for the 
preparation of this larger dataset).

A key building block – moving averages
Numerous indicators allow for calculation using different types of moving averages (MAs). 
They make different tradeoffs between smoothing a series and reacting to new developments. 
You can use them as building blocks for your own indicators or modify the behavior of 
existing indicators by altering the type of MA used in its construction, as we'll demonstrate in 
the next section. The following table lists the available types of MAs, the TA-Lib function to 
compute them, and the code you can pass to other indicators to select the given type:

Moving Average Function Code

Simple SMA 0

Exponential EMA 1

Weighted WMA 2
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Double Exponential DEMA 3

Triple Exponential TEMA 4

Triangular TRIMA 5

Kaufman Adaptive KAMA 6

MESA Adaptive MAMA 7

In the remainder of this section, we'll briefly outline their definitions and visualize their 
different behavior.

Simple moving average 

For price series P
t
 with a window of length N, the simple moving average (SMA) at time t 

weighs each data point within the window equally:SMA(𝑁𝑁𝑁𝑡𝑡 = 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑃𝑃𝑡𝑡𝑁𝑁 = 1𝑁𝑁∑𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑡𝑡𝑖𝑡  

Exponential moving average

For price series P
t
 with a window of length N, the exponential moving average (EMA) at 

time t, EMA
t
, is recursively defined as the weighted average of the current price and the 

most recent previous EMA
t-1

, where the weights 𝛼𝛼  and 1 − 𝛼𝛼  are defined as follows:EMA(𝑁𝑁𝑁𝑡𝑡 = 𝛼𝛼𝛼𝛼𝑡𝑡 + (1 − 𝛼𝛼𝑁EMA(𝑁𝑁𝑁𝑡𝑡𝑡𝑡 𝛼𝛼 𝛼 2𝑁𝑁 𝑁 𝑁 

Weighted moving average

For price series P
t
 with a window of length N, the weighted moving average (WMA) at 

time t is computed such that the weight of each data point corresponds to its index within 
the window: WMA(𝑁𝑁𝑁𝑡𝑡 = 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 2𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 3𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡 +𝑁𝑁𝑃𝑃𝑡𝑡𝑁𝑁(𝑁𝑁 + 𝑁𝑁𝑁2  

Double exponential moving average

The double exponential moving average (DEMA) for a price series P
t
 at time t, DEMA

t
, 

is based on the EMA designed to react faster to changes in price. It is computed as the 
difference between twice the current EMA and the EMA applied to the current EMA, 
labeled EMA2(𝑁𝑁)𝑡𝑡 : DEMA(𝑁𝑁𝑁𝑡𝑡 = 2 × EMA(𝑁𝑁𝑁𝑡𝑡 − EMA2(𝑁𝑁𝑁𝑡𝑡 
Since the calculation uses EMA

2
, DEMA needs 2 × 𝑁𝑁 𝑁 𝑁  samples to start producing values.
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Triple exponential moving average

The triple exponential moving average (TEMA) for a price series P
t
 at time t, TEMA

t
, is 

also based on the EMA, yet designed to react even faster to changes in price and indicate 
short-term price direction. It is computed as the difference between three times the 
difference between the current EMA and the EMA applied to the current EMA, EMA

2
, 

with the addition of the EMA applied to the EMA
2
, labeled EMA

3
:TEMA(𝑁𝑁𝑁𝑡𝑡 = 3 × [EMA(𝑁𝑁𝑁𝑡𝑡 − EMA2(𝑁𝑁𝑁𝑡𝑡] + EMA3(𝑁𝑁𝑁𝑡𝑡 

Since the calculation uses EMA
3
, DEMA needs 3 × 𝑁𝑁 𝑁 𝑁  samples to start producing values.

Triangular moving average

The triangular moving average (TRIMA) with window length N for a price series P
t
 at time 

t, TRIMA(N)
t
, is a weighted average of the last N SMA(N)

t
 values. In other words, it applies 

the SMA to a time series of SMA values:

TRIMA(𝑁𝑁𝑁𝑡𝑡 = 1𝑁𝑁∑SMA(𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑡𝑡𝑖𝑖  

Kaufman adaptive moving average

The computation of the Kaufman adaptive moving average (KAMA) aims to take into 
account changes in market volatility. See the notebook for links to resources that explain 
the details of this slightly more involved computation.

MESA adaptive moving average

The MESA adaptive moving average (MAMA) is an exponential moving average 
that adapts to price movement based on the rate change of phase, as measured by the 
Hilbert Transform discriminator (see TA-Lib documentation). In addition to the price 
series, MAMA accepts two additional parameters, fastlimit and slowlimit, that control 
the maximum and minimum alpha values that should be applied to the EMA when 
calculating MAMA.

Visual comparison of moving averages

Figure A.1 illustrates how the behavior of the different MAs differs in terms of smoothing 
the time series and adapting to recent changes. All the time series are calculated for a 
21-day moving window (see the notebook for details and color images):
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Figure A.1: Comparison of MAs for AAPL closing price

Overlap studies – price and volatility trends
TA-Lib includes several indicators aimed at capturing recent trends, as listed in the 
following table:

Function Name

BBANDS Bollinger Bands

HT_TRENDLINE Hilbert Transform – Instantaneous Trendline

MAVP Moving average with variable period

MA Moving average

SAR Parabolic SAR

SAREXT Parabolic SAR – Extended

The MA and MAVP functions are wrappers for the various MAs described in the previous 
section. We will highlight a few examples in this section; see the notebook for additional 
information and visualizations.
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Bollinger Bands

Bollinger Bands combine an MA with an upper band and a lower band representing the 
moving standard deviation. We can obtain the three time series by providing an input price 
series, the length of the moving window, the multiplier for the upper and lower bands, and 
the type of MA, as follows:

s = talib.BBANDS(df.close,     # No. of periods (2 to 100000)

                 timeperiod=20,

                 nbdevup=2,    # Deviation multiplier for lower band

                 nbdevdn=2,    # Deviation multiplier for upper band

                 matype=1)     # default: SMA

For a sample of AAPL closing prices for 2012, we can plot the result like so:

bb_bands = ['upper', 'middle', 'lower']

df = price_sample.loc['2012', ['close']]

df = df.assign(**dict(zip(bb_bands, s)))

ax = df.loc[:, ['close'] + bb_bands].plot(figsize=(16, 5), lw=1);

The preceding code results in the following plot:

Figure A.2: Bollinger Bands for AAPL close price in 2012

John Bollinger, who invented the concept, also defined over 20 trading rules based on the 
relationships between the three lines and the current price (see Chapter 4, Financial Feature 
Engineering – How to Research Alpha Factors). For example, a smaller distance between the 
outer bands implies reduced recent price volatility, which, in turn, is interpreted as greater 
volatility and price change going forward.

We can standardize the security-specific values of the Bollinger Bands by forming ratios 
between the upper and lower bands, as well as between each of them and the close price, as 
follows:
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fig, ax = plt.subplots(figsize=(16,5))
df.upper.div(df.close).plot(ax=ax, label='bb_up')

df.lower.div(df.close).plot(ax=ax, label='bb_low')

df.upper.div(df.lower).plot(ax=ax, label='bb_squeeze')

plt.legend()

fig.tight_layout();

The following plot displays the resulting normalized time series:

Figure A.3: Normalized Bollinger Band indicators

The following function can be used with the pandas .groupby() and .apply() methods to 
compute the indicators for a larger sample of 500 stocks, as shown here:

def compute_bb_indicators(close, timeperiod=20, matype=0):

    high, mid, low = talib.BBANDS(close, 

                                  timeperiod=20,

                                  matype=matype)

    bb_up = high / close -1

    bb_low = low / close -1

    squeeze = (high - low) / close

    return pd.DataFrame({'BB_UP': bb_up, 

                         'BB_LOW': bb_low, 

                         'BB_SQUEEZE': squeeze}, 

                        index=close.index)

data = (data.join(data

                  .groupby(level='ticker')

                  .close

                  .apply(compute_bb_indicators)))
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Figure A.4 plots the distribution of values for each indicator across the 500 stocks (clipped at 
the 1st and 99th percentiles, hence the spikes in the plots):

Figure A.4: Distribution of normalized Bollinger Band indicators

Parabolic SAR

The parabolic SAR aims to identify trend reversals. It is a trend-following (lagging) 
indicator that can be used to set a trailing stop loss or determine entry or exit points. 
It is usually represented in a price chart as a set of dots near the price bars. Generally, 
when these dots are above the price, it signals a downward trend; it signals an upward 
trend when the dots are below the price. The change in the direction of the dots can be 
interpreted as a trade signal. However, the indicator is less reliable in a flat or range-bound 
market. It is computed as follows:SAR𝑡𝑡 = SAR𝑡𝑡𝑡𝑡 + 𝛼𝛼𝛼EP − SAR𝑡𝑡𝑡𝑡) 

The extreme point (EP) is a record that's kept during each trend that represents the 
highest value reached by the price during the current uptrend—or lowest value during a 
downtrend. During each period, if a new maximum (or minimum) is observed, the EP is 
updated with that value.

The α value represents the acceleration factor and is typically set initially to a value of 0.02. 
This factor increases by α each time a new EP is recorded. The rate will then quicken to a 
point where the SAR converges toward the price. To prevent it from getting too large, a 
maximum value for the acceleration factor is normally set to 0.20.

We can compute and plot it for our sample close price series as follows:

df = price_sample.loc['2012', ['close', 'high', 'low']]

df['SAR'] = talib.SAR(df.high, df.low, 

                      acceleration=0.02, # common value

                      maximum=0.2)       

df[['close', 'SAR']].plot(figsize=(16, 4), style=['-', '--']);
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The preceding code produces the following plot:

Figure A.5: Parabolic SAR for AAPL stock price

Momentum indicators
Chapter 4, Financial Feature Engineering – How to Research Alpha Factors, introduced 
momentum as one of the best-performing risk factors historically and listed several 
indicators designed to identify the corresponding price trends. These indicators include the 
relative strength index (RSI), as well as price momentum and price acceleration:

Factor Description Calculation

Relative strength 
index (RSI)

RSI compares the magnitude of recent price 
changes across stocks to identify stocks as 
overbought or oversold. A high RSI (usually 
above 70) indicates overbought and a low 
RSI (typically below 30) indicates oversold. It 
first computes the average price change for a 
given number (often 14) of prior trading days 
with rising (∆𝑝𝑝𝑢𝑢𝑝𝑝 ) and falling prices (∆𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ), 
respectively.

RSI = 100 − 1001 + ∆𝑝𝑝𝑢𝑢𝑝𝑝∆𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Price momentum

This factor computes the total return for a 
given number of prior trading days d. In the 
academic literature, it is common to use the last 
12 months except for the most recent month 
due to a short-term reversal effect frequently 
observed. However, shorter periods have also 
been widely used.

Mom𝑑𝑑 = 𝑃𝑃𝑡𝑡𝑃𝑃𝑡𝑡𝑡𝑡 − 1 

Price acceleration

Price acceleration calculates the gradient of 
the price trend using the linear regression 
coefficient 𝛽𝛽  of a time trend on daily prices for a 
longer and a shorter period, for example, 1 year 
and 3 months of trading days, and compares 
the change in the slope as a measure of price 
acceleration.

𝛽𝛽63𝛽𝛽252 
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TA-Lib implements 30 momentum indicators; the most important ones are listed in the 
following table. We will introduce a few selected examples; please see the notebook common_
alpha_factors for additional information:

Function Name

PLUS_DM/MINUS_DM Plus/Minus Directional Movement

PLUS_DI/MINUS_DI Plus/Minus Directional Indicator

DX Directional Movement Index

ADX Average Directional Movement Index

ADXR Average Directional Movement Index Rating

APO/PPO Absolute/Percentage Price Oscillator

AROON/AROONOSC Aroon/Aroon Oscillator

BOP Balance of Power

CCI Commodity Channel Index

CMO Chande Momentum Oscillator

MACD Moving Average Convergence/Divergence

MFI Money Flow Index

MOM Momentum

RSI Relative Strength Index

STOCH Stochastic

ULTOSC Ultimate Oscillator

WILLR Williams' %R

Several of these indicators are closely related and build on each other, as the following 
example demonstrates.

Average directional movement indicators

The average directional movement index (ADX) combines two other indicators, namely 
the positive and negative directional indicators (PLUS_DI and MINUS_DI), which, in turn, 
build on the positive and negative directional movement (PLUS_DM and MINUS_DM). See the 
notebook for additional details.

Plus/minus directional movement

For a price series P
t
 with daily highs 𝑃𝑃𝑡𝑡𝐻𝐻  and daily lows 𝑃𝑃𝑡𝑡𝐿𝐿 , the directional movement tracks 

the absolute size of price moves over a time period T, as follows:Up𝑡𝑡 = 𝑃𝑃𝑡𝑡𝐻𝐻 − 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝐻𝐻  Down𝑡𝑡 = 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝐿𝐿 𝑡 𝑃𝑃𝑡𝑡𝐿𝐿 PLUS_DM𝑡𝑡 = {Up𝑡𝑡     if Up𝑡𝑡 > Down𝑡𝑡 and Up𝑡𝑡 > 00          otherwise                                 
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MINUS_DM𝑡𝑡 = {Down𝑡𝑡     if Down𝑡𝑡 > Up𝑡𝑡 and Down𝑡𝑡 < 00          otherwise                                                
We can compute and plot this indicator for a 2-year price series of the AAPL stock in 
2012-13:

df = price_sample.loc['2012': '2013', ['high', 'low', 'close']]

df['PLUS_DM'] = talib.PLUS_DM(df.high, df.low, timeperiod=10)

df['MINUS_DM'] = talib.MINUS_DM(df.high, df.low, timeperiod=10)

The following plot visualizes the resulting time series:

Figure A.6: PLUS_DM/MINUS_DM for AAPL stock price

Plus/minus directional index

PLUS_DI and MINUS_DI are the simple MAs of PLUS_DM and MINUS_DM, respectively, each 
divided by the average true range (ATR). See the Volatility indicators section later in this 
chapter for more details.

The simple MA is calculated over the given number of periods. The ATR is a smoothed 
average of the true ranges.

Average directional index

Finally, the average directional index (ADX) is the (simple) MA of the absolute value of the 
difference between PLUS_DI and MINUS_DI, divided by their sum:ADX = 100 × SMA(𝑁𝑁𝑁𝑡𝑡 |PLUSD𝐼𝐼𝑡𝑡 −MINUSDI𝑡𝑡PLUSD𝐼𝐼𝑡𝑡 +MINUSDI𝑡𝑡| 
Its values oscillate in the 0-100 range and are often interpreted as follows:

ADX Value Trend Strength

0-25 Absent or weak trend

25-50 Strong trend

50-75 Very strong trend

75-100 Extremely strong trend
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We compute the ADX time series for our AAPL sample series similar to the previous 
examples, as follows: 

df['ADX'] = talib.ADX(df.high, 

                      df.low, 

                      df.close, 

                      timeperiod=14)

The following plot visualizes the result over the 2007-2016 period:

Figure A.7: ADX for the AAPL stock price series

Aroon Oscillator

The Aroon indicator measures the time between highs and the time between lows over a 
time period. It computes an AROON_UP and an AROON_DWN indicator, as follows:AROON_UP = 𝑇𝑇 𝑇 P𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 × 100 

AROON_DOWN = 𝑇𝑇 𝑇 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 × 100 

The Aroon Oscillator is simply the difference between the AROON_UP and AROON_DOWN 
indicators and moves within the range from -100 to 100, as shown here for the AAPL 
price series:

Figure A.8: Aroon Oscillator for the AAPL stock price series
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Balance of power

The balance of power (BOP) intends to measure the strength of buyers relative to sellers 
in the market by assessing the influence of each side on the price. It is computed as the 
difference between the close and the open price, divided by the difference between the high 
and the low price: BOP𝑡𝑡 = 𝑃𝑃𝑡𝑡Close − 𝑃𝑃𝑡𝑡Open𝑃𝑃𝑡𝑡High − 𝑃𝑃𝑡𝑡Low  

Commodity channel index

The commodity channel index (CCI) measures the difference between the current typical 
price, computed as the average of current low, high, and close price and the historical 
average price. A positive (negative) CCI indicates that the price is above (below) the historic 
average. It is computed as follows: �̅�𝑃𝑡𝑡 = 𝑃𝑃𝑡𝑡𝐻𝐻 + 𝑃𝑃𝑡𝑡𝐿𝐿 + 𝑃𝑃𝑡𝑡𝐶𝐶3  

CCI𝑡𝑡 = �̅�𝑃𝑡𝑡 − SMA(𝑁𝑁𝑁𝑡𝑡0.15∑ |�̅�𝑃𝑡𝑡 − SMA(𝑁𝑁𝑁𝑡𝑡|/𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡  

Moving average convergence divergence

Moving average convergence divergence (MACD) is a very popular trend-following 
(lagging) momentum indicator that shows the relationship between two MAs of a security's 
price. It is calculated by subtracting the 26-period EMA from the 12-period EMA.

The TA-Lib implementation returns the MACD value and its signal line, which is the 9-day 
EMA of the MACD. In addition, the MACD-Histogram measures the distance between the 
indicator and its signal line. The following charts show the results:
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Figure A.9: The three MACD series for the AAPL stock price series

Stochastic relative strength index

The stochastic relative strength index (StochRSI) is based on the RSI described at the 
beginning of this section and intends to identify crossovers, as well as overbought and 
oversold conditions. It compares the distance of the current RSI to the lowest RSI over a 
given time period T to the maximum range of values the RSI has assumed for this period. It 
is computed as follows: STOCHRSI𝑡𝑡 = RSI𝑡𝑡 − RSI𝑡𝑡𝐿𝐿(𝑇𝑇𝑇RSI𝑡𝑡𝐻𝐻(𝑇𝑇𝑇 − RSI𝑡𝑡𝐿𝐿(𝑇𝑇𝑇 
The TA-Lib implementation offers more flexibility than the original unsmoothed 
stochastic RSI version by Chande and Kroll (1993). To calculate the original indicator, keep 
timeperiod and fastk_period equal. 

The return value fastk is the unsmoothed RSI. fastd_period is used to compute a 
smoothed StochRSI, which is returned as fastd. If you do not care about StochRSI 
smoothing, just set fastd_period to 1 and ignore the fasytd output:

fastk, fastd = talib.STOCHRSI(df.close,

                              timeperiod=14, 

                              fastk_period=14, 

                              fastd_period=3, 

                              fastd_matype=0)

df['fastk'] = fastk

df['fastd'] = fastd
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Figure A.10 plots the closing price and both the smoothed and unsmoothed stochastic RSI:

Figure A.10: Smoothed and unsmoothed StochRSI series for the AAPL stock price

Stochastic oscillator

A stochastic oscillator is a momentum indicator that compares a particular closing price of a 
security to a range of its prices over a certain period of time. Stochastic oscillators are based 
on the idea that closing prices should confirm the trend. For Stochastic (STOCH), there are 
four different lines: KFast, DFast, KSlow, and DSlow. D is the signal line usually drawn over its 
corresponding K function: 𝐾𝐾Fast(𝑇𝑇𝐾𝐾) = 𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑇𝑇𝐾𝐾𝐿𝐿𝑃𝑃𝑇𝑇𝐾𝐾𝐻𝐻 − 𝑃𝑃𝑇𝑇𝐾𝐾𝐿𝐿 ∗ 100 

𝐷𝐷Fast(𝑇𝑇FastD) = MA(𝑇𝑇FastD)[𝐾𝐾Fast] 𝐾𝐾Slow(𝑇𝑇SlowK) = MA(𝑇𝑇SlowK)[𝐾𝐾Fast] 𝐷𝐷Slow(𝑇𝑇SlowD) = MA(𝑇𝑇SlowD)[𝐾𝐾Slow] 𝑃𝑃𝑇𝑇𝐾𝐾𝐿𝐿  , 𝑃𝑃𝑇𝑇𝐾𝐾𝐻𝐻  , and 𝑃𝑃𝑇𝑇𝐾𝐾𝐿𝐿   are the extreme values of the last 𝑇𝑇𝐾𝐾  period. 𝐾𝐾Slow  and 𝐷𝐷Fast  are 
equivalent when using the same period. We obtain the series shown in Figure A.11, as 
follows:

slowk, slowd = talib.STOCH(df.high,

                           df.low,

                           df.close,

                           fastk_period=14,

                           slowk_period=3,

                           slowk_matype=0,

                           slowd_period=3,

                           slowd_matype=0)

df['STOCH'] = slowd / slowk
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Figure A.11: STOCH series for the AAPL stock price

Ultimate oscillator

The ultimate oscillator (ULTOSC) measures the average difference between the current 
close and the previous lowest price over three timeframes—with the default values 7, 
14, and 28—to avoid overreacting to short-term price changes and incorporate short-, 
medium-, and long-term market trends. 

It first computes the buying pressure, BP
t
, then sums it over the three periods T

1
, T

2
, and T

3
, 

normalized by the true range (TR
t
):BP𝑡𝑡 = 𝑃𝑃𝑡𝑡Close −min(𝑃𝑃𝑡𝑡𝑡𝑡Close, 𝑃𝑃𝑡𝑡Low) TR𝑡𝑡 = max(𝑃𝑃𝑡𝑡𝑡𝑡Close, 𝑃𝑃𝑡𝑡High) − min(𝑃𝑃𝑡𝑡𝑡𝑡Close, 𝑃𝑃𝑡𝑡Low) 

ULTOSC is then computed as a weighted average over the three periods, as follows:Avg𝑡𝑡(𝑇𝑇) = ∑ BP𝑡𝑡𝑡𝑡𝑡𝑇𝑇𝑡𝑇𝑡𝑡𝑖𝑖∑ TR𝑡𝑡𝑡𝑡𝑡𝑇𝑇𝑡𝑇𝑡𝑡𝑖𝑖  

ULTOSC𝑡𝑡 = 100 ∗ 4Avg𝑡𝑡(7) + 2Avg𝑡𝑡(14) + Avg𝑡𝑡(28)4 + 2 + 1  

The following plot shows the result of this:

Figure A.12: ULTOSC series for the AAPL stock price
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Williams %R

Williams %R, also known as the Williams Percent Range, is a momentum indicator that 
moves between 0 and -100 and measures overbought and oversold levels to identify entry 
and exit points. It is similar to the stochastic oscillator and compares the current closing 
price 𝑃𝑃𝑡𝑡Close  to the range of highest (𝑃𝑃𝑇𝑇High ) and lowest (𝑃𝑃𝑇𝑇Low ) prices over the last T periods 
(typically 14). The indicators are computed as follows, and the result is shown in the 
following chart: WILLR𝑡𝑡 = 𝑃𝑃𝑇𝑇High − 𝑃𝑃𝑡𝑡Close𝑃𝑃𝑇𝑇High − 𝑃𝑃𝑇𝑇Low  

Figure A.13: WILLR series for the AAPL stock price

Volume and liquidity indicators
Risk factors that focus on volume and liquidity incorporate metrics like turnover, dollar 
volume, or market capitalization. TA-Lib implements three indicators, the first two of 
which are closely related:

Function Name

AD Chaikin A/D Line

ADOSC Chaikin A/D Oscillator

OBV On Balance Volume

Also see Chapter 20, Autoencoders for Conditional Risk Factors and Asset Pricing, where we 
use the Amihud Illiquidity indicator to measure a rolling average ratio between absolute 
returns and the dollar volume.
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Chaikin accumulation/distribution line and oscillator

The Chaikin advance/decline (AD) or accumulation/distribution (AD) line is a volume-
based indicator designed to measure the cumulative flow of money into and out of an asset. 
The indicator assumes that the degree of buying or selling pressure can be determined by 
the location of the close, relative to the high and low for the period. There is buying (selling) 
pressure when a stock closes in the upper (lower) half of a period's range. The intention is 
to signal a change in direction when the indicator diverges from the security price.

The A/D line is a running total of each period's money flow volume (MFV). It is calculated 
as follows:

1. Compute the money flow index (MFI) as the relationship of the close to the high-
low range

2. Multiply the MFI by the period's volume V
t
 to come up with the MFV 

3. Obtain the AD line as the running total of the MFV:MFI𝑡𝑡 = 𝑃𝑃𝑡𝑡Close − 𝑃𝑃𝑡𝑡Low𝑃𝑃𝑡𝑡High − 𝑃𝑃𝑡𝑡Low  

MFV𝑡𝑡 = MFI𝑡𝑡 × 𝑉𝑉𝑡𝑡 AD𝑡𝑡 = AD𝑡𝑡𝑡𝑡 +MFV𝑡𝑡 
The Chaikin A/D oscillator (ADOSC) is the MACD indicator that's applied to the Chaikin 
AD line. The Chaikin oscillator intends to predict changes in the AD line.

It is computed as the difference between the 3-day EMA and the 10-day EMA of the AD 
line. The following chart shows the ADOSC series:

Figure A.14: ADOSC series for the AAPL stock price

On-balance volume

The on-balance volume (OBV) indicator is a cumulative momentum indicator that relates 
volume to price change. It assumes that OBV changes precede price changes because smart 
money can be seen flowing into the security by a rising OBV. When the public then follows, 
both the security and OBV will rise.
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The current OBV
t
 is computed by adding (subtracting) the current volume to (from) the last 

OBV
t-1

 if the security closes higher (lower) than the previous close:OBV𝑡𝑡 = { OBV𝑡𝑡𝑡𝑡 + 𝑉𝑉𝑡𝑡    if 𝑃𝑃𝑡𝑡 > 𝑃𝑃𝑡𝑡    OBV𝑡𝑡𝑡𝑡 − 𝑉𝑉𝑡𝑡    if 𝑃𝑃𝑡𝑡 < 𝑃𝑃𝑡𝑡𝑡𝑡OBV𝑡𝑡𝑡𝑡        otherwise        
Volatility indicators
Volatility indicators include stock-specific measures like the rolling (normalized) standard 
deviation of asset prices and returns. It also includes broader market measures like the 
Chicago Board Options Exchange's CBOE volatility index (VIX), which is based on the 
implied volatility of S&P 500 options.

TA-Lib implements both normalized and averaged versions of the true range indicator.

Average true range

The average true range (ATR) indicator shows the volatility of the market. It was introduced 
by Wilder (1978) and has been used as a component of numerous other indicators since. It 
aims to anticipate changes in trend such that the higher its value, the higher the probability of 
a trend change; the lower the indicator's value, the weaker the current trend.

ATR is computed as the simple moving average for a period T of the true range (TRANGE), 
which measures volatility as the absolute value of the largest recent trading range:TRANGE𝑡𝑡 = max [𝑃𝑃𝑡𝑡High − 𝑃𝑃𝑡𝑡low, |𝑃𝑃𝑡𝑡High − 𝑃𝑃𝑡𝑡𝑡𝑡Close|, |𝑃𝑃𝑡𝑡low − 𝑃𝑃𝑡𝑡𝑡𝑡Close|] 
The resulting series is shown in the following plot:

Figure A.15: ATR series for the AAPL stock price

Normalized average true range

TA-Lib also offers a normalized ATR that permits comparisons across assets. The 
normalized average true range (NATR) is computed as follows:NATR𝑡𝑡 = ATR𝑡𝑡(𝑇𝑇𝑇𝑃𝑃𝑡𝑡Close ∗ 100 



Alpha Factor Library

[ 744 ]

Normalization makes the ATR more relevant for long-term analysis where the price 
changes substantially and for cross-market or cross-security comparisons.

Fundamental risk factors
Commonly used measures of risk include the exposure of asset returns to the returns of 
portfolios designed to represent fundamental factors. We introduced the five-factor model 
by Fama and French (2015) and showed how to estimate factor loadings and risk factor 
premia using two-state Fama-Macbeth regressions in Chapter 7, Linear Models – From Risk 
Factors to Return Forecasts. 

To estimate the relationship between the price of security and the forces included in the 
five-factor model such as firm size, value-versus-growth dynamic, investment policy and 
profitability, in addition to the broad market, we can use the portfolio returns provided by 
Kenneth French's data library as exogenous variables in a rolling linear regression.

The following example accesses the data using the pandas_datareader module (see Chapter 

2, Market and Fundamental Data – Sources and Techniques). It then computes the regression 
coefficients for windows of 21, 63, and 252 trading days:

factor_data = (web.DataReader('F-F_Research_Data_5_Factors_2x3_daily', 
'famafrench', 

                              start=2005)[0].rename(columns={'Mkt-RF': 
'MARKET'}))

factor_data.index.names = ['date']

factors = factor_data.columns[:-1]

t = 1

ret = f'ret_{t:02}'

windows = [21, 63, 252]

for window in windows:

    print(window)

    betas = []

    for ticker, df in data.groupby('ticker', group_keys=False):

        model_data = df[[ret]].merge(factor_data, on='date').dropna()

        model_data[ret] -= model_data.RF

        rolling_ols = RollingOLS(endog=model_data[ret], 

                                 exog=sm.add_constant(model_data[factors]),

                                 window=window)

        factor_model = rolling_ols.fit(params_only=True).params.rename(
            columns={'const':'ALPHA'})

        result = factor_model.assign(ticker=ticker).set_index(

            'ticker', append=True).swaplevel()

        betas.append(result)

    betas = pd.concat(betas).rename(columns=lambda x: f'{x}_{window:02}')

    data = data.join(betas)
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The risk factors just described are commonly used and also known as smart beta factors 
(see Chapter 1, Machine Learning for Trading – From Idea to Execution). In addition, hedge 
funds have started to resort to alpha factors derived from large-scale data mining exercises, 
which we'll turn to now.

WorldQuant's quest for formulaic alphas
We introduced WorldQuant in Chapter 1, Machine Learning for Trading – From Idea to 
Execution, as part of a trend toward crowd-sourcing investment strategies. WorldQuant 
maintains a virtual research center where quants worldwide compete to identify alphas. 
These alphas are trading signals in the form of computational expressions that help predict 
price movements, just like the common factors described in the previous section.   

These formulaic alphas translate the mechanism to extract the signal from data into 
code, and they can be developed and tested individually with the goal to integrate their 
information into a broader automated strategy (Tulchinsky 2019). As stated repeatedly 
throughout this book, mining for signals in large datasets is prone to multiple testing bias 
and false discoveries. Regardless of these important caveats, this approach represents a 
modern alternative to the more conventional features presented in the previous section.

Kakushadze (2016) presents 101 examples of such alphas, 80 percent of which were used in 
a real-world trading system at the time. It defines a range of functions that operate on cross-
sectional or time-series data and can be combined, for example, in nested form.

The notebook 101_formulaic_alphas shows how to implement these functions using 
pandas and NumPy, and also illustrates how to compute around 80 of these formulaic 
alphas for which we have input data (we lack, for example, accurate historical sector 
information).

Cross-sectional and time-series functions
The building blocks of the formulaic alphas proposed by Kakushadze (2016) are relatively 
simple expressions that compute over longitudinal or cross-sectional data that are readily 
implemented using pandas and NumPy.

The cross-sectional functions include ranking and scaling, as well as the group-wise 
normalization of returns, where the groups are intended to represent sector information 
at different levels of granularity:
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We can directly translate the ranking function into a pandas expression, using a DataFrame 
as an argument in the format number of period × number of tickers, as follows:

def rank(df):

    """Return the cross-sectional percentile rank

     Args:

         :param df: tickers in columns, sorted dates in rows.

     Returns:

         pd.DataFrame: the ranked values

     """

    return df.rank(axis=1, pct=True)

There are also several time-series functions that will likely be familiar:

Function Definition
ts_{O}(x, d) Operator O applied to the time series for the past d days; 

non-integer number of days d converted to floor(d).

ts_lag(x, d) Value of x, d days ago.

ts_delta(x, d) Difference between the value of x today and d days ago.

ts_rank(x, d) Rank over the past d days.

ts_mean(x, d) Simple moving average over the past d days.

ts_weighted_mean(x, d) Weighted moving average over the past d days with linearly 
decaying weights d, d – 1, …, 1 (rescaled to sum up to 1).

ts_sum(x, d) Rolling sum over the past d days.

ts_product(x, d) Rolling product over the past d days.

ts_stddev(x, d) Moving standard deviation over the past d days.

ts_max(x, d), ts_min(x, d) Rolling maximum/minimum over the past d days.

ts_argmax(x, d), ts_
argmin(x, d)

Day of ts_max(x, d), ts_min(x, c).

ts_correlation(x, y, d) Correlation of x and y for the past d days.

These time-series functions are also straightforward to implement using pandas' rolling 
window functionality. For the rolling weighted mean, for example, we can combine pandas 
with TA-Lib, as demonstrated in the previous section:

def ts_weighted_mean(df, period=10):

    """

    Linear weighted moving average implementation.

    :param df: a pandas DataFrame.

    :param period: the LWMA period

    :return: a pandas DataFrame with the LWMA.

    """

    return (df.apply(lambda x: WMA(x, timeperiod=period)))
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To create the rolling correlation function, we provide two DataFrames containing time 
series for different tickers in the columns:

def ts_corr(x, y, window=10):

    """

    Wrapper function to estimate rolling correlations.

    :param x, y: pandas DataFrames.

    :param window: the rolling window.

    :return: DataFrame with time-series min for past 'window' days.

    """

    return x.rolling(window).corr(y)

In addition, the expressions use common operators, as we will see as we turn to the 
formulaic alphas that each combine several of the preceding functions.

Formulaic alpha expressions
To illustrate the computation of the alpha expressions, we need to create the following 
input tables using the sample of the 500 most-traded stocks from 2007-2016 from the 
previous section (see the notebook sample_selection for details on data preparation). 
Each table contains columns of time series for individual tickers:

Variable Description

returns Daily close-to-close returns

open, close, high, low, volume Standard definitions for daily price and volume data

vwap Daily volume-weighted average price

adv(d) Average daily dollar volume for the past d days

Our data does not include the daily volume-weighted average price required by many alpha 
expressions. To be able to demonstrate their computation, we very roughly approximate this 
value using the simple average of the daily open, high, low, and close prices.

Contrary to the common alphas presented in the previous section, the formulaic alphas do 
not come with an economic interpretation of the risk exposure they represent. We will now 
demonstrate a few simply numbered instances.

Alpha 001

The first alpha expression is formulated as follows:

rank(ts_argmax(power(((returns < 0) ? ts_std(returns, 20) : close), 2.), 5))
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The ternary operator a ? b : c executes b if a evaluates to true, and c otherwise. Thus, if 
the daily returns are positive, it squares the 20-day rolling standard deviation; otherwise, 
it squares the current close price. It then proceeds to rank the assets by the index of the day 
that shows the maximum for this value.

Using c and r to represent the close and return inputs, the alpha translates into Python 
using the previous functions and pandas methods, like so:

def alpha001(c, r):

    """(rank(ts_argmax(power(((returns < 0)

        ? ts_std(returns, 20)

        : close), 2.), 5)) -0.5)"""

    c[r < 0] = ts_std(r, 20)

    return (rank(ts_argmax(power(c, 2), 5)).mul(-.5)

            .stack().swaplevel())

For the 10-year sample of 500 stocks, the distribution of Alpha 001 values and its 
relationship with one-day forward returns looks as follows:

Figure A.16: Alpha 001 histogram and scatter plot

The information coefficient (IC) is fairly low, yet it is statistically significant at -0.0099 
and the mutual information (MI) estimate yields 0.0129 (see Chapter 4, Financial Feature 
Engineering – How to Research Alpha Factors, and the notebook 101_formulaic_alphas, for 
implementation details).

Alpha 054

Our second expression is the ratio of the difference between the low and the close price and 
the low and the high price, each multiplied by the open and close, respectively, raised to 
the fifth power:

-(low - close) * power(open, 5) / ((low - high) * power(close, 5))
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Similarly, the translation into pandas is straightforward. We use o, h, l, and c to represent 
the DataFrames containing the respective price series for each ticker in the 500 columns:

def alpha054(o, h, l, c):

    """-(low - close) * power(open, 5) / ((low - high) * power(close, 5))"""

    return (l.sub(c).mul(o.pow(5)).mul(-1)

            .div(l.sub(h).replace(0, -0.0001).mul(c ** 5))

            .stack('ticker')

            .swaplevel())

In this case, the IC is significant at 0.025, while the MI score is lower at 0.005.

We will now take a look at how these different types of alpha factors compare from a 
univariate and a multivariate perspective.

Bivariate and multivariate factor evaluation
To evaluate the numerous factors, we rely on the various performance measures introduced 
in this book, including the following:

• Bivariate measures of the signal content of a factor with respect to the one-day 
forward returns

• Multivariate measures of feature importance for a gradient boosting model trained 
to predict the one-day forward returns using all factors

• Financial performance of portfolios invested according to factor quantiles using 
Alphalens

We will first discuss the bivariate metrics and then turn to the multivariate metrics; we will 
conclude by comparing the results. See the notebook factor_evaluation for the relevant 
code examples and additional exploratory analysis, such as the correlation among the 
factors, which we'll omit here.

Information coefficient and mutual information
We will use the following bivariate metrics, which we introduced in Chapter 4, Financial 
Feature Engineering – How to Research Alpha Factors:

• The IC measured as the Spearman rank correlation

• The MI score computed using mutual_info_regression, provided by scikit-learn

The MI score uses a sample of 100,000 observations to limit the computational cost of the 
nearest neighbor computations. Both metrics are otherwise easy to compute and have been 
used repeatedly; see the notebook for implementation details. We will see, however, that 
they can yield quite different results.
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Feature importance and SHAP values
To measure the predictive relevance of a feature given all other available factors, we can 
train a LightGBM gradient boosting model with default settings to predict the forward 
returns using all of the (approximately) 130 factors. The model uses 8.5 years of data to 
train 104 trees using early stopping. We will obtain test predictions for the last year of data, 
which yield a global IC of 3.40 and a daily average of 2.01.

We will then proceed to compute the feature importance and SHapley Additive 

exPlanation (SHAP) values, as described in Chapter 12, Boosting Your Trading Strategy; see 
the notebook for details. The influence plot in Figure A.17 highlights how the values of the 
20 most important features impact the model's predictions positively or negatively relative 
to the model's default output. In SHAP value terms, alphas 054 and 001 are among the top 
five factors:

Figure A.17: SHAP values for common and formulaic alphas

Now, let's compare how the different metrics rate our factors.

Comparison – the top 25 features for each metric
The rank correlation among SHAP values and conventional feature importance measured 
as the weighted contribution of a feature to the reduction of the model's loss function 
is high at 0.89. It is also substantial between SHAP values and both univariate metrics 
at around 0.5.
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Interestingly, though, MI and IC disagree significantly in their feature rankings with 
a correlation of only 0.16, as shown in the following diagram: 

 

Figure A.18: Rank correlation of performance metrics

Figure A.19 displays the top 25 features according to each metric. Except for the MI score, 
which prefers the "common" alpha factors, features from both sources are ranked highly: 

Figure A.19: Top 25 features for each performance metric
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It is not immediately apparent why MI disagrees with the other metrics and why few of 
the features it assigns a high score play a significant role in the gradient boosting model. 
A possible explanation is that the computation uses only a 10 percent sample and the scores 
appear sensitive to the sample size.

Financial performance – Alphalens
Finally, we mostly care about the value of the trading signals emitted by an alpha 
factor. As introduced in Chapter 4, Financial Feature Engineering – How to Research Alpha 
Factors, and demonstrated repeatedly, Alphalens evaluates factor performance on a 
standalone basis. 

The notebook alphalens_analysis lets you select an individual factor and compute how 
portfolios invested for a given horizon according to how factor quantile values would have 
performed. 

The example in Figure A.20 shows the result for Alpha 54; while portfolios in the top 
and bottom quintiles did achieve a 1.5 bps average spread on a daily basis, the cumulative 
returns of a long-short portfolio were negative:

Figure A.20: Alphalens performance metric for Alpha 54

Feel free to use the notebook as a template to evaluate the sample factors or others of your 
own choosing more systematically.
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classification problems  158
classification trees  328, 349

building  333

node purity, optimizing  333, 334

training  334, 335

clustered standard errors  183
clustering

for portfolio optimization  433

clustering algorithms  151, 426
CNN architectures

evolution  558

network size  558
performance breakthroughs  558

CNN-TA  581
cointegration  281, 294

testing approaches  282

cointegration approach  284
cointegration tests

precomputing  288

columnar storage  721
combinatorial algorithms  426
combinatorial cross-validation  169
components, TimeGAN architecture

adversarial network, generator and discriminator 
elements  662

autoencoder, embedding and recovery 

components  662

computational graph  594
computer-to-computer interface (CTCI)  27
conditional autoencoder architecture  639
conditional autoencoder, for return forecasts 

and trading  638, 639
architecture, creating  643, 644, 645, 647
dataset, creating with stock price and metadata 

information  639, 640, 641
predictive asset characteristics,  

computing  641-643
conditional GANs (cGANs)

using, for image-to-image translation  653

conjugate priors  296, 299
conservative-minus-aggressive (CMA) investment 

factor  85
consolidated feed  26, 41
constant proportion portfolio insurance (CPPI)  86
context  593
context-free models  509
continuous-bag-of-words (CBOW) model  485

versus skip-gram (SG) model  485, 486
convolutional autoencoders  636, 637

using, to compress images  627
convolutional layer

convolution stage  555

detector stage  557
key elements, operating  554, 555
pooling stage  557

convolutional neural networks (CNNs)  626
for images  559

for time-series data  577
grid-like data, modeling  552, 553

cophenetic correlation  430
correlogram  260
corrupted data

fixing, with denoising autoencoders  628
CountVectorizer

used, for finding similar documents  453
used, for visualizing vocabulary distribution  452

using  452

credit-assignment problem  683
cross-asset relative value strategies  88
cross-entropy  333
cross-entropy cost function  529
cross-validation

implementing, in Python  166, 167
results  389

used, for selecting model  165
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cross-validation, in finance
challenges  168

cross-validation performance
analyzing  360
information coefficient, for lookahead  

periods  360
information coefficient, for lookback periods  360
information coefficient, for roll-forward  

periods  360
OLS regression, of random forest configuration 

parameters on IC  360
crowdsourcing trading algorithms  12
CSV  57
curse of dimensionality  408-411

approaches  464

custom metric
GridSearchCV, using for decision trees  339, 340

custom ML factor
designing  251

custom OpenAI trading environment
DataSource class, designing  705, 706
designing  705
parameterizing  709
registering  709
TradingEnvironment class  708
TradingSimulator class  707

custom probability model
defining  318

custom TradingCalendar
creating  244

registering  244

custom word embeddings, with LSTM for 
sentiment classification  614

embedding, defining  615, 616
IMDB movie review data, loading  615
RNN architecture, defining  615, 616

CycleGAN  654

D
dark pools  3, 25
data

collecting  160
hierarchical features, extracting from  516, 517
loading  95

preparing  160
reshaping  95

slicing  95

data-driven risk factors  421, 638
data, preparing  421

Dataiku  722
Dataminr  71

data quality, aspects  67
exclusivity  67
frequency  68

legal and reputational risks  67
reliability  68

time horizon  68

Datarobot  722
DDQN, implementing with TensorFlow 2  700

DDQN agent, creating  700
DDQN architecture, adapting to LL  

environment  700, 701
experience replay, enabling  701, 702
key hyperparameter choices  703
Lunar Lander learning performance  704
OpenAI environment, setting up  703
transitions, memorizing  701, 702

decision trees  328
advantages  344

classification tree, building  333
disadvantages  344

features  330
GridSearchCV, using with custom  

metric  339, 340
monthly stock returns  330
overfitting  336
predictions, evaluating  336

pruning  338

regression tree, building with time series  

data  331, 332
regularization  336-338

rules, applying  328, 329

rules, learning  328, 329

strengths and weaknesses  343
using  330
visualizing  335

decoder function  596
deep convolutional GANs (DCGANs)  653

using, for unsupervised representation  

learning  653

deep feedforward autoencoder  634, 635
encoding, visualizing  635

deep learning (DL)
hierarchical features, extracting from data  516
hierarchical features, using for high-dimensional 

data  515
libraries  534

need for  514, 515
optimizations for  523

relation, with AI  517
relation, with ML  517
using, as representation learning  516
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deep NNs
regularizing  522

deep NNs, regularization technique
dropout  523

early stopping  522

parameter norm penalties  522

Deep Q-learning algorithm  697, 698
Deep Q-learning, on stock market

DDQN agent, adapting  709
DDQN agent performance, benchmarking  710
DDQN agent, training  709

deep Q-network (DQN)  697
Deep RL for algorithmic trading

trading agent, creating  704
with OpenAI Gym  696

with TensorFlow 2  696

deep RNNs
designing  596, 597

define-by-run  538
deflated SR  227
deflation  261
degrees of freedom (DF)  317
dendrograms  430, 431
denoising autoencoders  637, 638

used, for fixing corrupted data  628
DenseNet201  572
density-based clustering algorithm  151, 431
density-based spatial clustering of applications 

with noise (DBSCAN) algorithm   431
deterministic methods

versus stochastic techniques  301
diagnostic tests, baseline model

conducting  181
goodness-of-fit measures  182
heteroskedasticity  182
multicollinearity  184
serial correlation  183

differentiable function   552
dimensionality reduction  152, 336, 408, 409
direct market access (DMA)  4
discriminative models  650

versus generative models  651
discriminator network  652
distance approach  284
distance-based heuristics

computing, to identify cointegrated  

pairs  286, 287
distributed bag of words (DBOW) model  503
distributed memory (DM) model  503
divisive clustering   429
document store  721

document-term matrix  449
creating  450
similarity of documents, measuring  450
with sklearn  451

dollar bars  39
domain expertise  716
domain-specific embeddings

training, for financial news  491
Double DQN (DDQN) algorithm  698, 699
DQN architecture

experience replay  698

target network, changing  698
dropout  523
dropout for additive regression trees (DART)  382
Durbin-Watson statistic diagnoses serial 

correlation  183
dynamic programming (DP)  683, 684

Finite MDPs  684

generalized policy iteration  688, 689

policy iteration  687, 688
value iteration  688

dynamic programming, in Python  689
gridworld, setting up  690
MDPs, solving with pymdptoolbox  693

policy iteration, defining  693
policy iteration, running  693

transition matrix, computing  691, 692
value iteration algorithm, implementing  692

E
early stopping  373, 522
earnings before interest and taxes (EBIT)   93
earnings before interest, taxes, depreciation, and 

amortization (EBITDA)  90
earnings calls data, topic modeling

data preprocessing  478, 479
experiments, running  480, 481
model evaluation  479, 480
model, training  479, 480

earnings call transcript
parsing  77-80
scraping  77-80

earnings per diluted share (EPS)  55
earnings-per-share (EPS)  224
efficient frontier  125

finding, in Python  127-130
efficient market hypothesis (EMH)  5, 126
eigenportfolios  424-426
elastic net regression  195
electronic communication network (ECN)  3, 24
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Electronic Data Gathering, Analysis, and  
Retrieval (EDGAR)  51

electronic Financial Information  
eXchange (FIX)  26

electronic trading  3
email receipt data  72
embargoing  169
embeddings  483
embeddings evaluation

vector analogies, expressing  487-489
vector arithmetic, expressing  487-489

empirical evidence
assumptions, updating from  297, 298

empirical prior  299
encoder  596
encoder-decoder architectures  596
engineering of features  161
Engle-Granger two-step method  282
ensembled signals

long-short strategy, backtesting based on  547
ensemble learning, goal

accurate  345

independent  345

ensemble methods
averaging method  345

boosting method  345

ensemble models  336
ensemble size  373
epoch  179, 486
equal-weighted (EW)  437
equity quote  40
error  176
error correction model (ECM)  282
Euclidean distance  410
event-driven backtest

versus vectorized backtest  228, 229
exact greedy algorithm  380
exact inference  298
exchange  24
exchange-traded funds (ETFs)  3
explained variance score  156
exponential GARCH (EGARCH) model  274
exponential smoothing models  259
extensions  294
extract-transform-load (ETL)  721

F
F1 score  159
Facebook AI Research (FAIR)  538
factor betas

computing  97

factor establishment  84
factor evaluation, with Alphalens  111

factor quantiles, creating  112
factor turnover  117
forward returns, creating  112
information coefficient  115-117
predictive performance, by factor  

quantiles  113, 114, 115
factor loadings  638
factors

combining, from data sources  109-111
false positive rates (FPR)  159
Fama-French factor models  189, 188, 638

risk factors  189-191
Fama-Macbeth regression  191-193
fastai library  542
feasible generalized least squares (GLSAR)  183
feature extraction

automating  516
feature importance  392

capturing  343

feature maps  555
features

evaluating, information theory used  161
Federal Reserve's Economic Data (FRED)  306
feedforward autoencoder

with sparsity constraints  634

fill or kill orders  23
filters

synthesizing, from data  553

Financial Industry Regulatory Authority  
(FINRA)  26

financial news
domain-specific embeddings, training for  491

financial news, word embeddings
n-grams, creating  492, 493

sentence detection  492, 493

training with Gensim  497-499
visualizing, with TensorBoard  496

financial statement and notes (FSN)  
datasets  52, 53

financial statement data  51
financial text data

trading  511
financial time series

RNNs, using with TensorFlow 2  599

financial time series, clustering in two-
dimensional image format  581

convolutional neural network, creating  585
hierarchical feature clustering  584, 585
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long-short trading strategy, backtesting  588
models, assembling to generate tradeable  

signals  587, 588
relevant features, selecting based on mutual 

information  583

rolling factor betas, computing for horizons  582

technical indicators, creating at different  

intervals  581, 582
Finite Markov decision problems  684

actions  685

Bellman equations  686

long-run reward, estimating  685

optimal value functions  687
rewards  685

sequences of states  685

value functions  685, 686

five Fama-French risk factors  582
five Vs, big data

value  60
variety  60
velocity  60
veracity  60
volume  60

FIX protocol  27
forward propagation  519, 529
forward returns

creating  99

fundamental approaches, for solving RL problems
dynamic programming (DP) methods  683

Monte Carlo (MC) methods  683

temporal difference (TD) learning algorithm  683

fundamental data  51
fundamental data time series

building  52

Fundamental Law of Active  
Management  124, 125

fundamental value strategies  88

G
GAN applications, to images and time-series  

data  653
CycleGAN  654

SRGAN  654

StackGAN  654
GAN architecture  652

evolution  652

GAN, building with TensorFlow 2  655
adversarial training process, designing  658

adversarial training process, setting up  657
discriminator loss functions, defining  658
discriminator network, creating  656

generator loss functions, defining  658
generator network, building  655, 656
results, evaluating  660
training loop  659

gated recurrent units (GRUs)  597, 599
Gaussian mixture model (GMM)  

algorithm  151, 427, 432, 433
Gaussian white noise  257
Gauss-Markov theorem (GMT)  179, 180

assumptions  179
GBM models

training  372, 373
tuning  372, 373

GBM results
interpreting  391

Gelman-Rubin statistic  314
General Data Protection Regulation (GDPR)  67
generalized autoregressive conditional 

heteroskedasticity (GARCH)  
model   272, 273

generalized least squares (GLS)  183
generalized linear models (GLM)   173, 309
generalized policy iteration  688, 689
General Language Understanding Evaluation 

(GLUE)  509
Generally Accepted Accounting Principles  

(GAAP)  51
generative adversarial networks (GANs)  18

training  651, 652
using, for synthetic data  650

generative adversarial what-where network 
(GAWWN)  653

generative models  650
versus discriminative models  651

generator network  651
Gensim  497

used, for implementing LDA  476-478
used, for training word embeddings of financial 

news  497-499
geolocation data  71
Gibbs sampling  303
Gini impurity  333
global minimum-variance (GMV) portfolio  131
Global Portfolio Optimization  132
global vectors (GloVe)  617

using, for word representation  489, 490
goodness-of-fit measures  182
GoogLeNet  566
GPU acceleration

leveraging  534, 535

gradient-based One-Side sampling (GOSS)  380
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gradient boosting  367-372
for high-frequency strategy  402
long-short trading strategy  383

using, with sklearn  374, 375
gradient boosting machines (GBMs)  371
gradient boosting model predictions

ensembling  436

gradients
computing  530
testing  532

Granger causality  277
graph database  721
graphics processing units (GPUs)  534
greedy approach  329
greedy policy  695
GridSearchCV

for parameter tuning  171
parameters, tuning  376
using, with custom metric for decision  

trees  339, 340

H
H2O.ai  722
Hadoop ecosystem  721
Hadoop ecosystem, tools

Apache HBASE  721
Apache Hive  721
Apache Pig  721

half-life of mean reversion
estimating  290

Hamiltonian Monte Carlo (HMC)  304
handwritten digit classification  560, 561
HDF5  57
heads  508
heterogeneous ARCH (HARCH) model  274
heterogeneous autoregressive processes  

(HAR)  274
heteroskedasticity  168, 182
heuristics

significant cointegration, predicting  287, 288
hidden layer gradients  531
hierarchical Bayesian model  471
hierarchical clustering algorithm  426, 429

dendrograms  430, 431
drawbacks  431
strengths  431

hierarchical clustering algorithm, approaches
agglomerative clustering  429

divisive clustering   429

hierarchical clustering portfolios (HCP)  136
hierarchical clusters  151

Hierarchical DBSCAN (HDBSCAN) algorithm  432
hierarchical risk parity (HRP)  135, 136, 433

backtesting, with ML trading strategy  435
working  433-435

hierarchical softmax  486
high-dimensional data

hierarchical features, using for  515
higher-order features  554
highest posterior density (HPD)  313
high-frequency market data  26
high-frequency trading (HFT)  4, 402

engineering features  402, 403
high-minus-low (HML) value factor  85
holdout set

testing on  378
HRP performance  437
HRP weights

computing, with PyPortfolioOpt  436

HTML
data, extracting with Beautiful Soup  72, 73
data, extracting with requests  72, 73

HTML tables
reading  45

Hugging Face Transformers library  510
hyperparameters

tuning  386

hyperparameter tuning  338
decision trees, strengths and weaknesses  343
feature importance, capturing  343

GridSearchCV, using with custom metric for 

decision trees  339

training set size, diagnosing with learning curve  

342

tree structure, inspecting  340, 341
Hypertext Transfer Protocol (HTTP)  72
hypothesis space  149

I
idiosyncratic volatility  642
illiquidity premium  6
image augmentation

CIFAR-10 data, preprocessing  563
image classification  559
ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC)  558
images

compressing, with convolutional autoencoders  

627
immediate or cancel orders  23
impulse-response function  277
Inception module  566
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independent component analysis (ICA) 
algorithm  417, 418

assumptions  418
with sklearn  418

independently and identically  
distributed (IID)  123, 165, 257

individuals data  62, 63
inertia  427
inference

versus prediction  155
information coefficient (IC)  116, 124, 202, 386, 

544, 604, 645
information ratio (IR)  123
information theory  17

used, for evaluating features  161
initial public offerings (IPOs)  32
Instrumented Principal Component Analysis 

(IPCA)  639
Interactive Brokers  119
interactive development environment (IDE)  48
Internet of Things (IoT)  64
inverse document frequency (IDF)  451
inverted yield curve  307
investment industry

algorithmic pioneers, using  7, 8
alternative data, using  10, 11
crowdsourcing trading algorithms, using  11
high-frequency trading, using  3, 4

ML-driven funds  8, 9

ML-driven strategies, designing for  12, 13
ML-driven strategies, executing for  12, 13
ML, using  2, 3, 10, 11
quantamental funds  9

risk factors, investing  5, 6
smart beta funds  7
strategic capabilities, investments  9

investment industry, ML-driven strategies
alpha factor research  13
backtesting  15
data, managing  13
data, sourcing  13

J

Japanese equities  354
features  354, 355

outcomes  355

Johansen likelihood-ratio test  282

K
Kalman filter (KF)

alpha factors, denoising  100, 101
applying, pykalman used  103
prices, smoothing  289

rolling hedge ratio, computing  289

working  101, 102
Kelly criterion  132
Keras Functional API  607
kernel  555
key challenges, for solving RL problems

credit assignment  683

exploration, versus exploitation  683

key elements, RL systems
model-free agents, versus model-based  

agents  682

policy  681
reward signal  681
value function  682

key hyperparameters
tuning  525, 526

key return drivers
identifying, with PCA execution  422-424

key-value storage  720
KFold iterator  167
k-means clustering  151, 427

observations, assigning  427, 428
quality, evaluating  428, 429

k-means objective function  428
k-nearest neighbors (KNN)  154

L
L1 regularization  628
labeling  443
lagged return features

creating  98

lagged returns
using  97

Lagrange multiplier (LM) test  181
language features

engineering  455

lasso regression
sklearn, using  210
working  196
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lasso regression, with sklearn  210
IC and lasso path, evaluating  211
lasso model, cross-validating  210

latent Dirichlet allocation (LDA)  471
Dirichlet distribution  472
generative model  472
generative process, reverse engineering  473
implementing, with Gensim  476-478
implementing, with sklearn  475
working  471

latent semantic analysis (LSA)  465
latent semantic indexing (LSI)  465

implementing, with sklearn  466-468
limitations  469

strengths  468

latent space  596
LDA results

visualizing, with pyLDAvis  475
LDA topics

evaluating  473
LDA topics, evaluating options

perplexity  474
topic coherence  474

learning curve  164, 171, 342
training set size, diagnosing with  342

learning parameters  386
learning rate  373
leave-one-out method  167
leave-P-out CV  168
LeNet5  560
LeNet5 architecture

defining  561, 562
model, evaluating  562

model, training  562

LightGBM  378
minute-frequency signals, generating  404
versus CatBoost  389

LightGBM documentation
reference link  357

LightGBM models
best-performing parameter settings  389, 390
hyperparameter impact  390
signals, generating  383, 384

LightGBM Random Forest model
ML4T workflow, using  355

limit order  23
linear classification  212

inference, conducting with statsmodels  215- 217
with logistic regression model  213

linear classification, with logistic regression 
model  213

logistic function  214
maximum likelihood estimation  214, 215
objective function  213

linear dimensionality reduction  
algorithms  409, 411

generalizing  626, 627
linear factor model

building  187
linear models  328
linear OLS regression

with statsmodels  203
linear OLS regression, with statsmodels  203

diagnostic statistics  204
relevant universe, selecting  203
vanilla OLS regression, estimating  204

linear regression
with scikit-learn  205
used, for predicting stock returns  197

linear regression models  174
implementing  184

linear regression, with scikit-learn
cross-validating   205, 206
features and targets, selecting  205
information coefficient, evaluating  206, 207
RMSE  206, 207

linguistic annotation  442
linguistic annotation, concepts

dependency parsing  442

lemmatization  442

POS  442

stemming  442

liquidity detection  4
Ljung-Box Q-statistic  267
local features

extracting  555

locally linear embedding (LLE)  419
logarithm  261
logistic regression

AUC and IC results, evaluating  219
converting, into classification problem  217
hyperparameters, cross-validating  218
used, for predicting price movements  217

log-likelihood function  177
log-likelihood ratio (LLR)  216
log-odds  214
long-range dependencies

learning, challenges  597
long-short signals

for Japanese stocks, with random  
forest  353, 354
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long-short trading strategy, backtesting based on 
ensembled signals  547

predictions, ensembling to produce tradeable 

signals  547
long short-term memory (LSTM)  597, 629
long-short trading strategy

backtesting, with Alphalens  548
backtesting, with Zipline  548
cross-validating design options, for tuning  

NN  543-545

engineering features, to predict daily stock 
returns  542

neural networks (NNs), optimizing for  542
NN architecture framework, defining  542, 543
predictive performance, evaluating  545, 546

with gradient boosting  383

lookahead bias  165, 224
loss function  386
loss function gradient  530, 531
lower hedge fund fees  3
LSTM architecture  598, 599
LSTM cell state

forget gate  599

input gate  599

output gate  599

LSTM unit
information flow  598

Lunar Lander v2 (LL) environment  699

M
machine learning (ML)  148, 408, 514, 717

bias-variance trade-off, managing  718
linear models  718
model diagnostics, to speed up  

optimization  717, 718
nonlinear models  718
optimization verification test  719
relation, with DL  517
targeted model objectives, defining  719
using, for investment industry  2, 3

with text data  440
workflow  153, 717

machine learning model
ensembling  355

hyperparameters  355

lookahead period  355
lookback period  355
test period  355

machine learning signal
backtesting  245

manifold  408
manifold hypothesis  418
manifold learning  152
market beta  642
market data  22

regularizing  35

market-data providers  50, 51
market makers  24
market microstructure  23, 86
market order  23
market portfolio  126
market value strategies  88
Markov chain  302
Markov chain Monte Carlo (MCMC)  301
Markov chain MonteCarlo sampling

using, for stochastic inference  302
Markov decision process (MDP)  684
Markowitz curse  135
mark-to-market performance  225
material non-public information (MNPI)  67
maximum a posteriori probability (MAP)  298
maximum likelihood estimation (MLE)  298

used, for learning baseline model  177, 178
max pooling  557
mean of the absolute errors (MAE)  156
mean-squared error (MSE)  332
mean-variance (MV)  437
mean-variance optimization  127

implementing  138-140
working  127

mean-variance optimization, alternatives
1/N portfolio  131
Global Portfolio Optimization  132
Kelly criterion  132
minimum-variance portfolio  131

median of the absolute errors (MedAE)  156
Metropolis-Hastings sampling  303
Microsoft Cognitive Toolkit (CNTK)  541
minimum backtest length  227
minute bars  40, 41
minute-frequency signals

generating, with LightGBM  404
ML4T workflow

cross-validating signals, over horizons  358, 360
cross-validation performance, analyzing  360
ensembling forecasts  361
experimental design   355, 356

hyperparameter tuning  357, 358
lookahead, defining  357
lookback, defining  357
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roll-forward periods, defining  357
universe selection  356

with LightGBM Random Forest model  355

ML algorithm
selecting  162

ML-driven strategy
backtesting  222

ML for algorithmic trading
quantitative strategies, evolution  15, 16
use cases  16

ML for trading
data  715
data integration  715
domain expertise  716
in practice  720
key elements  714
ML tools  722
online trading platforms  722
quality control, for intermediate data sources  715
quality control, for raw sources  715

ML for trading, data management technologies
big data technologies  721
database systems  720

model
designing  162
selecting, cross-validation used  165
training, during backtest  250
tuning  162

model features and forward returns  
preparation  197

alpha factors, computing with TA-Lib  200, 201
alpha factors, selecting with TA-Lib  199, 200
dummy encoding, of categorical  

variables  202, 203
investment universe, creating  197-199
lagged returns, adding  201
target forward returns, generating  202

model selection problem  165
model transparency  17
modern portfolio theory (MPT)  5, 125, 126

challenges  130
shortcomings  130

modern portfolio theory (MPT), approaches
mean-variance optimization  127

momentum  524
excess returns, driving  85

measuring  86

momentum effect  6
momentum factors  98
momentum investing  84, 85

momentum updates
implementing, with Python  532

monotonicity constraints  383
Monte Carlo (MC) method  302, 683
Montreal Institute for Learning Algorithms  

(MILA)  305
moving average convergence/divergence  

(MACD)  354
moving-average models  258, 259

building  267
number of lags, identifying  267

moving averages  258, 259
multiclass sentiment analysis, Yelp business 

reviews  459, 460
benchmark accuracy  460
LightGBM gradient boosting tree, training  461
logistic regression  461
multinomial naive Bayes model, training  460
predictive performance  462

text and numerical features, combining  460
multicollinearity

challenges  184
multilabel problems  150
multilayer perceptron (MLP)  519
multiple testing bias  166
multivariate time-series models  276

systems of equations  277
vector autoregressive (VAR) model  277, 278

multivariate time-series regression, for macro 
data  611

data stationary, making  611
model, defining  613, 614
model, training  613, 614
multivariate RNN inputs, creating  612
scale, adjusting  611
 sentiment and industrial production data, loading 

from Fed   611
mutual information (MI)  161

N

naive Bayes classifier  456
conditional independence assumption  456, 457

naive Bayes model
used, for classifying news articles  457, 458

named-entity recognition (NER)
labeling  443

NASDAQ order book data  26
NASDAQ TotalView-ITCH data feed  27
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National Best Bid and Offer (NBBO)  25, 41
National Bureau of Economic Research  

(NBER)  306
National Financial Conditions Index (NFCI)  306
natural language generation

transforming  508
natural language processing (NLP)  152

used, for trading  455

with TextBlob  448

Natural Language Toolkit (NLTK)  448
negative sampling (NEG)  486
nesterov momentum  524
Net Order Imbalance Indicator (NOII)  28
network

training  533, 534

network-in-network concept  566
neural language models  485
neural networks (NNs)  552

architecture  519, 520
building, in Python  526

cost functions  521
designing  518
optimizing, for long-short trading strategy  542

output units   521
training, in Python  526

using, for value function approximation  697
neural networks (NNs), key design choices  520

activation functions  521
hidden units  521

New York Stock Exchange (NYSE)  24
n-grams  442

creating, for financial news  492, 493
NLP pipeline

constructing  443

constructing, with spaCy  444

constructing, with textacy  444

NLP pipeline construction
documents, batch-processing  445

multi-language NLP  447, 448
named entity recognition  446

n-grams  447
sentence, annotating  444, 445

sentence boundary detection  446

sentence, parsing  444, 445

sentence, tokenizing  444, 445
spaCy's streaming API  447

NLP workflow  441
labeling  443

linguistic annotation  442

semantic annotation  443

text data, parsing  442

text data, tokenizing  442
node purity  333

optimizing  333, 334

no-free-lunch theorem  149
noise contrastive estimation (NCE)  486
noisy signals

preprocessing, with wavelets  104-106
non-diversifiable risk  126
nonlinear activation functions  627
nonlinear dimensionality reduction  

algorithm  409, 418, 419
nonlinear feature extraction

autoencoders  626

non-observable  638
non-traditional sources of risk premiums  126
Normalized Average True Range (NATR)  582
not-held orders  23
No U-Turn Sampler (NUTS)  304
numerical evaluations  161
NumPy

alpha factors, engineering  95

O
object detection  559, 573
object detection, Google's Street View House 

Numbers
custom loss function, creating  575
evaluation metrics  575
source images, preprocessing  573
transfer learning, with custom final layer  574
two-step training  576

objective function  386
objective priors  299
object segmentation  573
odds  214
OHLCV bundles

custom bundle ingest function, writing  243

data, obtaining to be bundled  243

loading, with minute data  242

registering  243

OLS estimates correction ways, 
heteroskedasticity

clustered standard errors  183
robust standard errors  183

one-layer feedforward autoencoder  631, 632
decoder, defining  633
encoder, defining  632
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model, training  633

results, evaluating  633

online learning  524
online trading platforms, ML for trading

QuantConnect  723
Quantopian  722
QuantRocket  723

on state-of-the-art architectures
building  566

OpenAI Gym  699
open/close orders  23
OpenTable data

restaurant bookings and ratings  
dataset, building  74-76

scraping  72
optimal size of bet  132, 133
optimal value functions  687
order book

reconstructing  32-34

orders  23
Ordinary least squares (OLS)

used, for learning baseline model  176, 177
using, with statsmodels  186

outlier control  225
out-of-bag (OOB)  353

testing  352, 353

output recurrence  595
overfitting  150, 162

addressing, with regularized autoencoders  628

controlling, with regularization  194, 195
over-the-counter (OTC) markets  24

P
padding  556
pairs trading  283

in practice  285

pandas
alpha factors, engineering  95

pandas-datareader library  56
pandas library

datareader, for market data  45, 46
data storage  57
remote data access  44

paper trading  48
parameter norm penalties  522
parameter tuning

with GridSearchCV  171
with pipeline  171
with scikit-learn  170
with Yellowbrick  170

Parquet   57
partial autocorrelation  260
partial autocorrelation function (PACF)  260
partial dependence plots  393-395
passive strategies  4
performance gains, obtaining from algorithmic 

innovations  379
additional features, and optimizations  382, 383

depth-wise, versus leaf-wise growth  381
dropout for additive regression trees  

(DART)  381, 382
GPU-based training  381
second-order loss function  

approximation  379, 380
simplified split-finding algorithms  380
treatment, of categorical features  382

perplexity
used, for evaluating LDA topics  474

personally identifiable information (PII)  67
pipeline

creating, with custom ML factor  247-249
for parameter tuning  171

Pipeline API  245
DataFrameLoader, enabling  246

pipeline factors
defining  250

plain-vanilla denoising  36, 38
plate notation  469
point72  9
pointwise mutual information (PMI)  474
policy gradient methods  682
policy iteration  687
polysemy  507
portfolio benchmark inputs

generating  141
portfolio management

with Zipline  136
portfolio performance

measuring  122
testing  142

portfolio position data
generating  141

portfolio returns
generating  141
managing  125

portfolio risk

managing  125
posterior predictive checks (PPCs)  314
posterior probability distribution  297, 298
precision  159
precision-recall curves  159
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predictions
evaluating, during backtest  252-254
generating  315, 316
versus inference  155

predictive modeling
outcomes, assigning  443

predictive signals
quality, comparing  212

pretrained RoBERTa model  510
pretrained state-of-the-art models

AllenNLP  510
Hugging Face Transformers library  510
using  510

pretrained word vectors
used, for sentiment analysis  617
using  489

price/earnings time series
building  55

price/earnings to growth (PEG) ratio  90
price formation  24
price-to-earnings (P/E) ratio  90
price-to-earnings (P/E) valuation ratio  55
principal component analysis (PCA)  

algorithm  152, 411, 627, 672
based on covariance matrix  414, 415
key assumptions  413
running, to identify key return drivers  422-424
using, for algorithmic trading  421
visualizing, in 2D  412
with sklearn  416, 417
with SVD algorithm  415, 416
working  413

principal diagnostic tool  526
priors

selecting  299

probabilistic latent semantic analysis (pLSA)  469
implementing, with sklearn  470
limitations  471
strengths  471

probabilistic modeling  426
probabilistic programming

with PyMC3  305
probabilities

estimating, of asset price moves  299, 301
probability distribution  298
proprietary products  26
pseudo-R2 statistic  216
Public Dissemination Service (PDS)  52
purging  169
p-value  180
pybacktest  119

pyfolio  232
drawdown periods  144, 145
factor exposure  144, 145
used, for measuring backtest portfolio 

performance  140
pyfolio event risk analysis  145, 146
pyfolio input

obtaining, from Alphalens  141
obtaining, from Zipline backtest  141

pyfolio summary performance statistics  143, 144
pykalman

used, for applying Kalman filter  103
pyLDAvis

used, for visualizing LDA results  475
PyMC3  305
PyMC3 workflow, recession prediction  305

approximate inference, MCMC  309, 311
approximate inference, variational Bayes  312
convergence  312-314
data  306
exact MAP Inference  309
model definition  307
model diagnostic  312

PyPortfolioOpt
using, to compute HRP weights  436

Python
cross-validation, implementing  166, 167
dynamic programming  689

efficient frontier, finding  127-130
neural networks (NNs), building  526
neural networks (NNs), training  526
used, for implementing backprop  529
used, for implementing momentum updates   532

used, for training Q-learning agent  695, 696

Python Algorithmic Trading Library  
(PyAlgoTrade)  118

PyTorch 1.4
model predictions, evaluating  541
model training  540, 541
NN architecture, defining  539, 540
using  538

PyTorch DataLoader
creating  539

Q
Q-learning agent

training, with Python  695, 696

Q-learning algorithm  695
greedy policy  695

optimal policy, finding  694
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quality factors
for quantitative investing  92, 93

Quandl  50
QuantConnect  118, 723
quantile sketch algorithm  380
Quantopian  48, 722

production-ready backtesting  239
research environment, using on  254

Quantopian factors  109
QuantRocket  723
quarterly Apple filings

retrieving  54

quote data
fields  42

R
R2 score  156
random forest  345

advantages  353

boostrap aggregation  346

building  349

disadvantages  353

ensemble models, performance  345

feature importance  352

long-short signals, for Japanese stocks  353, 354
out-of-bag (OOB), testing  352, 353

training  350, 351
tuning  350, 351

randomized grid search  387, 388
random walk  262
ranking problem  154
RavenPack  71
recall  159
receiver operating characteristics (ROC)  

curve  159
receptive field  554
rectified linear unit (ReLU)  521, 557, 627
recurrent conditional GANs (RCGANs)

with synthetic time series  654

recurrent neural networks  
(RNNs)  508, 519, 629, 654

applying, to text data for detecting return 

prediction  614
applying, to text data for detecting sentiment 

analysis  614
backpropagation  through time  594
computational graph  594

long-range dependencies, learning  

challenges  597
using, for financial time series with  

TensorFlow 2  599

working  592, 593
recursive binary splitting  329
regression performance

comparing, with classification performance  341
regression problems  154, 156, 157

building, with time series data  331
regression trees  328, 349

building, with time series data  331
regularization  194, 387
regularized autoencoders

used, for addressing overfitting  628
regulated exchanges  24
reinforcement learning (RL)  152, 153, 651
relational database management systems 

(RDBMSes)  720
relative strength index (RSI)  330, 582
relative value strategies  88
remote data access

with pandas library  44

Renaissance Technologies (RenTec)  124
requests

used, for extracting data from HTML  72, 73
resampling  96
research environment

using, on Quantopian  254

residual  176
residual network (ResNet)  566, 567
residual sum of squares (RSS)  176
resilient distributed data (RDD)  721
returns

computing, for multiple historical periods  96, 97
reward signal  681
ridge regression  195

working  195, 196
ridge regression, with scikit-learn  208

cross-validation results  209
regularization parameters, tuning with  

cross-validation  208, 209
ridge coefficient paths  209
top 10 coefficients  210

riding the yield curve  6
risk-factor exposure  2
risk factor investment  135
risk factors as latent  638
risk parity  134, 135
risk-return trade-offs

capturing, in single number  122
RL problems

solving  682

RL systems
key elements  680

RMSProp  525
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RNN input tensor
dimensions  600

robust estimation methods  173
robust-minus-weak (RMW) profitability factor  85
robust simulations

calendars and Pipeline API, exchanging  240
robust standard errors  183
rolling window statistics  259
roll return  6
root-mean-square error (RMSE)  156
root-mean-square of the log of the error  

(RMSLE)  156

S

sample period  225
sandwich estimator  183
SARIMAX  270
satellite data  71
scikit-learn

parameter tuning  170
time series cross-validation  168

Scrapy
using  76, 77

SEC filings
labeling, with stock returns  500, 501
using, with bidirectional RNN GRU to predict 

weekly returns  619
SEC filings, word embeddings  499

automatic phrase detection  500
content selection  500
model evaluation  502
model training  501
n-grams, creating  500
parameter settings, performance impact  502
sentence detection  500

Securities Information Processor (SIP)  41
Selenium

using  74
self-supervised learning  626
semantic annotation  443
semantic segmentation  573
semi-supervised pretraining  507
sensors data  64

geolocation data  64

satellites images  64

sentiment
excess returns, driving  85

measuring  86

sentiment analysis  455, 458
Twitter data, used for binary sentiment 

classification  458

Yelp business reviews, used for multiclass 

sentiment analysis  459, 460
sentiment analysis, with doc2vec  

embeddings  503
doc2vec input, creating from Yelp sentiment  

data  503, 504
doc2vec model, training  504
sentiment classifier, training with document 

vectors  505, 506
sentiment analysis, with pretrained word vectors

architecture, defining with frozen weights  618
pretrained GloVe embeddings, loading  617
text data, processing  617

seq2seq autoencoders
used, for extracting time-series features  629

sequence-to-sequence models, types
many-to-many  593

many-to-one  593

one-to-many  593

sequence-to-sequence (seq2seq)  596
serial correlation  183, 259
SHapley Additive exPlanations  

(SHAP)  17, 395, 720
feature interaction, analyzing  398, 399

plots, forcing to explain predictions  397
SHAP values

summarizing, by feature  396

Sharpe ratio (SR)  123, 224
shrinkage methods  173

interpretation, improving  194
prediction accuracy, improving  194
regularizing, for linear regression  194

shrinkage techniques  373
ShuffleSplit class  168
signal content evaluation

alpha content and quality  66

asset classes  66

investment style  66

risk premiums  66
signal generation

scheduling  137, 138
silhouette coefficient  428
simple moving average (SMA)  99
single-layer architecture  526

cross-entropy cost function  529

forward propagation  529

hidden layer  527
input layer  526, 527
output layer  528

singular value decomposition (SVD)  
algorithm  413, 465
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PCA, using  415, 416
size

measuring  92

returns, predicting  91
size anomaly  91
skip-gram architecture, implementing in 

TensorFlow 2  493, 494
noise-contrastive estimation (NCE)  494

target-context word pairs, generating  495

validation samples, creating  494

word2vec model layers, creating  495, 496

skip-gram (SG) model  485
versus continuous-bag-of-words (CBOW)  

model  485

sklearn
gradient boosting, using  374, 375
stochastic gradient descent (SGD), using  

with  186, 187
used, for implementing LDA  475
used, for implementing LSI  466, 467, 468
used, for implementing pLSA  470
with document-term matrix  451
with ICA algorithm  418
with PCA algorithm  416, 417

smart beta funds  7
social sentiment data  70

Dataminr  71
RavenPack  71
StockTwits  71

softplus function  557
spaCy

used, for constructing NLP pipeline  444

Splash
using  76, 77

spread
computing  290

SRGAN  654
stacked LSTM, for predicting weekly stock price 

moves and returns  605, 606
architecture, defining with Keras Functional  

API  607-610
multiple inputs, creating in RNN format  606
returns, predicting instead of directional price 

moves  610
StackGAN  654
standard error  181
Standard Industrial Classification (SIC)  52
state-value function  685
stationarity

achieving  260
diagnosing  260

stationary time series  260
statistical arbitrage (StatArb)  88
statsmodels

used, for conducting inference  215, 216
stochastic control approach  284
stochastic gradient boosting  374
stochastic gradient descent (SGD)  251, 524, 698

used, for learning baseline model  178, 179
using, with sklearn  186, 187

stochastic inference
with Markov chain Monte Carlo sampling  302

stochastic techniques
versus deterministic methods  301

stochastic trends
handling  261

stochastic volatility models  323-325
stock momentum  642
stock return prediction, with linear  

regression  197
model features and forward returns,  

preparing  197
StockTwits  71
stop order  23
strategy backtest

preparing  288

Street View House Numbers (SVHN) dataset  573
strict stationarity  260
strides  556
subjective priors  299
subsampling  374
supervised learning  149
supervised learning problem, types

binary classification  521
multiclass problems  521
regression problems  521

survivorship bias  224
synthetic data

GANs, using for  650
synthetic time series

with RCGANs  654

T
tag-based FIXML  27
TA-Lib

technical alpha factors, creating  99, 100
TA-Lib, technical indicators

Bollinger Bands  355

normalized average true range (NATR)  355

percentage price oscillator (PPO)  354

relative strength index (RSI)  355
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t-distributed Stochastic Neighbor Embedding 
(t-SNE) algorithm  409, 419, 420, 635

teacher forcing  595
temporal difference (TD) learning  

algorithm  683, 695
TensorBoard

used, for visualizing word embeddings of financial 
news  496

using  537, 538
TensorFlow 2

skip-gram architecture, implementing  493, 494
used, for designing autoencoders  630
used, for implementing TimeGAN  663

used, for training autoencoders  630
using  535-537

term frequency (TF)  451
test scores

parameter impact  377
test statistics

distributional characteristics  181
textacy

used, for constructing NLP pipeline  444

TextBlob, with NLP  448
sentiment polarity and subjectivity  449

stemming, performing  449

text classifications  455
text data

key challenges  440
parsing  442

tokenizing  442
text data, with ML  440

applications  443

TfidfTransformer
using  454

TfidfVectorizer
used, for smoothing documents  455

used, for summarizing news articles  455

using  454

Theano
for Bayesian machine learning  305

tick bars  35, 36
time bars  36, 38
TimeGAN architecture

components  661, 662
joint training, of autoencoder and adversarial 

network  662
reconstruction loss  663

supervised loss  663

unsupervised loss  663

TimeGAN, implementing with TensorFlow 2  663
autoencoder, using with real data  666, 667

joint training, with real and random  

data  668-670
quality of synthetic time-series data,  

evaluating  672, 673
real and random input series,  

preparing  664, 665

supervised learning, using with real data  668

synthetic time-series data, visualizing  

with PCA  673
synthetic time-series data, visualizing  

with t-SNE  673
synthetic time series, generating  671, 672
TimeGAN model components, creating  665, 666

time-series classification performance  674-676
time-series prediction model, training on synthetic 

and real data  676, 677
time indicators

adding, to capture seasonal effects  98

time series  256
transforming, to achieve stationarity  261

time-series approach  284
time series cross-validation

with scikit-learn  168
time-series data  165

used, for building regression tree  331, 332
time-series features

extracting, with seq2seq autoencoders  629

time-series generative adversarial network 
(TimeGAN)  660

adversarial and supervised training, combining 

with time-series embedding  661
data generation process, across features  661
data generation process, across time  661

time-series patterns
decomposing  257, 258

time-series transformations
in practice  263-265

timing of decisions  226
tokens  439
top-down approach  329
topic coherence

used, for evaluating LDA topics  474
topic modeling

approaches  464, 465

used, for earnings calls data  478
used, for financial news  481, 482
goals  464, 465

trace  303
trade data  40

fields  41
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trade execution
scheduling  137, 138

trade-execution programs  16
trades

reconstructing  32

trade simulation
with Zipline  136

trading  23
trading activity  31
TradingCalendar library  241
trading signal quality

evaluating  405, 406
trading strategies

use cases  151
Trading with Python  119
transaction costs  226
transfer coefficient (TC)  124
transfer learning  558, 565

alternative approaches  565

transfer learning, used for identifying land use 
with satellite images  571

DenseNet201  571
EuroSat dataset  571
model training  572
results evaluation  572

transfer learning, with VGG  567
bottleneck features, extracting  567, 568
pretrained model, fine-tuning  568-570

transformer architecture  596
Transformer model  508
Transmission Control Protocol (TCP)  27
tree pruning  336
tree structure

inspecting  340, 341
trend-stationary  261
true positive rates (TPR)  159
two-layer RNN

defining, with single LSTM layer  602

U
ultrafinance  119
undercomplete autoencoder  626
underfitting  163
Uniform Manifold Approximation and Projection 

(UMAP) algorithm  409, 420, 421
unigram  442
unit roots  261

diagnosing  262

removing  263

univariate time-series models  265
ARIMA models and extensions  268

autoregressive models  266

designing, guidelines  268

features, adding  269

macro fundamentals, forecasting  270, 271
moving-average models  267
number of AR and MA terms, identifying  269

seasonal differencing, adding  270
time-series models  272

univariate time-series regression model
evaluating  603
predictions, re-scaling  604
single LSTM layer, used for defining two-layer  

RNN  602
training  603
used, for predicting S&P 500 index  

values  600, 602
universal approximation theorem  517
unsupervised learning  17, 150
unsupervised representation learning

DCGANs, using for  653

use cases, ML for algorithmic trading
asset allocation  18
data mining, for feature extraction  17
 data mining, for insights  17
reinforcement learning  19
supervised learning, using for alpha factor 

aggregation  17
supervised learning, using for alpha factor 

creation  17
trade ideas, testing  18

V
validation curves  170
value at risk (VaR)  225
value effects

capturing  89

value factors  88
returns, predicting  89

value function approximation
with NNs  697

value functions  682
value iteration  688
variance  162
variational autoencoders (VAE)

input data, generating  629

variational Bayes (VB)  301, 473
variational inference  301
vector autoregressive (VAR) model  277, 611

using, for macro fundamentals  

forecasts  278-280
vector error correction model (VECM)  278
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vectorized backtest
versus event-driven backtest  228, 229

VGGNet  566
visualizations  160
volatility

measuring  92

returns, predicting  91
volatility anomaly  90
volatility model

building, for asset-return series  274-276
volume bars  38
volume-weighted average price  

(VWAP)  35, 38, 42
Voronoi  427

W
wavelets

noisy signals, preprocessing  104-106
weighted least squares (WLS)  183
white noise  257
White standard errors  183
Wiecki, Thomas  317
winner minus loser (WML) factor  85
word2vec models

automating phrase detection  487
hierarchical softmax, using  486

negative sampling (NEG), using  486

noise contrastive estimation (NCE), using  486

objective  486

phrase embeddings  485, 486

softmax function, simplifying  486

using, for trading  499

word embeddings  485, 486

word embedding models
characteristics  507

word embeddings
for SEC filings  499
semantics, encoding  484

word representation
GloVe, using for  489, 490

WorldQuant  118

X
XBRL  51
XGBoost  378

Y
Yellowbrick

parameter tuning  170
yfinance  46

end-of-day and intraday prices, downloading  46

option chain, downloading  47
prices, downloading  47

You Only Look Once (YOLO)  573

Z

Zipline  48, 49, 106, 239
backtest  362
evaluation, with pyfolio  362, 363

in and out-of-sample strategy backtest,  
executing  362

Japanese Equities, ingesting  362

single-factor strategy, backtesting  106
used, for backtesting long-short  

trading strategy  548

using, for portfolio management  136
using, for trade simulation   136

Zipline backtest
pyfolio input, obtaining from  141
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